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SEMIGROUPS OF LEFT QUOTIENTS—THE UNIQUENESS
PROBLEM

by VICTORIA GOULD

(Received 7th June 1990)

Let S be a subsemigroup of a semigroup Q. Then Q is a semigroup of left quotients of S if every element of Q
can be written as a*b, where a lies in a group J^-class of Q and a* is the inverse of a in this group; in
addition, we insist that every element of S satisfying a weak cancellation condition named square-cancellable
lie in a subgroup of Q.

J. B. Fountain and M. Petrich gave an example of a semigroup having two non-isomorphic semigroups of
left quotients. More positive results are available if we restrict the classes of semigroups from which the
semigroups of left quotients may come. For example, a semigroup has at most one bisimple inverse w-
semigroup of left quotients. The crux of the matter is the restrictions to a semigroup S of Green's relations 3?
and i f in a semigroup of quotients of S. With this in mind we give necessary and sufficient conditions for two
semigroups of left quotients of S to be isomorphic under an isomorphism fixing S pointwise.

The above result is then used to show that if R is a subring of rings Q, and Q2 and the multiplicative
subsemigroups of Q, and Q2 are semigroups of left quotients of the multiplicative semigroup of R, then Q,
and Q2 are isomorphic rings.

1980 Mathematics subject classification (1985 Revision): 20M

1. Introduction

This paper is concerned with the following question: if Ql and Q2 are semigroups of
left quotients of a semigroup S, under which conditions is Qt isomorphic to Q2 under
an isomorphism whose restriction to S is the identity map? We call such an
isomorphism an isomorphism over S. Our notion of a semigroup of left quotients is that
introduced by Fountain and Petrich in [6] and developed in [7]; in Section 2 we give a
precise definition, restricting ourselves here to remarking that the approach is via
consideration of group inverses of elements. If Q is a semigroup of left quotients of S
then we also say that S is a left order in Q.

It is well known that if a ring R has classical rings of left quotients Qt and Q2, then
Qj and Q2 are isomorphic under a ring isomorphism over R (Lambek [12]).
Unfortunately, the corresponding result is not true for semigroups. In the first paper of
this area, Fountain and Petrich [6] give an example of a semigroup having two non-
isomorphic semigroups of left quotients. However, by restricting the class of semigroups
of left quotients under consideration, one can obtain some positive results. For example,
a semigroup has, up to isomorphism, at most one bisimple inverse co-semigroup of left
quotients (Gould [8]). The reason for this is made clear by Theorem 3.1 of Gould [10],
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214 V. GOULD

where the author gives sufficient conditions for two semigroups of left quotients of a
semigroup S to be isomorphic over S, in the special case where the semigroups of left
quotients are of a particular kind, later called straight; moreover, these conditions are
easily seen to be necessary. The given conditions involve binary relations on S obtained
by restricting Green's relations £C and 0t in the semigroup of left quotients to S. Since
every left order in a bisimple inverse co-semigroup must be straight, Theorem 3.1 of
Gould [10] can be applied to yield the above-mentioned result that if S is a left order in
bisimple inverse co-semigroups Qt and Q2, then Ql and Q2 are isomorphic over S.
Indeed its scope of application is far wider than this, for as shown in Gould [9], if S is a
left order in a regular semigroup Q and W is a congruence on Q, then S is straight in Q.

After some preliminaries in Section 2, we give in Section 3 the main result of this
paper, which determines in the general case when two semigroups of left quotients of a
given semigroup S are isomorphic over S. In fact we prove the result for the more
general concept of a weak left order. We make use of preorders on S obtained by
restricting the preorders ^ <g and ^ o n a semigroup of left quotients to S. In addition
we must take into account a ternary relation on S, which is again connected with
Green's relations on a semigroup of left quotients.

Section 4 offers some corollaries to Theorem 3.1. We show that in some rather
general cases we can dispense with mention of the ternary relation. In particular, this is
so if the left order is straight, where we can improve upon Theorem 3.1 of Gould [10].

If R is a subring of a ring Q then we say that R is a left order in Q or Q is a ring of
left quotients of R if the multiplicative semigroup of R is a left order in the multiplicative
semigroup of Q. There is no insistence here that Q have an identity, but where it does,
there is a surprisingly close connection with the notion of a classical ring of left
quotients (Fountain and Gould [3, 4, 5]). One would hope, therefore, that any two
rings of left quotients of a ring R were isomorphic (as rings) over R. Theorem 5.5 of
Fountain and Gould [3] says this is true if the rings of left quotients are (von
Neumann) regular. In Section 5 we show that the results of this paper allow us to drop
the restriction of regularity and prove that, up to isomorphism, a ring has at most one
ring of left quotients.

2. Preliminaries

Where possible we follow standard notation and terminology, as may be found in
Howie [11] and Clifford and Preston [1]. In particular, £(S) always denotes the set of
idempotents of a semigroup S.

An element b of a semigroup S is a group inverse of the element a of S if aba = a,
bab = b and ab = ba. A group inverse of a e S, if it exists, is unique and is denoted by a*.
It is not difficult to see that a* exists if and only if a lies in a group Jf -class of S and a*
is the inverse of a in Ha.

The relation if* is defined on a semigroup S by the rule that if a, b e S then aS£*b if
for all x, yeS1, ax = ay if and only if bx = by. An alternative description of if* is given
in Fountain [2], namely, if a,beS then aJ?*b in S if and only if aZ£b in some
oversemigroup of S. The relation ^ * is defined dually and 3/?* is the intersection of ££*
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and ^*. Clearly on any semigroup <£<=.!£*, ^ c ^ * and JfS^f*: if the semigroup is
regular then it is straightforward to show that these inclusions are equalities. An
element a of S is square-cancellable if aJV*a2—clearly this is a necessary condition for a
to have a group inverse in an oversemigroup of S. The set of square-cancellable
elements of S is denoted by Sf(S) and the set of elements lying in group J^-classes by
Jf (S). If S is a subsemigroup of Q then J?(Q)r\S is denoted by <S{Q, S).

We now give the precise definition of a semigroup of left quotients.
Let S be a subsemigroup of a semigroup Q. Then S is a left order in Q and Q is a

semigroup of left quotients of S if

(i) any q can be written as a*b where a,beS,

and

(ii) every square-cancellable element of S has a group inverse in Q.

In the case where condition (i) alone holds, we say that S is a weak left order in Q and
Q is a semigroup of weak left quotients of S. If S is a left order in Q then S is a straight
left order in 2 if in addition every q in Q can be written as a*b where a,beS and a^b
in Q. These definitions have their natural left-right duals, yielding the notions of right
order, etc. By dropping the adjective left or right from these definitions, we mean that
both left and right conditions hold. For instance, S is an order in Q if S is both a left
order and a right order in Q.

Our approach is partially inspired by the notion of a classical left order in ring
theory. Recall that a subring R of a ring Q is a classical left order in Q if Q has an
identity, every q in Q can be written as a~ib where a,beR, and every non-zero divisor
of R has an inverse in Q. Certainly the notion of a left order in a semigroup is designed
for semigroups where, roughly speaking, the behaviour of each of the subgroups is
equally important. Nevertheless it is rather surprisingly closely connected with that of a
classical left order in a ring, where the concentration is on the group of units. Further
details may be found in Fountain and Gould [3]. With this in mind we apply our
definitions of left order etc. to the multiplicative semigroups of rings, with the added
restriction that if, for example, a ring R is a left order in a ring Q, then we insist that R
is in addition a subring of Q.

Significant to our arguments are not just Green's relations jSf and Si and their
generalisations JSf* and 52*, but certain natural preorders with which they are the
associated equivalences. These are denoted by ^#, rga, ^^. and ^ « . respectively and
defined for elements a, b of a semigroup S by

a^^b if and only if S'asS1^,

fl£9d if and only if aS^bS1,

a ^y.b if and only if for all x,yeSl, bx = by implies that ax = ay,

and
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a ^gpb if and only if for all x, yeS1, xb = yb implies that xa = ya.

Clearly ^ x £ g ^,. and g a <=, g « . and it is easy to see that if S is regular then these
inclusions are equalities. Further, the preorders ^^, and ^# are compatible with
multiplication on the right, forcing if* and J5f to be right congruences on S. Dually,
•^gr and ^m are compatible with multiplication on the left, so that 01* and 01 are left
congruences on S.

The following lemma will be used repeatedly. Its proof is very easy and so is omitted.

Lemma 2.1. Let S be a weak left order in a semigroup Q. If qe Q, then q = a*b for
some ae^{Q,S) and beS with b %.aa in Q.

At this point we make a rather simple remark, but one that will be heavily relied
upon without further comment. Suppose that in a semigroup S we have an expression of
the form aq — p where aeJf?(S), p,qeS and q ^ a a in S. Then q = a*p. For qSiSaSl =
a*aSl, a*aeE(S) and so q = a*aq = a*p.

Let S be a subsemigroup of Q. Then the restrictions to S of the relations ^ #, ^ a, S£
and 0t on Q are denoted by ^,, ^ r , if' and 3ft! respectively. We should more properly
write ^,(Q,S), ^r(Q,S), £"{Q,S) and @'(Q,S), but we dispense with this clumsy
notation by carefully avoiding any real possibility of ambiguity. Clearly ^ , £ ^ #.,
^ r £ ^ » . , Sf'^g* and 91'<^0l*. The relations ^ , and ^ r are preorders with
associated equivalences if' and ^ ' . Moreover ^ , (^r) is right (left) compatible with
multiplication, so that i£' ($?') is a right (left) congruence on S.

Finally in this section we define the ternary relation &~(Q, S) on a subsemigroup S of
Q, mentioned in the introduction. Let a,b,ce S. Then (a, b, c) e &~(Q, S) if and only if
a,c€<g(Q,S), b^s,a in Q and a*bQ1ccQ

l.

3. The uniqueness theorem

This section is devoted to the proof of the following theorem.
Theorem 3.1. Let S be a weak left order in a semigroup Q and <t>:S->P be an

embedding of S into a semigroup P such that S0 is a weak left order in P. Then Q is
isomorphic to P under an isomorphism $ extending (j> if and only if for all a,b,ce S,

{a, b, c) e $~(Q, S) if and only if (a<f>, b<f>, c(p) e ST{P, S(f>).

Moreover, if this condition holds then $ is unique.

Proof. Suppose first that there exists an isomorphism $:Q->P extending $. Clearly
$ is unique, for if ij/:Q->P is any isomorphism extending <f> and q = a*b where a,beS,
then # = (a*b) = (a'Wbtp = (ai//)*b = tj/(a(f))*b(t).

Assume we are given a,b,ceS with (a,b, c)e&~{Q,S). By definition, a,c are elements
of y(Q, S), bQ1 £aQl and a*bQl Scg1. Since a and c lie in subgroups of Q, certainly a<f>
and c<f> lie in subgroups of P, that is, a(t>,c(l)eg(P,S(t>). Further, b<j>Pl = ^
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a<f>Pl and (cup^bcpP1 = {a*b)(p~Pl^c<p~Pl = c(f)P1 so that (a<£, &<£, c<£) e ,T(P, Stf>)- The same
argument applied to $~l:S(p-*S gives that if (cup, b<p, c(j>) e ST(P, S<f>), then
(a,b,c)ef(Q,S).

Conversely we suppose that for all a,b,ceS, (a, b, c) e $~(Q, S) if and only if
(a<t>,b<t>,c<l>)e$-(P,Sct>).

Let aeS. We claim that ae<${Q,S) if and only if cupe^{P, S<p). For if ae&(Q, S) then
(a,a,a)eST{Q,S) so that (a(p, cup, cup) e F(P, S<p) and in particular, cupe^(P,S<t>). Clearly
the same argument can be applied to <j>~1 to complete the proof of the claim.

We next show that if a€<S{Q, S) and beS, then bQ1 ^aQ1 if and only if b<t>Plca<f>Pl.
Again, it is only necessary to prove this implication in one direction. Now if bQ1^aQ1

than (a, b, a) e $~{Q, S) so that by assumption (a<f>, b<f>, cup) e $~{P, S<p) and then bcpP1^
CKpP1.

We now define $:Q-*P by putting (a*b)<p~=(a(p)*b(p where a,beS and b ^ra. In view
of Lemma 2.1, $ is defined for every qeQ.

Lemma 3.2. The function $ is well-defined and injective.

Proof. We show that $ is well-defined, the proof that $ is injective being dual.
Suppose now that a,ce&(Q,S), b,deS, b ^ra, d ^,c and a*b = c*d. Certainly

b<p ^ra<p (3.2.1)

and (a, b, c) e ^{Q, S), so that

(3.2.2)

From a*b = c*d we have that ca*b = d; now express ca* as ca* = h*k where he@(Q,S),
keS and k^rh- T n e n hca = ka2 and ca&ca* ^ah in Q, so that

c<pa<p^rh(p (3.2.3)

and

h<pc<pa<p = k<p(cup)2. (3.2.4)

Further, d = h*kb gives that d ^rh and hd = kb. Hence

d<p^rh<p (3.2.5)

and

(3.2.6)

From (3.2.3) and (3.2.4) we deduce that c(pcup=(h<p)*k(p(a<p)2 and from (3.2.5) and
(3.2.6) that d(p = (h<p)*k<pb(p. Now using (3.2.1), we have
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d<t>=(h<t>)*k<l>(a4>)2(a<t>)*{a<i>)*b<t> = c(pa<t>(a(t>)*(a(t>)*b<t> = c<t>{<ut>)*b<t>.

Then (3.2.2) yields (a0)*h<£ = (c0)*d<£. Consequently, $ is well defined.

Lemma 3.3. The function <j> is a homomorphism.

Proof. Let a*b,c*deQ, where a,ce$(Q, S), b,deS, b^ra and d<^rc. As above,
a</>,c(f>e^(P,S4)) and

b4>^ra4>,d<t>^rc4> (3.3.1)

Choose he&(Q,S), keS with fc ̂ r / i and a*fcc* = /i*/c. Notice that a*bc3ta*bc* ^rh in Q
and fee ̂ r 6 ^ r a so that (a, be, h) e &~(Q, S) and then

(3.3.2)

From a*bc* — h*k we have ha*bc = kc2 and we may then express /ia* as ha* — u*v
where «e^(Q,S), i>eS and c^,w. One deduces that ha ^ r u , uha = va2, kc2 ^ru and
ufcc2 = f fee. Hence in P,

h<j>a<i)^ru^ (3.3.3)

(3.3.4)

(3.3.5)

and

u<frk4>(c<t>)2 = u#4>c4> . (3.3.6)

Expressions (3.3.3) and (3.3.4) yield h<t>a<t> = (u<t>)*v<t>(a4>)2 and (3.3.5) and (3.3.6) yield
^>)2={u4>)*v(t>b4>c<l>. Bu t from (3.3.1), b<p ^ra(f) so tha t

k<t>(c<f>)2 = (u<t>)*v<t>(a<l>)2(a<t>)*(a<t>)*b<f>c<t> = h4>a<t>(a4>)*(a<t>)*b4>c<j) = / » / ) ( a ^

Now (3.3.2) gives that (/i0)*fc</>(c0)2=(a(/i)*fe(/)C(/>. We know from (3.3.1) that d<f>fLrc<t>
and so

(h<t>)*k(f>d(t> =

Certainly kd^rk<^rh, so that

(a*bc*d)$ = (h*kd)(j) = (hcl>)*(kd)(t>=

therefore, $ is a homomorphism.
To complete the proof that <j5 is an isomorphism, we remark that as any p e P can be
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written as p = (a4>)*b<f> with a<f> e ^(P, S<j>) and b(f> e S</> where b(f> ^ r a(j>, then since
ae&(Q,S) and b^ra we have that p = (a*b)$. Thus # is onto and hence an
isomorphism.

Finally, to see that $ extends §, let seS and express s as s = a*b where ae^(Q,S),
and fc ^ r a . Then as = b and s ^ r a . Thus s<f> ^ra<f> and s$ = (a#)*6#=(a$)*a$s$ =

as required.

4. Some special cases

We begin by commenting that if S is a left order in a semigroup Q, then
9(Q,S) = S^(S) and is independent of Q.

Attempting to avoid mention in Theorem 3.1 of the ternary relation &~(Q, S) leads us
to the following definition.

Let S be a left order in a semigroup Q. Then S is an ^-bounded left order in Q if for
all qeQ and a,ce5?(S), if qg,s,a,c in Q, then there is a weS with q^aw ^aa,c.
Many left orders are ^-bounded, as shown in Lemma 4.2. We first demonstrate that by
restricting our attention to ^-bounded left orders we can replace the relation ^{Q, S) in
Theorem 4.1 by g r .

Proposition 4.1. Let S be an ^-bounded left order in a semigroup Q and <j>:S-*P be an
embedding of S as an ^-bounded left order in a semigroup P. Then Q is isomorphic to P
under an isomorphism $ extending <j> if and only if

b^rd if and only if b(/> ^rd<j>

for all b,deS. Moreover, if this condition holds then $ is unique.

Proof. If $ exists then it is clear that for all b,deS, b ^Td if and only if b<j> ^ r # .
Conversely, suppose that this condition holds and (a, b, c) e ST{Q, S). Then a,ce£f(S),
b^Ta and a*bQ1^cQ1. Certainly a(j>,c(j>ey{S<t>) and by assumption b(f> ^ra<f>.

Now S is ^-bounded in Q and putting q = a*b, q^aa,c in Q and a, c e^fS) . Thus
there is an element w of S with q g a w ^g,a,c in Q. Hence b ^raw and w ^ra,c in S,
giving that in S$, bcf> ^ra<f>w<i> and w<f> ^ra(p,c<f>. We can now deduce

(a<t>)*b<t>Pl ^(aWatw^P1 =

so that {a<j>, b(f>, c(j>) e 5"(P, S<p). Dually, if (a(j>, b<t>, c<f>) e ^"(P, S<f>), then (a, b, c) e ̂ (Q, S).
Theorem 3.1 can now be applied to guarantee the existence of a unique isomorphism
$:Q-*P extending <t>.

We now give the promised examples of ^-bounded left orders.

Lemma 4.2. Let S be a left order in Q. Then S is ^-bounded if any of the following
conditions hold.
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(i) S intersects every Si-class of Q.
(ii) S is straight in Q.

(iii) S is an order in Q.

Proof. It is immediate that if S intersects every ^-class of Q, then S is ^-bounded in
Q. By Proposition 4 of Gould [9], if S is straight in Q then S intersects every ^f-class of
Q and so certainly every ^-class. Finally, if S is an order in Q and R is an $2-class of Q,
then choosing qeR we can write q = ba* where beS and aeSf(S). Then q = ba*3iba in
Q, giving that baeRnS and (i) holds.

If S intersects every ^-class of its semigroup of left quotients, then Proposition 4.1
can be simplified yet further.

Corollary 43. Let S be a left order in a semigroup Q and (j):S->P be an embedding of
S as a left order in a semigroup P. Suppose further that S intersects every £%-class of Q
and S(/> intersects every 01-class of P. Then Q is isomorphic to P under an isomorphism $
extending (f> if and only if

bM'd if and only if b<t>0Td<t>

for all b,deS. Moreover, if this condition holds then $ is unique.

Proof. By Lemma 4.2, S is ^-bounded in Q and S<£ is ^-bounded in P. Proposition
4.1 now says that $ exists if and only if

b ^rd if and only if b<l>^rd<f)

for all b,deS. Thus if $ exists, certainly

b0l'd if and only if

for all b,deS.
Conversely, suppose that for all b,deS,

b0t'd if and only if

Let x,yeS with x g j . Then xQ1^yQ1 so that x=yq for some qeQ1. If q — \ then
certainly x<f> ^ry4>- Assume therefore that qeQ. Since S intersects every $2-class of Q we
can choose zsRqnS and then x = yqMyz in Q, so that xffl'yz in S. Hence x<t>3l'y(pz<j> in
Scj) and then x<f>Pl =y(f>z<j>P1 ^yQP1 so that x<f>^ry^> in S0. Conversely, from u<t> ^rv(j>
we deduce u$ r u . Thus by Proposition 4.1, $ exists as required.

We remark that Corollary 4.3 may certainly be applied to straight left orders, yielding
a result which is a considerable improvement upon Theorem 3.1 of Gould [10].
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5. Left orders in rings

We recall from Section 2 that if R and Q are rings then R is a left order in Q and Q is
a ring of left quotients of R if R is a subring of Q and the multiplicative semigroup of R
is a left order in the multiplicative semigroup of Q. The aim of this section is to show
that if a ring R is a left order in rings Qx and Q2, then Q : and Q2 are isomorphic (as
rings) over R. We first show that the relation &~(Q,, R) is independent of i, so that
&~(Qi, R) = &~(Qi> R)- Theorem 3.1 gives immediately that Qx and Q2 are isomorphic as
multiplicative semigroups; some further work is required to prove they are isomorphic
as rings.

If a is an element of a ring R then aR1 denotes the principal right (multiplicative)
semigroup ideal generated by a. Let X be a subset of R. Then the left annihilator of X in
R, denoted by lR(X), is defined by

lR{X) = {reR:rX=0}.

When X = {a} is a singleton, we write lR({a}) more simply as lR(a). Right annihilators are
defined dually. Then R is right faithful if rR(K) = {0}.

We make the convention that in the remainder of this section R always denotes a
subring of a ring Q.

Lemma 5.1. Let R be a weak left order in Q. Then R and Q are right faithful.

Proof. Let qeQ and suppose that Rq = 0. By Lemma 2.1, q = h*k where
keR and hh*k = k. Thus O = hq = k and so q = h*0 = 0, giving that both Q and R are
right faithful.

Corollary 5.2. Let R be a weak left order in Q. Then the following are equivalent for
elements a, b of R:

(i) o^ 9 , fc in R;

(ii) /*(&)£ Z«(a);

(iii) lQ{b)^lQ(a);

(iv) a ^ #. b in Q.

Proof. In view of Lemma 5.1, this is an immediate consequence of Lemma 2.7 of
Fountain and Gould [3]. However, for the sake of completeness, we give the proof here.

(/)=*• (ii) Suppose that a^^b in R and xelR{b). Then xb=0=0b so as a^^b,
xa=0a=0. Thus xelR(a), giving that lR(b) £ lR(a).

(ii)=>(iii) Given that lR(b)£lR{a), suppose that qelQ(b). Then there exists ce&(Q,R)
and deR with dQ^cQ1 and q = c*d. Then db = cc*db = cqb = cO = 0, so that delR(b),
therefore da = 0 and so ga = c*da = c*0 = 0. Thus /Q(fc)

(/»)=> ("0 Assume that lQ(b)^lQ(a). Let x . y e g 1 and suppose that xb=yb. Hence, for
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any qeQ, qxb = qyb, giving that qx — qyelQ(b)^lQ(a), so that qxa = qya for all qsQ.
This in turn yields that xa—yaerQ(Q), but rQ(Q)=0 since by Lemma 5.1, Q is right
faithful. Thus xa = ya and a ^<pb in Q.

That (iv) implies (i) is clear.

Corollary 5.3. Let R be a weak left order in Q. Let aeR and he^{Q,R). Then

a ^rh if and only if a ^ a . /i in R.

Proof. Suppose that a^&,h in R. By Corollary 5.2, a^a.h in Q so that h = hh*h
implies a = hh*a. Thus aQl = hh*Ql^hQi and a^rh. As remarked in Section 2, the
other implication always holds.

Corollary 5.3. is the first step to showing that if R is a left order in Q, then the
relation &~(Q, R) is independent of Q. To smooth our further progress we make a new
definition: a ring Q is upper right regular if given any qeQ there is an eeE(Q) with

Lemma 5.4. Let R be a weak left order in Q. Then Q is upper right regular.

Proof. Let qeQ. Then q = h*k for some he<g(Q,R) and keR. Now qQi = h*kQ1£
h*Q1 = hh*Q1, so that q ^ a e where e = hh*eE{Q).

Upper right regular rings enjoy a property analogous to that of regular rings.
Namely:

Proposition 5.5. Let Q be an upper right regular ring. Then for all x,yeQ, there exists
an element g of E(Q) with x ^xg and y ^<gg.

Proof. Let x, y e Q. Since Q is upper right regular, there is an e e E(Q) with x ^ a e
and then an feE(Q) with y — ey^gf. Let w = e+f—fe. Then

—fe)x = x+fx—fx = x

and

wy = (e+f - fe)y = ey + fy - fey = ey+f(y - ey) = ey + y - ey =

so that x ^ a w and y ^«w. Choosing ge£(Q) with w ^ a g gives x ^ a g and y ^&g as
required.

The following proposition is crucial in that it allows us sufficient freedom of
expression of elements in rings of left quotients in terms of elements of the left order.
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Proposition 5.6. Let R be a weak left order in Q. Let qeQ and reR. Then q=u*v for
some ue^(Q,R) and veR with v ^ r u and r ^ru.

Proof. Certainly we can write q as q = a*b for some ae&(Q,R) and beR with b -£ra.
By Lemma 5.4, Q is upper right regular and so by Proposition 5.5 there is an
idempotent g in Q with r ^^g and a ^ag in Q. Now g-c*d for some ce&(Q,R) and
deR with d ^ r c . Note also that r ^rc and a ^ r c . Put e = cc*, f=aa*, ct = e—fe + a*e
and P-e-fe + ae. Straightforward calculation yields that ea = a = ae and a/? = e = /3a so
that eJf a. in Q. Further,

ab = (e—fe + a*e)b = a*b = q

and a = u*v' for some us1§(Q, R) and v'eR with v' ^,u. Thus q = u*v where v=v'b and
v gru. Finally, r ^gicJfeJtf'a. g f lu in Q so that r :gru in R.

Corollary 5.7. Let R be a weak left order in Q. Let qeQ and rur2eR. Then q = u*v
for some ue^(Q,R) and veR with v ^ru and rur2 ^ ru .

Proof. It follows from Proposition 5.5 that there is an element reR with rl,r2 ^ r r .
Using Proposition 5.6, the result is immediate.

Proposition 5.8. Let R be a weak left order in Q. Let a,ce^(Q,R) and beR with
b ^ r a. Then (a, b, c) e 3~{Q, R) if and only if there are elements h,u,pe @(Q, R) and
k,v,qeR with k ^rh, ch f£ru, a ^ r u , ua ̂ rp, vk ^ r p , uch = vh2, pua = qa2 and pvk=qb.

Proof. Suppose first that (a, b, c) e 9~(Q,, R). Then, bearing in mind that cQ1=cQ, we
have that a*b = ch*k for some he<&(Q,R) and keR with k^rh. Proposition 5.6 allows
us to express ch* as ch* — u*v where ue^(Q,R), veR and v,a^ru. Note also that
ch ^ r u and from ch* = u*v we deduce uch = vh2.

The equation a*b = ch*k yields a*b = u*vk and hence ua*b = vk. Then ua* can be
written as ua*=p*q where p€^(Q,R), qeR and q^rp. Then ua ̂ rp, pua = qa2 and
vk = p*qb. Thus vk ^rp and pvk = qb.

Conversely, suppose that the elements h, u, p, k, v, q exist satisfying the given
conditions. From ua, vk^rp and pua = qa2, pvk = qb, we have that ua = p*qa2 and
vk=p*qb. But b ^ra so that vk = p*qa2a*a*b = uaa*a*b = ua*b. Now ch^ru and
uch = vh2 gives that ch = u*vh2. Further, from o | r u w e have that u*vk = a*b. Then

a*b = u*vk = u*vh2h*h*k = chh*h*k = ch*k,

so that (a, b, c) e &~{Q, R) as required.

The preceding result enables us to apply Theorem 3.1 to obtain the first part of the
theorem below.
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Theorem 5.9. Let R be a ring which is a left order in a ring Q, and let <t>:R-*P be an
embedding of R as a left order in a ring P. Then Q is isomorphic to P under a unique
isomorphism $ extending <j>.

Proof. Let a,b,ceR and suppose that (a,b,c)e2T(Q,R). Then a,ce<3{Q,R) =
b Sra and a*bQl^cQ\ Clearly a0, ctf> e ^(.Rtf)) = #(P, #</>) and Corollary 5.3 gives that
b(t> ^,a<p. Then Proposition 5.8 can be applied to yield that (a<p, bcp, c<l>) e &~{P, R<j>).
Similarly, if (a<f>, b(/>, c(j>) e 3T{P, R(f>), then (a, b, c) e ^(Q, R). Theorem 3.1 then gives that
<f> can be extended to a unique semigroup isomorphism <j).Q-*P. If we can show that $
is also a ring homomorphism, then certainly $> is the unique ring isomorphism from Q
to P extending 0.

Suppose now that ql=a*b, q2 = c*d are elements of Q with a,ce£f(R), b,deR, b ^ra
and d ^ r c . Then in R(f>,

b<p^ra<f>, d(p^rc<p. (5.9.1)

Using Corollary 5.7 we can write qi + q2 as <Zi + <h = u*l> where uey(R) , veR, v ^ru,
a ^ r u and c ^ r u . Multiplying by u gives that v = ua*b + uc*d. Further,

a(j>^ru<t>, cd>^ru(t>. (5.9.2)

Now ua* = h*k for some heSf(R), keR with k^rh. Then uc*=p*q for some pe£f(R),
qeR with q ^ r p and h ^rp. Note also that ua^rh, hua = ka2, uc ^rp and puc = qc2.
Thus in R<f>,

ty^M. q4>^rP<t>, h(j>^rp4>, (5.9.3)

u<$>a§ ^ r / i < / > , u(pc<f) ^rp<t> (5.9.4)

and
2 2 (5.9.5)

In addition we have that

v = h*kb+p*qd (5.9.6)

so that vQ1 ^h*kbQl +p*qdQi^hQ1 + pQ} £pQ1 + pQl = pQ1, giving

»0^,P*. (5-9.7)

Multiplying in (5.9.6) by p gives

and so pv — qd=ph*kb. Applying $ we obtain
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(pv)(t> - {qd)<p = (pv - qd)4> = (pv - qd)$ = (ph*kb)<p~

=p$(h*)(j>k$b(l> = p<p(h<p)*k(pb<t>

and so

p<f>v<t>=p(l>{h<t>)*k<t>b<t) + q<pd<l>. (5.9.8)

From (5.9.3) and (5.9.7), h<f>, v4> ^rp(p so that (5.9.8) gives

v<f> = (h<t>)*k<t>b<l> + (p<t>)*q4>d(t>. (5.9.9)

Using (5.9.4) and (5.9.5), u4>a<t> = (h(p)*k<t>(a<p)2 so that from (5.9.1),

> = (h<t>)*k(t>(a(p)2(a<t>)*(a<l>)*b<f> = u<ptuKa<l>)*{a^)*b<p

Similarly, (p(j>)*q<l>d(f> = u(p(c(p)*d(p. Returning now to (5.9.9), we have that

v<p = u<p(a<l>)*b(l) + u<p(c<t>)*d4>.

Applying (5.9.2) gives

= («*«)#=(u<p)*v<t>=(a<t>)*b<t>+(c<p)*d<p = (a

which is qi$ + q2$. Thus $ is a ring homomorphism and the proof of Theorem 5.9 is
complete.
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