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CONTINUOUS SELF-MAPS OF THE CIRCLE

J. SCHAER

ABSTRACT. Given a continuous map é from the circle S to itself we want to find
all self-maps õ: S ! S for which é Ž õ ≥ é. If the degree r of é is not zero, the trans-
formations õ form a subgroup of the cyclic group Cr. If r ≥ 0, all such invertible
transformations form a group isomorphic either to a cyclic group Cn or to a dihedral
group Dn depending on whether all such transformations are orientation preserving or
not. Applied to the tangent image of planar closed curves, this generalizes a result of
Bisztriczky and Rival [1]. The proof rests on the theorem: Let ∆:R ! R be continu-
ous, nowhere constant, and limx!�1 ∆(x) ≥ �1, limx!+1 ∆(x) ≥ +1; then the only
continuous map Σ:R ! R such that ∆ Ž Σ ≥ ∆ is the identity Σ ≥ idR.

0. Introduction. In [1] Bisztriczky and Rival prove that a simple smooth closed
curve admits at most two continuous maps to itself that preserve the direction of the tan-
gent. Actually the authors assume further that the curve have no cusps and be of bounded
finite order (i.e., there exists a number n such that the intersection of any line with the
curve contains at most n points); besides ruling out accumulation points of inflection
points, this also eliminates trivial counterexamples where the curve contains a line seg-
ment.

Here we shall show that the conditions that the curve be simple, have no cusps, and
be of bounded finite order, are not essential. The problem is rather of an algebraic topo-
logical nature. It is concerned with the tangent image of the curve and is addressed in
Section 2. To prepare the ground for the proof of the main Theorems (3, 4, and 5) some
properties of certain continuous functions on the reals have to be established first; this is
done in Section 1. In Section 3, finally, the results are applied to the original geometrical
questions, and the result of [1] appears in a more general setting.

1. The Analytical Background.

THEOREM 1. Let ∆:R ! R be continuous, nowhere constant, limx!�1 ∆(x) ≥ �1

and limx!+1 ∆(x) ≥ +1. Let Σ:R ! R be continuous and such that

(1) ∆ Ž Σ ≥ ∆.

Then Σ ≥ idR.

PROOF. Let c 2 R. Then ∆�1(c) is compact and contains no intervals. It suffices to
show that Σ(x) ≥ x for all x 2 ∆�1(c). Replacing ∆(z) by ∆(z)�c, we may assume c ≥ 0.
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Suppose we could prove that

(2) Σ(x) � x for all x 2 ∆�1(0).

Replacing ∆(z), Σ(z) by�∆(�z),�Σ(�z), respectively, (2) yields the opposite inequality,
and thus Σ(x) ≥ x would follow for all x 2 ∆�1(0).

We show that Σ(m) ≥ m where m ≥ min ∆�1(0). Thus ∆(z) Ú 0 for z Ú m and
∆(�1, m) ≥ (�1, 0). By (1), ∆

�
Σ(m)

�
≥ ∆(m) ≥ 0. Hence Σ(m) 2 ∆�1(0) and thus

Σ(m) ½ m. On the other hand (1) and our assumptions imply that limz!�1 Σ(z) ≥ �1.
Suppose Σ(z) Ù m for some z Ú m. Then Σ(x) ≥ m for some x � z Ú m, and hence
∆(x) ≥ 0 by (1), contradicting the definition of m. Hence Σ(z) Ú m for all z Ú m, and
therefore Σ(m) ≥ m.

Now suppose x 2 ∆�1(0), x Â≥ m. Let 0 Ú è Ú maxm�z�x j∆(z)j, and put x0 ≥ m.
Let

y1 ≥ inffz 2 (x0, x) j j∆(z) j½ èg; of course j∆(y1)j ≥ è.

x1 ≥ inffz 2 (y1, x] j ∆(z) ≥ 0g; ∆(x1) ≥ 0.

Further, as long as the sets in question are not empty,

yi ≥ inffz 2 (xi�1, x) j j∆(z) j½ èg; j∆(yi)j ≥ è.

xi ≥ inffz 2 (yi, x] j ∆(z) ≥ 0g; ∆(xi) ≥ 0.

If there were infinitely many yi, they would form an increasing bounded sequence and
hence have a limit y. Since j∆(yi)j ≥ è, by continuity j∆(y)j ≥ è. But yi Ú xi Ú yi+1,
and so limi!1 xi ≥ y also. Since ∆(xi) ≥ 0, by continuity∆(y) ≥ 0, a contradiction. So
the sequence m ≥ x0 Ú y1 Ú x1 Ú y2 Ú Ð Ð Ð is finite. Thus, there is a natural number
k, such that yk Ú xk � x and j∆(z)j Ú è for xk � z � x. Let i 2 f1, . . . , kg, and
z 2 (xi�1, yi). Suppose Σ(z) ≥ yi; then j∆(z)j ≥ j∆

�
Σ(z)

�
j ≥ j∆(yi)j ≥ è. This contradicts

the definitions of xi�1 and yi. Hence

Σ(z) Â≥ y1 for xi�1 Ú z Ú yi i ≥ 1, 2, . . . , k.

Similarly
Σ(z) Â≥ xi for yi Ú z Ú xi i ≥ 1, 2, . . . , k.

As Σ(x0) ≥ x0, these relations yield consecutively

Σ(y1) � y1, Σ(x1) � x1, Σ(y2) � y2, . . . , Σ(xk) � xk.

Of course, xi, yi depend on è, and so does k. Let us write xi(è), k(è). As ∆ is nowhere
constant limè!0 xk(è)(è) ≥ x. Hence by continuity

Σ(x) � x.

THEOREM 2. Let ∆:R ! R be continuous, nowhere constant and periodic. Then
all continuous invertible transformations Σ:R ! R such that ∆ Ž Σ ≥ ∆ form a group
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Ḡ which is isomorphic to either the infinite cyclic group C1 or the infinite dihedral
group D ≥ C2 ð C1, depending on whether Ḡ does not or does contain decreasing
transformations.

PROOF. Without loss of generality, we may assume that the period of ∆ is 1:

(3) ∆(x + 1) ≥ ∆(x).

By continuity, ∆ attains a minimum m and a maximum M in each period. Since ∆
is not constant, m Ú M. ∆�1

�
(m, M)

�
is open, and hence is the union of disjoint open

intervals (u, v). There are such intervals with ∆(u) ≥ m and ∆(v) ≥ M (“ascending”), and
such intervals with ∆(u) ≥ M and ∆(v) ≥ m (“descending”). If ∆(a) ≥ m and ∆(b0) ≥ M
then by (3) there exists b Ù a such that ∆(b) ≥ M. Thus ∆([a, b]) ≥ [m, M]. Let a0 ≥

supfx j x Ú b, ∆([x, b]) ≥ [m, M]g and b0 ≥ inffx j x Ù a0, ∆([a0, x]) ≥ [m, M]g.
Then (a0, b0) � ∆�1

�
(m, M)

�
, and ∆(a0) ≥ m, ∆(b0) ≥ M. The existence of descending

intervals is proved similarly.
Let (a0, b0) be an ascending interval. Then there are only finitely many ascending

intervals in [a0, a0 + 1], and hence in any interval of length 1. Indeed, if there were
infinitely many ascending intervals (a0, b0), (a1, b1), (a2, b2), . . . with a0 Ú a1 Ú a2 Ð Ð Ð

then the sequence a0, a1, a2, . . . would be increasing and bounded above by a0 + 1, hence
convergent with limit a, say. Since ∆(ai) ≥ m and ∆ is continuous, ∆(a) ≥ m. But
a0 Ú b0 Ú a1 Ú b1 Ú a2 Ú b2 Ú Ð Ð Ð, so the sequence b0, b1, b2, . . . would also converge
to a. Since ∆(bi) ≥ M and ∆(a) ≥ M, we have a contradiction.

So let (a0, b0), (a1, b1), . . . , (ak�1, bk�1) be the ascending intervals in [a0, a0+1], k ½ 1,
with a0 Ú a1 Ú Ð Ð Ð Ú ak�1. For convenience define ai, bi for all i 2 Z by

ai+k ≥ ai + 1, bi+k ≥ bi + 1.

In particular, ak ≥ a0 + 1.
Between any two consecutive ascending intervals (ai, bi), (ai+1, bi+1) there is a de-

scending interval (ci, di). In fact di may be characterized by

(4) di ≥ inffx j x Ù bi, ∆(x) ≥ mg.

Similarly, between any two consecutive descending intervals (ci, di), (ci+1, di+1) there is
the ascending interval (ai+1, bi+1).

It is clear that all invertible transformations Σ satisfying (1) form a group Ḡ. Since
every Σ 2 Ḡ is one-to-one and onto, it is either strictly increasing or strictly decreasing.
Consider first the set H̄ of all increasing transformations Σ in Ḡ. H̄ is a subgroup of Ḡ.

Let Σ 2 H̄. Then Σ maps every ascending interval onto an ascending interval. Hence
Σ(a0) ≥ ae, and Σ(b0) ≥ be for some integer e 2 Z. di is characterized by (4), i.e.,

∆
�
[bi, di)

�
≥ (m, M] and ∆([bi, di]) ≥ [m, M]. ∆

�h
be, Σ(d0)

��
≥ ∆

�h
Σ(b0), Σ(d0)

��
≥

∆ Ž Σ
�
[b0, d0)

�
≥ ∆

�
[b0, d0)

�
≥ (m, M] and ∆

�h
be, Σ(d0)

i�
≥ ∆

�h
Σ(b0), Σ(d0)

i�
≥ ∆ Ž

Σ([b0, d0]) ≥ ∆([b0, d0]) ≥ [m, M]. Hence, by (4), Σ(d0) ≥ de, and therefore Σ(c0) ≥ ce.
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Similarly we can prove successively Σ(b1) ≥ be+1, Σ(a1) ≥ ae+1, and Σ(d1) ≥ de+1,
Σ(c1) ≥ ce+1, etc. In general,

(5) Σ(ai) ≥ ae+i, Σ(bi) ≥ be+i, and Σ(ci) ≥ ce+i, Σ(di) ≥ de+i.

In particular, Σ(a0 + 1) ≥ Σ(ak) ≥ ae+k ≥ ae + 1, Σ(bk) ≥ be + 1, Σ(ck) ≥ ce + 1 and
Σ(dk) ≥ de + 1.

LEMMA. There is at most one Σ 2 H̄ such that Σ(a0) ≥ ae.

PROOF. Let Σ1(a0) ≥ Σ2(a0). Then by (5), Σ1(ai) ≥ Σ2(ai) for all i. Let T ≥ Σ�1
2 ŽΣ1.

Then T(ai) ≥ ai for all i. For any x0 2 R there exist ah, aj such that ah � x0 � aj.
Consider ∆̄:R ! R defined by

∆̄(x) ≥

8><
>:

m + x � ah for x Ú ah

∆(x) for ah � x � aj

m + x � aj for x Ù aj

∆̄ is continuous, nowhere constant, limx!�1 ∆̄(x) ≥ �1 and limx!+1 ∆̄(x) ≥ +1. Let

T̄(x) ≥
(

x for x Ú ah or x Ù aj

T(x) for ah � x � aj.

Since T(ah) ≥ ah, T(aj) ≥ aj and T is increasing, we have for x 2 [ah, aj] that T̄(x) ≥
T(x) 2 [ah, aj]. Hence ∆̄ Ž T̄ ≥ ∆̄. Also, T̄ is continuous. So by Theorem 1, T̄ ≥ idR. In
particular T(x0) ≥ T̄(x0) ≥ x0. Hence Σ�1

2 ŽΣ1(x0) ≥ T(x0) ≥ x0, Σ1(x0) ≥ Σ2(x0) for all
x0 2 R, and the Lemma is proved.

PROOF OF THEOREM 2 (CONTINUED). Let I ≥ fe 2 Z j 9Σ 2 H̄ such that Σ(a0) ≥
aeg. For i 2 I denote by Σi, the unique Σ for which Σ(a0) ≥ ai. Since (5) holds for Σe,
we have Σe Ž Σi(a0) ≥ Σe(ai) ≥ ae+i ≥ Σe+i(a0), and hence, by the Lemma again,

Σe Ž Σi ≥ Σe+i for all e, i 2 I.

So H̄ is a subgroup of the infinite cyclic group of Z under addition, and is therefore cyclic
itself. H̄ is infinite, since it contains at least the integral shifts x ! x + ‡ (‡ 2 Z). If Ḡ
contains only increasing transformations, then Ḡ ≥ H̄ which is cyclic. If Ḡ contains
a decreasing transformation T, then T has a fixed point u. By arguments like the ones
used for increasing transformations, in particular (5) and the Lemma, we obtain: T maps
every ascending interval into a descending interval and vice-versa. Thus, u is not in an
ascending nor in a descending interval. The first ascending interval above u is mapped
into the first descending interval below u and vice-versa; the first descending interval
above u is mapped into the first ascending interval below u and vice-versa. Successively,
the second ascending interval above u is mapped into the second descending interval
below u and vice-versa, etc. By these images T is uniquely determined. Now T�1 has the
same properties; thus T�1 ≥ T, and T2 ≥ idR.

Let T0:R ! R be a fixed decreasing transformation. Then for Σ 2 H̄, T0 Ž Σ is
also decreasing, and all decreasing transformations of Ḡ are of this form. If T is another
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decreasing transformation then T0 Ž T is increasing; hence T0 Ž T ≥ Σ for some Σ 2 H̄.
Thus, T ≥ T�1

0 Ž Σ ≥ T0 Ž Σ.
We identify the group structure of Ḡ which as a set equals fidR, T0g ð H̄. Let Σ be

a generator of H̄. Then T�1
0 ΣT0 is increasing and thus equals Σk for some k 2 Z. Since

T�1
0 ΣT0 maps the first ascending interval above u to the first ascending interval below u,

it follows that T�1
0 ΣT0 ≥ Σ�1.

Therefore Ḡ is isomorphic to the infinite dihedral group fidR, T0g ð H̄.

2. The topological core.

THEOREM 3. Let é: S ! S be a continuous mapping from the circle to itself, which is
nowhere constant and has degree 1. Then the only continuous transformation õ: S ! S
such that

(6) é Ž õ ≥ é

is the identity õ ≥ idS.

PROOF. Consider S ≥ fz j jzj ≥ 1g in the complex plane. Let R denote the real line
and ô:R ! S be given by ô(x) ≥ e2ôix. Then (R,ô) is a universal covering of S. For any
continuous map ß: S ! S we define ß̄:R ! S by ß̄ ≥ ß Ž ô. ß̄ is periodic, ß̄(x + 1) ≥
ß̄(x), and ß̄ can be lifted to a continuous map Φ:R ! R such that ô Ž Φ ≥ ß̄ ≥ ß Ž ô

(see [2], p. 342). The degree of ß is the integral constant Φ(x + 1)� Φ(x) (x 2 R). If Φ0

is such a lifting, then all other liftings are of the form Φ(x) ≥ Φ0(x) + n, where n is a
fixed arbitrary integer. We shall say Φ represents ß and write

(7) ö(Φ) ≥ ß.

ö is a mapping from the set of all representing functions on R onto the set of continuous
functions on S.

Lifting é and õ yields maps ∆ 2 ö�1(é) and Σ 2 ö�1(õ) such that

ô Ž ∆ ≥ é Ž ô and ô Ž Σ ≥ õ Ž ô.

The degree of é is 1, so

(8) ∆(x + 1)� ∆(x) ≥ 1

Condition (6) is equivalent to ∆
�
Σ(x)

�
≥ ∆(x)+n for some integral constant n. Replacing

Σ(x) by Σ(x)+n, we have that n ≥ 0 by condition (8). Thus ∆ŽΣ ≥ ∆. So ∆ and Σ satisfy
the conditions of Theorem 1. Hence Σ ≥ idR and õ ≥ ö(Σ) ≥ idS.

THEOREM 4. Let é: S ! S be a continuous mapping of degree r ½ 1 that is nowhere
constant. Then there are at most r continuous mappings õ: S ! S such that

(9) é Ž õ ≥ é.
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Each such õ satisfied õr ≥ idS. The collection of all such õ form a cyclic group G whose
order is a divisor of r.

PROOF. The case r ≥ 1 is given by Theorem 3. So let r Ù 1. As in the proof of
Theorem 3, we shall represent the mappings é, õ: S ! S by the corresponding liftings ∆,
Σ:R ! R. The condition (9) translates into

(10) ∆
�
Σ(x)

�
≥ ∆(x) + k

for some integral constant k. We define a map î from the set G of all solutions of (9) to
Zr which associates with every solution õ of (9) the value of k ≥ î(õ) modulo r.

This mapping î is well-defined. If ∆1 is another representative of é, then ∆1(x) ≥
∆(x) + n and ∆1

�
Σ(x)

�
� ∆1(x) ≥ ∆

�
Σ(x)

�
� ∆(x). If Σ1 is another representative of õ,

then Σ1(x) ≥ Σ(x) + n. Now (8) is replaced by

∆(x + 1)� ∆(x) ≥ r.

Therefore, ∆
�
Σ1(x)

�
� ∆(x) ≥ ∆

�
Σ(x) + n

�
� ∆(x) ≥ ∆

�
Σ(x)

�
+ nr � ∆(x) ≥ k + nr �

k (mod r).
î is a group homomorphism: if õ1, õ2 are solutions of (9) then

(11) î(õ1 Ž õ2) ≥ î(õ1) + î(õ2).

Indeed, if Σ1, Σ2 represents õ1, õ2, respectively, then ∆ Ž (Σ1 Ž Σ2)(x) � ∆(x) ≥

∆ Ž Σ1

�
Σ2(x)

�
� ∆(x) ≥ ∆

�
Σ2(x)

�
+ î(õ1) � ∆(x) ≥ î(õ2) + î(õ1).

We show that î is one-to-one: If for two solutions õ1, õ2 of (9), (∆ Ž Σ1)(x) �

(∆ŽΣ2)(x) � k(mod r), consider ú ≥ õ�1 Žõ2. If Σ̄1 represents õ�1
1 , then T ≥ Σ̄1 ŽΣ2 rep-

resents ú, and (∆ŽT)(x) ≥ (∆Ž Σ̄1)
�
Σ2(x)

�
� ∆

�
Σ2(x)

�
�k � ∆(x). Say (∆Ž Σ̄1ŽΣ2)(x) ≥

∆(x)+nr. Then T̄(x) ≥ T(x)�n also represents ú and (∆ŽT̄)(x) ≥ ∆(x). Hence by Theorem
1, T̄ ≥ idR, ú ≥ idS, and õ1 ≥ õ2. So G is isomorphic to a subgroup of Zr.

THEOREM 5. Let é: S ! S be a continuous mapping which is nowhere constant and
has degree 0. Then all invertible continuous mappings õ: S ! S that satisfy

(12) é Ž õ ≥ é

form a group G which is isomorphic to either the cyclic groupZn or to the dihedral group
Dn, for some integer n, depending on whether G does not or does contain orientation
reversing transformations.

PROOF. Instead of (8) we have

(13) ∆(x + 1)� ∆(x) ≥ 0,

i.e., ∆ is periodic with a period 1. The condition (12) is equivalent to ∆
�
Σ(x)

�
≥ ∆(x) + ‡

for some integer ‡. By continuity and (13), the range of ∆ is bounded. Hence ‡ ≥ 0.
Thus,

(14) ∆ Ž Σ ≥ ∆
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So Theorem 2 applies, and all solutions Σ to (14) form a group Ḡ which is either infinite
cyclic or dihedral. Let ö be defined as in the proof of Theorem 3. The subgroup H � G
of orientation preserving transformations õ: S ! S is represented by ö�1(H) ≥ H̄, the
subgroup of Ḡ of all increasing transformations Σ:R ! R. By the proof of Theorem 2,
H̄ is infinite cyclic, say H̄ ≥ hAi. H̄ contains an element An which is the unit shift:
An(x) ≥ x + 1. Then ã ≥ ö(A) satisfies ãn ≥ idS. (In fact, n is a divisor of k, the number
of increasing intervals of ∆ in a unit interval). ö is clearly a group homomorphism. Its
kernel consists of all integral shifts An‡(‡ 2 Z), and so the image H ≥ ö(H̄) is the finite
cyclic group spanned by ã.

If G has no orientation reversing transformation, the G ≥ H ¾≥ Zn as claimed. If
G contains an orientation reversing transformation ú then Ḡ contains a representing de-
creasing transformation T. By Theorem 2, Ḡ ≥ fidR, Tg ð H̄ is infinite dihedral. Its
image G ≥ ö(Ḡ) ≥ fidS, úg ð H ¾≥ Dn.

3. The geometrical application. Let a simple closed curve Γ with continuous tan-
gent be parameterized by the map ç with domain a circle S:

ç: S ! Γ.

Assigning, in a continuous way, an orientation to the tangent, i.e., a unit tangent vector,
defines a map

é0: Γ ! S.

If Γ has no cusps, then the total change of the direction of the unit tangent vector, as
the point traverses Γ once, is one full rotation: its rotation index is 1 or �1. (The rotation
index of a simple closed curve with cusps can be any integer; it may even be any half
integer, if the concept is generalized to undirected tangents). A direction preserving map
is a map õ0: Γ ! Γ such that é0 Ž õ0 ≥ é0.

If we allow the curve Γ to be not simple, ç may not be one-to-one, and é0 is not
defined at double points. So we have to assign directions of tangents to Γ to points of the
parameter circle S rather than to points of the curve Γ, i.e., we define a mapping

é: S ! S

that assigns to every point t of the parameter circle in a continuous way a unit vector
é(t), which is a tangent vector of Γ at ç(t). Thus, the search for direction preserving maps
õ0: Γ ! Γ is replaced by the search for continuous maps õ on the parameter circle S,

õ: S ! S such that é Ž õ ≥ é.

In order to force uniqueness of õ, we have to retain some of the essential properties
of simple closed curves of finite order. Instead of finite order we require only that Γ
contains no line segment, i.e., é is nowhere constant. Instead of simpleness, we require
the following properties.

1. The rotation index of Γ is 1, i.e., the degree of é is 1.
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We shall investigate later what happens if that condition is dropped.

2. The product ç ð é is one-to-one.

This ensures continuity of the parameter transformation õ. Otherwise the different
loops of Γ starting and ending at a point of self-osculation may be traversed in any order.
This condition is certainly satisfied if the curve does not touch itself.

Now Theorem 3 applies and proves the result of Bisztriczky and Rival under relaxed
conditions. The mapping ç and the particular shape and features of the curve Γ turn out
to be rather unimportant.

3.1 Other rotation indices. Note that the rotation index of a curve Γ is the degree r of
its tangent image é. If r Ù 1, then Theorem 4 applies. It is easy to construct curves Γ for
which G is any desired subgroup of Zr. Examples are given in Figure 1 for r ≥ 6.

G ¾≥ Z6 G ¾≥ Z1

G ¾≥ Z2 G ¾≥ Z3

Figure 1

Curves with rotation index r ≥ 0 may or may not admit direction preserving mappings
which are neither one-to-one nor onto. For example, the simple closed curves with cusps
in [1] all have rotation index 0. In Figure 2(a) the only direction preserving map, besides
the identity, maps the curve on the more heavily outlined arc. In Figure 2(b), however,
the two direction preserving maps are invertible and form the group G ¾≥ Z2.

(a) (b)Figure 2
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According to Theorem 5 all invertible continuous transformations Γ ! Γ form a
group G which is isomorphic to either Zn or Dn for some integer n. For every positive
integer n there exist curves for which G ¾≥ Zn, and curves for which G ¾≥ Dn. See
Figure 3.

Figure 3

3.2 Undirected tangents. So far we have considered oriented tangents only, i.e., param-
eter transformations õ for which é Ž õ ≥ é. Dropping the orientation means to look also
for transformations õ such that é Ž õ ≥ �é.

The two directions along a tangent are identified by a further projection ô0: S ! S
given by the squaring map

ô0(e2ôiz) ≥ e2ôiÐ2z.

The mapping é: S ! S is replaced by

é0 ≥ ô0 Ž é ≥ ô0 Ž (�é).

If é has degree r, then é0 has degree 2r. Thus we have the following consequence of
Theorem 4.

COROLLARY. The set of continuous mappings õ that preserve undirected tangents to
a curve with tangent map é of degree r ½ 1 is identical to the set of continuous mappings
õ that preserve directed tangents with tangent map é0 ≥ ô0 Ž é of degree 2r. Thus the
solutions form a subgroup of Z2r.

Intuitively, the undirected tangent to a curve with rotation index r turns 2r times
around (it is true, only by an angle ô each time) as the point traverses the curve once.
This is true even for a half-integer rotation index. In this case there exists, of course, no
continuous unit vector field along Γ.
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