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THE LARGEST CLASS OF HEREDITARY SYSTEMS 
DEFINING A C0 SEMIGROUP 

ON THE PRODUCT SPACE 

M. C. DELFOUR 

1. Introduction. The object of this paper is to characterize the 
largest class of autonomous linear hereditary differential systems which 
generates a strongly continuous semigroup of class C0 on the product 
space Mv = Rn X Lp(-h, 0), 1 ^ p < oo, 0 < h ^ + oo (R is the 
field of real numbers and Lp( — h, 0) is the space of equivalence classes of 
Lebesgue measurable maps x:[ — h, 0] H R —•> Rw which are ^-integrable 
in [ — h, 0] C\ R.) Our results extend and complete those of [4] and 
[15], [16] for linear hereditary differential equations possessing "finite 
memory" (h < + oo ) and those of [14], [5] and [6] in the "infinite 
memory case (h = + oo )". 

Consider the autonomous linear hereditary differential equation 

n u (x(t) = L(xt),t ^ 0 
^'l) \x(e) = 0(0), « i n C(-h, 0), 

where x(t) € Rn, xt:[-h, 0] C\ R -> Rn is defined as xt(6) = x{t + 6), 
C( — h, 0) is the space of bounded continuous functions [ — h, 0] f̂  R —-> Rn 

and L:C( — h, 0) —> Rw is a continuous linear map. 
For h finite it is well-known (cf. [10], [11], [12]) that the family of con­

tinuous linear transformations S(t) : C( — h, 0) —> C( — h, 0), t ^ 0 

(1.2) S(t)<t> = x , 

forms a strongly continuous semigroup of class Co. Its infinitesimal 
generator is of the form 

(1.3) 2(A) = {0 G CU-A, 0): L(0) - 0(0)} 

where 0 denotes the derivative of 0 and Cl( — h, 0) is the space of func­
tions 0 in C( — h, 0) with a derivative 0 in C( — h, 0). For A infinite the 
result is not true since bounded continuous functions on [ —oo, 0] are 
not uniformly continuous. In 1972, Barbu and Grossman [2] have shown 
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that the result can be recovered by replacing the space C( —co , 0) by its 
closed subspace Ct( — oo, 0) of all bounded continuous functions on 
] —oo , 0] for which the limit exists at — oo ; such functions are uniformly 
continuous and the semigroup of left translations on C?( —co,0) is 
continuous (cf. [13]). 

For systems with finite memory, Borisovic and Turbabin [4] have 
shown that under three additional hypotheses on the map L, (1.1) still 
makes sense for initial conditions in the product space Mp = Rn X 
Lv(-h, 0), 1 g p < oo, that is; 

jx(t) = L(xt),t è 0 
{ } \x(0) = 0°, x(d) = <?($), 4> = (</>°, 01) G M*. 

More precisely, they have shown that the family of continuous linear 
transformations S(t) : Mp -> I P , t è 0 

(1.6) 5 (0 (00,*1) = (*(*),*,) 

forms a strongly continuous semigroup of class C0. Its infinitesimal 
generator is now of the form 

(1.7) &(A) = {(0(0), </>): 0 Ç Ï P * ( - f c , 0 ) | 

(1.8) ^ 0 = (L*,0) , 

where Wl'v{ — h1 0) is the Sobolev space of all </> in Lp( — h, 0) with a dis­
tributional derivative 4> in Lp( — h, 0). 

Analogous results in ilf2 were given in 1972 in [9, pp. 301-304] for time-
varying systems (that is, an evolution operator S(t, s) rather than the 
semigroup S(t)) with both finite and infinite memory but with L of the 
special form 

Ar r o 
(1.9) Lct> = ^AMBt) + Aox(d)ct>(d)dd, 

1 = 0 J -h 

where AT ^ 0 is an integer, a > 0 is a finite real, 

-oo ^ -h ^ -a = 6N < . . . < di+1 < Oi < . . . < #o = 0 

are reals, A u i = 0, . . . , N, is a family of n X n matrices and A$i(6) is 
an n X w matrix of bounded measurable functions on [ — h,0] C\ R. 

In 1974 detailed proofs were given by R. K. Miller [14] for Mp andL of 
the form 

(1.10) L(j> = ilf 0(0) + I K(d)4>(e)dd 
J - c o 

for an n X n matrix X" of functions in Ll(— oo, 0). Properties of the 
adjoint semigroup and its relation to the semigroup of Barbu and 
Grossman [2] were announced in 1975 in [5]. Detailed proofs were pro-
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vided in 1976 in [6]. At the beginning of tha t paper they construct the 
semigroup on Mp, 1 ^ p < oo for systems with infinite memory charac­
terized by a continuous linear map L : C ( —co, 0) —•> Kn subject to the 
three conditions of [4] plus an additional one. 

In 1977, R. B. Vinter [15], [16] showed tha t for systems with finite 
memory the three conditions imposed in [4] were redundant . Shortly 
after t ha t an al ternate proof of t ha t fact was provided in [7] by using the 
structural operator associated with the map L. 

As a result of this discussion, the problem of characterizing the largest 
class of L 's was raised by R. B. Vinter and J. Zabczyk. Their obvious 
candidate was the family J^7 of all continuous linear map 

(1.11) L:WUp(-h,0) - > R n , 

since the very special form of the infinitesimal generator indicates t ha t J? 
is the largest possible family. 

Notation. Given —oo ^ a ^ b S + °° , Lp(a, b) is the Banach space 
of all equivalence classes of Lebesgue measurable maps [a, b] P\ R —> R" 
which are ^-integrable (1 ^ p < oo ) or essentially bounded (p = oo ) ; 
the corresponding norms will be writ ten || ||p. C(a, b) is the Banach space 
of all bounded continuous maps [a, b] C\ R —> Rw endowed with the 
sup norm || • ||?(«,&)• The norm on the product space Mp is defined as 

(1.12) ||*||5,„= \4>°\h+ IJ^H/-

LV\0C(a, b) will be the space of all equivalence classes of Lebesgue mea­
surable maps [a, b] Pi R —• Kn which are ^-integrable (1 ^ p < oo ) or 
essentially bounded (p = oo ) on each compact subset of [a, b] C\ R. For 
an integer m > 0, Cm(a, b) will denote the Banach space of all bounded 
continuous maps [a, b] H R —» Kn for which the first m derivatives are 
bounded and continuous in [a, b] P\ R; for 1 ^ p ^ oo, W1'p(aJ b) will 
denote the Sobolev space of all functions in Lp(a, b) with a distr ibutional 
first derivative in Lp(a, b). 

2. M a i n re su l t s . Consider the differential equation (1.1) where L 
belongs to the family of continuous linear maps 

(2.1) L:Wup(-h,0) ->R w . 

For 1 ^ p < oo, it is always possible to associate writh L two n X n 
matrices, A\{ti) and A2(d), of functions in Lq( — h,0), p~l + q~l = 1, 

(2.2) L<t> = I [41 (0)0(0) + A2(0)<j>(6)]d6. 
J -h 

Fix p, 1 ^ p < oo . Given a continuous function / : [0, oo [ —> Kn and an 
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initial function <j> in Wup( — h, 0), consider the following equation 

/ o - *(0 = I [A1(fi)x(t + 6)+At(8)x(t + 0)]de+f(t), < = 0, 
\*-à) j U - h 

\x(d) = 0(0), 6 G [-/*, 0 ] H R . 
By integrating both sides of (2.3) and changing the order of integration 
in the term x(t + 6) we obtain the integral equation 

(2.4) x(t) = 0(0) + I ds I ddAx^xis + 0) 
•̂  o J -a 

/

o /* i r t 

ddA2(6) I e i ( 5 + 0) + I / ( s^v . 
- f t ^ 0 «^ 0 

It can be transformed into 

(x(/) = 0(0) + J ^J ^ i ( ^ ( s + e) 

(2.5) } +f\eA2(e)[x(t + e) - x(d)] +fj(s)ds 

\x(fl) = 0(0) in [-/*, 0 ] H R , 

and further generalized to: for all t ^ 0 

(2.6) *(/) = 0 +J_^ [A1(6)Jo ds^1(s + e)f o t h e r w . s e f 

+ ^ < « > V ( / + *) - 0^0), otherwise f T + J 0
 / ( ^ ' 

where now 0 = (0°, 01) and / can be picked in Mv and L ^ O , oo), 
respectively. 

THEOREM. Fix 1 ^ p < co, two n X n matrices Ax and A2 of functions 
in Lq( — h, 0), p~l + q~l = 1, a ^ 2/te map L defined by (2.2). 

(i) Gwew 0 = (0°, 01) in Mv and f in L]oc[0, co [, equation (2.6) has a 
unique continuous solution x:[0, oo [ —» Rw. Moreover for all T > 0, /feere 
exis/s a constant c(T) > 0 swcfe //m/ 

(2.7) ||x||c(o,r) S c(T)(U\\MP + | | / |Ui(o,T)). 

(ii) Given 0 iw W1'p( — h1 0) and a continuous function f: [0, oo [ —» Kn
} 

equation (2.3) Aas a unique continuously differentiate solution x:[0, oo [ —> 
Rn which coincides with the solution of (2.6) corresponding to (0°, 01) = 
(*(0),*). 

(iii) When / = 0, define for each t ^ 0 the continuous linear map 

(2.8) 5 ( 0 * = (*(<),*<)• 
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The family {S(t)\ t ^ 0} forms a strongly continuous semigroup of class 
Co and its infinitesimal generator is characterized as follows: 

(2.9) 9(A) = { (0 (0 ) ,* ) :* G Wl"(-h,0)}, A* = (L«, *) . 

(iv) For all <f> in Mp and f in L]oc(0, OO ), 

(2.10) (x(0, xt) = S(t)4> + I S(t - s)f(s)ds, 
J o 

where 

(2.11) /( /) = (/(*), 0). 

Proof, (i) Fix T > 0 and x in C(0, T). Define the linear map Mx: 
[0, T] —> Kn as the right hand side of equation (2.6) ; by hypothesis on 
A 2 and 01, ilfx is continuous. For all x and 3/ in C(0, T): 

(2.12) (Afy)(0 - (M*)(0 

-/>/>.(«{s(*+fl-'('+'': :rwi1 

But 
\(My)(t)- (Mx)(t)\ 

*f:™4f>\{?+*-«'+*:,J^}\V 
+ m\.{f>\{?+n-"f+',:'«££}\'} 

and after a change of variable 

(2.13) \(My)(t) - {Mx){t)\ S J ^dsWA^J* dr\y(r) - « ( r ) ! ' } ' " 

+ iM2iu{/o '^b(o - x(r)r}1/p 

Choose a constant c > 0 such that 

(2.14) ^ = (711^11,+ | M 2 | | , r and ga(t) = exp [~ t) , 

for some arbitrary parameter a, 0 < a < I. Then 

f' U(r) — 3c(r)|y , w < \y(r) - x(r)\v fs
 f .,. 

I - 7-T gairydr ^ max - J-T I ga(r)pdr. 

But for all 5 in [0, t] 

jj«(rYdr=f\xP(^)drlfcga(syefcgaW 

1/P 

https://doi.org/10.4153/CJM-1980-074-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-074-8


974 M. C. DELFOUR 

Therefore the right hand side of inequality (2.13) can be majorized by 

z(r) 

T\\Ai\\qj^T7pga(t) + \\A2\\QJ^ITVga(t) max 

= (*ga(t)\\y - x\\ca[o,«], INIca[tu] = max 
[ 0 ,« ] ga(r) 

Finally for all / in [0, T] 

(My)(t) - (Mx)(t) 
ga(t) 

S « l b ~~ *llcaro,*] 

and 

(2.15) \\My - M*||ca[o,r] ^ a\\y - *| |ca[o,r]. 

T h u s M is a contract ion and necessarily equat ion (2.6) has a unique 
solution in C[0, T] . (Notice t ha t the «-norm || • ||ca[o,i] is equivalent to 
the usual norm || • ||c[o,*]. This technique is borrowed from [3].) Inequali ty 
(2.7) is established by the same technique. 

(ii) Subs t i tu te for x(t) in equation (2.3) the expression 

(2.16) x(t) = 0(0) + I x(s)ds, 
J o 

where we assume tha t x is continuous. W e obtain 

(2.17) x(t) J_ \A1(d) <t>(0) + J. 
t+e 

x(s)ds + A2(6)x(t + 6), 

" [A1(d)<t>(t + d) +A2(d)<j>(t + e) 

t + e^o 
t + e<o de+f(t). 

By changing the order of integration and changing variables, (2.17) can 
be rewrit ten as 

(2.18) x(t) = (Nx)(t) + * ( / ) , 

where 

(2.19) (Nx)(t) = I A(s - t)x(s)ds + $(*) 
J maxj t—h,0} 

(2.20) A(a)=A2(a)+l Ax(0)d6, a G [-A, 0] C\ R, 
J a 

(2 2U *(fi = P i^W) • ' + f? = °L 
1 ; w j _ » U i ( » ) * « + fl) + ^»(fl)0(/ + ff), ( + o < o r 

+/0). 
Note tha t <ï> is continuous and tha t Nx is continuous whenever x is con­
tinuous. Now proceed as in the proof of pa r t (i) and show tha t for each 
T > 0 (2.18) has a unique fixed point x in C(0, T). Most steps are 
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analogous. Here choose the constant c > 0 such that 

(2.22) pc= M U / . 

This establishes that (2.3) has a unique continuously differentiable 
solution x. But we have already seen that, by integrating (2.3) from 0 to 
/ and regrouping terms, x verifies equation (2.5). From part (i) and by 
uniqueness of solution to (2.6), x coincides with the (unique) solution of 
(2.6) corresponding to the initial condition (<£°, 01) = (0(0), 0), <f> in 
W1'p( — h, 0), and the continuous function/. It is also easy to show that 
for all T > 0 

(2.23) | | * | | c r o , T ] Û c(T)[\\<l>\\wi>p + \\f | | c ( 0 , r ) ] 

for some constant c(T) > 0. 
(iii) By definition of xt and S(t) and inequality (2.7), it is readily seen 

that {S(t): t ^ Oj is a strongly continuous semigroup of class C0. For 0 
in Si {A) the map 

t-*--tS{t)<t>= S(t)Acf>'.[<d,T]->Mp 

is continuous. In particular the Rw-component, 

' - > ! * ( ' ) = [S(t)A4>}°:[0,T}^Rn 

is continuous. So x belongs to 6^(0, T) By definition 

*«w - * « ? ) - ^ + e ) _ ^ i w > o t h e r w i s e ; 

= jx(t + e)- tfj + o^oX U°- ^(e) i ,t + e^o\ 
\<t>° — 4>° .otherwise/ {^(t + d) — 4>x{6), otherwise) ' 

For a fixed small e > 0 and all / ^ e 

(2.24) xt - 4)1 = x, - x0 + $t - 4o, 

where the functions x and $:[ — h, + c o [ H R ^ R * are defined as 

S O , se [~h,0]r\R\ 

x(s) - <p° , 0 < s S t I 
\(x(S) - 4>°)(--~-) , t<e*2e (' 

\ o , e > 2e / 

(2.25) x(s) 

4>\o) , 0<E [ - i , 0 ] n R ] 

d>° , o < e ^ t 

4(d) = 

•M <= < 0 g 2e 

6 > 2e 

https://doi.org/10.4153/CJM-1980-074-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-074-8


976 M. C. DELFOUR 

Since x belongs to 0 (0 ,26] , then oc belongs to Wx'œ(-h, +00) and 
necessarily 

(2.26) lim *L=-*° exists in Lp(-h, +00), 1 g p g 00 
*->o+ t 

(that is, x belongs to the domain of the semigroup of left translations on 
Lp(-h, +00)) . A fortiori 

(2.27) lim -^——exists in Lp(-h, 0), 1 g p é 00 . 

But 0 = (0°, 01) belongs to @(A) if and only if 

(2.28) lim M L M ^ M J L ) exists. 

In view of (2.24) and (2.27), if (/> belongs to£0(A), then we conclude that 

(2.29) lim ^---^- exists in Lp(-h, 0). 

But if limit (2.29) exists, then 

(2.30) lim ^-~--^ exists in Lp(-h, +00 ). 

Again, condition (2.30) is equivalent to saying that $ in Lp( — h, + 00 ) 
belongs to the domain Wl'p( — h, + 00 ) of the semigroup of left transla­
tions on Lv{ — h, + co ). It is well known that an element of Wl,v( — h, 
+ 00 ) is necessarily continuous on [ — h, + co[r^ R (cf. [1, Theorem 
5.4]). Finally for $ in & (A) 

(9*u / < K W*"(-h,0) =*4>l G W ^ ( - A , 0 ) 
1 j V(0) - 00 = 0. 
Conversely if </> = (0°, 01) in I P satisfies (2.31), then limits (2.30) and 
(2.29) exists. Moreover from part (ii) the solution x of (2.6) will be 
continuously differentiable and necessarily limits (2.26) and (2.27) exist. 
In view of (2.24), limit (2.28) exists and <j> belongs to 0(A). This com­
pletes the characterization of @{A). The last item is the second identity 
(2.9). For (j)'m^(A) equation (2.6) is equivalent to (2.4) and by direct 
computation 

(A*)* = L4>; 

similarly 

xt — (j) v xt — XQ V 4>t — $0 
(Acf)) = lim 7— = lim + lim 

= 0 + 0 = 
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(iv) Now, by standard techniques, it is easy to show that identity 
(2.10) holds for all 4>m9(A) a n d / in C(0, T). To establish it for all </> 
in Mp a n d / in L^O, T), we pick approximating sequences \(j)n} in @(A) 
and {fn} in C(0, T). By continuity, for al l / ^ 0 

(*»(0, (*»)l) = S(t)4>n + I 5(/ - *)/„(*)& ~> 5(0 0 
^ 0 

+ I ' 5(/ - 5)/(5)rf.S-
J o 

and by continuity of the solution xn of (2.6) with respect to the data <t>n 

a n d / , (cf. (2.7)) 

xn-+xm C(0, T)=>yt^ 0 (*»(*), (*„),)-> (x(t),xt) in F . 

This establishes (2.10) and completes the proof of the theorem. 

3. Conclusions. For all p, 1 ^ p < co, and all h, 0 < h ̂  +oo, the 
linear injection 

(3.1) W1"(-h,0)-*C(-h, 0) 

is continuous (cf. [1, Theorem 5.4]). Thus the restriction to WlfP( — h, 0) 
of any continuous linear map 

(3.2) L:C(-h, 0)->Rw 

is continuous for the W1,p( — h, 0)-topology and the conclusions of the 
theorem apply for all p, 1 ^ p < co. 

This shows that the additional hypotheses given in [4] and [6] are 
redundant. The system associated with a continuous linear map of the 
type (3.2) always forms a strongly continuous semigroup of class C0 on 
Mv for all p, 1 ^ p < oo . So, in most situations, it is sufficient to work 
with the Hilbert space M2 and avoid the non-reflexive Banach space Ml 

(e.g. adjoint semigroup, stability, optimal control, etc.). 
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