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CUMULATIVE SHOCK MODELS

ALLAN GUT,* Uppsala University

Abstract

We show that a theory for stopped two-dimensional random walks is well
suited to describe cumulative shock models. Limit theorems for the
lifetime/failure time of a system are provided.
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1. Introduction

The aim of this note is to show that a theory for stopped two-dimensional random walks,
introduced in Gut and Janson (1983) and further developed in Gut (1988), Chapter IV, is
very well suited to describe cumulative shock models. We thereby generalize and extend
results of Sumita and Shanthikumar (1985) and, also, provide simpler proofs.

The general setup in cumulative shock models is a family {(X,, Y;), k=0} of i.i.d.
two-dimensional random variables, where X, represents the magnitude of the kth shock and
where Y, represents the time between the (k — 1)th and the kth shock in model I and the time
between the kth and the (k + 1)th shock in model II. The system breaks down when the
cumulative shock magnitude exceeds some given level. The object in focus is the
lifetime/failure time of the system.

In earlier work it is assumed that the individual summands are non-negative, something
that is very reasonable for time and shocks, although one could certainly imagine a model
where (at least) shocks may be both positive and negative. In the present setup we do not
need the assumption of non-negativity; only that the random walk that is generated by the
shocks has positive drift.

To make the note reasonably self-contained we present, in Section 2, a short background of
the theory of stopped two-dimensional random walks mentioned above. In Section 3 we treat
shock model I and in Section 4 shock model II. Finally, Section 5 contains an application to
insurance risk theory.

2. Preliminaries

In this section we present the general model of Gut and Janson (1983); see also Gut (1988),
Section IV.2.

Let {(W,, Z,), k=1} be a sequence of i.i.d. two-dimensional random variables with
u, =EW,>0 (W,=Z,=0). No assumptions are made about independence or dependence
between W, and Z, for any k. Further, set U, = Y%, Wi and V, = L%_, Z,, n =1, and define
the first-passage-time process {7(t), t Z0} by

t(¢t) =min {n:U, >1t}.

The random variable of interest is V., and in the work cited above limit laws for V,, as
t— o are derived. We refer the reader to these sources for details.
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3. The cumulative shock model I

In model I Y, is the time between the (k — 1)th and the kth shock and {(Xy, i), k=1} are
i.i.d. random variables; X,= Y, =0.

By identifying X, w1th W, and Y, with Z, (of Section 2) for k%l, we note that U,
represents the cumulative magnitude of the shocks caused by the first n shocks, that V,
represents the time that has elapsed at the time of the nth shock, that 7(¢) equals the number
of shocks that have occurred when the cumulative shock magnitude exceeds ¢ (units) and that
V. is the time that has elapsed at the moment of occurrence of the 7(f)th shock. In
particular, if the system fails as soon as the cumulative shock magnitude exceeds the level u it
follows that for the lifetime of the system (the failure time of the system), T'(u), we have
T(u) =V,

We are (tl)nus in the position that every theorem in Gut (1988), Section IV.2 can be applied
to the present model. As a sample we state the following result.

Theorem 1. (i) If u, = EX,>0 and pu, = EY, exist, finite, then

-T&—)eﬁx as.andin L' as u—ox.
U
(i) If, in addition, o7 = Var X, and o} = Var Y, are finite and y*>= Var (u,Y; — u,X,) >0,

then
T(u) — (uy/p)u
Vi yu

(iii) Let C({x,}) denote the set of limit points of the sequence {x,}. Under the
assumptions of (ii) we have

(e regiogal) 121 22

—N(0, 1) in distribution and in L*> as u— .

in particular,

. N T(w) — (uy/p)u
lim su <hm 1nf> —_—r =
vyl i V2u loglog u (+ ) /2 s

Remarks

3.1. Recall that we do not assume that {X,} or {Y,} is non-negative; only that EX, > 0.
Further, nothing is assumed concerning independence/dependence between X, or Y;, k= 1.

3.2. It follows, in particular, from (ii) that ET(u) = (u,/u.)u + o(u) as u— ». However, it
is true that ET(u) = (u,/p.)u + constant +0(1) as u— «, where the constant depends on the
first two moments of X, and Y;, the ladder variables of the X-sequence and on whether or
not the distribution of this sequence is arithmetic.

Further, if u, =0, then ET(«) =0 and Var T(u) = (02/u,)u + o(u) as u— co. (This is, of
course, not possible if time is non-negative.)

3.3. Sumita and Shanthikumar (1985) assume that shocks and time are non-negative and
that the distributions are absolutely continuous with finite third moments. Their proofs are
based on transforms. Their proof of the representation formula for the failure time yields
equality in distribution (see their Theorem 2.A3), a result which is too weak for a.s.
statements. Their result on asymptotic normality (Theorem 2.A9) is proved under additional
independence assumptions.

3.4. Anderson (1988) provides limit theorems for T(u) in the case of attraction to stable
laws with index =1.

3.5. Further results that can be obtained via Gut (1988), Section IV.2 are Marcinkiewicz
laws, convergence to stable distributions with index between 1 and 2 and joint asymptotic
normality of the lifetime and the number of shocks until failure.
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4. The cumulative shock model II

As before, {X;, k =1} are magnitudes of the shocks, {Y,, kK =1} are the intershock times
and {(X, Yi), k=1} are i.i.d. random variables. However, in this model Y, is the time
between the kth and the (k + 1)th shock. We therefore also need Y;, the time until the
occurrence of the first shock, which is such that {Y;, k =0} are i.i.d. random variables. Also,
Xo =0.

The identification with Section 2 now becomes X, < W, for k=1, Y, & Z, for k=0; we
thus do not have Z, = 0 in this case. With 7(¢) as before the lifetime of the system, T(x), now
becomes

T(u)—1
T@ =Y+ Ve i( = 2 ¥).
k=0
This model thus is, mathematically, more complicated than model I because

(a) 7(¢) —1 is not a stopping time;

(b) the distribution of (X,, Y;) differs from that of (X,, Y,), k=1.

These problems can, however, be taken care of. For example, in order to prove asymptotic
normality it is not necessary that the family of random indices is a family of stopping times; a
weak law of large numbers suffices. That such a law holds follows from renewal theory (on
the line). Further, the addition of Y, to the sum V,,,_, clearly does not destroy the
convergence and it follows that T'(«) is asymptotically normal as u— o also in the present
context. The same is true, similarly, for the strong law and the law of the iterated logarithm.

As for uniform integrability and moment convergence it is essential that (¢), t=0, are
stopping times. However, Y., can be taken care of by Gut (1988), Theorem 1.8.1, which
implies that the remaining conclusions in Theorem I remain valid again (since T(u)=
Yo + Vi) — Yewy); cf. Gut (1988), p. 118.

The following result emerges.

Theorem I1. The results of Theorem I also hold for the lifetime in the cumulative shock
model II.

Remarks

4.1. If the shocks are non-negative, then the first part of Remark 3.2 also applies to model
IT; cf. Gut (1988), p. 118.

Note also that in this case {t(#)—1, +=0} is the counting process associated with the
shocks. This is, however, not true in the general case.

4.2. Sumita and Shanthikumar (1985) also have results for model II.

5. A remark on insurance risk theory

In insurance risk theory it is customary to identify the interclaim times with the
W-sequence and the claims with the Z-sequence. Then V,,_, is the total amount claimed in
the time interval (0, ¢].

If, instead, we identify the claims with the W-sequence and the interclaim times with the
Z-sequence, then V,, represents the time that has elapsed when the total amount claimed
exceeds ¢. Needless to say, this is the cumulative shock model I.

Further, if the initial capital is z and the gross risk premium is §, then z + V., — U, is
the risk reserve at the time point just described. Moreover, since U, =t for large ¢ (this can
be made precise), z + BV, — t is an approximation of the risk reserve at this moment. Since,
trivially, U, >t, it follows that this is a (slight) overestimate of the risk reserve.
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