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CONTINUOUS SELF-MAPS OF THE CIRCLE

J. SCHAER

ABsTRACT.  Given a continuous map 6 from the circle Sto itself we want to find
al self-mapso: S— Sfor which§ o ¢ = 4. If the degreer of § is not zero, the trans-
formations o form a subgroup of the cyclic group C;. If r = 0, al such invertible
transformations form a group isomorphic either to a cyclic group Cy, or to a dihedral
group Dy, depending on whether all such transformations are orientation preserving or
not. Applied to the tangent image of planar closed curves, this generalizes a result of
Bisztriczky and Rival [1]. The proof rests on the theorem: Let A:R — R be continu-
ous, nowhere constant, and limy_._ o, A(X) = —o0, liMy_.+o, A(X) = +o0; then the only
continuous map Z: R — R such that A o ~ = Aistheidentity ~ = idg.

0. Introduction. In [1] Bisztriczky and Rival prove that a ssmple smooth closed
curve admits at most two continuous mapsto itself that preserve the direction of the tan-
gent. Actually the authors assumefurther that the curve have no cuspsand be of bounded
finite order (i.e., there exists a number n such that the intersection of any line with the
curve contains at most n points); besides ruling out accumulation points of inflection
points, this also eliminates trivial counterexampleswhere the curve contains aline seg-
ment.

Here we shall show that the conditions that the curve be simple, have no cusps, and
be of bounded finite order, are not essential. The problem is rather of an algebraic topo-
logical nature. It is concerned with the tangent image of the curve and is addressed in
Section 2. To prepare the ground for the proof of the main Theorems (3, 4, and 5) some
properties of certain continuous functions on the reals have to be established first; thisis
donein Section 1. In Section 3, finally, the results are applied to the original geometrical
guestions, and the result of [1] appearsin amore general setting.

1. TheAnalytical Background.

THEOREM 1. Let A:R — R be continuous, nowhere constant, limy_,_, AX) = —oco
and limy_+, A(X) = +o0. Let Z: R — R be continuous and such that

@) Ao3 =A.
Then = = idg.

PROOF. Letc € R. Then A~(c) is compact and contains no intervals. It sufficesto
show that Z(x) = x for all x € A~(c). Replacing A(2) by A(2) — ¢, we may assumec = 0.
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Suppose we could prove that
(2) 2(x) < xfor al x € A7Y(0).

Replacing A(2), Z(2) by —A(—2), —Z(—2), respectively, (2) yieldsthe oppositeinequality,
and thus =(x) = x would follow for al x € A=%(0).

We show that Z(m) = mwhere m = minA=%(0). Thus A(z) < 0for z < mand
A(—o00,m) = (—00,0). By (1), A(5(m)) = A(m) = 0. Hence 5(m) € A~*(0) and thus
>(m) > m. On the other hand (1) and our assumptionsimply that lim,_,_, ¥(Z) = —oo.
Suppose 2(z2) > mfor somez < m. Then £(x) = mfor somex < z < m, and hence
A(X) = 0 by (1), contradicting the definition of m. Hence 2(z) < mfor al z < m, and
therefore Z(m) = m.

Now supposex € A1(0), x # m. Let 0 < € < MaXm<z<x |A(Z)[, and put Xp = m.

Let

y1 = inf{z € (X0, %) | |A@) |= €}; of course |A(y1)| = e.
x; = inf{z€ (y1,X] | A = 0}; A(x1) = 0.
Further, aslong as the setsin question are not empty,
yi =inf{ze (x-1,%) | [A@) |> €}; |AM)| =
x = inf{z€ (yi,X] | A2 = 0}; A(X) = 0.

If there were infinitely many vy;, they would form an increasing bounded sequence and
hence have a limit y. Since |A(yi)| = ¢, by continuity |A(Y)| = €. Butyi < X < Vis1,
and so limj_., Xj = y also. Since A(x) = 0, by continuityA(y) = 0, a contradiction. So
the sequencem = xp < y1 < X1 < Yo < --- isfinite. Thus, there is a natural number
k, such that yx < x < xand |A@D)] < eforx < z < x. Leti € {1,...,k}, and
Z € (%-1,i). Suppose 2(2) = yi; then |A()| = |A(2(2))| = |A(y:)| = e. Thiscontradicts
the definitions of x;_1 and y;. Hence

@ #yiforx_1 <z<y i=12,...,k

Similarly
S #xfory <z<x i=12,...,k

As X(Xg) = Xo, these relations yield consecutively
Z(y1) < Y1, Z(X2) < X1, Z(¥2) < Y2, Z(X) < Xk

Of course, x;, yi depend on ¢, and so does k. Let uswrite x;(e), k(e). As A is nowhere
constant lim._ Xi(¢)(€) = X. Hence by continuity

>(x) <x ]

THEOREM 2. Let A:R — R be continuous, howhere constant and periodic. Then
all continuous invertible transformations Z: R — R such that A o = = A forma group
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G which is isomorphic to either the infinite cyclic group C., or the infinite dihedral
group D = C;, x C,, depending on whether G does not or does contain decreasing
transformations.

ProOOF.  Without loss of generality, we may assume that the period of A is 1:
©)] A(x+1) = A(X).

By continuity, A attains a minimum m and a maximum M in each period. Since A
is not constant, m < M. A*l((m, M)) is open, and hence is the union of digoint open
intervals (u, v). Therearesuchintervalswith A(u) = mand A(v) = M (“ascending”), and
suchintervalswith A(u) = M and A(v) = m (“descending”). If A(a) = mand A(b') = M
then by (3) there exists b > a such that A(b) = M. ThusA([a,b]) = [m,M]. Let ap =
sup{x | x < b,A([x,b]) = [mM]} and by = inf{x | x > ap,A([ag,X]) = [m,M]}.
Then (ao, bo) € A~*((m, M)), and A(ao) = m, A(bp) = M. The existence of descending
intervalsis proved similarly.

Let (ag, bp) be an ascending interval. Then there are only finitely many ascending
intervals in [ag, & + 1], and hence in any interval of length 1. Indeed, if there were
infinitely many ascending intervals (ag, o), (a1, b1), (a2, b2),... withay < a; < az---
then the sequenceay, a1, az, . . . would beincreasing and bounded above by ag + 1, hence
convergent with limit a, say. Since A(a;)) = m and A is continuous, A(a) = m. But
a <bp<a; <b; <ax<h,<---, sothesequencehy, by, by, ... would also converge
to a. Since A(b)) = M and A(a) = M, we have a contradiction.

Solet (ag, bo), (a1, b1), - . ., (ak_1, bk_1) betheascendingintervalsin[ag, ap+1], k > 1,
withay < a3 < --- < a_1. For conveniencedefine g, b; for al i € Z by

ai+k:a+""l,bi+k:bi"':l--

In particular, ay = ap + 1.
Between any two consecutive ascending intervals (a;, by), (aj+1, bi+1) there is a de-
scending interval (cj, d;). In fact d; may be characterized by

4 d = inf{x | x > b, AX) = m}.

Similarly, between any two consecutive descending intervals (c;, d;), (Ci+1, di+1) thereis
the ascending interval (aj+1, bi+1).

It is clear that all invertible transformations X satisfying (1) form a group G. Since
every 2 € G is one-to-one and onto, it is either strictly increasing or strictly decreasing.
Consider first the set H of all increasing transformations = in G. H is asubgroup of G.

Let > € H. Then X maps every ascending interval onto an ascending interval. Hence
>(ag) = ae, and Z(bg) = be for someinteger e € Z. d; is characterized by (4), i.e.,

A([ty, ) = (m.M] and A(lby, di)) = [m M]. A [be, 3(ch)) ) = A([2(bo), Z(c)) ) =

A o 3([bo, do)) = A([bo, do)) = (M, M] and A([be, =(do)]) = A([Z(bo), Z(b)|) = Ao
>([bo, do]) = A([bo, do]) = [m, M]. Hence, by (4), 2(dg) = de, and therefore 2(co) = Ce.
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Similarly we can prove successively Z(b;) = ber1, 2(a1) = ae+1, and Z(d;) = desq,
2(C1) = Ces1, €tC. In general,

(5) Z(&) = Ae+i, Z(0) = be+i, and (i) = Ceri, Z(di) = dexi-
In particular, Z(ag + 1) = Z(ax) = @tk = @+ 1, Z(bx) = be + 1, Z(ck) = ce+ 1 and
Z(dy) = de + 1.

LEMMA. Thereisat mostones € H such that >(ag) = .

PROOF. LetZ;(ap) = Zx(ap). Thenby (5), Z1(a) = Zp(ay) foralli. Let T = 5;103;.
Then T(a)) = & for al i. For any xo € R there exist a,, g suchthat ay < X0 < ;.
Consider A: R — R defined by

A(X) fora, <x<a

B m+x—a, forx<ay
A(x):{
m+x—g forx>g

A is continuous, nowhere constant, lim, .., A(X) = —oo and liMy_+», A(X) = +00. Let

X for x <aorx> g

T09 = <T(x) forap, < x < a;.

Since T(an) = an, T(g) = g and T isincreasing, we have for x € [a,, &] that 'F(x) =
T(X) € [an, g]. Hence A o T = A. Also, T is continuous. So by Theorem 1, T =idg. In
particular T(xo) = T(X) = Xo. Hence 3% o %1 (xo) = T(Xo) = Xo, Z1(X0) = Z2(Xo) for all
Xo € R, and the Lemmaiis proved. n

PROOF OF THEOREM 2 (CONTINUED). Letl ={e€Z| 3z ¢ H such that >(ag) =
ac}. Fori € | denote by Z;, the unique X for which Z(ag) = &. Since (5) holds for Z,
wehave Z¢ o Zj(ag) = Ze(@j) = aevi = Ze+i(@g), and hence, by the Lemma again,

Jeo0Xi=2iforaleicl.

SoH isasubgroup of theinfinite cyclic group of Z under addition, and istherefore cyclic
itself. H is infinite, since it contains at least the integral shifts x — x+ ¢ (¢ € 2). 1f G
contains only increasing transformations, then G = H which is cyclic. If G contains
a decreasing transformation T, then T has a fixed point u. By arguments like the ones
used for increasing transformations, in particular (5) and the Lemma, we obtain: T maps
every ascending interval into a descending interval and vice-versa. Thus, uisnot in an
ascending nor in a descending interval. The first ascending interval above u is mapped
into the first descending interval below u and vice-versa; the first descending interval
above uismapped into thefirst ascending interval below u and vice-versa. Successively,
the second ascending interval above u is mapped into the second descending interval
below u and vice-versa, etc. By theseimages T is uniquely determined. Now T~ hasthe
same properties; thus T~ = T, and T2 = idg.

Let To:R — R be a fixed decreasing transformation. Then for ~ € ﬁ, TooZis
also decreasing, and all decreasing transformations of G are of thisform. If T is another
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decreasing transformation then T o T isincreasing; hence Too T = 2 for some X € H.
Thus, T=TyloS =Toos.

We identify the group structure of G which as a set equals {idr, To} X H. Let < be
a generator of H. Then To 1=To isincreasing and thus equals =¥ for somek € Z. Since
To 1=To mapsthefirst ascending interval above u to thefirst ascending interval below u,
it followsthat T 15Ty = =71,

Therefore G isisomorphic to the infinite dihedral group {idg, To} x H. .

2. Thetopological core.

THEOREM 3. Letd: S— Shea continuous mapping fromthe circleto itself, whichis
nowhere constant and has degree 1. Then the only continuous transformation : S— S
such that

(6) Soc=26

istheidentity o = ids.

PrOOF. Consider S= {z| |z| = 1} inthe complex plane. Let R denote thereal line
and : R — Sbegiven by 7(x) = €. Then (R, 7) isauniversal covering of S. For any
continuous map p: S— Swedefine p: R — Shy ¢ = p o . p isperiodic, p(x+1) =
»(x), and o can belifted to acontinuous map ®: R — Rsuchthat rod® =p = por
(see[2], p. 342). The degree of ¢ istheintegral constant ®(x + 1) — P(x) (x € R). If Py
is such a lifting, then all other liftings are of the form ®(x) = dy(x) + n, wherenisa
fixed arbitrary integer. We shall say ® represents ¢ and write

(7 p(P) = .

p isamapping from the set of all representing functions on R onto the set of continuous
functionson S,
Lifting & and o yields maps A € p~1(5) and = € p~*(0) such that

rToA=forandrmoX=com.
Thedegreeof 6 is 1, so
(8) Ax+1)—AxX) =1

Condition (6) isequivalent to A(Z(x)) = A(X)+n for someintegral constant n. Replacing
>(X) by Z(X) +n, we havethat n = 0 by condition (8). ThusAoX = A. So A and X satisfy
the conditions of Theorem 1. Hence >~ = idg and o = p(Z) = ids. ]

THEOREM 4. Let6: S— Sbea continuous mapping of degreer > 1 that is nowhere
constant. Then there are at most r continuous mappings o: S— Ssuch that

9) §oo=8.
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Each such ¢ satisfied o' = ids. The collection of all such ¢ forma cyclic group G whose
order isadivisor of r.

PrROOF. Thecaser = 1isgiven by Theorem 3. So letr > 1. Asin the proof of
Theorem 3, we shall represent the mappingsé, o: S— Sby the corresponding liftings A,
2:R — R. The condition (9) translatesinto

(10) A(Z() = A(x) +k

for someintegral constant k. We define amap « from the set G of all solutions of (9) to
Z, which associates with every solution o of (9) the value of k = k(o) modulor.

This mapping « is well-defined. If A; is another representative of ¢, then Ai(X) =
AKX +nand Ay (2(x) — Ay(x) = A(S(x)) — AX). If Iy is another representative of o,
then Z;(x) = Z(x) + n. Now (8) is replaced by

AX+1)—AKX) =r.
Therefore, A(21(x)) — AKX) = A(Z(X) +n) — AKX) = A(Z(X) +nr —A(X) = k+nr =

k (modr).
% isagroup homomorphism: if o1, o, are solutions of (9) then
(11) fi(01 0 02) = K(01) + K(02).

Indeed, if X1, 2, represents o1, oo, respectively, then A o (Z; o Z)(X) — AX) =
Ao 51(55(X) — AKX) = A(22(¥)) + k(01) — AK) = K(02) +K(01).

We show that « is one-to-one: If for two solutions o1, o2 of (9), (A o Z1)(X) =
(Ao Z5)(x) = k(modr), consider 7 = o~ o0,. If Z; representsoy?, then T = 5103, rep-
resentsr, and (Ao T)(X) = (Ao31)(Z2(¥)) = A(Z2(X)) —k = A(X). Say (AoZ1035)(X) =
AX)+nr. Then T(X) = T(X)—nalsorepresentsT and (Ao T)(X) = A(X). Henceby Theorem
1,T= idg, 7 = ids, and o1 = 0». So G isisomorphic to a subgroup of Z;. n

THEOREM 5. Let : S— Sbe a continuous mapping which is nowhere constant and
has degree 0. Then all invertible continuous mappings o: S— Sthat satisfy

(12) Soo=26

forma group G whichisisomorphicto either the cyclic group Z,, or to the dihedral group
Dy, for some integer n, depending on whether G does not or does contain orientation
reversing transformations.

PROCF. Instead of (8) we have
(13) Ax+1) —AKX) =0,

i.e., Ais periodic with a period 1. The condition (12) is equivalent to A(2(x)) = A(x) + (
for some integer (. By continuity and (13), the range of A is bounded. Hence ¢ = 0.
Thus,

(14) Aos =A
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So Theorem 2 applies, and all solutions X to (14) form agroup G which is either infinite
cyclic or dihedral. Let p be defined as in the proof of Theorem 3. The subgroupH C G
of orientation preserving transformations : S — Sis represented by p~Y(H) = H, the
subgroup of G of al increasing transformations >: R — R. By the proof of Theorem 2,
H is infinite cyclic, say H = (A). H contains an element A" which is the unit shift:
A"'(X) = x+ 1. Then a = p(A) satisfies o" = ids. (In fact, nisadivisor of k, the number
of increasing intervals of A in a unit interval). p is clearly a group homomorphism. Its
kernel consistsof all integral shifts A" (¢ € Z), and so theimage H = p(H) is the finite
cyclic group spanned by «.

If G has no orientation reversing transformation, the G = H = 7, as claimed. If
G contains an orientation reversing transformation 7 then G contains arepresenting de-
creasing transformation T. By Theorem 2, G = {idg, T} x H is infinite dihedral. Its
image G = p(G) = {ids,7} x H = Dy, .

3. Thegeometrical application. Letasimpleclosed curvel” with continuoustan-
gent be parameterized by the map ¥ with domain acircle S

v:S—T.

Assigning, in acontinuousway, an orientation to thetangent, i.e., aunit tangent vector,
defines amap
§:r—Ss

If I has no cusps, then the total change of the direction of the unit tangent vector, as
the point traverses” once, isonefull rotation: itsrotationindex is 1 or —1. (Therotation
index of a simple closed curve with cusps can be any integer; it may even be any half
integer, if the concept is generalized to undirected tangents). A direction preserving map
isamapo’:T — I suchthat$’' oo’ = §'.

If we allow the curve I to be not simple, ¥ may not be one-to-one, and §’ is not
defined at double points. So we haveto assign directions of tangentsto I" to points of the
parameter circle Srather than to points of the curveT, i.e., we define amapping

0:S—S

that assigns to every point t of the parameter circle in a continuous way a unit vector
6(t), whichisatangent vector of I at Y(t). Thus, the search for direction preserving maps
o’: — T isreplaced by the search for continuous maps o on the parameter circle S

0:S— Ssuchthatd oo = 6.

In order to force uniqueness of ¢, we have to retain some of the essential properties
of simple closed curves of finite order. Instead of finite order we require only that I
contains no line segment, i.e., 6 is nowhere constant. Instead of simpleness, we require
the following properties.

1. Therotationindex of I" is 1, i.e,, thedegree of ¢ is 1.
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We shall investigate later what happensif that condition is dropped.
2. Theproduct ¥ x é is one-to-one.

This ensures continuity of the parameter transformation ¢. Otherwise the different
loopsof I starting and ending at a point of self-osculation may be traversed in any order.
This condition is certainly satisfied if the curve does not touch itself.

Now Theorem 3 applies and proves the result of Bisztriczky and Rival under relaxed
conditions. The mapping v and the particular shape and features of the curve I" turn out
to be rather unimportant.

3.1 Other rotation indices. Note that the rotation index of acurveT isthe degreer of
itstangent imaged. If r > 1, then Theorem 4 applies. It is easy to construct curvesT™ for
which G is any desired subgroup of Z;. Examplesare givenin Figure 1 for r = 6.

Gx7Zg Gx7,
Gx7, G173

Figure1

Curveswithrotationindex r = 0 may or may not admit direction preserving mappings
which are neither one-to-one nor onto. For example, the simple closed curveswith cusps
in[1] all haverotation index 0. In Figure 2(a) the only direction preserving map, besides
the identity, maps the curve on the more heavily outlined arc. In Figure 2(b), however,
the two direction preserving maps are invertible and form the group G = Z».

@

Figure 2 (0)
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According to Theorem 5 all invertible continuous transformations T — I form a
group G which is isomorphic to either Z, or D, for some integer n. For every positive
integer n there exist curves for which G & Z,, and curves for which G & D,,. See
Figure 3.

Figure 3

3.2 Undirected tangents. So far we have considered oriented tangentsonly, i.e., param-
eter transformations o for which 6 o ¢ = 6. Dropping the orientation means to look also
for transformations o suchthat § o o = —6.
The two directions along a tangent are identified by a further projection 7o: S — S
given by the squaring map
71_0(627ri2) — e2ﬂi-22'

The mapping é: S— Sisreplaced by
502 WOO(S:WOO(—(S).

If & has degreer, then ¢ has degree 2r. Thus we have the following consequence of
Theorem 4.

COROLLARY. Theset of continuous mappings o that preserve undirected tangentsto
acurvewith tangent map 6 of degreer > lisidentical to the set of continuous mappings
o that preserve directed tangents with tangent map 6o = mg o 6 of degree 2r. Thus the
solutions form a subgroup of 7.

Intuitively, the undirected tangent to a curve with rotation index r turns 2r times
around (it is true, only by an angle 7 each time) as the point traverses the curve once.
Thisis true even for a half-integer rotation index. In this case there exists, of course, no
continuous unit vector field along I".
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