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Abstract

A 2-handle addition on the boundary of a hyperbolic 3-manifold M is called degenerating if the
resulting manifold is not hyperbolic. There are examples that some manifolds admit infinitely
many degenerating handle additions. But most of them are not 'basic'. (See Section 1 for
definitions). Our first main theorem shows that there are only finitely many basic degenerating
handle additions. We also study the case that one of the handle additions produces a reducible
manifold, and another produces a 3-reducible manifold, showing that in this case either the two
attaching curves are disjoint, or they can be isotoped into a once-punctured torus. A byproduct is
a combinatorial proof of a similar known result about degenerating hyperbolic structures by Dehn
filling.

1991 Mathematics subject classification (Amer. Math. Soc): primary 57 N 10, secondary 57 M
50.

1. Main results and examples

In this paper, all 3-manifolds are assumed orientable. We work in smooth or PL
categories. If a is a subset of a 3-manifold M (generally, a properly embedded
submanifold), denote by N(a) a closed regular neighbourhood of a, and by
r){a) an open regular neighbourhood, that is r){a) = N(a) — M — N(a). If A
is a subset of M, we use \A\ to denote the number of components in A. All the
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[2] Hyperbolic manifolds 73

concepts and notations not defined in the paper are standard; see, for example
[5,6].

Given an essential simple closed curve a on the boundary of M, we define
M[a] to be the manifold obtained from M by attaching a 2-handle to M along
a, then capping off a possible 2-sphere component of the resulting manifold
by a 3-ball. More explicitly, if a is an essential curve on a torus component
of dM, M[a] is the Dehn filling along the slope a, while if a is on a non-toral
component, M[a] is obtained from M simply by attaching a 2-handle along a.

Denote by DM the double of M along non-toral, non-spherical boundary
components. M is called hyperbolic if the interior of DM admits a complete
hyperbolic structure of finite volume. By Thurston's Geometrization Theorem,
if M is Haken, (in particular, if M has some non-sphere boundary components),
then M is hyperbolic if and only if M is irreducible, 3-irreducible, atoroidal and
anannular.

DEFINITION. If M is hyperbolic but M[a] is not, then the handle addition or
Dehn filling along a is called a degenerating handle addition or Dehn filling.
The curve a on dM is called a degenerating curve.

Suppose T is a torus component of dM, and suppose M is hyperbolic. By
a theorem of Thurston, there are only finitely many Dehn fillings on T which
yield nonhyperbolic manifolds. In our language, there are only finitely many
degenerating curves on T. If there is more than one boundary component, one
can do Dehn fillings step by step. Since at each step there are only finitely many
ways to degenerate the hyperbolic structure, one can say that most Dehn fillings
along torus components of dM yield hyperbolic manifolds.

Now suppose F is a boundary component of M with genus g > 1. It
is natural to ask whether there are only finitely many handle additions along
curves on F that yield non-hyperbolic manifolds. The answer is 'no' in general.
Actually, the following is an example that infinitely many handle additions on
the boundary of a hyperbolic manifold may yield a solid torus, and the example
is easily modified so that infinitely many handle additions yield handlebody of
genus g > 1. We need the following definition and lemma.

DEFINITION. TWO curves a and fi on F are called coplanar if some component
of F — a U fi is an annulus or once-punctured annulus.

LEMMA 1.1. Suppose a is a non-separating simple closed curve on F. If a
separating curve fi is coplanar to a, then M[a] = M[fi][a].
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In other words, to obtain M[a], we can first attach a 2-handle along the curve
P, which produces a torus boundary component containing a, then do Dehn
filling along a. The lemma is geometrically obvious. We omit the proof.

EXAMPLE 1.1. Consider the manifold T x / , where T is a torus. By a theorem
of Myers [7], there exists an arc y in it with one endpoint on each of the boundary
components, such that the manifold M = (T x / ) — r](y) is hyperbolic. Let
m be a curve on dM which bounds a disk in N(y). Suppose a is a non-
separating curve on dM which is disjoint from m. Then, by the lemma, we
have M[a] = M[m][a]. But since M[m] = T x / , all Dehn fillings produce
solid tori. Therefore, M[a] are solid tori for all such a. One can also use the
trivial link instead of the Hopf link. But then many of the handle additions as
above produce connected sums of a solid torus with lens spaces. Figure 1 is a
concrete example. The arc y above corresponds to the arc connecting the two
components of the link in the picture. The manifolds M is the exterior of the
graph, and m is the meridian of the arc. It can be shown that M is hyperbolic.

FIGURE 1

Actually, what the example shows is a crucial fact: If /J is an essential curve
on dM bounding a punctured torus P, such that M[fi] is non-hyperbolic, then,
except in very special cases, most of the Dehn fillings along a curve a in P are
non-hyperbolic, so most curves on P are degenerating curves. This leads us to
the following.

DEFINITION. A degenerating curve a is called basic if either a is separating,
or there are no separating degenerating curves coplanar with a.
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Clearly, basic degenerating curves are of primary importance in the study of
degenerating handle additions, because any degenerating curve must be coplanar
to a basic one. Our first main theorem is the following.

THEOREM 3.4. Suppose M is a hyperbolic 3-manifold. Let S be the set of
basic degenerating curves on a genus g > 1 boundary component F of M.
Then \S\ < kg, where kg is a constant depending only on g.

In particular, there are only finitely many separating degenerating curves on
dM. This theorem has immediate application to the following 'handlebody
filling' problem. Let F be a genus g boundary component of M. Let H be
a handlebody of genus g. We can glue H to M through a homeomorphism
<p : dH -» dM, and call this process a handlebody filling. Let D\,..., Dg^ be
disks cutting H into g solid tori. Then a handlebody filling can be obtained by
first attaching regular neighbourhoods of the D,, then attaching the solid tori, so
it is decomposed into g — 1 steps of 2-handle additions along separating curves,
followed by g Derm fillings. At each step there are infinitely many possible
choices for the attaching curves, but by the above result and Thurston's The-
orem [9, Theorem 5.8.2], only finitely many of them degenerate the hyperbolic
structure. Hence we can say that most of the handlebody fillings along dM yield
hyperbolic manifolds.

On our way towards the proof of Theorem 3.4, we present a purely combinat-
orial proof of the following result, which also follows (with better bounds) from
the Gromov-Thurston 2TT theorem cf. [1, Theorem 9]. Suppose T — T\ U. . . U Tn

is a set of tori on the boundary of a hyperbolic 3-manifold M. Let a, be a simple
closed curve on 7J. Write a = (cti,... ,an). Attaching a solid torus on each 7}
along a, we get a Dehn filled manifold M[a] = M[a\]... [an]. It is called a
degenerating Dehn filling if M[a] is not hyperbolic. In this case we say that a
is a degenerating set. It is called a basic degenerating set if no proper subset of
it is degenerating.

PROPOSITION 2.4. Suppose M is hyperbolic manifold, and T is a set ofn tori
on dM. If dM — T is nonempty, then M has at most Cn basic degenerating
sets, where Cn is a constant depending only on n.

Next we make deeper investigation of degenerating handle additions. Given
two curves a and fi, we use A(a, ft) to denote their geometric intersection
number, that is, the minimal intersection number of a with all ft' which are
isotopic to fi. Suppose a and f$ are degenerating curves: what can we say
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about a and fi! As we have seen in the example, A(a, fi) can be arbitrarily
large. However, in that example either A(a, fi) = 0 or a and fi lie in a common
once-punctured torus. We suspect that this is always true.

In Section 3, we will consider the case that one of the handle additions yields
a reducible manifold, and the other one yields a 3-reducible manifold. Consider
the following.

EXAMPLE 1.2. Let K be a cable knot in a 3-reducible 3-manifold X, such
that X — r)(K) is irreducible and 3-reducible. Let a be a meridian of K, and let
ft be the slope of the cabling annulus. Choose an arc y from dX to the torus
T = 3N(K), complicated enough so that M = (X — ri(K)) — r)(y) is hyperbolic.
Then we have that M[a] = X is 3-reducible, and M[fi] = (X - r)(K))[fi] is
reducible, but A(ot, fi) ^ 0. However, in this case both a, fi lie on a common
punctured torus T — r)(y).

Our second main theorem shows that this is always the case.

THEOREM 4.2. Suppose M is a hyperbolic manifold, a, fi are essential simple
closed curves on a non-torus boundary component of M, such that M[a] is
reducible and M[fi] is d-reducible. Then either A (a, fi) = 0 or both a and fi
can be isotoped into a once-punctured torus P ondM.

As a corollary, we will see that if either a or fi is a basic degenerating curve,
in particular, if one of them is separating on the surface, then A(a, fi) = 0. It
will be shown that essentially Example 1.2 has given all the possible manifolds
for the second possibility in the theorem.

2. Basic degenerating Dehn Fillings

Let P, Q be two properly embedded surfaces in a 3-manifold M. We say that
they are in minimal intersection position if

(1) \8P D 3(21 < \dPndQ'\ for all Q isotopic to Q, and
(2) \PDQ\ < \PDQ'\ for all Q' subject to (1)

Let P be P with each boundary component identified to a point. The image of
P D Q in P can be considered as a graph, denoted by FP : an edge of the graph
is an arc component of P n Q, and a vertex is the image of a component of 3 P
Similarly, we have a graph FQ in Q. The edges e\, e2 are parallel in FP if there
is a disk D in P such that 3D = e\ U e2, and Int D contains no vertices of TP.
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An edge of rP is called a trivial loop if it contains only one vertex, and bounds
a disk in P with interior disjoint from TP. Recall that a properly embedded
surface in M is called essential if it is incompressible and 9-incompressible.

LEMMA 2.1. Let M be an irreducible, d-irreducible 3-manifold. Suppose
P, Q are essential surfaces properly embedded in M, isotoped so that they are
in minimal intersection position. If there are arcs ei,e2 in P D Q which are
parallel in both TP and TQ, then M contains an essential annulus.

PROOF. The arcs e\, e2 cut off a disk D, from P, and a disk D2 from Q.
By re-choosing the edges et if necessary, we may assume that D\ and D2have
disjoint interiors. So A = D\ U D2 is a properly embedded annulus or Mobius
band in M.

If A is a Mobius band, let N(A) be a regular neighbourhood of A. The
frontier of N(A) is a properly embedded annulus B = N(A) C\ E(A), where
E(A) = M — r)(A). Notice that N(A) is a solid torus, with B running twice
along the longitude direction, so B is incompressible and 9-incompressible in
N(A). If B is compressible in E(A) with D a compressing disk, then the union
of N(A) and a regular neighbourhood of D will be a punctured lens space,
which is impossible because M is irreducible and has nonempty boundary. If B
is 9-compressible, then a 9-compressing of B would produce a disk, cutting M
into two pieces, one of which is a solid torus. Therefore M is 9-compressible,
again a contradiction.

Now suppose A is an annulus. Let c be a boundary component of A. One can
see that c is the union of two arcs c\ and c2, where C\ C dP, and c2 C 9Q. If A
is compressible, then c bounds a disk in M. Since M is 9-irreducible, c bounds
a disk on 9M, which can be used to reduce 13/* Pi 3<2| by isotoping cx off c2.
If A is 9-reducible, one can choose a 9-reducing disk D so that the arc D n A
lies on D\ and is parallel to the edges ex, so it is an essential arc on P. The disk
D may have other intersection with P, but by an innermost circle—outermost
arc argument one can show that P is either reducible or 9-reducible, which
contradicts the hypothesis of P. Therefore A is an essential annulus.

LEMMA 2.2. Suppose P and Q are essential punctured spheres or punctured
tori in an irreducible, d-irreducible manifold M. Suppose 9 P has C\ components
parallel to a curve y\, and dQ has c2 components parallel to a curve y2. If

i, Yi) > 18|9P||9<2l/ciC2, than M contains an essential annulus.
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PROOF. By an isotopy, we may assume that P and Q are in minimal intersec-
tion position. As before, use FP to denote the corresponding graph of P n Q
in P. If FP has a trivial loop, then some arc of P n Q would be boundary
parallel in P, so it cuts off a disk from P which can be used to 3-compress
Q. But since Q is 3-incompressible and M is 3-irreducible, one can find an
isotopy of Q reducing \dP D dQ\, which is impossible because P and Q are
assumed in minimal intersection position. Hence FP and T e have no trivial
loops. Similarly, one can show that P n Q has no trivial circle (that is, a circle
which bounds a disk in P or Q).

Consider the intersection of dP and dQ on Tx. Let A = A(yi, y2). Since
dP has C\ components parallel to yx, and dQ has c2 components parallel to y2,
these components intersect at C\C2A points, so \dP D 3(21 > C\C2A. It follows
that I"V contains at least c\c2A/2 edges.

Denote by f/> the reduced graph of F/>, which by definition is obtained from
FP by replacing a set of parallel edges by a single edge. Then FP is a graph
in P with no trivial loops or parallel edges. Denote by v, e, f the number of
vertices, edges, and faces of FP, respectively. (A face of FP is a component of
P — FP.) The above shows that each face is incident to a least three edges, so
we have 3 / < 2e. Since P is either a sphere or a torus, by counting the Euler
characteristic we have

v-e + f>0.

Using the fact that v = v(P) = \dP\ and 3 / < 2e, we get

\dP\-e + (2/3)e>0,

or equivalently, e < 3\dP\. Since FP has at least CiC2A/2 edges, we see that
some edge off/, corresponds to at least C\C2A/6\dP\ parallel edges.

Let e\,... ek be a set of parallel edges in FP. Consider the subgraph F'Q of
FQ with these et as edges. By the same argument as above, one can show that if
k > 3\dQ\ then F'Q has some parallel edges. If M contains no essential annulus,
then by Lemma 2.1 no pair of edges could be parallel in both FP andFG. Hence
k < 3|3<2|. Since FP has a set of at least cic2A/6\dP\ parallel edges, this gives
CiC2A/6\dP\ < 3\dQ\, or equivalently, A < 18|d/>||9Q|/ciC2.

LEMMA 2.3. Let S be a set of mutually non-isotopic simple closed curves on
a torus T. IfA(a, 0) < k for all a, P in S, then \S\ < 2(k + I)2.

PROOF. Let m, I be a meridian-longitude pair in T. They form a basis for
HX{T). We write a = (a, b) if a = am + bl in H\{T), and by reversing the
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orientation we may always assume a > 0. If a — (a, b) and p = (c, d), their
intersection number is given by

A(«, P) = det0 = \ad-bc\.

Fix two elements ot, /J e S. Without loss of generality, we may assume
a = (0,1) and p = (a, b), where a > 1. Now if )/ = (c.rf) € S,
then A (a, y) = | c | < k implies 0 < c < k, and A(P,y) < k implies
—k<ad — bc< k, or —k + bc < d < k + be. So c has at most k + l choices
and d has fewer than 2(k + 1) choices. Therefore |«S| < 2{k + I)2.

Suppose M is a hyperbolic 3-manifold. Let T = Tj U . . . U Tn be a union of
tori on 3M. Suppose a = ( a i , . . . , an), where a, is an essential curve on Th

Recall from Section 1 that we use M [a] to denote the manifold obtained from
M by Dehn fillings along a, that is, M[a] = M[a] ] . . . [an]. The set a is called
a degenerating set if M[a] is non-hyperbolic, and it is a basic degenerating set
if no proper subset of a is degenerating. The corresponding Dehn filling will be
called degenerating or basic degenerating accordingly.

PROPOSITION 2.4. Suppose M is a hyperbolic manifold. If dM has other
components than T, then M has at most Cn basic degenerating Dehn fillings,
where Cn is a constant depending only on n.

PROOF. We prove the theorem by induction. When n = 1, by Gordon's
Theorem [2], [3, Theorem 3.4] if both ai and Pi are degenerating curves on
T - 1 then A(au Pi) < 8. By Lemma 2.3, we may take d = 162. So we
assume n > 2, and suppose Cn_i has been defined to satisfy the theorem. Write

<S = {a\a is a degenerating set}.

Let S' be a maximal subset of S such that if (a^ , . . . , an) and (Pi..., /?„) are
both in S' then a, ^ /?. for all i.

LEMMA2.5. |<S| <nC_i|«S'|.

PROOF. For each a e <S', let «S(a,) = [p € S\pt = a,}. Clearly, <S =
U{«S(a,)|a e 5 ' , / = l n j s o w e need only show that |<S(a,)| < Cn-\.
Without loss of generality, we may assume i = 1. Then for any P =
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(a,, ft,..., A,) € Si*), we have M[0] = M[ai][fi'], where 0' = (ft . . . , ft).
Since a is basic, M[ai] is hyperbolic, so by definition of Cn-\ the set {/J'|/3 e
S(cti)} has at most Cn_i elements.

Since M [a] is a degenerating Dehn filling, and dM — T is nonempty, M[a] is
either reducible, 3-reducible, toroidal or annular. In all cases, there is a properly
embedded surface F in M[a], which is either a reducing sphere, a 3-reducing
disk, an essential annulus or an essential torus. We call F a degenerating
surface. Let P = F D A/. It is a punctured torus or a punctured sphere. When
F is a sphere or torus, dP lies on T; when F is a disk or annulus, dP has at
most two components lying on dM — T.

LEMMA 2.6. F ca« 6e chosen so that P = F H M is an essential surface.

PROOF. Among all degenerating surfaces, choose F so that | F(lT\ is minimal.
If P is compressible, let D be a compressing disk. Since F is incompressible, 3 D
is inessential in F, so a 2-surgery of F along D yields two surfaces, one of which
must be a degenerating surface with fewer intersections with T, contradicting
the choice of F.

Suppose P is 3-compressible. Let D be a 3-compressing disk. 3D consists
of two arcs e\ and e2, with e\ on P and e2 on dM. If e2 is on T, part of F can be
isotoped through D and the attached solid torus to reduce \F n T\. If e2 is on
dM — T, then F must be either a compressing disc or an essential annulus, so
e2 is an inessential arc in F. Hence 2-surgery of F along D yields two surfaces,
one of which is a degenerating surface with fewer intersections with T.

Fix a degenerating surface Fa for each a, so that Pa = Fa n M is incom-
pressible and 3-incompressible. Let

5, = {a : \dPa n 7} | > |3P« n 7}| for all j}.

Then 5 ' = (J"=1 <5>,. We need to show that each 5, is a finite set.
Suppose a, ft are two elements in St. By definition, Pa n 7} has no fewer

components than Pa n 7} for all >, so |Fa n T| <n\Paf\Ti\. Also, 3F has at
most two components not on T. Therefore,

\dP\ <2 + n\dPnTt\ <2n\dPr\Ti\.

A similar formula holds for Q. Since M is hyperbolic, by Lemma 2.2 we
have

A(a,, A) < 18|3P| | 3 0 | / \BP n 7]| |3g n 7}| < 72«2.
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Recall that if a, ft are different elements in «S,, then a, and $ are different, so the
set {a, | a e S,} has the same cardinality as that of «S,. Therefore, by Lemma
2.3 we have |<S,| < 2(72n2 + I)2.

Combining with Lemma 2.5, this gives

\S\ < «Cn_,|«S'| < nC^dSA + . . . + |«Sn|) < 2n2(72n2 + l)2Cn_,.

The right hand side depends only on n, the number of components in T. This
completes the proof of Proposition 2.4

3. Basic degenerating handle additions

In this section we apply the techniques in the previous section to show that
a hyperbolic manifold admits only finitely many basic degenerating handle
additions. The proof is quite similar to that of Theorem 2.4, but some difference
arises in finding the essential surfaces. Actually, it is generally impossible to
find an essential degenerating surface with most boundary components parallel
to the degenerating curves. This is amended by considering the 'major boundary
slope' instead (see the proof of Theorem 3.4 for definition).

The following lemma and its corollary show that on a given surface there
are only finitely many curves with mutual intersection number bounded above.
This is easy for a given set, but it is not so simple to find a universal bound.
Note that the constant C(g, k) in Corollary 3.2 is independent of the set C.

DEFINITION. For S a compact orientable surface, and A a set of points in
dS, a A-curve F in S is a compact 1-manifold properly embedded in 5 so that
3T c A, every closed component is essential, and no two closed components
are parallel.

If F and I"" are two A-curves in 5, define

A(P, F ) = max{A(y, y') | y and y' are components of

F and F" respectively}.

LEMMA 3.1. Given a compact orientable surface S, a set A of points in 35,
and k > 0, there is an integer L(S, A, k) such that, if {F,|l < i < n} is a
set of mutually non-isotopic A-curves in S so that each A(F,, F,) < k, then
n < L(S,A,k).
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PROOF. If suffices to prove the lemma for 5 connected. The proof is by
induction on the complexity of 5, as measured, for example, by 3genus(5)+13 51.

If 5 is a disk D, then k is irrelevant, for A(F,-, F;) < 1. Moreover, since a
pair of points in A bounds a unique arc in D, the set of possible isotopy classes
for A-curves is clearly bounded above by the number of ways of dividing up
subsets of A into pairs of points.

If D is altered by removing a small disk in the interior to create an annulus
A, then each pair of points in A bounds two arcs in A, and A contains a single
essential simple closed curve. Thus, again, there is an obvious bound b(\A\) to
the number of possible A-curves in A.

More generally, if 5 is an arbitrary compact connected orientable surface,
and each component of each F, is 3-parallel, then all the F, lie in an annular
neighbourhood of 35. This implies that n < 6(|A|)1351.

Thus the lemma is proven unless some component of some F, is not 3-parallel
in 5. If there is such a component y, let K be a set of k points in y. Let 5'
be the surface obtained by removing an open regular neighbourhood r){y) of y
from 5. Then 35' is obtained from 35 by removing a neighbourhood of dy and
adding two copies y± of y. Let A' c 35' be A — dy together with a copy K± of
K in each of y±.

Define F', C 5' to be Y\ — y. For each i > 1, isotope F, to intersect y
minimally and define T[ c 5' to be F, — r?(y). Note that each component of F-
lies in a component of F,, so each component of T't intersects each component
of T'j in at most k points. Each F,' has at most k boundary points on each of
y± C 3S', but of course they do not automatically lie in K±. This can be fixed by
ambiently isotoping the set of points (F, D y), i > 1, into a subset of K. Even
when y is a circle, this isotopy can be chosen so no point passes more than once
through the same point of K. In particular, this isotopy introduces at most one
new intersection between an end of an arc in F,' and an end of an arc in Fj, so
A(r;, r;> < k + 4.

Now an isotopy from F,' to Fj in 5' is the restriction of an isotopy of F,
to Tj relative to their identical intersection with y. Hence we know that the
{F'} are mutually non-isotopic in 5'. Each component of 5' is simpler than
5, so, by inductive hypothesis, there is a number L(5', A', k + 4) so that n <
L(S', A', k + 4). The proof is then completed by observing that there are only a
finite number of surfaces of at most two components, each simpler than 5, and
in each of these there are only a finite number of ways of distributing |A| +2k
points into the boundary.
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COROLLARY 3.2. There is a constant C(g, k) such that ifC is a set of mutually
non-isotopic simple closed curves on a genus g closed orientable surface F with
A(a, ft) < k for all a, $, € C, than \C\ < C(g, k).

PROOF. Regard each simple closed curve as a A-curve, A = 0, on the genus
g surface <S, and define C(g, k) = L(S, 0, k).

LEMMA 3.3. Suppose a is a degenerating curve on F. Then there is a punc-
tured sphere or torus P in M such that P is essential, and all but possibly two
boundary components of P are coplanar with a.

PROOF. Suppose P is a surface in M. If 3 is a component of dP and is
coplanar with a, then 3 bounds a disk in M[a]. Capping off all such components
by mutually disjoint disks in M[a], we get a surface P in M[ot]. The surface P is
called a presurface if P is a degenerating surface. We assume a is nonseparating.
The proof of the other case is similar and simpler.

Write dP = 3 U 3, U . . . U ds U d[ U . . . U 3,' where 3 = dP, the 3, are parallel
to a, and the 3y- are coplanar but not parallel to a. We label the components so
that 3, is adjacent to 3,+i, 3j is adjacent to d'j+l, and d[ is the closest one to the
3,. Define

1 if P is a disk;
b(P) = { 2 if P is an annulus;

3 if P is a torus.

Define the complexity of P to be c(P) = (b(P), \dP\) in lexicographic
order. Since a is degenerating, presurfaces do exist. Let P be one with least
complexity. Clearly, P is incompressible, for a compression of P would produce
a presurface of lower complexity.

Now suppose P is 3-compressible, with D a 3-compressing disk. Write
3D = u U v, where u is an arc in F, and v is an arc in P. Since P is
incompressible, u cannot be relative to 3« isotoped into dP. In other words,
(w, 3M) is essential in (F, dP). There are several cases.

(1) u has endpoints on different components of 3 P;
(2) t > 0, s = 1 and 3M C 3I;

(3) 3M c 3;
(4) 3 H C 3 ; ;

(5) 3M C 3,', or t = 0, 3M C 3i or 3,.
3-compressing P along D, we get a new surface, which has one or two new
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boundary components, depending on whether the two ends of u lie on different
components ofdP. If a new boundary component is trivial in F, we cap off the
component by a disk: in this way, we get a new surface, denoted by P'. We
will show that Case (2) is impossible, and in all other cases P' has a component
which is a presurface with lower complexity than P.

In Case (1), since P is 3-incompressible, u cannot have both ends on 3. For
all the other possibilities, one can see that P' = P and \dP'\ < \dP\.

In Case (2), a regular neighbourhood of v and a disk bounded by 3] would
form a Mobius band in P, which is absurd.

In Case (3), since P is 3-incompressible, P' must have a component isotopic
to P, so the corresponding component of P' is a presurface of lower complexity.

In Case (4), the two new components of P' are parallel to a. They bound
disks in M[a]. Since P is incompressible, they are inessential in P, so v is a
separating arc. Therefore, P' has two components, one of which is the required
surface.

In Case (5), the new boundary components are essential curves on dM[a],
so \dP'\ — \dP\ + 2. Thus either P' has a compressing disk component for
dM[a], in which case the corresponding component of P' is a presurface of
lower complexity, or P' is one or two annuli. One can see that P' can be
obtained from P by 2-surgery along an annulus, so one component of P' is
essential. It follows that the corresponding component of P' is a presurface with
lower complexity.

THEOREM 3.4. Suppose M is a hyperbolic 3-manifold. Let S be the set of
basic degenerating curves on a genus g > 1 boundary component F of M.
Then \S\ < kg where kg is a constant depending only on g.

PROOF. For each a in 5, fix an essential surface Pa as in Lemma 3.3. Let
d\..., 3S be those components of dPa that are parallel to a, and let 9 ( , . . . , 3,'
be those that are coplanar with a but not parallel to a. Since each 3/ bounds a
punctured torus containing a, and since these 3/ are mutually disjoint, it is easy
to see that they must be parallel to each other. Use a' to denote a curve parallel
to 3,'. Define

a if s > t;
a' ifs < t.

Call a the major boundary slope of Pa.
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LEMMA 3.5. Ifa\,..., ak are elements in S so that a, is isotopic to a, for all
i,j thenk < 2C,.

PROOF. By isotopies, we may assume without loss of generality that a, = a,
for all i, j . Write a = ay. If a is nonseparating, then by the definition of a,
we must have a = a, = ay for all j . (Note that a' in the definition of a is
separating.) If a is separating and also degenerating, then since the ay are basic
degenerating curves and are coplanar with a, we also have a — ay for all j . In
these cases, k — 1.

Now assume a is a separating non-degenerating curve. Then a, must be a
non-separating curve in a punctured torus bounded by a. By Lemma 1.1, we
have M[a,] = M[a][a,], so a, is a degenerating curve on a torus boundary
component of the hyperbolic manifold M[a]. Since a bounds at most two
punctured tori, these a, lie in at most two tori. Therefore, by Proposition 2.4,
we have k < 2C\.

Let S' — {a,} be the set of different major boundary slopes on F. By
Lemma 3.5 we have

\S\<2CX\S'\.

Consider two elements d\, d2 e «S'. Let Pt = Pa. be the corresponding
essential surfaces. Let st be the number of boundary components of f, which
are parallel to a,. Since a, is the major boundary slope, the number of boundary
components of Pt which are coplanar with a, is at most 2s,. Since Pt has at most
two components not coplanar with a,, we have

\BPi\fSi; < ( 2 + 2si)A,-<4.

Now by Lemma 2.2 we have

A(a,,a2) < lX\dPi\\dP2\/sis2 < 288.

Applying Corollary 3.2 to 5', we get |«S'| < C(g, 288). Therefore, \S\ <
2C\C(g, 288). The right hand side depends only on the genus of F. This
completes the proof of the theorem.

4. Reducing or 3-reducing handle additions

Somehow the study of the handle addition problems is inspired by results
about Dehn fillings. There are some known results about what happens if
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two Dehn fillings degenerate the manifold in certain senses; see for example
[3,4, 8, 10]. It is an interesting problem whether similar results hold for handle
additions. The following result is a special case of [8, Theorem 6.1].

THEOREM 4.1. Suppose X is a ^-reducible manifold. Let K be a knot in X
such that X — K is irreducible and 3 -irreducible. Then a Dehn surgery on K
produces a reducible manifold if and only ifK is a cable knot, and the surgery
slope is that of the cabling annulus.

Let M — X — t)(K). Then a Dehn surgery on K is the same as a Dehn
filling of M along dN(K). The filling along a meridian of K produces a 3-
reducible manifold and the filling along the cabling slope yields a reducible one.
In particular, the geometric intersection number of the two degenerating slopes
is one.

We are interested in the problem of what could happen if two degenerating
handle additions produce reducible and 3-reducible manifolds respectively. One
way to obtain manifolds allowing such handle additions is to drill holes in
the above manifolds; see Example 1.2 for details. In that example, the two
degenerating curves intersect at a single point. Generally, this may not be true.
For example, let W be a reducible and 3-reducible manifold; let K be a trivial
knot, and let y be an arc from K to 3 W so that W — r](K U y) is hyperbolic. By
the same method as in Examples 1.1 and 1.2, one can show that infinitely many
handle additions produce reducible or 3-reducible manifolds. However, in all
these examples, if two degenerating curves have nontrivial intersections, then
they are contained in a punctured torus. It turns out that this always happens.

THEOREM 4.2. Suppose M is a hyperbolic manifold, a, fi are essential closed
curves on a non-torus boundary component ofM, such that M[a] is reducible
and M[fi] is 3-reducible. Then either A (a, fi) — 0 or there is a once punctured
torus P in dM containing both a and fi.

PROOF. Let F be the component of 3M containing a and fi. We can write M
as M' U F x / , where F x / is a regular neighbourhood of F in M, and M' is
the closure of M — F x / . Let K be the curve a x 1 on the surface F' — F x 1.
We consider K as a knot in M. Denote by X the manifold obtained from M
by deleting a regular neighbourhood of K, then attaching a 2-handle along the
curve fi on F. In our earlier notation, X = (M — rj(K))[fi].

Denote by S the surface F' n X = F' - r](K). It divides X into two parts,
Xi and X2, where X\ = M' — t)(K) is homeomorphic to both M' and M, and
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X2 = (F x I)[fi] — t](K) is homeomorphic to (F x /)[/?]. Let m be a meridian
curve of K on dN(K), and let / be a longitude isotopic to the boundaries of
5. Clearly, the Dehn filled manifold X[m] is exactly equal to M[/J], so by our
assumption it is 3-reducible.

Now consider X[l]. The surface S has two boundary components on the
torus dN(K). They bound disjoint disks D\ and D2 in the attached solid torus,
dividing the solid torus into two 2-handles. Thus, instead of attaching the
solid torus, we can attach the 2-handles to X\ and X2 respectively, then glue the
manifolds along the surface S = 5UD,UD2. Since (Xul) = (M', K) = (M,a)
and (X2,l) = ((F x I)\fi], K), the two pieces of X[l] cutting along 5 are
homeomorphic to M[a] and (F x /)[/3][^n, respectively. By assumption,
M[a] is reducible. Since (F x /)[/?][£] has two boundary components, gluing
it to a reducible manifold along one of its boundary components will never
produce an irreducible manifold. Hence X[l] is reducible.

In summary, we have two Dehn fillings of X along a torus boundary com-
ponent dN(K), one produces a 3-reducible manifold X[m], the other produces
a reducible manifold X[l]. Therefore we can use Theorem 4.1 to conclude that
either

(1) X is reducible or 3-reducible, or
(2) X contains an essential annulus A with both boundary components on

8N(K) and parallel to/ .
Consider the manifold X2 = (F x /)[/?]. The compressing disks of dX2 are

well understood: an essential curve y on F x / bounds a disk in X2 if and only
if either (i) y is parallel to /S x 1, or (ii) y bounds a once-punctured torus T on
F x 1 which contains /3 x 1 as a non-separating curve.

We first assume S = F x I — r](K) is compressible in X2, and let y be the
boundary of a compressing disk. In Case (i), y is parallel to fi x 1. Since y is
disjoint from K = a x 1, we see that a and ft are disjoint. In Case (ii), if K
is not in T, then a is disjoint from /$, while if K is in T, both a and /} are in a
once-punctured torus. In all cases, the conclusion of the theorem follows.

We now assume S is incompressible in X2. Notice that since a is essential
and dM is incompressible, dM — a is incompressible in M, so S is also in-
compressible in Xx. By assumption, Xi = M is irreducible. As X2 is obtained
from F x / by attaching a single 2-handle, it is easy to see that X2 is also
irreducible. Therefore by a standard innermost circle argument one can show
that X = X\ U X2 is irreducible and boundary irreducible. This completes the
proof of Case (1) above.
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Now assume Case (2) and let A be an annulus such that 8A lies on dN(K) and
is disjoint from 5. Since S is incompressible, and Xx, X2 are irreducible, by an
isotopy we may assume AHS consists of essential circles in A, so all components
of A n Xi are annuli. We may assume the A has been isotoped so that A f~l 5 is
minimal. Since Xi = M is hyperbolic, and X2 = (F x I)[fi] is a compression
body, neither of them contains essential annuli. In particular A D 5 ^ 0. Let A'
be a component of A D Xt which has one boundary component on dA. Since
A' is incompressible (otherwise S would be compressible), it is 3-compressible.
But a 3-compression would yield an embedded disk with boundary on 5. Since
5 is incompressible and the X, are irreducible, the disk is parallel to a disk in 5.
Therefore, A' is 3-parallel. By an isotopy of A, we can reduce the number of
components in A n 5, contradicting the choice of A.

The second conclusion of the theorem can be further clarified. Actually, from
the proof we have the following corollary, which shows that Example 1.2 and
the construction given prior to Theorem 4.2 have produced all such manifolds.

COROLLARY 4.3. Let M, a, fi be as in the theorem. If a, fi are contained in
a once-punctured torus P, then either M[dP] is reducible or ^-reducible, or
M[dP] contains a cable space. Hence, ifA(a, fi) > 1 then M[dP] must be
either reducible or 3 -reducible.

COROLLARY 4.4. Let M, a, f$ be as in the theorem. If either a or fi is a basic
degenerating curve, then A (a, fi) — 0.

In particular, if one of a and fi is a separating curve then A (a, ft) = 0.

PROOF. By Corollary 4.3, if A(a, ft) ^ 0 then M[dP] is reducible, 3-
reducible, or contains a cable space. In all cases, M[dP] is non-hyperbolic.

We suspect that a result similar to Theorem 4.2 might be true for all degener-
ating handle additions.

CONJECTURE I. If a and ft are both degenerating curves, then either
A (a, fi) = 0 or they can be isotoped into a once-punctured torus.

Conjecture 1 seems still far from being solved. A consequence of it would
be the following. If a and fi are both in a punctured torus P, then M[a] =
M[8P][a], and M[0] = M[dP][p] by Lemma 1. If M[dP] is not hyperbolic,
then 3 P is a separating degenerating curve, so neither a nor fi is basic. If M[d P]
is hyperbolic, then by Gordon's Theorem [3, Theorem 3.4, 3.5], A(a, fi) < 5.
So Conjecture 1 implies the following:
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CONJECTURE 2. If a and f} are basic degenerating curves on dM, then

A(«, P) < 5.

If the conjecture is false, it would still be interesting to know if a universal
upper bound for A(a, ft) exists, and to determine the least upper bound. By
a similar method as in the proof of Theorem 3.4, we can show that if a, /3 are
separating degenerating curves, then A(a, f}) < 14. As this is not expected to
be the best possible, we omit the proof.

Added in proof

A recent example of Mario Eudave-Munoz provides a counterexample to
Conjecture 1. But it would still be interesting to know whether it is true when
both of the resulting manifolds are reducible or boundary reducible. Conjecture 2
remains open.
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