
Canad. J. Math. Vol. 58 (6), 2006 pp. 1291–1340

The General Structure of G-Graded
Contractions of Lie Algebras I.
The Classification

Evelyn Weimar-Woods

Abstract. We give the general structure of complex (resp., real) G-graded contractions of Lie algebras

where G is an arbitrary finite Abelian group. For this purpose, we introduce a number of concepts, such

as pseudobasis, higher-order identities, and sign invariants. We characterize the equivalence classes of

G-graded contractions by showing that our set of invariants (support, higher-order identities, and sign

invariants) is complete, which yields a classification.

1 Introduction

Let G be a finite Abelian group. A G-graded Lie algebra L = (V, µ) has the structure

V =
⊕

j∈G V j where µ(V j ,Vk) ⊂ V j+k. The notion of a graded contraction L
γ−→ Lγ

of a graded Lie algebra L was introduced in 1991 [4, 6]. It transforms a G-graded Lie

algebra L = (V, µ) into a G-graded Lie algebra Lγ = (V, µγ) in a purely algebraic
way by defining, with the obvious meaning, µγ(V j ,Vk) = γ jkµ(V j ,Vk) where γ is
a matrix which is symmetric (so that µγ is antisymmetric) and satisfies non-linear
“defining equations” (2.3) which enforce the Jacobi identity for µγ . By a graded con-

traction is meant the matrix γ, whose definition depends only on the grading group
G and not on L.1 The process L

γ−→ Lγ is called the graded contraction of the Lie
algebra L by γ.

The notion of a contraction of Lie algebras was introduced 40 years earlier where,
motivated by physics, it is defined by a limiting process [3, 9, 10, 14]. The reader
should note that the standard terminology in the literature violates normal gram-
matical and mathematical usage. Namely, a graded contraction is not a contraction

which is graded (since it is defined algebraically and not by a limiting process). In-
deed, a graded contraction is, in general, not even equivalent to a contraction [15].

The notions of equivalence and continuity for graded contractions were defined
in [6]. In [13] we presented some general results on non-negative ZN-graded con-

tractions. In particular, we gave a complete characterization of the continuous ones.
Otherwise the rather extensive literature contains virtually no general results. Graded
contractions γ have been calculated for specific grading groups such as Z2, Z3, and

Z2 × Z2. Graded contractions of Lie algebras have been calculated for specific L such
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1If one considers a graded associative commutative algebra or a Lie superalgebra instead of a Lie alge-
bra, our results hold verbatim (cf. Remark 2.4).
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1292 E. Weimar-Woods

as the simple complex Lie algebras A2, A3, B2,C2,C3, some of their real forms and
inhomogeneous versions, and the Kac–Moody algebra A(1)

1 ; see [1, 2, 4, 5, 7, 11, 12].

This is the first of three papers on the general structure of graded contractions of
Lie algebras. This paper deals only with the matrices γ. The second paper treats the

process L
γ−→ Lγ and especially the general properties of Lγ . The third paper will deal

with Conjecture 2.15.

The defining equations for γ reflect the interplay between the Jacobi identity and
the finite Abelian grading group G. Our results show that this natural structure does

indeed produce a rich internal structure for graded contractions.

Let G be a fixed grading group. The equivalence relation for γ’s is that they differ
only by a change of basis compatible with the grading (Definition 2.14). It is trivial
to see that the support S of γ (cf. (2.11)) is an invariant. The possible supports S(G)
follow easily from the defining equations (Remark 6.2). The G-dependent higher-

order identities we introduced in [13] yield a second type of invariant. For a given
support S, we show that a straightforward calculation yields an integer Q(S) ≥ 0 with
the property that γ can arbitrarily strongly violate precisely Q(S) independent higher-
order identities (Definition 4.1, Theorem 6.5). In the complex and non-negative

cases, this means that there is a Q(S)-parameter family of inequivalent graded con-
tractions with support S. In the real case, one must also take into account the maxi-
mal number J(S) of independent sign invariants (Lemmas 6.14, 6.17). The resulting
classification in Section 7 is our main result.

Although the γ’s with zeroes are the interesting ones, those without zeroes provide
us with some necessary insights and tools which play a key role in our analysis of γ’s

with zeroes. In spite of the nonlinearity of the defining equations, some ideas from
linear algebra, such as dependence and basis, can be adapted to the present situation,
and play an important role.

We now outline the contents of the paper. Section 2 contains notation and basic
definitions. In Section 3 the equivalence classes for G-graded contractions without

zeroes are determined. In both the complex and the positive case there is only one
equivalence class, but in the real case we can have more (e.g., two in the case G = ZN

when N is even).

Section 4.1 deals with the invariants associated with the G-dependent higher-
order identities which we introduced in [13]. Section 4.2 deals with the real case,
where sign invariants come into play. We show that all sign invariants split naturally

into two classes.

In Section 5 we define independence, and introduce a pseudobasis as a maximal
set of independent elements of a complex G-graded contraction γ without zeroes.
We construct all pseudobases, and all γ’s which agree on a given pseudobasis. Then
we answer the question of when real values of a pseudobasis yield a real γ.

Section 6 contains a number of results on the general structure of G-graded con-
tractions with zeroes. In Theorem 6.5 we produce the Q(S) higher-order identi-

ties that a γ with support S can arbitrarily and independently violate. In Theorem
6.7 (resp. Theorem 6.11) we characterize those complex (resp., real) γ’s for which
γ ∼ π(γ) where π(γ) (Definition 2.8 (ii)) has the same support as γ but all of its
non-vanishing elements are equal to 1. Finally, we introduce the notion of indepen-
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dent sign invariants (Definition 6.13, Lemma 6.16). In Lemma 6.17 and Algorithm
6.18 we then determine the maximal number J(S) of independent sign invariants for

a real γ with support S.
In Theorem 7.1 we apply these results to show that two inequivalent G-graded

contractions must differ on one of our invariants (support, higher-order identities,
and sign invariants), thus proving their completeness. This leads to a classification of

all G-graded contractions.
An appendix contains all lengthier manipulations of the defining equations which

lead to “natural” bases for graded contractions for all G.
Finally, we make a few remarks on our second paper [15], which deals with the

general structure of the contracted Lie algebra Lγ . The author’s results for contin-
uous non-negative ZN -graded contractions in [13] will be generalized to complex
(resp., real) G-graded contractions. The effect of continuous and discrete G-graded
contractions will be compared with each other and with contractions. In addition,

the usefullness of graded contractions in mathematical physics will be critically ex-
amined.

2 Definitions and Notation

Let G be a finite Abelian group of order |G| ≥ 2. It is well known that G is isomorphic
to a direct product

(2.1) G ≃ ZN1
× ZN2

× · · · × ZNr

where ZN is the additive group of Z modulo N . This decomposition is in general
not unique (unless one specifies the canonical decomposition where Ni | Ni+1, i =

1, 2, . . . , r − 1) [8]. However the non-uniqueness does not play any role for our
purposes.

Definition 2.1 A Lie algebra L = (V, µ) is called G-graded if the vector space V
splits according to V =

⊕

j∈G V j and if the Lie product µ : V ×V → V satisfies

(2.2) µ(V j ,Vk) ⊂ V j+k.

for j, k ∈ G. (The Lie product is antisymmetric and satisfies the Jacobi identity
µ(µ(e, f ), g) + µ(µ( f , g), e) + µ(µ(g, e), f ) = 0 for e, f , g,∈ V .)

Definition 2.2 ([4]) We call a complex (resp., real) matrix γ = (γ jk), j, k ∈ G, a

G-graded contraction if γ is symmetric and satisfies the defining equations

(2.3) γ jkγl, j+k = γ jlγk, j+l = γklγ j,k+l, j, k, l ∈ G.

Definition 2.3 ([4]) Let L = (V, µ) be a complex (resp., real) G-graded Lie algebra
and let γ be a complex (resp., real) G-graded contraction. Then with the obvious
meaning,

(2.4) µγ(V j ,Vk) = γ jkµ(V j ,Vk), j, k ∈ G,

defines a Lie product (the symmetry of γ ensures the antisymmetry of µγ and the
defining equations guarantee the Jacobi identity for µγ).
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1294 E. Weimar-Woods

The complex (resp., real) G-graded Lie algebra Lγ = (V, µγ) is called the G-graded
contraction of L, in short

L
γ−→ Lγ .

Remark 2.4 Note that this construction also works for an associative, commutative
graded algebra (here the defining equations ensure the associativity) or a Lie super-
algebra.

Definition 2.5

(i) Let γ ′ and γ ′′ be two G-graded contractions. (cf. [4]) Then the (element-

wise) product ( j, k ∈ G)

(2.5) γ = γ ′ · γ ′′ where γ jk = γ ′

jkγ
′′

jk

is obviously a G-graded contraction.
(ii) Let γ be a G-graded contraction and γ ′ a G ′-graded contraction. Then the

tensor product ( j, k ∈ G j ′, k ′ ∈ G ′)

(2.6) γ ⊗ γ ′ where (γ ⊗ γ ′) j j ′ ,kk ′ = γ jkγ
′

j ′k ′

is obviously a G × G ′-graded contraction.

Definition 2.6 A G-graded contraction γ is called trivial if for all G-graded L we

always have Lγ ≃ L or we always have Lγ Abelian.

Example 2.7

(i) Trivial γ’s are γ jk ≡ 0, so that Lγ is Abelian, and the identity 1 where

(2.7) 1 jk ≡ 1, so that Lγ = L.

(ii) The trivial complex (resp., real) G-graded contraction da is defined [4, 6] by

(2.8) (da) jk =
a jak

a j+k

j, k ∈ G

with arbitrary numbers 0 6= a j ∈ C (resp., R). And it corresponds to the change

of basis V j −→ a jV j (which is compatible with the grading) so that Lda ≃ L. (The
notation “da” reflects the fact that a general γ can be interpreted as a 2-cocycle and
da as a 2-coboundary [6].)

(iii) In Section 3 (Lemma 3.4) the following real ZN -graded contraction, called

“db”, will occur which is a coboundary only in the complex, but not in the real case.
Consider, for G = ZN and j, k = 0, 1, 2, . . . , N − 1,

(2.9) b j = ei jπ/N .

Then

(2.10) (db) jk =
b jbk

b j+k

=

{

1 0 ≤ j, k ≤ j + k < N,

−1 0 ≤ j + k < j, k < N.

https://doi.org/10.4153/CJM-2006-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-046-x


General Structure of G-Graded Contractions of Lie Algebras 1295

Definition 2.8 Given a G-graded contraction γ:
(i) We call γ without zeroes, if γ jk 6= 0 for all j, k ∈ G and with zeroes, if γ jk = 0

for at least one pair ( j, k) ∈ G × G. We define the support S of γ by

(2.11) S(γ) = {( j, k) ∈ G × G | γ jk 6= 0}.

We denote by S(G) the set of all supports of a G-graded contraction.
(ii) We call γ a projection if γ · γ = γ, which yields γ jk ∈ {0, 1}, so that (cf. (2.4))

µγ(V j ,Vk) =

{

µ(V j ,Vk) if γ jk = 1,

0 if γ jk = 0.

We define the projection π belonging to γ by

(2.12) π(γ) jk =

{

1 if γ jk 6= 0,

0 if γ jk = 0.

Then γ and π(γ) have the same support.
(iii) We say that an equation or an expression survives for some γ with zeroes if it

is built from non-vanishing elements only.

Proposition 2.9 The set of G-graded contractions with the same support S forms a
group under (elementwise) multiplication.

Proof Consider two G-graded contractions γ and γ ′ with S(γ) = S(γ ′) = S. Then
S(γ · γ ′) = S. The inverse of γ is γ̃ where S(γ̃) = S and γ̃ jk =

1
γ jk

if γ jk 6= 0, the unit

being the projection π with S(π) = S.

Definition 2.10 Let γ be a real G-graded contraction.

(i) We call γ positive if γ jk > 0 for all j, k ∈ G and non-negative if γ jk ≥ 0 for all
j, k ∈ G.

(ii) We define the non-negative G-graded contraction |γ| by

(2.13) |γ| jk = |γ jk|

and the real G-graded contraction sgn γ by

(2.14) (sgn γ) jk =











1 if γ jk > 0,

−1 if γ jk < 0,

0 if γ jk = 0.

Then we have

(2.15) γ = |γ| · sgn γ.
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1296 E. Weimar-Woods

Definition 2.11 (cf. [13]) We call two elements γ jk and γ j ′k ′( j, j ′, k, k ′ ∈ G) of
a G-graded contraction γ compatible if their product appears in at least one of the

defining equations (2.3) which is not trivial, (i.e,. not of the form γ jkγ j ′k ′ = γ jkγ j ′k ′)
otherwise incompatible.

Example 2.12

(i) For G = ZN , N = 2M(M = 1, 2, . . . ) the M(M+1)

2
elements

{γ jk | j ≤ k, j, k odd, j, k = 0, 1, 2, . . . , N − 1}

are pairwise incompatible.
(ii) For G = Z × G ′ where N = 2, 3, · · · and G ′ is a finite Abelian group, the

elements

{γ1 j,1k | j, k ∈ G ′}
are pairwise incompatible.

Remark 2.13 Let {γsi
| i = 1, 2, . . . , r, si ∈ G×G} be a set of r pairwise incompat-

ible elements. Let ci ∈ C (resp., R) be arbitrary. If we choose

γsi
= ci, ; i = 1, 2, . . . , r,

and for all remaining elements γs = 0, then γ is a complex (resp., real) G-graded
contraction.

Definition 2.14 (cf. [6]) Two complex (resp., real) G-graded contractions γ and γ ′

are called equivalent, written γ ∼ γ ′, if a coboundary da exists with 0 6= a j ∈ C

(resp., R), j ∈ G, so that

(2.16) γ = da · γ ′.

Conjecture 2.15 There is a second natural notion of equivalence, namely to say

that γ is equivalent to γ ′ if and only if Lγ ≃ Lγ ′ for all G-graded Lie algebras L. Now
since da is trivial (cf. (2.8)) we have

γ ∼ γ ′
=⇒ Lγ ≃ Lγ ′ , for all L.

If the converse holds, then both equivalence relations are the same. In fact, we believe
this to be true [15].

Lemma 2.16 We have

(i)

da ∼ 1,

(ii)

γ1 ∼ γ ′

1, γ2 ∼ γ ′

2 =⇒ γ1 · γ2 ∼ γ ′

1 · γ ′

2.
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(iii) For γ, γ ′ real,

γ ∼ γ ′ ⇐⇒ |γ| ∼ |γ ′| and sgn γ ∼ sgn γ ′.

Proof (i) Obvious. (ii) Use that da1 · da2 = da where a j = (a1) j(a2) j . (iii) Assume
γ ∼ γ ′ i.e., γ = da · γ ′. Write a j = |a j | sgn a j . The converse follows from (ii) .

Definition 2.17 (cf. [6]) A complex (resp., real) G-graded contraction γ is called
continuous if there exists a family da(ε), ε ∈ (0, 1], with 0 6= a j(ε) ∈ C (resp., R) for
j ∈ G, such that

γ = lim
ε→0

da(ε),

otherwise it is called discrete.

Definition 2.18 Consider a complex (resp., real) G-graded contraction γ. A com-
plex (resp., real) function f of elements of γ is called an invariant if f is constant on
equivalence classes, i.e.,

(2.17) f (da · γ) = f (γ)

for all da with 0 6= a j ∈ C (resp., R), j ∈ G. Similarly, a property of γ is called
invariant if it is constant on equivalence classes.

Example 2.19 Obvious invariants are (i) the support S, (ii) to be a coboundary or
not, (iii) to be continuous or discrete .

3 G-Graded Contractions Without Zeroes

The simplest G-graded contractions without zeroes are the coboundaries da (2.8).
They constitute precisely the equivalence class of the identity (2.7), (2.16). In [13]
we proved that for positive (resp., complex) ZN -graded contractions, this is the only

equivalence class. Here we extend our earlier results to include arbitrary (finite Abe-
lian) grading groups G, and the real case (where there can be more than one equiva-
lence class).

Let γ be a G-graded contraction without zeroes. Theorem 3.1 proves the existence

of complex numbers a j 6= 0( j ∈ G) such that γ = da. Hence all complex G-
graded contractions without zeroes are coboundaries. For a real γ it is, in general,
not possible to choose the a j ’s real. Lemma 3.4 and Theorem 3.5 give a complete and
detailed answer in this situation.

Each of the defining equations (2.3) combines four different elements, except for
the case l = 0,

(3.1) γ0 jγ jk = γ0kγ jk = γ0, j+kγ jk,

and j = l = 0,

(3.2) γ00γ0k = γ2
0k.
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Equation (3.2) yields for all γ’s without zeroes

(3.3) γ0k = γ00, k ∈ G,

which implies that (3.1) is trivially satisfied.

Theorem 3.1 Given a complex G-graded contraction γ without zeroes, there exist
complex numbers 0 6= a j ∈ C( j ∈ G) such that γ = da ∼ 1.

Proof We present first the proof for ZN , then for ZN1
× ZN2

and finally for a gen-
eral G.

Case 1: G = ZN(N = 2, 3, . . . ). Lemma A.1 shows that all elements of γ follow
uniquely from the N elements γ00, γ11, γ12 · · · γ1,N−1. Hence, if we show that some

da exists which agrees with γ on these N elements, we must have γ = da. The ansatz
(2.8)

γ00 = a0, γ1 j =
a1a j

a j+1

, j = 1, 2, . . . , N − 1;

yields

a0 = γ00;(3.4)

a jγ11γ12 · · · γ1, j−1 = a
j
1, j = 2, 3, . . . , N − 1;(3.5)

aN
1 = γ00γ11γ12 · · · γ1,N−1(3.6)

which in turn satisfies the ansatz.

If we choose an arbitrary (complex) root of (3.6) for a1 and then define a0 by (3.4)
and a2, a3, . . . , aN−1 by (3.5), we get γ = da.

Due to (3.6), there is a 1-to-N correspondence between a complex ZN-graded con-
traction γ without zeroes and the set of complex numbers a j , j = 0, 1, 2, . . . , N − 1,
which define the corresponding coboundary da. More precisely, if a j is one solution,

all solutions are of the form:

(3.7) a ′

j = ei2 jlπ/N a j , l = 0, 1, 2, . . . , N − 1.

Case 2: G = ZN1
× ZN2

(N1, N2 = 2, 3, . . . ). Lemma A.2 shows that all elements of γ
follow uniquely from the N1 · N2 elements

γ00,00, γ10, j0, γ01,0k, γ j0,0k, j = 1, 2, . . . , N1 − 1, k = 1, 2, · · · , N2 − 1.

If we show that some da exists which agrees with γ on these N1 · N2 elements, we
must have γ = da. We find

(3.8) a00 = γ00,00,
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and (as in Case 1 for ZN1
)

(3.9) a j0

j−1
∏

j ′=1

γ10, j ′0 = a
j
10, j = 2, 3, . . . , N1 − 1,

where

(3.10) aN1

10 =

N1−1
∏

j ′=0

γ10, j ′0

and (as in Case 1 for ZN2
)

(3.11) aok

k−1
∏

k ′=1

γ01,0k ′ = ak
01 k = 2, 3, . . . , N2 − 1,

where

(3.12) aN2

01 =

N2−1
∏

k ′=0

γ01,0k ′ .

Finally, a jk follows uniquely from a j0 and a0k according to

(3.13) a jk =
a j0a0k

γ j0,0k

j = 1, 2, . . . , N1 − 1, k = 1, 2, . . . , N2 − 1.

Altogether we get γ = da.
Due to (3.10) and (3.12) we get a 1-to-N1 ·N2 correspondence between a complex

ZN1
× ZN2

-graded γ without zeroes and the set of complex numbers a jk which define
the corresponding da.

Case 3: G = ZN1
×ZN2

×· · ·×ZNr
(Ni = 2, 3, . . . , i = 1, 2, . . . , r). We use the results

of Lemma A.4, where we structure G as

G = ZN1
× (ZN2

× (ZN3
× (· · · × (ZNr−1

× ZNr
) · · · ))).

We follow the same scheme as in Case 2. We find a0···0 = γ0···0,0···0. For all ZNi
-sub-

groups we get the corresponding results to (3.9) and (3.10) resp., (3.11) and (3.12),

e.g., for i = 1

a j10···0

j1−1
∏

j ′
1
=1

γ10···0, j ′
1

0···0 = a
j1

10···0 j1 = 2, 3, . . . , N1 − 1;

where

aN1

10···0 =

N1−1
∏

j ′
1
=0

γ10···0, j ′
1

0···0.
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This allows us to determine ( ji = 1, 2, . . . , Ni − 1)

a j10···0, a0 j20···0, . . . , a0···0 jr
.

From these results we get uniquely, first

a0···0 jr−1 jr
=

a0···0 jr−10a0···0 jr

γ0···0 jr−10,0···0 jr

,

then

a0···0 jr−2 jr−1 jr
=

a0···0 jr−200a0···0 jr−1 jr

γ0···0 jr−200,0···0 jr−1 jr

and continuing in this way,

a j1 j2 j3··· jr
=

a j10···0a0 j2 j3··· jr

γ j10···0,0 j2 j3··· jr

.

As above, we get γ = da.

Now we turn to the real case.

Lemma 3.2 Given a real G-graded contraction γ without zeroes, we have γ ∼ sgn γ.
In particular, γ ∼ 1 if γ is positive.

Proof We have (2.15) γ = |γ| · sgn γ. Since |γ| is positive, the proof of Theorem 3.1
admits positive numbers a j > 0, j ∈ G so that |γ| = da ∼ 1. (If G = ZN , (3.6)
admits a positive root for a1 and consequently positive values for all remaining a j .

The reasoning is similar for a general G.) Thus, γ ∼ sgn γ.

Lemma 3.3 There are 2N different G-graded contractions sgn γ without zeroes, where
N = |G|.

Proof We know that all elements of γ follow uniquely from the N elements of a
natural basis as given in Lemmas A.1, A.2 and A.3. Theorem 3.1 shows that these

N elements can be arbitrarily chosen. Now there are exactly 2N different ways to
distribute the signs “±” over these N elements.

How many different equivalence classes exist for these 2N sgn γ’s? Lemma 3.4 gives
the answer for G = ZN , Theorem 3.5 for a general G.

Lemma 3.4 For real ZN-graded contractions γ without zeroes, there is only one equiv-
alence class if N is odd. If N = 2M (M = 1, 2, . . . ), there exist two equivalence classes
which are separated by the sign of γ00γMM . Representatives are 1 and db, cf. (2.10).
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Proof If N is odd, (3.6) admits a real root a1 for γ. Therefore the proof of Theorem
3.1 yields ((3.4) and (3.5)) γ = da ∼ 1, so that we get one equivalence class.

If N = 2M, (3.6) admits a real root a1 for γ only if, cf. (A.4),

sgn(γ00γ11γ12 · · · γ1,2M−1) = sgn(γ00γMM) = +1,

otherwise not. This means

sgn(γ00γMM) = +1 ⇒ γ = da ∼ 1,

sgn(γ00γMM) = −1 ⇒ γ 6∼ 1.

An example for the second case is the real Z2M-graded contraction db (cf. (2.10),
Remark 3.6 and Example 3.7) since (db)00(db)MM = −1. In the case sgn(γ00γMM) =

−1 we have sgn[(γ · db)00(γ · db)MM] = + 1 so that (see above) γ · db ∼ 1 which
yields (since db · db = 1) γ ∼ db. Therefore we get two equivalence classes with

representatives 1 and db which are separated by the sign of γ00γMM . (In Section 4.1
we will see that sgn(γ00γMM) is a sign invariant of the second kind (Example 4.17).)

The above result for ZN makes the following theorem hardly surprising.

Theorem 3.5 Let G = ZN1
× ZN2

× · · · × ZNr
where re of the r numbers Ni , Ni =

2, 3, . . . , i = 1, 2, . . . , r, are even and the others are odd, 0 ≤ re ≤ r. Then there exist
2re equivalence classes for real G-graded contractions γ without zeroes.

Proof Case 1: r = 1. This follows from Lemma 3.4.

Case 2: r = 2. Due to (3.10) and (3.12) we have now exactly the same situation as in
Lemma 3.4 for each individual ZNi

-subgroup. Note that (3.13) does not present any
additional problem. We therefore get, as in Lemma 3.4, for a real γ without zeroes:

one equivalence class if N1 and N2 are odd with representative 1,

two equivalence classes if N1 = 2M1 (M1 = 1, 2, . . . ) and N2 is odd, separated by the
sign of γ00,00γM10,M10 with representatives (Definition 2.5(ii)) 1 ⊗ 1 and db ⊗ 1,

four equivalence classes if N1 = 2M1 and N2 = 2M2 (M1, M2 = 1, 2, . . . ) separated
by the signs of γ00,00γM10,M10 and γ00,00γ0M2,0M2

with representatives 1 ⊗ 1, db ⊗ 1,
1 ⊗ db, db ⊗ db.

Case 3: r ≥ 3 (Case 3 in the proof of Theorem 3.1). Exactly as in Case 2, each
subgroup ZNi

can be represented (only) by 1 if Ni is odd and by 1 or db if Ni is
even.

Remark 3.6 What is the result of a Z2M-graded contraction of a real Lie algebra L
by db? Since the complex change of basis V j −→ b jV j (with the obvious meaning
(2.9)) maps L onto Ldb, L and Ldb have the same complex extension.
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Example 3.7 Consider the Z2-graded real compact Lie algebra L = (V, µ) = so(3)
where V = V0 ⊕V1 with basis vectors e3 ∈ V0, e1, e2 ∈ V1 and

µ(e1, e2) = e3 µ(e2, e3) = e1 µ(e3, e1) = e2.

The graded contraction of L by db ((2.9) and (2.10)) i.e., b0 = 1, b1 = i, (db)00 =

(db)01 = +1, (db)11 = −1 yields the real non-compact Lie algebra Ldb = (V, µdb) =

so(2, 1) where

µdb(e1, e2) = −e3, µdb(e2, e3) = e1, µdb(e3, e1) = e2

i.e., L and Ldb are two different real forms of the same simple complex Lie algebra A1.
The complex change of basis given by db, namely V0 → V0 and V1 → iV1, is known
as Weyl’s unitary trick.

Example 3.8 The decomposition of G as G ≃ ZN1
× ZN2

× · · · × ZNr
is in general

not unique. Nevertheless the total number re of even numbers Ni is unique. We give

two simple illustrations of this fact.
(i) Theorem 3.5 yields two equivalence classes for real Z4-graded contractions

and four in the case of Z2 × Z2. This result reflects the fact that Z4 6≃ Z2 × Z2.
(ii) Theorem 3.4 yields two equivalence classes for Z6 which are separated by

sgn(γ00γ33). This result can be easily rewritten for Z2 × Z3 ≃ Z6. Using the identifi-
cation of the element 1 of Z6 with the element (1,1) of Z2 × Z3 gives two equivalence
classes which are separated by sgn(γ00,00γ10,10), in agreement with Theorem 3.5.

Finally, we want to look at our results for real G-graded contractions γ ∼ sgn γ
without zeroes in a group theoretical way. Define

(3.14) Sgn(G) = {sgn γ | γ a real G-graded contraction without zeroes}.
Sgn(G) is a group with respect to elementwise multiplication (see also Proposi-

tion 2.9). The unit is 1 and each element agrees with its inverse. Sgn(G) has 2N

elements where N = |G| (Lemma 3.3). Of particular interest is the subgroup

(3.15) Sgn0(G) = {da | a j = ±1, j ∈ G},
since it implements the equivalence relation for sgn γ Lemma 2.16(iii)). It follows

that the order of Sgn0(G) is the number of elements in the equivalence class of any
sgn γ, and that the order of the quotient group is the number of equivalence classes.

Theorem 3.1 yields (see also Examples 2.7(iii))

Sgn(ZN ) = Sgn0(ZN) if N is odd,(3.16)

Sgn(ZN ) = Sgn0(ZN) ∪ db · Sgn0(ZN ) if N = 2M, M = 1, 2 . . . .(3.17)

Note that Sgn0(ZN ) has only 2N−1 elements for N = 2M since in this case a ′

j =

(− 1) ja j yields da ′
= da. (This corresponds to l = M, N = 2M in (3.7).) More

generally,

(3.18) Sgn0(ZN1
× ZN2

× · · · × ZNr
) has 2N−re elements,

where re of the r indices Ni are even (since 2re different sets of a j ’s belong to the same
da).
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4 Invariants

In this section we study invariants for G-graded contractions. We already know that
the support is an invariant, cf. Examples 2.19(i). A second type of invariant arises
from the G-dependent “higher-order identities” found by the author [13, Definition

4.1 and Lemma 4.4]. For real G-graded contractions there are also two types of sign
invariants which we characterize completely (cf. Section 4.2).

In Theorem 7.1 we will show that our set of invariants is complete by proving that
two inequivalent G-graded contractions must differ on one of these invariants.

4.1 Higher-Order Identities

Definition 4.1 Consider the set of all G-graded contractions γ for fixed G and two
products P1(γ) and P2(γ) of the same number r ≥ 3 of (not necessarily different)
elements of γ. If

(4.1) P1(da) = P2(da)

for all da where 0 6= a j ∈ C, j ∈ G, but if some γ exists with P1(γ) 6= P2(γ) we call

(4.1) a higher-order identity, for short, “P1 = P2”

Remark 4.2

(i) Since all G-graded contractions γ without zeroes are coboundaries da with
0 6= a j ∈ C (Theorem 3.1), they automatically satisfy P1(γ) = P2(γ) for all higher-

order identities “P1 = P2”.
(ii) We have ((2.8); i = 1, 2)

Pi(da) =

∏

j∈G

a
ni j

j , ni j ∈ Z.

Since all a j ’s can be chosen independently and arbitrarily, it follows that P1(da) =

P2(da) for all da ⇔ n1 j = n2 j j ∈ G. Therefore, (4.1) can only hold if P1 and P2

have the same number of elements.
(iii) In Definition 4.1 the two cases r = 1 and r = 2 are omitted because of the

following two reasons. If r = 1 (3.2) would yield the only candidate, namely

P1(γ) = γ00, P2(γ) = γ0k, 0 6= k ∈ G.

We have P1(γ) = P2(γ) for all γ’s without zeroes (3.3), and this identity can only be
weakly violated by γ’s with zeroes (3.2). Therefore, and since this case is, in contrast
to all others, independent of G, this identity will always be treated separately and not

considered as a higher-order identity. If r = 2, one can easily verify that the ansatz

P1(da) =

∏

j∈G

a
n j

j = P2(da), n j ∈ Z,
∑

n j = 2

only yields a trivial identity or a defining equation (2.3) which cannot be violated.
Therefore higher-order identities with r = 2 do not exist.
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We will see in Section 6 that it makes a crucial difference how a higher-order iden-
tity is violated.

Definition 4.3 A G-graded contraction γ strongly violates a higher-order identity
“P1 = P2” if 0 6= P1(γ) 6= P2(γ) 6= 0 and weakly violates it if 0 = P1(γ) 6= P2(γ) or
0 = P2(γ) 6= P1(γ).

Note that each type of violation excludes the other. (The notation here is not ideal,

since a strong violation does not imply a weak violation. However, it is appropriate
in the sense that, as we shall see in Section 6, the consequences of a strong violation
are stronger.)

The next lemma shows how invariants (Definition 2.18) arise from higher-order

identities.

Lemma 4.4 Let “P1 = P2” be a higher-order identity for G-graded contractions γ.

(i) The property Pi(γ) = 0, resp., Pi(γ) 6= 0, for i = 1 or i = 2 is invariant.
(ii) In the case Pi(γ) 6= 0 for i = 1 and 2, the complex (resp., real) number

P1(γ)

P2(γ)

is an invariant.

Proof Since Pi is a product of matrix elements we have (Definition 2.5(i))

Pi(da · γ) = Pi(da)Pi(γ), i = 1, 2.

(i) follows immediately since Pi(da) 6= 0; (ii) follows immediately since (Defini-
tion 4.1) P1(da) = P2(da).

Remark 4.5 (i) Higher-order identities can be combined to produce new ones.

Consider the r invariants

P(l)
1 (γ)

P(l)
2 (γ)

, l = 1, 2, . . . r, r = 1, 2 . . . .

Then
P1(γ)

P2(γ)
=

r
∏

l=1

( P(l)
1 (γ)

P(l)
2 (γ)

) nl

, nl ∈ Z.

is obviously again an invariant.

(ii) In [13] we began a study of the general structure of higher-order identities
and listed all of them for G = ZN with N ≤ 8 (where “all” means that the remaining
invariants follow from these as in (i)).

Fortunately, such a list for all G is not needed here, since Theorem 6.5 automat-

ically produces all those higher-order identities which a G-graded contraction with
given support can strongly violate. In contrast, the weak violations are completely
determined by the support and they will not play a separate role in this paper (they
do play a role in the characterization of continuous graded contractions [13, 15]).
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Example 4.6 We give several examples for higher-order identities “P1 = P2” with
r = 3, 4, 5 factors.

r = 3 : The general structure is P1(γ) = γ j1k1
γ j2k2

γ j3k3
and P2(γ) = γ j2k1

γ j3k2
γ j1k3

[13], where

j1 + k1 = j3 + k2 j2 + k2 = j1 + k3 j3 + k3 = j2 + k1

and where all elements which occur are pairwise incompatible. Then “P1 = P2” is
indeed a higher-order identity since

P1(da) =

3
∏

i=1

a ji
aki

a ji +ki

= P2(da)

and since all elements which occur are pairwise incompatible so that P1 and P2 can

take on arbitrary values (Remark 2.13) which leads to arbitrary strong and weak vio-
lations.

Another proof is the following. Using the defining equations 3 times yields

γ j1+k1,k3
γ j1k1

γ j2k2
γ j3k3

= γ j1+k1,k3
γ j2k1

γ j3k2
γ j1k3

,

so we have for all γ without zeroes (but not necessarily for those with γ j1+k1,k3
= 0)

that P1(γ) = P2(γ).
The element γ j1+k1,k3

works therefore as a “zipper-element” which overcomes the
incompatibility of all other elements.

A simple counting argument shows that we need at least 6 different j ∈ G to
form such a higher-order identity (e.g., 3 for the sums ji + ki and a minimum of 3
for ji, ki(i = 1, 2, 3)). Therefore such a higher-order identity cannot exist for N =

|G| < 6.

Examples for N ≥ 6 are

Z6 : P1(γ) = γ11γ33γ55; P2(γ) = γ13γ15γ35

ZN (N ≥ 7) : P1(γ) = γ25γ33γ44 ; P2(γ) = γ24γ34γ35

Z2 × Z2 × Z2 : P1(γ) = γ100,100γ101,111γ110,111; P2(γ) = γ100,101γ111,111γ100,110

Z2 × Z4 : P1(γ) = γ10,10γ11,12γ12,13 ; P2(γ) = γ10,11γ10,13γ12,12

ZN × ZN (N ≥ 3) : P1(γ) = γ10;N−1,0γ0,N−1;12γ01,21;

P2(γ) = γ01;0,N−1γN−1,0;21γ10,12.

r = 4 : The general structure [13] is either of the cyclic type as for r = 3 or

P1(γ) = γ j1k1
γ j2k2

γ j3k3
γ j4k4

, P2(γ) = γ j1k2
γ j2k1

γ j3k4
γ j4k3

where

j1 + k1 = j3 + k4, j2 + k2 = j4 + k3, j3 + k3 = j1 + k2, j4 + k4 = j2 + k1.
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Again all elements are pairwise incompatible so that arbitrary strong and weak viola-
tions are possible. Here we need the product of two “zipper-elements” e.g.,

γ j1+k1,k2
γ j4+k4,k3

.

A simple counting argument shows that we need at least 8 different j ∈ G to form

a higher-order identity with r = 4. The first ones occur indeed for N = |G| = 8. All
of them for Z8 are

P1(γ) = γ11γ33γ55γ77 P2(γ) = (γ15)2(γ37)2

P1(γ) = γ11γ33(γ57)2 P2(γ) = (γ13)2γ55γ77

P1(γ) = γ11(γ35)2γ77 P2(γ) = (γ17)2γ33γ55

P1(γ) = γ17γ22γ35γ66 P2(γ) = γ13(γ26)2γ57.

Another example for Z2 × Z4 is

P1(γ) = γ10,10γ11,11γ12,12γ13,13, P2(γ) = (γ10,12)2(γ11,13)2.

r = 5 : Here the first higher-order identities occur which are not built from pairwise

incompatible elements, namely

P1(γ) = γ j1 j2
γ j1+ j2, j3

γ j4 j7
γ j5 j8

γ j6 j9
P2(γ) = γ j4 j5

γ j4+ j5, j6
γ j1 j9

γ j2 j7
γ j3 j8

,

where

j1 + j2 + j3 = j4 + j5 + j6

and

j4 + j7 = j1 + j9, j5 + j8 = j2 + j7, j6 + j9 = j3 + j8.

An example for Z29 is

P1(γ) = γ13γ48γ2,14γ20,26γ19,15 P2(γ) = γ2,20γ22,19γ1,15γ3,14γ8,26.

This brings the following two, and only these two, defining equations into play

γ13γ48 = γ18γ39 = γ38γ1,11

γ2,20γ22,19 = γ2,19γ20,21 = γ19,20γ2,10,

provided one sets all γ jk which do not occur in the above 4 equations equal to zero.
Then one can choose for all elements which occur in P1 and P2 arbitrary values, and
for the remaining elements one chooses values so that both defining equations are
satisfied. Then P1 and P2 can take on arbitrary values, and we can have arbitrary

strong and weak violations.

Lemma 4.7 Higher-order identities exist for G-graded contractions if and only if N =

|G| ≥ 6.
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Proof (i) Let N ≤ 5. Then we have at most 5 different j ∈ G so that a higher-order
identity cannot be constructed since we already need at least 6 different digits for the

simplest one with 3 factors (Example 4.6 with r = 3).
(ii) Let G ≃ ZN1

× ZN2
× · · · × ZNr

where

N =

r
∏

i=1

Ni ≥ 6.

Then G must contain a subgroup which is isomorphic to one of the following groups

ZN(N ≥ 6), Z5 × Z5, Z4 × Z4, Z3 × Z3, Z2 × Z4, Z2 × Z2 × Z2.

(Assume e.g., that Z5 is the subgroup with the highest order contained in G. Since
|G| ≥ 6, G must contain as subgroup either Z5×Z5 or Z5×Z4 ≃ Z20 or Z5×Z3 ≃ Z15

or Z5 × Z2 ≃ Z10.) For all these groups higher-order identities do exist (Example 4.6
with r = 3) which can be trivially lifted to higher-order identities for G.

4.2 Sign Invariants

Here, we introduce sign invariants for real G-graded contractions. We characterize
them and show that they split naturally into two kinds (Lemmas 4.8, 4.10, 4.11, Def-
inition 4.12, Lemmas 4.13, 4.14, 4.15). We give examples of both kinds (Examples

4.17, 4.18). In the following sections we will see that sign invariants of the first kind
play a crucial role for the existence of real γ’s without zeroes (Theorems 5.12, 6.11),
whereas sign invariants of the second kind define their equivalence class (Remark
4.16(i), Theorems 5.12, 6.11).

Lemma 4.8 Consider a real G-graded contraction γ and a product

P(γ) =

r
∏

i=1

γ ji ki
, ji, ki ∈ G,

of r different, non-vanishing elements of γ. Then Sgn P(γ) is an invariant if and only if
P(da) > 0 for all 0 6= a j ∈ R, j ∈ G.

Proof The proof follows trivially from Definition 2.18 and the fact that P(da · γ) =

P(da)P(γ).

Example 4.9 (i) Let G = Z5 and P(γ) = γ13γ22γ33γ44 6= 0. Due to the two defining
equations γ22γ44 = γ24γ12 and γ12γ33 = γ13γ24 (which have to survive for all γ’s with
P(γ) 6= 0, no matter if γ has zeroes or not) we get

(4.2) P(γ) = γ13γ22γ33γ44 = γ2
12γ

2
33

which means (for 0 6= a j ∈ R) P(da) > 0. Therefore sgn P(γ) is a sign invariant.
Although we always have sgn P(γ) = +1, this still has some non-trivial consequences
(Theorem 5.12).
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(ii) Let G = Z8 and P(γ) = γ11γ33γ55γ77 6= 0. We know that we have for all γ’s
without zeroes

(4.3) P(γ) = γ11γ33γ55γ77 = (γ15)2(γ37)2

since this is a higher-order identity (Example 4.6 with r = 4). This means P(da) > 0
(for 0 6= a j ∈ R), so that sgn P(γ) is a sign invariant (which is necessarily positive

if γ has no zeroes). Since P(γ) is built from pairwise non-compatible elements, we
clearly can have, for γ’s with zeroes (Remark 2.13), sgn P(γ) = −1.

These two examples can be immediately generalized as follows.

Lemma 4.10 Consider a real G-graded contraction γ and a product P(γ) as in
Lemma 4.8. Assume P(γ) can be expressed for all γ’s without zeroes as a product of
squares of some elements of γ, then sgn P(γ) is a sign invariant (which is necessarily
positive for γ’s without zeroes).

In practise, this lemma cannot, in general, be readily applied. We now develop a
straightforward criterion. We begin by noting that when we have a basis {γsi

| si ∈
G × G ; i = 1, 2, . . . N = |G|}, we have for every element γ jk a unique expression

γ jk =

N
∏

i=1

γni
si

, ni ∈ Z,

((A.1) for G = ZN , Definition 5.1 (5.3)). This means that, in any basis, a product of
squares of elements, when expressed in terms of the basis elements, always yields a

product of squares. Thus we have

Lemma 4.11 Let P(γ) be as in Lemma 4.8, and let {γsi
| si ∈ G×G; i = 1, 2, . . . N =

|G|} be a basis. For a γ without zeroes, we can write

(4.4) P(γ) =

N
∏

i=1

γmi
si

, mi ∈ Z.

If all powers mi are even, then sgn P(γ) is a sign invariant (which is necessarily positive
for γ’s without zeroes).

Definition 4.12 A sign invariant which has the above form (4.4) with all mi even,
we call a sign invariant of the first kind. All other sign invariants (where some mi are
odd), we call sign invariants of the second kind.

In order to treat arbitrary sign invariants, we now give a useful general criterion.

Lemma 4.13 Consider a real G-graded contraction γ and a product

P(γ) =

r
∏

i=1

γ ji ki
, ji, ki ∈ G
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of r different, non-vanishing elements of γ. Sgn P(γ) is an invariant if and only if r is
even and we have for all da with 0 6= a j ∈ R, ( j ∈ G)

(4.5) P(da) =

∏

j∈G

a
n j

j , n j ∈ Z

where all powers n j are even.

Proof We have

P(da) =

r
∏

i=1

a ji
aki

a ji +ki

=

∏

j∈G

a
n j

j , n j ∈ Z.

For a sign invariant we need (Lemma 4.8) P(da) > 0 for all 0 6= a j ∈ R. This requires
all powers n j ∈ Z to be even. Since r =

∑

j∈G n j , this implies furthermore that r is
even.

Now we are in a position to characterize all sign invariants. We start with G = ZN .

Lemma 4.14 Consider a real ZN-graded contraction γ. If N is odd, all sign invariants

are of the first kind. If N = 2M, M = 1, 2, . . . , we have for all sign invariants of the
second kind for all γ’s without zeroes

(4.6) sgn P(γ) = sgn(γ00γ11γ12 . . . γ1,N−1) = sgn(γ00γMM).

Proof If γ is without zeroes, we can express any product P(γ) by the elements of
the natural basis (A.1) to bring it into the form ( j = 0, 1, 2, . . . N − 1)

(4.7) P(γ) = γm0

00 γm1

11 γm2

12 · · · γmN−1

1,N−1, m j ∈ Z.

This yields for an arbitrary da with 0 6= a j ∈ R (2.8)

P(da) = a
m0−mN−1

0 a
2m1+m2+m3+···+mN−1

1 am2−m1

2 am3−m2

3 . . . a
mN−1−mN−2

N−1 .

According to Lemma 4.13, sgn P(γ) is an invariant if and only if all powers in this
expression are even, i.e., if

m0 − mN−1, m2 − m1, m3 − m2 , . . . , mN−1 − mN−2

and
2m1 + m2 + m3 + · · · + mN−1

are all even. This set of relations has exactly two types of solutions, namely:
(a) Assume m1 is even. Then the relations above force all other m j to be even, too,

so that we get a sign invariant of the first kind (Definition 4.12).
(b) Assume m1 is odd. Then the relations above force all other m j to be odd, too,

plus (2m1 + m2 + m3 + · · · + mN−1) to be even which means N · odd = even, so that
N has to be even. In this case we have

sgn P(γ) = sgn(γm0

00 γm1

11 γm2

12 . . . γ
mN−1

1,N−1)
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where all m j are odd so that (A.4)

sgn P(γ) = sgn(γ00γ11γ12 . . . γ1,N−1) = sgn(γ00γMM)

where N = 2M.

Lemma 4.15 Consider a real G-graded contraction G where G = ZN1
×ZN2

×· · ·×ZNr

(r = 2, 3, . . . ). Assume re of the r numbers Ni are even, the others are odd. If re = 0,
all sign invariants are of the first kind. If re > 0, there are also sign invariants sgn P(γ)

of the second kind. They behave for all γ’s without zeroes either like a sign invariant
of the second kind for one individual subgroup ZNi

with Ni = 2Mi , i.e., we have by
Lemma 4.14, sgn P(γ) = sgn(γ0···0,0···0γ0···0Mi 0···0,0···0Mi 0···0) or like products of these
sign invariants for several different such subgroups, i.e., we have

sgn P(γ) =

∏

i

sgn(γ0···0,0···0γ0···0Mi 0···0,0···0Mi 0···0)

where the product is taken over 2, 3 . . . or all re different subgroups ZNi
with Ni = 2Mi .

Proof Case 1: r = 2. We follow the proof for G = ZN (Lemma 4.14). By expressing
P(γ) by elements of a natural basis (cf. proof of Theorem 3.1, Case 2) we get

(4.8) P(γ) = γm00

00,00

(

N1−1
∏

j=1

γ
m j0

10, j0

)(

N2−1
∏

k=1

γm0k

01,0k

)

×
(

N1−1
∏

j=1

N2−1
∏

k=1

γ
m jk

j0,0k

)

m00,m j0,m0k,m jk ∈ Z.

This yields for some arbitrary da

(4.9) P(da) = a
m00−mN1−1,0−m0,N2−1

00 · a
2m10+m20+m30+···+mN1−1,0+

∑ N2−1

k=1
m1k

10

·
(

N1−1
∏

j=2

a
m j0−m j−1,0+

∑ N2−1

k=1
m jk

j0

)

· a
2m01+m02+m03+···+m0,N2−1+

∑ N1−1

j=1
m j1

01

·
(

N2−1
∏

k=2

a
m0k−m0,k−1+

∑ N1−1

j=1
m jk

0k

)

·
(

N1−1
∏

j=1

N2−1
∏

k=1

a
−m jk

jk

)

.

Sgn P(γ) is an invariant if and only if all powers in this expression are even (Lemma

4.13). Obviously, this forces all m jk to be even for j = 1, 2, . . . , N1 − 1, k =

1, 2, . . . , N2 − 1. Therefore the remaining requirements for m10,m20, · · ·mN1−1,0 are
then identical to those for the sign invariants for the subgroup ZN1

alone (which we
studied in Lemma 4.14) and independent of those for m01,m02, · · ·m0,N2−1 which in
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turn are identical to those for sign invariants of the subgroup ZN2
alone. The require-

ment for m00 which belongs to both subgroups then follows accordingly.

Altogether we get exactly the following sign invariants.
If all powers in (4.8) are even, we have a sign invariant of the first kind (Definition

4.12).
If N1 = 2M1 and N2 is odd, we have for all sign invariants sgn P(γ) of the second

kind for all γ’s without zeroes,

sgn P(γ) = sgn(γ00,00γM10,M10) = sgn(γ00,00γ10,10γ10,20 · · · γ10;N1−1,0).

If N1 = 2M1 and N2 = 2M2, we have for all sign invariants of the second kind for

all γ’s without zeroes one of the following three possibilities:

sgn P(γ) = sgn(γ00,00γM10,M10) = sgn(γ00,00γ10,10γ10,20 · · · γ10;N1−1,0)

or
sgn P(γ) = sgn(γ00,00γ0M2,0M2

) = sgn(γ00,00γ01,01γ01,02 · · · γ01;0,N2−1)

or

sgn P(γ) = sgn(γM10,M10γ0M2,0M2
)

= sgn(γ10,10γ10,20 · · · γ10;N1−1,0γ01,01γ01,02 · · · γ01;0,N2−1).

Case 2: r ≥ 3. We use a natural basis for G (Lemma A.4) and proceed as in Case 1.
With the same reasoning we get exactly the corresponding results.

Remark 4.16 (i) Note that the two equivalence classes of real Z2M-graded contrac-
tions without zeroes (M = 1, 2, . . . ) are separated by the sign invariant sgn(γ00γMM)
of the second kind (proof of Lemma 3.4).

Similarly, the equivalence classes of real G-graded contractions without zeroes,

where G = ZN1
× ZN2

× · · · × ZNr
, are separated by the sign invariants of the second

kind of all those subgroups ZNi
where Ni = 2Mi (proof of Theorem 3.5).

(ii) Consider a real G-graded contraction γ with two different sign invariants

sgn P1(γ) and sgn P2(γ). Then the product P1(γ)P2(γ) 6= 0 is obviously again a
sign invariant (after all squares of elements, which are necessarily positive, have been
removed, i.e., if we take all exponents modulo 2).

In particular, the product of two sign invariants of the first kind is again one of

the first kind. In contrast, the product of two sign invariants of the second kind for
Z2M is one of the first kind. In the case of a general G = ZN1

× ZN2
× · · · × ZNr

with
re ≥ 2 (Lemma 4.15) we must make the following distinction. If both sign invariants
of the second kind belong to the same subgroups ZNi

where Ni = 2Mi , i.e., have odd

powers at exactly the same places when expressed in a natural basis as in (4.8), their
product is a sign invariant of the first kind (since now all powers have become even).
If they differ on one such subgroup, their product is a sign invariant of the second
kind (since some odd powers remain).
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(iii) Let “P1 = P2” be a higher-order identity for G-graded contractions. Then
sgn[P1(γ)P2(γ)] is trivially a sign invariant (if all exponents are taken modulo 2),

since ((4.1), Lemma 4.8) P1(da) = P2(da). Since P1(γ) = P2(γ) for all real γ’s
without zeroes (Remark 4.2(i)), this sign invariant is obviously of the first kind.

Example 4.17 (Sign invariants of the second kind) Lemma 4.14 tells us that for
real Z2M-graded γ’s without zeroes all sign invariants of the second kind agree. There-

fore we can restrict ourselves to one, e.g., sgn P(γ) where P(γ) = γ00γMM . But for
Z2M-graded γ’s with zeroes this is different. Some sign invariants of the second kind
may vanish for γ, while some others are positive and still others are negative (see the
examples below). Therefore we have to consider all others as well.

All sign invariants sgn P(γ) of the second kind for G = Z2M with only two factors
are, besides γ00γMM ,

P(γ) = γ j jγM+ j,M+ j 0 < j < M; P(γ) = γ jMγM,M+ j 0 < j < M.

We only give an explicit proof for the first one. It is an invariant (Lemma 4.13)

since

P(da) = (da) j j(da)M+ j,M+ j =
a2

j a
2
M+ j

a2
2 j

.

It is an invariant of the second kind since we have for γ’s without zeroes (A.1)

P(γ) =
γ1 jγ1, j+1 · · · γ1,2 j−1

γ11γ12 · · · γ1, j−1

· γ1,M+ jγ1,M+ j+1 · · · γ1,2 j−1

γ11γ12 · · · γ1,M+ j−1

=
γ1 jγ1, j+1 · · · γ1,2 j−1

γ11γ12 · · · γ1, j−1

· γ1,M+ jγ1,M+ j+1 · · · γ00

γ1,2 jγ1,2 j+1 · · · γ1,M+ j−1

,

since 0 < j ≤ 2 j − 1 < M + j − 1 < M + j < 2M, so that all elements of the natural

basis occur with an odd power (namely one).
For such an invariant we can have both signs for Z2M-graded contractions with

and without zeroes. Take e.g., G = Z4 and P(γ) = γ11γ33 6= 0 and define

γ11 = +1, γ33 = ±1

plus either γ jk = 0 otherwise ( j, k ∈ Z4) or γ00 = γ0k = γ12 = +1, γ13 = γ22γ23 =

±1.
Furthermore for γ’s with zeroes we can have distinct signs for two different sign

invariants of the second kind. Take e.g., G = Z8 and P1(γ) = γ11γ55, P2(γ) = γ33γ77

and define (Remark 2.13) γ11 = γ33 = γ55 = +1, γ77 = −1 and γ jk = 0 otherwise.
Then sgn P1(γ) = +1 while sgn P2(γ) = −1.

From the structure of the sign invariants of the second kind with two factors we

can guess how to construct those with more factors. We only give the following three
examples with 4, resp., 6 factors.

P(γ) =











γ jkγ j,M+kγM+ j,kγM+ j,M+k 0 < j < k < M,

γ jkγ j, j+kγM+ j,kγM+ j,M+ j+k 0 < j, k < M,

γ jkγ jlγklγM+ j,M+kγM+ j,M+lγM+k,M+l 0 < j < k < l < M.

https://doi.org/10.4153/CJM-2006-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-046-x


General Structure of G-Graded Contractions of Lie Algebras 1313

Example 4.18 (Sign invariants of the first kind) (i) Consider the higher-order
identity “P1 = P2” for G = Z8 where (Example 4.6 with r = 4) P1(γ) = γ17γ22γ35γ66,

P2(γ) = γ13(γ26)2γ57. Then (Remark 4.16(ii), (iii); Example 4.17)

sgn[P1(γ)P2(γ)] = sgn(γ13γ17γ35γ57) · sgn(γ22γ66)

is a sign invariant of the first kind which is the product of two sign invariants of the

second kind.
Similarly, the two higher-order identities “P1 = P2” for G = Z2×Z4 (Examples 4.6

with r = 3, resp., r = 4) where P1(γ) = γ10,10γ11,12γ12,13, P2(γ) = γ10,11γ10,13γ12,12,
resp., P1(γ) = γ10,10γ11,11γ12,12γ13,13, P2(γ) = γ2

10,12γ
2
11,13, yield the sign invariants of

the first kind, sgn(γ10,10γ10,11γ10,13γ11,12γ12,12γ12,13), resp., sgn(γ10,10γ11,11γ12,12γ13,13).

(ii) Both sign invariants given in Example 4.9 are of the first kind. The first one is

always positive, no matter if γ has zeroes or not. The second one illustrates part (ii)
and (iii) of Remark 4.16, since we have for G = Z8 (Example 4.17)

sgn(γ11γ33γ55γ77) = sgn(γ11γ55) sgn(γ33γ77).

Note that in the case of “contradicting” signs for these two sign invariants of the
second kind, e.g., sgn(γ11γ55) = +1, sgn(γ33γ77) = −1, (Examples 4.17) we au-
tomatically get by multiplication a negative sign invariant of the first kind, namely
sgn(γ11γ33γ55γ77) = −1.

5 Pseudobasis

In [13] we introduced the concept of a basis in order to unveil the structure of non-

negative ZN-graded contractions. Since we encounter new features here, we intro-
duce the notion of a pseudobasis. In Example 5.3(i) we present natural bases for all
G-graded contractions γ.

The property of individual elements γ jk which dominates this section is indepen-

dence. Although this notion is defined in an unusual way we will see in Lemma 5.5
that our definition is not in disagreement with normal usage. Even though the defin-
ing equations are not linear, we can make use of several ideas and methods from
linear algebra.

Algorithm A constructs all pseudobases. Algorithm B constructs all graded con-
tractions without zeroes which agree on a given pseudobasis. Finally, Theorem 5.12
proves that real values for all elements of a pseudobasis yield a real γ without zeroes

if and only if all sign invariants of the first kind which can be expressed in terms of
the pseudobasis, are positive.

Definition 5.1 A set of matrix elements {γsi
| si ∈ G × G, i = 1, 2, . . . , r} is called

independent if, for every choice γsi
= ci with 0 6= ci ∈ C, there exists a complex

G-graded contraction γ without zeroes whose elements γsi
have the assigned values

(cf. [13, Definition IV.1]).
A maximal set of independent elements is called a pseudobasis. If the resulting

complex G-graded contraction is unique, the pseudobasis is called a basis.
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If a relation of the form

(5.1) γn
jk =

r
∏

i=1

γni
si

, n =

r
∏

i=1

ni ∈ N, ni ∈ Z,

holds, we call the matrix elements γ jk( j, k ∈ G) dependent on the set {γsi
| i =

1, 2, . . . , r} (since {γsi
| i = 1, 2, . . . , r} ∪ {γ jk} is certainly not independent, even if

{γsi
} is).

Remark 5.2 Note that all dependence relations between elements must have the

form of (5.1) since the combination of several defining equations which all have the
form γ.γ. = γ.γ. can only lead to expressions of the form γ.γ. · · · γ. = γ.γ. · · · γ. ,
with the same number of elements on both sides. Numerical factors cannot occur.

Example 5.3 (i) Natural basis for G = ZN1
× ZN2

× · · · × ZNr

The proof of Theorem 3.1 (Case 3) shows that for arbitrary non-vanishing com-
plex values of the N = |G| elements listed in Lemma A.4, a unique complex G-graded
contraction without zeroes exists (namely the specific da constructed there), thus ver-
ifying that these N elements constitute a basis, which we call natural.

This means that the N elements (Lemma A.1) {γ00, γ11, γ12, . . . , γ1,N−1} consti-
tute a basis for ZN-graded contractions, the N1 · N2 elements (Lemma A.2)

{γ00,00; γ10, j0; γ01,0k; γ j0,0k | j = 1, 2, . . . , N1 − 1; k = 1, 2, . . . , N2 − 1}

one for ZN1
× ZN2

-graded contractions, etc.

(ii) For Z5-graded contractions γ, {γ00, γ11, γ22, γ33, γ44} is a pseudobasis which

is not a basis. The dependent elements follow from the defining equations as

γ13 =
γ11γ22

γ12

γ14 =
γ2

12γ33

γ00γ22

γ23 =
γ12γ33

γ00

γ24 =
γ2

12γ33

γ11γ22

γ34 =
γ12γ33

γ22

, where γ3
12 =

γ11γ
2
22γ44

γ33

.

Conversely, these six equations imply all defining equations. It is therefore clear that
for arbitrary non-vanishing complex values of the elements of the pseudobasis, three
complex Z5-graded contractions without zeroes exist.

Expressing all dependent elements in terms of the pseudobasis yields

γ3
12 =

γ11γ
2
22γ44

γ33

, γ3
13 =

γ2
11γ22γ33

γ44

,

γ3
14 =

γ2
11γ22γ33γ

2
44

γ3
00

, γ3
23 =

γ11γ
2
22γ

2
33γ44

γ3
00

,

γ3
24 =

γ22γ33γ
2
44

γ11,
, γ3

34 =
γ11γ

2
33γ44

γ22

.
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Note that we cannot read off directly from these equations how many different γ’s
agree on the pseudobasis in question since, as we see above, the different roots cannot

be chosen independently of each other.

Warning 5.4 If for a set of matrix elements {γsi
| i = 1, 2, . . . , r} and arbitrary

0 6= ci ∈ C, a complex γ with zeroes exists where γsi
= ci , the set {γsi

} need not be
independent since a complex γ without zeroes need not exist (Remark 5.6, Example

5.7).

Lemma 5.5 Given a set of r matrix elements {γsi
| si ∈ G × G, i = 1, 2, . . . , r}, the

following statements are equivalent.

(i) The {γsi
} are independent.

(ii) There exists no non-trivial dependence relation

r
∏

i=1

γni
si

= 1, ni ∈ Z.

“Non-trivial” means some ni 6= 0.
(iii) The ansatz

γ ji ki
=

a ji
aki

a ji +ki

, i = 1, 2, . . . , r,

where γsi
= γ ji ki

( ji , ki ∈ G) determines r different a j ’s (not necessarily uniquely).

Proof (i) ⇒ (ii) is trivial (Definition 5.1).
(ii) ⇒ (iii) (Example 5.9 illustrates the following procedure for a maximal set of

independent elements, i.e., for a pseudobasis.) The general idea is straightforward.
Solve one of the equations in the ansatz for some a j , and replace this a j in all re-

maining equations by the resulting expression. Continue this procedure. At each
step it must be possible to solve for some remaining a j since otherwise γsi

would be
expressed in terms of the other γsk

which would contradict (ii). The only difficulty
is that this procedure can yield expressions for some integer power of the a j , and we

must be careful to handle the resulting non-uniqueness of the a j in a self-consistent
way.

We therefore use the following procedure. Namely, when solving for some a j , we
solve for a

ν j

j where v j ∈ N is the least possible power. Since we can multiply and

divide the given equations, v j is the generator of the ideal generated by the powers
of a j which occur in the given equations. It follows that all remaining equations can
only contain a j in the form a

sν j

j , s ∈ Z. Hence we can just substitute our expression

for a
ν j

j in all remaining equations. Finally, we solve for the a j backwards. Namely, the

last a
ν jr

jr
will be expressed in terms of the (|G| − r) remaining ak’s plus the {γsi

| i =

1, 2, . . . , r}, and we can choose an arbitrary root. Continuing in this way produces

the desired result.
(iii) ⇒ (i) Set all (|G| − r) remaining ak’s equal to 1. Then, for an arbitrary choice

0 6= γsi
∈ C(i = 1, 2, . . . , r), the resulting G-graded contraction γ = da without

zeroes takes on the given values on the γsi
.
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Remark 5.6 Let “P1 = P2” be a higher-order identity for G-graded contractions.
Then we have (Remark 4.2(i)) P1(γ) = P2(γ) for all G-graded contractions γ without

zeroes. This means that each higher-order identity represents a dependence relation
which exists automatically for all γ’s without zeroes, but not necessarily for those
with zeroes.

Example 5.7 Consider the Z6-graded contraction γ where γ11, γ13, γ15, γ33, γ35, γ55

are nonzero and γ jk = 0 otherwise. Although these six non-vanishing elements can
take on arbitrary values (Examples 4.6 with r = 3), only five of them are independent

due to the higher-order identity “P1 = P2” where P1(γ) = γ11γ33γ55 and P2(γ) =

γ13γ15γ35.

In [13] we dealt mostly with non-negative graded contractions. In this case there
is no difference between a basis and a pseudobasis since for positive values of a pseu-

dobasis there is a unique positive solution. In the following we collect all relevant
results on pseudobases (Lemma 5.8 and Algorithms A and B).

Lemma 5.8 A pseudobasis for G-graded contractions has N = |G| elements.

Proof Let {γsi
| si ∈ G × G; i = 1, 2, . . . , M} be a pseudobasis [13, Corollary IV.1].

Since the set {γsi
} is independent, we can determine (Lemma 5.5) from the ansatz

γsi
= γ ji ki

=
a ji

aki

a ji +ki

ji, ki ∈ G, i = 1, 2, . . . , M;

M different a j ’s (resp., some natural power of these a j ’s), so that M ≤ N .
Since {γsi

} is a maximal set of independent elements, all other elements must be
dependent, i.e., follow (not necessarily uniquely) from this set. Therefore we must be
able to determine all a j ’s from the ansatz above which implies M ≥ N .

Altogether we have M = N . (An alternate proof uses a replacement principle
identical in spirit to the one used for different sets of independent vectors spanning a
vector space.)

The following example shows that a pseudobasis does not define all a j ’s uniquely, a
phenomenon we already encountered in part (ii) =⇒ (iii) of the proof of Lemma 5.5.

Example 5.9 Consider for G = Z5 the pseudobasis {γ00, γ11, γ22, γ33, γ44} of Ex-
ample 5.3(ii). The ansatz

γ00 = a0 γ11 =
a2

1

a2

γ22 =
a2

2

a4

γ33 =
a2

3

a1

γ44 =
a2

4

a3

yields

a0 = γ00 a1 =
a2

3

γ33

a2 =
a4

3

γ11γ2
33

a4 =
a8

3

γ2
11γ22γ4

33

where a15
3 = γ4

11γ
2
22γ

8
33γ44, so that we get 3 ·5 solutions. This corresponds to three dif-

ferent γ’s which agree on this pseudobasis (due to the 1-to-5 correspondence between
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one γ and its a j ’s (proof of Theorem 3.1, (3.7)). They differ, e.g., on the dependent
element γ12 which can take on either root of

γ3
12 =

γ11γ
2
22γ44

γ33

.

5.1 Algorithms

All pseudobases for G-graded contractions are constructed from the following algo-
rithm [13, Remark IV.1].

Algorithm A Start with the set of all matrix elements γ jk, j, k ∈ G, and the set of

all defining equations (2.3). After replacing γ0k(0 6= k ∈ G) by γ00 (3.3) and taking
into account γ jk = γk j , there are LN elements

{γtr
| tr ∈ G × G, r = 1, 2, . . . , LN}

where LN =
N(N−1)

2
+ 1, N = |G|.

Use any one of the defining equations. If it has become a trivial identity, go on
to another one. Otherwise choose any one element in it and express it by the oth-
ers. Now this element has become dependent and gets replaced by this expression
in all remaining equations. Consider another equation and continue with the same

procedure.
At the end, all defining equations have been considered, so that no more de-

pendence relations exist. This means that the remaining elements are independent

(Lemma 5.5) and constitute a pseudobasis {γsi
| i = 1, 2, . . . , N}.

Since we are free to go through the defining equations in any order and since we

are free to choose any element in an equation under consideration as the independent
one, we must get all pseudobases in this way.

Note that a set of r independent elements {γsi
| i = 1, 2, . . . , r < N} can always

be completed to a pseudobasis. (Just do not pick these r elements as dependent ones

in this algorithm.)
Assume {γsi

| i = 1, 2, . . . , N = |G|} is a pseudobasis. Algorithm B below
produces all complex γ’s without zeroes which take on fixed, but arbitrarily chosen
values, e.g.,

γsi
= ci 6= 0, ci ∈ C, i = 1, 2, . . . , N,

on this pseudobasis.

Preliminary remarks What information does Algorithm A provide us with? Let
γtr

denote the element which is chosen as the dependent one at the r-th step, r =

1, 2, . . . , LN − N . The expression of dependence we get for γtr
can always be brought

into the form

(5.2) γnr
tr

=

LN−N
∏

l=r+1

γmlr
tl

N
∏

i=1

γnir
si
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where

nr =

LN−N
∑

l=r+1

mlr +

N
∑

i=1

nir ∈ N, mlr, nir ∈ Z.

But the powers nr, mlr, nir are not unique since the elements on the right-hand
side of (5.2) are not independent. The only exception is the “last” dependent element
γtr

with r = LN − N .

The collection of dependence relations (5.2) allows us to express each dependent
element γt , t ∈ G × G by the pseudobasis alone. We get

(5.3) γn
t =

N
∏

i=1

γni
si

where

n =

N
∑

i=1

ni ∈ N, ni ∈ Z.

(In the case of a basis, we have n = 1 for all γt .) In contrast to (5.2), the powers n
and ni in (5.3) are unique for every γt (up to trivial natural multiples n ′

= mn, n ′

i =

mni , 0 6= m ∈ N, since a non-trivial relation between these independent elements
cannot hold. But (5.3) does not contain enough information to allow us to read
off all possible γ’s that agree on this pseudobasis, since the different roots in (5.3)
cannot be chosen independently for different elements (Example 5.3(ii)). We solve

this problem by running Algorithm A backwards in a more refined way, as follows.

Algorithm B Assume we know the values of the pseudobasis {γsi
| i = 1, 2, . . . , N}.

Assume further we have already assigned values to the dependent elements γtl
for

l = r+1, r+2, . . . , LN −N . Which values are allowed for γtr
(r ∈ {1, 2, . . . , LN −N})?

We look at all valid relations between this “new” dependent element and all those el-

ements we already know, i.e., at all valid relations of the type

(5.4) γnr
tr

=

LN−N
∏

l=r+1

γmlr
tl

N
∏

i=1

γnir
si

where

nr =

LN−N
∑

l=r+1

mlr +

N
∑

i=1

nir ∈ N, mlr, nir ∈ Z.

Let µr be the minimal power of γtr
for which such a relation exists, i.e.,

(5.5) µr = min nr ≥ 1, µr ∈ N.

Then we must have nr

µr
∈ N for all powers nr which occur in (5.4), since otherwise µr

would not be the smallest power possible.

https://doi.org/10.4153/CJM-2006-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-046-x


General Structure of G-Graded Contractions of Lie Algebras 1319

Can we get contradictory results? The answer is “no” as can be seen in the follow-
ing way. Assume first that two different relations exist for the same power nr i.e.,

γnr
tr

=

LN−N
∏

l=r+1

γmlr
tl

N
∏

i=1

γnir
si

=

LN−N
∏

l=r+1

γ
m ′

lr
tl

N
∏

i=1

γ
n ′

ir
si

where we do not have mlr = m ′

lr, for all l.
Therefore this identity represents a valid relation of the type of (5.4), but for one

of the dependent elements already determined in an earlier step. This means that this
relation has already been taken into account, so that the identity above is a trivial one.

Assume next that a relation exists for γνµr
tr

, where ν ∈ N\{1}. In the same way as
above we argue that it has to agree with the relation for γµr

tr
taken to the ν-th power.

Therefore the knowledge of the values of the pseudobasis plus the values of γtl
for

all l = r + 1, r + 2, . . . , LN −N provides us with a unique value for γµr
tr

, so that we are

free to choose any of the µr possible roots for γtr
.

Continuing in this way we construct one possible γ out of the total number of

(5.6)

LN−N
∏

r=1

µr

different γ’s which agree on this pseudobasis.

A pseudobasis is a basis if and only if µr = 1 for all r = 1, 2, . . . , LN − N , which
implies n = 1 in (5.3) for all dependent elements.

Alternative Method An alternative way to find all γ’s which agree on a given pseu-

dobasis {γsi
= γ ji ki

| i = 1, 2, . . . , N = |G|} is based on Lemma 5.5 and is illustrated
by Example 5.9. According to part (ii) =⇒ (iii) of the proof of Lemma 5.5 the ansatz

γ ji ki
=

a ji
aki

a ji +ki

, i = 1, 2, . . . , N

for a maximal set of independent elements yields unique expressions for a
ν j

j ( j ∈
G, ν j ∈ N), where we are free to take any of the ν j roots. Therefore we get

∏

j∈G ν j

different solution sets for the a j , which corresponds (due to the one-to-N correspon-
dence between a γ and its a j ’s) to 1

N

∏

j∈G ν j different γ’s.

Remark 5.10 Algorithm B obviously constitutes an explicit proof that the set {γsi
}

which is produced by Algorithm A is indeed a pseudobasis (without referring to
Lemma 5.5).

Finally we turn our attention to real G-graded contractions without zeroes. If we
choose real values for a given basis, this uniquely defines a real contraction. For a
pseudobasis, the situation is much more involved. Lemma 3.3 yields all admissible

sign distributions over the elements of a pseudobasis. It follows that if we choose
real values for a given pseudobasis, there may be no real γ taking on these values.
Furthermore, if real γ do exist, they could belong to different equivalence classes.
The following example illustrates these two features.
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Example 5.11 Consider G = Z6 and the pseudobasis {γ00, γ11, γ22, γ34, γ35, γ45}.
The two defining equations γ12γ35 = γ13γ45 and γ12γ13 = γ11γ22 yield

γ2
13 =

γ11γ22γ35

γ45

.

Therefore a real γ13 exists if and only if sgn(γ11γ22γ35γ45) = +1. (Note that this is a
sign invariant of the first kind.) In this case a real γ exists since all elements of the

natural basis of Z6 follow uniquely from the elements of the pseudobasis plus γ13,
namely

γ12 = γ13

γ45

γ35

, γ14 =
γ11γ34

γ35

, γ15 = γ13

γ45

γ00

.

But the equivalence class of γ (Lemma 3.4) is not defined, since we cannot form
any sign invariant of the second kind from the elements of the pseudobasis. In fact,

the equivalence class of γ is given, e.g., by the sign invariant of the second kind
sgn(γ13γ34) (cf. Lemma 4.14, Example 4.17), which depends on the root we take for
γ13. (For a general G, a pseudobasis will, in general, yield an incomplete determina-
tion of the equivalence class, depending on which sign invariants of the second kind

can be constructed from the pseudobasis.)

Theorem 5.12 Given a pseudobasis {γsi
| i = 1, 2 . . . , N = |G|} for G-graded

contractions and arbitrary real number 0 6= ci ∈ R :

(i) A real G-graded contraction γ without zeroes where γsi
= ci exists if and only if

all sign invariants of the first kind which can be formed by the elements of the pseudobasis
are positive.

(ii) Assume a real γ as in (i) exists. Then there exists such a γ in each equivalence
class which is compatible with the values of all sign invariants of the second kind which
can be formed by the elements of the pseudobasis. In particular, if all these sign invariants

are positive, there exists such a γ with γ ∼ 1.

Proof (i) Condition (i) is clearly necessary (Lemma 4.11). To prove sufficiency,

we will use Algorithm B to show that when the condition in (i) holds, a real γ with
γsi

= ci exists. Since a positive |γ| with |γ|si
= |ci| always exists, by Lemma 3.2 we

only have to care about sgn γ.

For each dependent element γt , Algorithm B yields a γµt
t with minimal power µt

(5.4), (5.5). Whenever µt is odd, sgn γt follows uniquely from {sgn γsi
} plus the

signs of all dependent elements which have been determined prior to γt . Therefore
all these γt can be replaced by {γsi

} and by those of the dependent elements which
have already been determined with an even power.

Let γtk
, k = 1, 2, . . . , K be the K dependent elements where the algorithm yields

γµk
tk

with µk even. Then we have, if the algorithm produces first γt1
, then γt2

, etc.,

(5.7) γµk
tk

=

k−1
∏

l=1

γmlk
tl

N
∏

i=1

γnik
si

, mlk,nik ∈ Z.
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Case 1: If K = 0, the algorithm yields a unique real γ, which means that our pseu-
dobasis behaves, with respect to real γ’s, like a basis.

Case 2: If K ≥ 1, it follows from (5.7) that γtk
can be chosen real if and only if

(5.8) sgn γ2
tk

= sgn
[

k−1
∏

l=1

γδlk
tl

N
∏

i=1

γεik
si

]

= +1, k = 1, 2, . . . , K,

where

δlk =

{

1 if mlk is odd,

0 if mlk id even,
and εik =

{

1 if nik is odd,

0 if nik is even.

We now show that there exist real γtk
satisfying (5.8).

Consider first (5.8) for k = 1. Then only the γsi
occur, and this equation is au-

tomatically satisfied, since otherwise it would be a negative sign invariant of the first
kind which can be formed from the elements of the pseudobasis. Consider next (5.8)
for k = 2. If δ12 = 1, we solve for sgn γt1

and substitute this result in all remaining

equations. If δ12 = 0, then only the γsi
occur, and as above, this equation is satisfied

by assumption. We continue in this way: (5.8) for sgn γ2
tk

(k = 2, 3, . . . , K) can ei-
ther be solved for some sgn γtl

, l = 1, 2, . . . , k − 1 or it contains only the γsi
and is

therefore satisfied.

At the end, we have solved for maximally K−1 of the sgn γtk
. Thus λ = 1, 2, . . . , K

of them are free and can take on both values.

Taking Case 1 and Case 2 together we get therefore 2λ, λ = 0, 1, 2, . . . , K different

real γ’s which agree on our pseudobasis.

(ii) Lemma 4.15 exhibits clearly the structure of the sign invariants of the second
kind. There are 2re different equivalence classes resulting from the re obviously inde-
pendent sign invariants of the second kind, one for each of the re subgroups ZNl

of
G where Nl is even (Example 6.15). Furthermore, it is easy to see from this structure

that from any collection of sign invariants of the second kind one can extract a set
of independent sign invariants which contain all the information contained in the
original set.

Now, in the present situation it can happen that some of the sign invariants of the
second kind can be expressed in terms of our given pseudobasis as

(5.9) sgn P(γ) = sgn

N
∏

i=1

γδi
si

; δi ∈ {0, 1}.

Hence the values {sgn γsi
= sgn ci} partially determine the equivalence class. We will

now show that the construction in part (i) yields a γ in every equivalence class which
is compatible with these given values.

We start by defining the number ̺ of independent sign invariants of the second
kind not given by the pseudobasis. Namely, we define ̺ to be the minimal number of
sign invariants sgn Pl(γ), l = 1, 2, . . . , ̺ with the property that every sign invariant
of the second kind can be expressed in terms of these ̺Pl(γ) plus the sign invariants

https://doi.org/10.4153/CJM-2006-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-046-x


1322 E. Weimar-Woods

of the form of (5.9). This means that there are 2̺ equivalence classes compatible with
γsi

= ci .

Case 1: ̺ = 0. In this case all sign invariants of the second kind can be expressed
as in Eq. (5.9). Then the {sgn ci} define a unique equivalence class, and hence all γ
constructed in part (i) must lie in this equivalence class. This is necessarily the case
when re = 0. It also happens when K = 0.

Case 2: ̺ = 1. (as in Example 5.11). Then there is one sign invariant sgn P(γ)
of the second kind which is not of the form of (5.9), and there are precisely two
equivalence classes which are compatible with γsi

= ci . Now P(γ) must contain

at least one element which, in the construction in part (i), can take on both signs,
since otherwise P(γ) would be expressed in terms of the pseudobasis. But then our
construction yields solutions γ with both signs for P(γ).

Case 3: ̺ = 2. Now, two independent sign invariants sgn P1(γ) and sgn P2(γ) of
the second kind are not of the form of (5.9). In this case there must be elements

γtl
contained in Pl(l = 1, 2) which can not only take on both signs, but can do this

independently, since otherwise we would have ̺ = 1.

Case 4: ̺ ≥ 3. Just use the obvious extension of the argument for ̺ = 2.

6 G-Graded Contractions with Zeroes

In this section we study G-graded contractions γ with zeroes. The support S(γ) and
the strong violations of higher-order identities play a deciding role. For real γ’s, there
are also the sign invariants, and negative sign invariants of the first kind are now
possible.

In Definition 6.3 we introduce, for a given support S ∈ S(G), two integers N ′(S) ≤
N ′ ′(S). N ′(S) < N = |G| is the maximal number of independent elements in S,
whereas N ′ ′ is the maximal number of “quasi-independent” elements which seem
to be independent if we only consider all surviving defining equations. Theorem 6.5

proves that the difference Q = N ′ ′−N ′ ≥ 0 is the number of higher-order identities
which can be violated strongly in an arbitrary way by γ when γ is either complex
or non-negative. (For sgn γ the strong violation of a higher-order identity simply
means the existence of a negative sign invariant of the first kind (Remark 4.16(iii)).

In the real case, N ′′ also determines the number of different sgn γ, which is 2N ′ ′

(Lemma 6.10) in contrast to 2N when γ has no zeroes (Lemma 3.3).
If there are no strong violations, we have in the complex (resp., non-negative) case

(Theorem 6.7) γ ∼ π(γ) which corresponds to γ ∼ 1 for a complex (resp., positive)

γ without zeroes (Theorem 3.1 (resp., Lemma 3.2)). In the real case, if in addition
there are no negative sign invariants of the first kind, we have γ = Γ · π(γ) where Γ

is a real G-graded contraction without zeroes (Theorem 6.11).
Finally, we introduce the notion of independent sign invariants (Definition 6.13,

Lemma 6.16). The J(S) independent sign invariants which exist for a given support
S (Lemma 6.14) can be constructed from the Q higher-order identities and the J ′

independent sign invariants for the N ′ independent elements alone so that J = Q+ J ′

(Lemma 6.17, Algorithm 6.18).
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Remark 6.1 For a γ with zeroes, (3.2) yields, instead of (3.3),

(6.1) γ0k = γ00 or γ0k = 0, 0 6= k ∈ G.

In the case γ0 j = γ0k = γ0, j+k (3.1) is trivially satisfied, otherwise it yields γ jk = 0.

Remark 6.2 All possible supports S ∈ S(G) can be determined easily as follows.
Take an arbitrary subset S0 of elements of γ, and declare them to be non-zero. The
defining equations then determine uniquely the smallest possible support S contain-

ing S0. (If both elements on one side of a defining equation are non-zero, then both
elements on the other side must also be non-zero.) There are, for example, 5 different
supports for G = Z2, 15 for Z3, 47 for Z4, and 41 for Z2 × Z2.

Definition 6.3 Let S ∈ S(G). We say that elements in S are quasi-independent if

there exists no non-trivial dependence relation coming from the surviving defining
equations. We define N ′ ′(S) to be the maximal number of quasi-independent ele-
ments in S, and N ′(S) to be the maximal number of independent elements in S.

Remark 6.4 To determine N ′ ′, use all surviving defining equations to remove as

many dependent elements as possible. Then N ′ ′ is the number of elements which
are left. Note that N ′ ′ < N = |G| , N ′ ′

= N , and N ′′ > N are all possible
(Examples 5.7 and 6.6). Although these N ′ ′ elements can obviously take on arbitrary
(non-vanishing) values, they are in general not independent (Warning 5.4) because

there can be surviving higher-order identities (Remark 5.6). Hence N ′ ≤ N ′ ′. To
determine N ′ we use Lemma 5.5 (see the proof of Theorem 6.5 below). We must
have N ′ < N (otherwise there could not be any zeroes).

The uniqueness of N ′ and N ′ ′ follows, e.g., from a replacement principle (alter-
nate proof of Lemma 5.8).

Theorem 6.5 Let S ∈ S(G). There exist Q = N ′ ′(S) − N ′(S) ≥ 0 surviving higher-
order identities “P(l)

1 = P(l)
2 ” for l = 1, 2, . . . , Q with the following property: for any

non-zero complex (resp., positive) numbers αl, l = 1, 2, . . . , Q, there exists a complex
(resp., non-negative) γ with support S such that

P(l)
1 (γ) = αlP

(l)
2 (γ), l = 1, 2, . . . , Q.

Furthermore, all strong violations of γ are direct consequences of these Q ones.

Proof Let S be given and therefore N ′′ and N ′ (Definition 6.3). Consider a complex
(resp., non-negative) γ with support S and let {γ ji ki

| ji, ki ∈ G, i = 1, 2, . . . , N ′′} ⊂
S be N ′ ′ quasi-independent elements. By renumbering if necessary, we let {γ ji ki

| i =

1, 2, . . . , N ′ ≤ N ′ ′} be a subset of N ′ independent elements. This means that the
ansatz (Lemma 5.5)

(6.2) γ ji ki
=

a ji
aki

a ji +ki

, i = 1, 2, . . . , N ′
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allows us to solve for N ′ of the a j ’s.
If Q = 0 there is nothing to prove, so we assume N ′ < N ′′. Consider any

γ jN ′+lkN ′+l
and the ansatz

(6.3) γ jN ′+lkN ′+l
=

a jN ′+l
akN ′+l

a jN ′+l+kN ′+l

, 0 < l ≤ Q = N ′ ′ − N ′.

We replace the a j ’s on the right-hand side, whenever possible, by the expressions ob-

tained from (6.2), if necessary by taking the smallest appropriate power of our ansatz.
Then the a j ’s must completely drop out since otherwise we could solve for another
one so that our set would contain more than N ′ independent elements. Instead we
are left with a dependence relation for γ jN ′+lkN ′+l

(resp., some smallest possible power

of it) in terms of {γ ji ki
| i = 1, 2, . . . , N ′}. By assumption, this dependence relation

does not follow from the surviving defining equations and consequently does not
have to be satisfied by γ. Therefore, it can be transformed into the standard form of a
higher-order identity “P(l)

1 = P(l)
2 ” which will of course be satisfied by our ansatz da.

Since we can choose the values of all γ ji ki
, i = 1, 2, . . . , N ′ plus the values of all

γ jN ′+lkN ′+l
, l = 1, 2, . . . , Q arbitrarily, we can define a complex (resp., non-negative)

γ for which

(6.4) P(l)
1 (γ) = αlP

(l)
2 (γ), l = 1, 2, . . . , Q,

whatever the chosen complex (resp., positive) numbers αl 6= 0 are.
These Q higher-order identities can of course be combined to produce “new” ones

(Remark 4.5(i)). That γ cannot violate strongly any higher-order identity which is
not a consequence of (6.4) can be seen in the following way. Assume γ as defined in

(6.4) violates strongly another higher-order identity “P1 = P2” , i.e.,

P1(γ)

P2(γ)
= α 6= 0, 1 6= α ∈ C (resp., R

+).

First we express all elements in this relation by our N ′′ elements {γ ji ki
| i =

1, 2, . . . , N ′′}. Then we replace all elements {γ ji ki
| i = N ′ + 1, . . . , N ′ ′} by their

expressions stemming from (6.3)). This leaves us with a dependence relation for

our independent elements {γ ji ki
| i = 1, 2, . . . , N ′} alone, which has to be a trivial

identity. Therefore all numerical factors have to drop out, i.e., there must exist n ∈ N

and nl ∈ Z so that αn
=

∏Q
l=1 αnl

l . This means

(6.5)
[ P1(γ)

P2(γ)

] n

=

Q
∏

l=1

[ P(l)
1 (γ)

P(l)
2 (γ)

] nl

,

so that
[

P1(γ)

P2(γ)

] n
is a direct consequence of the Q higher-order identities above.

If we have n = 1 in (6.5), the proof is complete. Therefore we assume n > 1 and
αl = 1, l = 1, 2, . . . , Q in the following, so that (6.5) reads P1(γ) =

n
√

1P2(γ). This is

obviously a dependence relation between some non-vanishing elements of γ. Since
we know that N ′ of these elements are independent while the rest depend on them
either through surviving defining equations or through the ansatz da (6.3), we must
have n

√
1 = 1 (Remark 5.2).
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Example 6.6 Consider all Z8-graded contractions γ, with γ jk 6= 0 if j and k are
odd and γ jk = 0, otherwise. Since all 10 non-vanishing elements are pairwise in-

compatible ,there are no surviving defining equations so that N ′′
= 10. Since γ has

zeroes we know that N ′ ≤ 7. The ansatz

γ17 =
a1a7

a0

γ33 =
a2

3

a6

γ35 =
a3a5

a0

γ37 =
a3a7

a2

γ55 =
a2

5

a2

γ57 =
a5a7

a4

γ77 =
a2

7

a6

allows us to solve for 7 of the 8 a j ’s (as functions of a3), namely

a6 =
a2

3

γ33

a4
5 = a4

3

γ2
55γ77

γ33γ2
37

a7 =
a2

5

a3

γ37

γ55

a1 =
a3a5

a7

γ17

γ35

a2 =
a3a7

γ37

a4 =
a5a7

γ57

a0 =
a1a7

γ17

.

Therefore, N ′
= 7.

For the remaining three elements the corresponding ansatz yields the following
dependence relations

γ11 =
a2

1

a2

=
γ2

17γ33γ55

γ2
35γ77

γ13 =
a1a3

a4

=
γ17γ33γ57

γ35γ77

γ15 =
a1a5

a6

=
γ17γ33γ55

γ35γ37

.

Therefore, the following Q = N ′ ′−N ′
= 3 surviving higher-order identities “P(l)

1 =

P(l)
2 ”, l = 1, 2, 3 can be arbitrarily violated or satisfied by γ.

P(1)
1 (γ) = γ11γ

2
35γ77 P(1)

2 (γ) = γ2
17γ33γ55

P(2)
1 (γ) = γ13γ35γ77 P(2)

2 (γ) = γ17γ33γ57

P(3)
1 (γ) = γ15γ35γ37 P(3)

2 (γ) = γ17γ33γ55.

Now we want to characterize those γ’s which satisfy γ ∼ π(γ) (Theorem 6.7 in

the complex case and Theorem 6.11 in the real case).

Theorem 6.7 Given a complex (resp., non-negative) G-graded contraction γ with ze-

roes, we have γ ∼ π(γ) if and only if γ does not violate strongly any surviving higher-
order identity.

Proof The condition is clearly necessary since γ ∼ π(γ) means γ = da · π(γ)

and π(γ) can only have weak violations and da none at all. To show sufficiency we
assume that γ has no strong violations. We will prove the existence of a complex
(resp., positive) G-graded contraction Γ without zeroes such that

(6.6) γ = Γ · π(γ)
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which means Γ jk = γ jk if γ jk 6= 0, j, k ∈ G. Since Γ = da ∼ 1 (Theorem 3.1, resp.,
Lemma 3.2), (6.6) trivially implies γ ∼ π(γ).

By following the proof of Theorem 6.5 we determine first the numbers N ′ ′ and
N ′ and we then choose a maximal set of N ′ < N independent elements {γsi

| si ∈
G × G, i = 1, 2, . . . , N ′}. (The Q = N ′′ − N ′ higher-order identities (6.4) are all

satisfied by assumption.)

By definition of independence, a complex G-graded contraction Γ̃ without zeroes

exists which agrees with γ on these N ′ independent elements. If all non-vanishing
dependent elements of γ follow uniquely from these independent ones, Γ̃ has to agree
with γ there, too. Hence we can take Γ = Γ̃ in the complex case.

Otherwise we complete these N ′ independent elements {γsi
| i = 1, 2, . . . , N ′ <

N} to a pseudobasis {γsi
| i = 1, 2, . . . , N}. We define

Γsi
= γsi

, i = 1, 2, . . . , N ′ and Γsi
= ci, i = N ′ + 1, . . . , N

for some arbitrary 0 6= ci ∈ C (resp., ci > 0).

Now we only have to convince ourselves that for those dependent elements which

do not vanish for γ, we can choose for Γ the same values γ has. This is certainly true
for Γ positive since in this case a pseudobasis behaves like a basis. In the complex case
we look at Algorithm A which produces all possible Γ’s. We organize this algorithm
in such a way that we determine first all dependent elements Γt with γt 6= 0. For such

a Γt we have for all valid relations in (5.4) obviously nir = 0, i = N ′ + 1, . . . , N .

All these relations hold by assumption for γ, as well, since they constitute either

surviving defining equations (or consequences thereof) or surviving higher-order
identities (which are all those dependence relations which arise through elements
which vanish for γ). Thus, we have at each step of the algorithm the identical choices
for γ as for Γ, so that we can choose Γt = γt , γt 6= 0. This yields Γ.

Now we turn to the real case.

Lemma 6.8 Given a real G-graded contraction γ with zeroes. We have γ ∼ sgn γ if
and only if |γ| does not violate strongly any surviving higher-order identity.

Proof Theorem 6.7 yields that |γ| ∼ π(γ) if and only if |γ| has no strong violations.
In this case we have (2.15) γ = |γ| · sgn γ ∼ π(γ) · sgn γ = sgn γ.

For real G-graded contractions γ without zeroes there are 2N different sgn γ by
Lemma 3.3. In contrast, if zeroes occur, we get 2N ′ ′

different sgn γ (see Lemma 6.10

below). To prove this result we need part (i) of the following lemma. (Both parts will
be used in Lemma 6.17.)

Lemma 6.9 Let S ∈ S(G).

(i) We can choose N ′ ′(S) quasi-independent elements {γsi
| i = 1, 2, . . . , N ′ ′}

in such a way that the signs of all dependent elements of sgn γ follow uniquely from
{sgn γsi

} .
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(ii) We can choose from these N ′ ′ elements N ′(S) independent elements in such a
way that each of the remaining Q = N ′ ′ − N ′ elements occurs in its individual higher-

order identity, as produced in Theorem 6.5, with an odd power.

Proof (i) Assume {γsi
| i = 1, 2, . . . , N ′′} is a maximal set of quasi-independent

elements. If {γsi
} does not have the desired property, we use an algorithm identical

in spirit to Algorithm A to determine the dependent elements of γ one by one from
{γsi

| i = 1, 2, . . . , N ′ ′}. The only difference is that we only use all valid relations
which stem from the surviving defining equations alone (i.e., the Q(S) higher-order
identities are ignored).

Assume γt is the first dependent element of γ in S for which our algorithm does
not yield γt itself, but γµ

t , i.e.,

(6.7) γµ
t =

N ′ ′

∏

i=1

γni
si

µ =

N ′ ′

∑

i=1

ni ∈ N, ni ∈ Z,

with a minimal power µ ≥ 2 ((5.4), (5.5)). (Since by assumption all dependent

elements determined prior to γt follow uniquely from {γsi
} , they were replaced in

(6.7) by {γsi
}.)

Since

sgn γµ
t =

{

sgn γt if µ odd,

+1 if µ even,

sgn γt follows from {sgn γsi
} uniquely only if µ is odd. If µ is even, we are free to

choose both signs for γt . But now the right-hand side of (6.7) obviously constitutes
a sign invariant of the first kind which must be positive, i.e.,

(6.8) sgn

N ′ ′

∏

i=1

γδi
si

= +1, where δi =

{

0 if ni even,

1 if ni odd.

Therefore we cannot choose sgn γsi
arbitrarily for all i. But we can get around this

complication. Since not all powers ni which occur in (6.7) can be even (otherwise
we could divide all occurring powers µ and ni by 2 so that µ would not be minimal),
we can solve (6.8) for some γsk

with nk odd. This means that sgn γsk
follows uniquely

from {sgn γsi
| i 6= k}, and consequently that the signs of all dependent elements

considered prior to γt also follow uniquely from {sgn γsi
| i 6= k}. Therefore we can

consider from now on instead of {γsi
}, the set {γsi

| i 6= k} ∪ {γt}. Continuing in
this way we see that we can always get the desired property.

(ii) Let (after renumbering if necessary) {γsi
| i = 1, 2, . . . , N ′ ≤ N ′ ′} be N ′

independent elements. Theorem 6.5 yields, for the remaining Q elements

{γsN ′+l
| l = 1, 2, . . . , Q = N ′ ′ − N ′},

individual higher-order identities “P(l)
1 (γ) = P(l)

2 (γ)”, (l = 1, 2, . . . , Q) which look

like

(6.9) “γnl
sN ′+l

=

N ′

∏

i=1

γnli
si

”, nl =

N ′

∑

i=1

nli ∈ N, nli ∈ Z.
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Consider (6.9) for l = 1. If n1 is odd, we leave this equation alone. If n1 is even,
we solve this equation for one of the γsi

with n1i odd. (Such a γsi
must exist since

otherwise we could divide all powers in this equation by 2.) Then γsN ′+1
and this

specific γsi
change places, i.e., γsN ′+1

becomes one of the N ′ independent elements
instead of this γsi

. In all other equations this γsi
gets replaced as well. This may require

taking some natural power of these equations. But since this power will always be

odd, all odd powers nl (l 6= 1) in (6.9) will remain odd.

We continue this procedure with the next of our now possibly modified equations.
At the end, the new N ′ independent elements have the desired property.

Lemma 6.10 Let S ∈ S(G). There are 2N ′ ′

different sgn γ (where N ′′(S) is defined

in Definition 6.3).

Proof Select {γsi
| i = 1, 2, . . . , N ′ ′} quasi-independent elements as in Lemma 6.9.

Then we can choose sgn γsi
, i = 1, 2, . . . , N ′′ arbitrarily, which yields 2N ′ ′

different
sgn γ.

Now we can extend Theorem 6.7 to the real case.

Theorem 6.11 Let γ be a real G-graded contraction with zeroes.

(i) A real G-graded contraction Γ without zeroes satisfying γ = Γ · π(γ) exists if
and only if γ does not violate strongly any surviving higher-order identity, and γ has no
negative sign invariants of the first kind.

(ii) Assume Γ as in (i) exists. We have γ ∼ π(γ) if and only if all sign invariants of
the second kind are positive for γ.

Proof (i) The conditions in (i) are clearly necessary (Remark 4.2(i), Lemma 4.11,
Definition 4.12). Therefore we assume in the following that γ has at most weak vio-
lations which means (Lemma 6.8) γ ∼ sgn γ so that we only have to care about the
signs. Furthermore we assume that all sign invariants of the first kind are positive for

γ.

We start as in the proof of Theorem 6.7 by choosing N ′ independent elements
{γsi

| i = 1, 2, . . . , N ′}. But here we can make use of Lemma 6.9(i) and choose
these elements in such a way that all dependent elements which survive for γ follow
uniquely from {γsi

}.

Now we complete {γsi
| i = 1, 2, . . . , N ′} to a pseudobasis {Γsi

| i = 1, 2, . . . , N}
where Γsi

= γsi
, i = 1, 2, . . . , N ′ . Let Γsi

= ci , i = N ′ + 1, . . . , N, for some arbitrary
0 6= ci ∈ R. Due to our special choice of {γsi

| i = 1, 2, . . . , N ′} we obviously have
Γ jk = γ jk if γ jk 6= 0. When can the remaining dependent elements of Γ be chosen to
be real, too? According to Theorem 5.12 a real Γ without zeroes exists as long as the

sign distribution {sgn ci} does not create negative sign invariants of the first kind.

Consider therefore the (finite) set of all sign invariants of the first kind which have
the form

sgn
[

N
∏

l=N ′+1

Γ
δl
sl

N ′

∏

i=1

γǫi
si

]

, δl, ǫi ∈ {0, 1}.
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If this set is empty, we can obviously choose {sgn cl} arbitrarily. Otherwise we show
that it is possible to choose {sgn cl | l = N ′ + 1, . . . , N} in such a way that for all

these invariants we have

(6.10) sgn
[

N
∏

l=N ′+1

cδl

l

N ′

∏

i=1

γǫi
si

]

= +1.

If no equation exists with δN ′+1 = 1, we can obviously choose either sign for cN ′+1.
Otherwise we take one equation with δN ′+1 = 1, solve it for sgn cN ′+1 and substitute
this result in all remaining equations. Then we repeat this procedure with all these

remaining equations for δN ′+2, then for δN ′+3 and finally for δN . After (N −N ′) steps
we have determined {sgn cl}. All remaining equations in (6.10) must now look like

sgn
∏N ′

i=1 γǫi
si

= +1, and they are satisfied by assumption.

(ii) Now we show that we can choose Γ ∼ 1 (which means γ ∼ π(γ)) if all sign
invariants of the second kind are positive for γ. To see this, we add to (6.10) all
sign invariants of the second kind which can be formed by our pseudobasis {Γsi

|
i = 1, 2, . . . , N} as well and demand that they be positive, too. The solution will be

obtained in the same way as above.

To characterize the equivalence classes for sgn γ we need the notion of indepen-

dent sign invariants.

Remark 6.12 Let S ∈ S(G) and choose N ′′ quasi-independent elements {γsi
| i =

1, 2, . . . , N ′′} as in Lemma 6.9. Since all the signs of all non-vanishing elements of
γ follow uniquely from these {sgn γsi

}, any surviving sign invariant can be uniquely

expressed as sgn P(γ) where P(γ) =
∏N ′ ′

i=1 γδi
si

, δi ∈ {0, 1}. Such a sign invariant is

non-trivial if it can take on both signs for some γ with support S, which means that
not all δi = 0.

Definition 6.13 Given S ∈ S(G) and a family of non-trivial surviving sign invari-
ants expressed as in Remark 6.12, we say that they are independent if none of them

is a product of the remaining ones (where we take all exponents modulo 2 (Remark
4.16(ii)).

Lemma 6.14 Let S ∈ S(G). Any maximal set of surviving independent sign invariants
has the same number J(S) of elements. All surviving sign invariants are products of the

J(S) elements of such a set.

Proof Consider the set of all surviving sign invariants expressed as in Remark 6.12.
We remove from this set as many sign invariants as possible that are products of the

remaining ones, until we are left with J(S) independent ones. All sign invariants are
then obviously products of these J(S) ones. The uniqueness of J(S) follows from a
straightforward replacement argument.
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Example 6.15 Consider all G-graded contractions without zeroes where G = ZN1
×

ZN2
× · · · × ZNr

. According to Lemma 4.15 there are exactly re independent sign

invariants of the second kind (while all sign invariants of the first kind must have
trivially the value 1).

The following lemma shows that, as expected, independent sign invariants can
indeed take on independent values.

Lemma 6.16 Assume given S ∈ S(G), N ′′ quasi-independent elements γsi
as in

Lemma 6.9, and L sign invariants sgn Pl(γ), where

Pl(γ) =

N ′ ′

∏

i=1

γδli
si

, δli ∈ {0, 1}, l = 1, 2, . . . , L.

Then for arbitrary αl = ±1, a real γ with support S satisfying sgn Pl(γ) = αl, exists if
and only if these L sign invariants are independent.

Proof The condition is clearly necessary. To show sufficiency, we first recall that for
arbitrary {sgn γsi

| i = 1, 2, . . . , N ′ ′} a real γ with support S exists (Lemma 6.10).
Now we show that it is possible to choose {sgn γsi

} in such a way that

(6.11) sgn Pl(γ) = sgn

N ′ ′

∏

i=1

γδli
si

= αl; l = 1, 2, . . . , L.

If no equation exists with δl1 = 1, we can obviously choose either sign for sgn γs1
.

Otherwise we select one equation with δl1 = 1, solve it for sgn γs1
and substitute this

result into all remaining equations. Note that this substitution yields the same result
as the multiplication of all remaining equations where γs1

occurs, i.e., where δl1 = 1,
by the chosen equation. (Assume e.g.,

sgn P1(γ) = sgn
(

γs1

N ′ ′

∏

i=2

γδ1i
si

)

= α1, sgn P2(γ) = sgn
(

γs1

N ′ ′

∏

i=2

γδ2i
si

)

= α2.

Then the first equation yields sgn γs1
= α1 sgn

∏N ′ ′

i=2 γδ1i
si

, which turns the second one

into sgn(P1(γ)P2(γ)) = sgn
∏N ′ ′

i=2 γ(δ1i +δ2i ) mod 2
si

= α1α2.)
Then we repeat this procedure with all remaining equations for δl2 and so on. The

only problem we can run into is that we encounter an equation where all γsi
’s have

dropped out, so that it says that a certain product of αl’s should be equal to 1. But
this means that the corresponding product of the Pl’s is equal to 1, i.e., that one of
these Pl’s is a product of the remaining ones, so that our L sign invariants are not
independent.

Finally we determine the number J(S) (Lemma 6.17) and we give an algorithm
which constructs a maximal set of independent sign invariants for any given set of
independent elements {γsi

| i = 1, 2, . . . , r ≤ N = |G|} (Algorithm 6.18).
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Lemma 6.17 Let S ∈ S(G). As in Lemma 6.9, choose N ′ ′(S) quasi-independent
and N ′(S) independent elements. Let J ′(S) be the maximal number of independent

sign invariants which can be constructed from these N ′ elements alone. Then J(S) =

Q(S) + J ′(S) where Q = N ′ ′ − N ′.

Proof First we choose our elements {γsi
| i = 1, 2, . . . , N ′} and {γsi

| i =

N ′+1, . . . , N ′′} according to Lemma 6.9. The Q higher-order identities “P(l)
1 = P(l)

2 ,”
l = 1, 2, . . . , Q = N ′ ′ − N ′ which get produced by the proof of Theorem 6.5, auto-
matically yield Q sign invariants sgn[P(l)

1 (γ)P(l)
2 (γ)], l = 1, 2, . . . , Q of the first kind

(Remark 4.16(iii)). Since each of these sign invariants contains exactly one and al-

ways a different element from the set {γsi
| i = N ′ + 1, . . . , N ′′}, they are clearly

independent from each other and from the J ′ ones for the N ′ elements alone.

Using Remark 6.12 we write all sign invariants in terms of {γsi
| i = 1, 2, . . . , N ′′}.

Assume there exists a sign invariant which contains some of the elements from the
set {γsi

| i = N ′ + 1, . . . , N ′ ′}. By multiplying this sign invariant by the correspond-
ing sign invariants for the individual elements which occur, we obviously get a sign

invariant for the N ′ elements alone. Therefore it cannot be independent from the Q
ones above, plus the J ′ ones.

Thus, the maximal number J of independent sign invariants is J = Q + J ′.

To determine J ′ and to construct the corresponding J ′ independent sign invari-
ants we present the following algorithm which works for any set of independent ele-

ments {γsi
}.

Algorithm 6.18 Given r independent elements

{γsi
= γ ji ki

| ji , ki ∈ G, i = 1, 2, . . . , r}, 1 ≤ r ≤ N = |G|

of a G-graded contraction γ, we construct a maximal set of independent sign invari-
ants which can be formed by these r elements, i.e., which have the form sgn P(γ)

where P(γ) =
∏r

i=1 γδi
si
, δi ∈ {0, 1}. According to Lemma 4.13, sgn P(γ) is a sign

invariant if and only if we have for all da, P(da) =
∏N

j=1 a
n j

j (a j ∈ R) where all

n j ∈ Z are even. We will see that the sign invariants for {γsi
} are directly related to

the ambiguities in the solutions of the ansatz

(6.12) γsi
= γ ji ki

=
a ji

aki

a ji +ki

, i = 1, 2, . . . , r, a j = ±1,

where all γsi
= +1. (In order to recognize the sign invariants later on, we do not

replace the γsi
’s by their common value 1 in the following.)

According to Lemma 5.5 we can solve (6.12) for some power of exactly r of the
Na j ’s as functions of the remaining (N − r)a j ’s plus the γsi

. Since here we have
a j = ±1, we only care if the power of a j is even or odd (i.e., we consider the powers
modulo 2).
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Assume r̃(1 ≤ r̃ ≤ r) of the a j ’s can be determined from (6.12) with an odd
power, and the remaining (r − r̃) ones not. This means that (6.12) yields

(6.13) 2N−r̃

different solutions for the a j ’s where a j = ±1. We will see that the maximal number
of independent sign invariants turns out to be (r − r̃).

We start by solving (6.12) as long as possible for such a j ’s which occur with an odd
power and we immediately replace the expression we get in all remaining equations.
By renumbering if necessary, we can assume that this is possible by solving the first r̃
equations in (6.12) in the natural order.

Assume we have solved the equation for γs1
for al1 with an odd power. Replacing

al1 by this expression in all remaining equations is equivalent to the following proce-
dure. If the equation for γsi

(i > 1) contains al1 with an even power, we leave it alone.
If it contains al1 with an odd power, we multiply this equation by the one for γs1

i.e.,

we replace

γsi
=

a ji
aki

a ji +ki

by the equation

γsi
γs1

=
a ji

aki

a ji +ki

a j1
ak1

a j1+k1

where al1 now occurs with an even power. (Note that we do not lose any information

in this way).
Next we solve the equation for γs2

(resp., γs2
γs1

) for al2 with an odd power. Again
we multiply all remaining equations for γsi

(resp., γsi
γs1

), i > 2; by the one for γs2

(resp., γs2
γs1

) if and only if they contain al2 with an odd power.

We continue in this way until the remaining (r − r̃) equations only contain a j ’s
with an even power. Therefore these equations must have picked up some powers of
γs1

, γs2
, . . . , γsr̃

along the way. They look like

(6.14) γsi

r̃
∏

k=1

γmik
sk

=

∏

j∈G

a
ni j

j ,

i = r̃ + 1, . . . , r, mik = 0, 1, 2, . . . , ni j even. By Lemma 4.13 these expressions
constitute (r − r̃) sign invariants sgn Pi(γ) where

(6.15) Pi(γ) = γsi

r̃
∏

k=1

γmikmod2
sk

, i = r̃ + 1, . . . , r,

which are obviously independent since each of them contains one element all others
do not.

Now we show that this set is maximal. Assume that sgn P(γ) is a sign invariant
where

P(γ) =

r
∏

i=1

γδi
si
, δi ∈ {0, 1}.

https://doi.org/10.4153/CJM-2006-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-046-x


General Structure of G-Graded Contractions of Lie Algebras 1333

Following the same strategy as in the proof of Lemma 6.17, we multiply P(γ) by Pi(γ)
whenever δi = 1 for some i ∈ {r̃ + 1, . . . , r}. In this way we get a sign invariant for

the first r̃ elements alone, i.e., some sgn P ′(γ) where

(6.16) P ′(γ) =

r̃
∏

i=1

γ
δ ′

i
si , δ ′

i ∈ {0, 1}.

We will show that this must be a trivial invariant, i.e., δ ′

i = 0 for all i. This means
that sgn P(γ) is a product of some of the sgn Pi(γ)’s, so that it is not independent.

Assume δ ′

l = 1 in (6.16) for some l ∈ {1, 2, . . . , r̃}. This would lead to twice

the number of solutions of (6.12) than was stated in (6.13), as can be seen in the
following way. If δ ′

l = 1, it is obviously the same to solve either γsi
=

a ji
aki

a ji +ki

for all

i = 1, 2, . . . , r̃ or to replace the equation for γsl
by the following new one

r̃
∏

i=1

γ
δ ′

i
si =

r̃
∏

i=1

( a ji
aki

a ji +ki

) δ ′

i

.

But since this is a sign invariant, all a j ’s enter as squares only, so that we cannot solve
this equation for any one of them. Therefore we would only get (r̃ − 1) solutions
instead of r̃ solutions, which is clearly a contradiction.

7 The Classification

In Theorem 7.1 we prove that our set of invariants (support, higher-order identities
and sign invariants) is complete by showing that two inequivalent G-graded contrac-
tions must differ on at least one of these invariants. This result immediately yields a
straightforward classification of G-graded contractions.

In the complex (resp., non-negative) case, we already know that for each support
S exactly Q(S) higher-order identities can be independently and arbitrarily violated
(Theorem 6.5), which therefore immediately gives all equivalence classes.

In the real case, we already know that there exist exactly J(S) independent surviv-

ing sign invariants for each support S which can independently take on both values
(Lemmas 6.16, 6.17). This immediately gives all equivalence classes for sgn γ.

Theorem 7.1 Let γ and γ ′ be inequivalent G-graded contractions. Then either they
have different supports, or (if their supports agree) they differ on some surviving higher-
order identity, or, in the real case, on a surviving sign invariant.

Proof Assume that γ and γ ′ agree on all invariants. We will prove that then γ ∼ γ ′.
Since S(γ) = S(γ ′), the equation

γ̃ jk =
γ jk

γ ′

jk

defines a G-graded contraction with the same support S (Proposition 2.9). We will
show that γ̃ ∼ π(γ̃), which trivially implies that γ ∼ γ ′.
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If “P1 = P2” is any surviving higher-order identity, then P1/P2 is an invariant
(Lemma 4.4) and by assumption we have

P1(γ)

P2(γ)
=

P1(γ ′)

P2(γ ′)
6= 0,

which implies P1(γ̃) = P2(γ̃). Similarly, in the real case, if sgn P(γ) is any surviving
sign-invariant, we have sgn P(γ) = sgn P(γ ′) and hence sgn P(γ̃) = +1. That γ̃ ∼
π(γ̃) now follows from Theorem 6.7 in the complex and non-negative cases and from
Theorem 6.11 in the real case.

7.1 The Classification of G-Graded Contractions

(i) The complex case. For a given G, one first determines all possible supports S(G).

There is a straightforward algorithm for this (Remark 6.2). Let S ∈ S(G). In Section
6 (Definition 6.3, Remark 6.4, Theorem 6.5) we have shown that there is a straight-
forward procedure for determining the two natural numbers N ′(S) ≤ N ′ ′(S) and
the Q(S) = N ′ ′(S) − N ′(S) ≥ 0 surviving higher-order identities “P(l)

1 = P(l)
2 ”, l =

1, 2, . . . , Q, with the property that for arbitrary complex αl 6= 0, there exists a γ with
P(l)

1 (γ) = αlP
(l)
2 (γ), l = 1, 2, . . . , Q. Furthermore, all strong violations of higher-

order identities follow from these Q identities. Thus for each support S there is a
Q(S)-parameter family of inequivalent γ’s.

Note that by Lemma 4.7 there are no higher-order identities if and only if |G| ≤ 5.
Hence in this case, the number of equivalence classes is just the number of supports
(5 for Z2, 15 for Z3, 47 for Z4, and 41 for Z2 × Z2, for example (Remark 6.2)).

(ii) The non-negative case. This is identical to the complex case, except that the
parameters αl are positive.

(iii) The real case. Since γ ∼ γ ′ if and only if |γ| ∼ |γ ′| and sgn γ ∼ sgn γ ′

(Lemma 2.16(iii)), we only have to add the classification of sgn γ to the non-negative
case. Since for a given support S there are only finitely many sgn γ, there can only be
a finite number of equivalence classes. In fact, because of Theorem 7.1 and Lemma
6.16, the 2N ′ ′(S) possible sgn γ (Lemma 6.10) split into 2 J(S) equivalence classes where

J(S) is the maximal number of independent surviving sign invariants (Lemma 6.17,
see also Remark 7.3).

The following examples illustrate the classification of sgn γ.

Example 7.2

(i) Consider all G-graded contractions sgn γ without zeroes. Then we have (Ex-

ample 6.15) N = N ′
= N ′ ′, Q = 0, J = J ′ = re, so that we get 2re equivalence

classes, in agreement with Theorem 3.5.

(ii) We give the number of equivalence classes of sgn γ for small |G|. For Z3 there is
only one equivalence class for each support, since sign invariants do not exist. For Z2,

resp., Z4, we get two equivalence classes for those supports where sgn(γ00γ11), resp.,
sgn(γ00γ22), or sgn(γ11γ33) survives, otherwise one. For Z2 × Z2 there are 1, 2 or 4
equivalence classes since 0, 1, or 2 independent sign invariants like sgn(γ00,00γ01,01)
or sgn(γ00,00γ10,10) or sgn(γ00,00γ11,11) can survive for a specific support.
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(iii) Consider all Z8-graded contractions sgn γ with support

{

γ jk 6= 0 if j, k odd,

γ jk = 0 otherwise.

The relevant numers are (Example 6.6) N = 8, N ′ ′
= 10, N ′

= 7, Q = 3; re = 1. For

the N ′ independent elements {γ17, γ33, γ35, γ37, γ55, γ57, γ77} which we have chosen
in Example 6.6 and which satisfy our assumptions in Lemma 6.17, there exists exactly
one sign invariant, namely sgn(γ33γ77) (which is of the second kind (Examples 4.17)).
Therefore J ′ = 1 which means that the 2N ′ ′

= 210 different sgn γ split into 2Q+ J ′
=

24 equivalence classes.

A maximal set of J = 4 independent sign invariants which separate them is

sgn(γ33γ77), sgn(γ11γ33γ55γ77) = sgn(γ11γ55) sgn(γ33γ77)

sgn(γ13γ17γ33γ35γ57γ77) = sgn(γ33γ77) sgn(γ13γ17γ35γ57),

sgn(γ15γ17γ33γ35γ37γ55).

(Example 6.6 for the 3 sign invariants of the first kind which stem from the Q higher-
order identities)

Finally we determine the equivalence classes of sgn γ in an alternate way by using
a counting argument based on the group structure.

Remark 7.3 There are 2N ′ ′

different sgn γ with support S (Lemma 6.10). The
equivalence class of any such sgn γ is given by Sgn0(G) · sgn γ where Sgn0(G) =

{da | a j = ±1, j ∈ G} has 2N−re elements ((3.15), (3.18)). The number of ele-

ments in this equivalence class is just the number of elements in the quotient group
of Sgn0(G) by its stabilizer subgroup of all da satisfying

(7.1) da · sgn γ = sgn γ,

i.e.,

(7.2) (da)s = +1, s ∈ S, a j = ±1.

Since the order of Sgn0(G) is a power of 2, the order of its stabilizer subgroup must

also be some power of 2. Therefore (7.2) must have 2NST solutions for the da’s for
some integer NST . Hence the number of elements in any equivalence class is

(7.3) 2N−re−NST

and the number of equivalence classes is

(7.4) 2N ′ ′
−(N−re−NST ).
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Now we calculate NST . We use the notation of Lemma 6.9. Since all dependent el-
ements follow uniquely from our N ′′ elements, it follows that (da)si

= +1, i =

1, 2, . . . , N ′′, a j = ±1 implies (7.2). Furthermore, because each of the Q higher-
order identities is a dependence relation which must hold for any da, it suffices to
have (6.9)

(7.5) (da)si
= +1, i = 1, 2, . . . , N ′, a j = ±1.

Now (7.5) corresponds directly to (6.12) which we solved in Lemma 6.17 if we set
r = N ′. Therefore (7.5) and hence (7.2) admit exactly 2N−(N ′

− J ′) different solutions

for the a j ’s where a j = ±1 and where J ′ is the maximal number of independent sign
invariants for our N ′ independent elements.

Since, for a fixed da, the equation

(da) jk =
a jak

a j+k

has 2re different solutions (3.18), we have 2N−(N ′
− J ′)−re different solutions for the

da’s so that we finally get NST = N − N ′ + J ′ − re. It then follows from (7.3) that

the number of elements in any equivalence class is 2N− J ′ . From (7.4) the number of
equivalence classes for sgn γ follows as 2 J where J = Q + J ′.

A Natural Basis for G-Graded Contractions

In this appendix, we show that all elements of a G-graded contraction γ without
zeroes follow uniquely from N = |G| specific elements. We treat first the case ZN in
Lemma A.1, then ZN1

×ZN2
in Lemma A.2, and ZN1

×ZN2
×ZN3

in Lemma A.3. This
provides the necessary preparation for the general case in Lemma A.4.

In fact, these N elements constitute a basis (Example 5.3) which we call a “natural”
basis for G-graded contractions, since it uses, in a straightforward way, the structure

of G and, above all, because it is easy to work with (see the proofs of Theorem 3.1
and Lemmas 4.14, 4.15). To prove the basis property we have to show that for ar-
bitrary complex, non-vanishing values of these N elements, a complex γ without
zeroes exists which takes on these values. This could be done directly via the defining

equations, but a much simpler argument is given in Theorem 3.1 which constructs γ
as a specific coboundary da.

Lemma A.5 is a technical lemma for real ZN-graded contractions.

Lemma A.1 All elements of a ZN -graded contraction γ without zeroes follow uniquely
from the N elements {γ00, γ11, γ12, . . . , γ1,N−1}, N = 2, 3, . . . .

Proof Consider a ZN -graded contraction γ without zeroes. We have γ0 j = γ00

for j, k = 0, 1, 2, . . . , N − 1, cf. (3.3) . Multiplying the defining equations (2.3)
γ1lγl+1,k = γlkγ1,k+l for l = 1, 2, . . . , j − 1 where j ≤ k, j 6= 0, 1 yields

γ11γ12 · · · γ1, j−1γ2kγ3k · · · γ jk = γ1kγ2k · · · γ j−1,kγ1,k+1γ1,k+2 · · · γ1, j+k−1.
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Since γ is without zeroes we get

(A.1) γ jk =
γ1kγ1,k+1 · · · γ1, j+k−2γ1, j+k−1

γ11γ12 · · · γ1, j−1

.

Therefore all elements of γ follow uniquely from the N elements

γ11, γ12, . . . , γ1,N−1, γ1N = γ10 = γ00.

(One way to show that these N elements constitute a basis is to prove that γ jk, when
defined by (A.1), satisfies all defining equations. )

The generalization of this lemma from ZN to an arbitrary G is not entirely straight-
forward. The obvious guess for ZN1

×ZN2
would be to try the “tensor product” of the

bases for ZN1
and ZN2

. This, however, does not work. We therefore proceed in several

steps.

Lemma A.2 All elements of a ZN1
× ZN2

-graded contraction γ without zeroes follow
uniquely from the N1 · N2 elements (N1, N2 = 2, 3, . . . )

{γ00,00, γ10, j0, γ01,0k, γ j0,0k | j = 1, 2, . . . , N1 − 1, k = 1, 2, . . . , N2 − 1}.

Proof Consider a ZN1
×ZN2

-graded contraction γ without zeroes. We have ( j, j ′ ∈
ZN1

, k, k ′ ∈ ZN2
, see(3.3)

(A.2) γ00, jk = γ00,00.

The defining equations (2.3) yield

γ j0,0kγ jk, j ′k ′ = γ j0, j ′k ′γ0k; j+ j ′,k ′ = γ0k, j ′k ′γ j0; j ′,k+k ′ ;

especially for k ′
= 0,

γ j0,0kγ jk, j ′0 = γ j0, j ′0γ0k; j+ j ′,0,

and for j ′ = 0,

γ j0,0kγ jk,0k ′ = γ0k,0k ′γ j0;0,k+k ′ .

Altogether we get (since γ is symmetric)

γ jk, j ′k ′ =
γ j0, j ′k ′γ0k; j+ j ′,k ′

γ j0,0k

=
1

γ j0,0k

· γ j0, j ′0γ0k ′ ; j+ j ′,0

γ j ′0,0k ′

· γ0k,0k ′γ j+ j ′,0;0,k+k ′

γ j+ j ′,0;0k ′

,

so that

(A.3) γ jk, j ′k ′ =
γ j0, j ′0γ0k,0k ′γ j+ j ′,0;0,k+k ′

γ j0,0kγ j ′0,0k ′

.

From the ZN1
(resp., ZN2

)-subgroup structure we know that (A.1) all elements γ j0, j ′0

(resp., γ0k,0k ′) follow uniquely from the elements γ10, j0 (resp., γ01,0k). Altogether we
see that all elements of γ follow uniquely from the elements γ00,00, γ10, j0, γ01,0k, γ j0,0k.
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Lemma A.3 For N1, N2, N3 = 2, 3, . . . , all elements of a ZN1
× ZN2

× ZN3
-graded

contraction γ without zeroes follow uniquely from the N1 · N2 · N3 elements

γ000,000, γ100, j00, j 6= 0, γ010,0k0, k 6= 0, γ001,00l, l 6= 0,

γ j00,0kl, j 6= 0, (k, l) 6= (0, 0), γ0k0,00l, k, l 6= 0,

where ( j, k, l) ∈ ZN1
× ZN2

× ZN3
.

Proof We start by splitting off one of the three subgroups, e.g., by writing ZN1
×

ZN2
× ZN3

= ZN1
× (ZN2

× ZN3
). (Splitting off one of the other two subgroups leads

to a different, but equally natural basis.) Now we proceed nearly verbatim as in the
proof of Lemma A.2, the only difference being that ZN2

is replaced by ZN2
× ZN3

.

This means that k and k ′ are replaced by (k, l) and (k ′, l ′), where k, k ′ ∈ ZN2
and

l, l ′ ∈ ZN3
. Then (A.2), (A.3) yield that all elements γ jkl, j ′k ′l ′ follow uniquely from

the elements γ000,000, γ j00, j ′00, γ0kl,0k ′l ′ , γ j00,0kl. From the ZN1
-subgroup structure we

know (Lemma A.1) that all elements γ j00, j ′00 follow uniquely from the elements

γ100, j00( j ∈ ZN1
). From the ZN2

× ZN3
-subgroup structure we know (Lemma A.2)

that all elements γ0kl,0k ′ l ′ follow uniquely from the elements γ010,0k0, γ001,00l, γ0k0,00l.

Altogether we see that all elements of γ follow uniquely from the elements γ000,000,

γ100, j00, γ010,0k0, γ001,00l, γ j00,0kl, γ0k0,00l.

Lemma A.4 For G = ZN1
× ZN2

× · · · × ZNr
, (Ni = 2, 3, . . . ), all elements of a

G-graded contraction γ without zeroes follow uniquely from the N1 · N2 · · ·Nr elements

γ0···0,0···0, γ10··0, j10··0 ( j1 6= 0), γ010··0,0 j20··0 ( j2 6= 0), . . . γ0··01,0··0 jr
( jr 6= 0),

γ j10··0,0 j2 j3·· jr
( j1 6= 0, ( j2, j3, · · jr) 6= (0, 0, · · 0)),

γ0 j20··0,00 j3·· jr
( j2 6= 0, ( j3, . . . , jr) 6= (0, . . . , 0)),

. . . γ0··0 jr−10,0···0 jr
( jr−1, jr 6= 0),

where ji ∈ ZNi
.

Proof We start by splitting off individual subgroups in the following way

ZN1
× ZN2

× · · · × ZNr
= ZN1

× (ZN2
× (ZN3

× (· · · × (ZNr−1
× ZNr

) · · · ))).

Then we use the proof of Lemma A.3 repeatedly. (Splitting the subgroups in a differ-
ent order leads to a different, but equally natural, basis for G).
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For real ZN-graded contractions we need the following calculation (Lemma 4.14).

Lemma A.5 We have for real ZN -graded contractions γ without zeroes where N =

2M, (M = 1, 2, . . . )

(A.4) sgn(γ00γ11γ12 · · · γ1,N−1) = sgn(γ00γMM).

Proof Multiplying the defining equations (2.3) γ1lγl+1,2M−l−1 = γ1,2M−l−1γl,2M−l

for l = 1, 2, . . . , M − 1 yields

γ11γ12 · · · γ1,M−1γ2,2M−2γ3,2M−3 · · · γM−1,M+1γMM

= γ1,2M−2γ1,2M−3 · · · γ1Mγ1,2M−1γ2,2M−2γ3,2M−3 · · · γM−1,M+1.

Since γ is without zeroes, we get

γ11γ12 · · · γ1,M−1γMM = γ1,2M−1γ1,2M−2 · · · γ1,M+1γ1M .

Therefore, γ00γ11γ12 · · · γ1,N−1 = γ00γ11γ12 · · · γ1,M−1γ1M · · · γ1,2M−1 can be rewrit-

ten as γ00γ11γ12 · · · γ1,N−1 = γ00γMMγ2
11γ

2
12 · · · γ2

1,M−1. Thus, we have for a real γ
without zeroes, sgn(γ00γ11γ12 · · · γ1,N−1) = sgn(γ00γMM).
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