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TESSELATIONS OF S2 AND EQUATIONS OVER TORSION-
FREE GROUPS
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Let G be a torsion free group, F the free group generated by t. The equation r(() = 1 is said to have a solution
over G if there is a solution in some group that contains G. In this paper we generalize a result due to
Klyachko who established the solution when the exponent sum of r is one.
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0. Labelled patterns

Consider the following definitions.
A pattern P is a directed tree embedded in R2 with a specified vertex, called the

centre, which is adjacent to each edge. If we reverse the orientation of each edge of the
pattern P and reflect this directed tree in R2, we obtain a new pattern denoted P.

If we label some of the corners at the centre of P with distinct positive labels taken
from some alphabet X, we get a labelled pattern denoted Px. The inverse labelled
pattern, Px is obtained from P by labelling the corner corresponding to the corner of Px

labelled <x with the label a.
A directed graph F embedded in S2 is said to be a P-graph if each vertex v of F has

the same degree and looks locally like the centre of P (in which case we call v a positive
vertex) or of P (whence v is a negative vertex) with respect to the direction of its
incident edges.

If, in addition, certain corners of F are labelled with elements of X u X so that the
vertices look like the labelled pattern Px or Px, we call F a Px-graph. See for instance
Figure 1.

Lemma 1. Let m,n^\, and let P{ab) and P{aM be the patterns depicted in Figure 2. If
F is a P{a,bfgraph, then there exist at least two regions of F all of whose corners are
labelled with the same letter up to exponent.

Note we do not assume any diagrams are reduced in the sense of Sieradski [7].

Proof. Stallings in [8] shows that there must be at least two regions of F whose
boundaries are consistently oriented, i.e. as one traverses the boundary of these regions
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in r the orientation of the edges always agree or disagree with the motion. The result
follows.

Let F be a Px-graph. If D is a region of F whose boundary is consistently oriented
and all of whose corners are labelled with the same label up to exponent, then D is
called a consistent region. If Px is a labelled pattern so that every P^-graph F has at
least two consistent regions, then Px is said to be of type K. For instance, Figure 1
shows a pattern that is not of type K.

In [5], Klyachko has shown that a labelled pattern of the form depicted in Figure 3 is
of type K.

This tesselation result was an important step in settling the Kervaire conjecture for
torsion-free groups. In this paper, we prove that a larger class of labelled patterns is of
type K. This result enables us, using the techniques of Howie [4], to exhibit a large
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FIGURE 3
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FIGURE 4

class of equations with torsion-free coefficients which are solvable. Combinatorial results
such as this were anticipated by Stallings in [8, p. 147]. There seem to be two
techniques for proving facts concerning graphs embedded on S2; curvature (weight tests)
(see for example [1, 2, 3, 7, 8]), and minimal circle techniques (see [5, 6]). As it is a
generalization of the proof of Klyachko, our proof uses the latter.

Main Lemma. Let m^.2, n ^ l , X = {aubu...,an,bn} and let P™ be the pattern
depicted in Figure 4. Then P^ is of type K.

Proof. Let F be a P"-graph. We will add a new set of edges £ to T on S2 as follows.
Let R be a region of F whose boundary is not consistently oriented. We pair the
corners of R which are sources and sinks so that an edge runs from each source corner
to the sink corner to which it has been paired. We do this in such a way as to keep the
added edges from intersection (see Figure 5).
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We now have a Px-graph f where Px is the pattern depicted in Figure 5.
It is clear that each new added edge connects a positive vertex to a negative vertex.

We now label the germs of some of the edges of f to correspond to the following
labelling of Px as in Figure 6. A germ of an edge is a "small" interval contained in the
edge, one of whose endpoints is either the initial or terminal vertex of the edge. Thus
each edge has two disjoint germs.
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Note if m = 2 then s = t.
Let u,ve{s,t, l,2,...,2n+1}. Then a (u,u)-path p is a simple closed path in f so that

as one travels around the path one leaves positive vertices on the germ labelled u and
negative vertices on the germ labelled v.

Let A be the following set of ordered pairs:

A = {(2,1), (1,2), (2n,2n + 1), (2n+ l,2n), (i,s), (rj): 2^i, j^2n}

We call p an 4-path if p is a (w,u)-path for some (u,v) in ,4.
An acceptable path is a pair (p, £>) where p is an /4-path, and D is a disk on S2 whose

topological boundary is p. If (p,D) and (q,E) are acceptable paths, then we say that
(p, D) strictly contains (q, E) if D strictly contains E. We say (p, D) is minimal if it strictly
contains no other acceptable paths. If (p, D) is an acceptable path so that p is clockwise
(resp. counter-clockwise) with respect to D, then we say that (p, D) is clockwise (resp.
counter-clockwise).

Forcing Lemma. Let T be a P-graph and let D be a disk on S2 whose boundary is a
simple closed path p in F. Assume that at each positive vertex on p, the germ labelled i lies
either in D or on the boundary of D, and that at each negative vertex on p, the germ
labelled j lies in D or on the boundary of D. Furthermore, assume there is a vertex v on p
so that the appropriate germ at v lies in the interior of D. Then, if (i, J)eA, there is an
acceptable path (q, E) strictly contained in (p, D).

Proof. We shall construct q as follows. Start at the vertex v. Now, follow the germ
labelled i or j as appropriate into the interior of D. At each vertex, leave on the
appropriate germ. The assumptions on the germs of the vertices on p assure us that
whenever we leave from a vertex on the boundary of D, we do not leave D.

If /= 1 or 2n + 1 (respectively j = T or 2n+ 1) then both i and j point away from (resp.
in toward) the adjacent vertex. If e is an edge of F with a germ labelled s, t, s, or T, then
e is one of the edges that were added to F to make f. If e has a germ labelled with a
number, then e is an edge of F. This assures us that in constructing q, we never leave a
vertex on the edge with which we entered that vertex.

Since f is a finite graph, eventually, we shall arrive at a vertex which we have already
visited, thus completing a simple closed path, q, which is the /4-path for which we were
looking. Now q bounds two disks, one of which, E, is strictly contained in D. So, (q, E)
is an acceptable path strictly contained in (p, D).

Lemma. / / f is connected, (p, D) is an acceptable path, and D is a region of F, then D
is a consistent region of F.

Proof. Notice that if p is an (i,s) path and D is a region of f, then p does not
contain any negative vertices. Similarly, if p is a (t, j) path, then p does not contain any
positive vertices. The result follows.
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FIGURE 7

Let p be any A-path, thus p bounds two discs D and E. Both (p,D) and (p,E) are
acceptable paths and thus each contain minimal acceptable paths, which are distinct,
hence the previous lemma reduces the main lemma to the following.

Lemma. / / (p,D) is an acceptable path, and D is not a region, then (p,D) is not
minimal.

Proof. Let (p,D) be an acceptable path with D not a region. Consider the cyclic
pattern of elements of A as depicted in Figure 7.

It is our contention that if (p, D) is a clockwise (resp. counter-clockwise) acceptable
path with p an (i, j)-path, then (p,D) strictly contains an (iu yj-path, where (I'I, Ji) is
directly clockwise (resp. counter-clockwise) of (i, J) in the above pattern. (Here, we
consider a clockwise (2, J)-path that has only positive vertices to be a (2,T)-path, and a
counter-clockwise (2, j)-path that has only positive vertices to be a (2,s)-path. Similar
conventions are taken for (In, j), (i, 2) and (i, 2n)-paths.

For example, let p be a clockwise (l,2)-path. Let v be a positive vertex on p. Now,
since every germ labelled either 1 or 2 points away from the corresponding vertex, it is
clear that the germ on which p arrives at v is labelled 2k for some 1 ^ k ̂  n (i.e. this
germ points into v). Since p is clockwise, the germ labelled t at v must lie in the interior
of D. Since this is true for all positive vertices on p, the Forcing Lemma implies that
(p,D) contains a (t,2) path q. This path, and the disk it bounds in D make up an
acceptable path strictly contained by (p, D).

The similar arguments that complete the proof are left to the reader. This ends the
proof of the Main Lemma.

2. The Magnus derivative

If Px is a labelled pattern, then a corner of Px which is neither a source nor a sink
corner will be referred to as a neutral corner. In what follows we shall only consider
labelled patterns that have labels assigned to each of their neutral corners.

If Px is a pattern with centre vertex v, define a[Px) = outdeg{v) — indeg(v). Then, the
Magnus Derivative of Px, denoted P'x, is obtained by adding an edge pointing out of v
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in each source corner, and an edges pointing in towards v in each sink corner, and then
removing all of the original edge of Px. Each neutral corner of P'x contained a
non-empty set of neutral corners of Px, and is labelled as a word in the free semigroup
with basis the alphabet X. This word is obtained by taking the product of the labels
read counterclockwise. We observe that since all neutral corners in Px are labelled then
all neutral corners in P'x are also labelled. The labels for the corners of P' come from
the free semigroup with basis X not from X. We have chosen to use the same subscript
in the interest of brevity. There should not be any confusion in this technical point. It is
clear that P'X={PX)', and that a(P'x) = a(Px).

If r is a /Vgraph, we can obtain F', a P'^-graph, as follows:
Let R be a region of F whose boundary is not consistently oriented. We pair the

corners of R which are sources and sinks and add edges interior to R so that an edge
runs from each source corner to the sink corner with which it has been paired. We do
this in such a way as to keep the added edges from intersecting. Now, by labelling the
corners appropriately, the collection of added edges forms F' (see Figure 8).

Theorem. / / P'x is of type K, then Px is of type K.
Proof. Let F be a Px-graph. We may assume that F has no regions that are loops.

Construct a P'x- graph F' as above, superimposed over F. Since F' is of type K, we need
to show that any consistent region of F' contains a consistent region of F.

Let D be a consistent region of F'. Then for some fixed t, each corner of D contains 2f
F-germs, alternately pointing in towards and out from the adjacent vertex, and 2t — 1 F-
corners. The innermost of these F-corners has the same label (up to exponent) at each
F'-corner of D. Since there are no loops in F, it is an easy exercise to show that there
must be a consistent F-region with this label.

Recursively define P(
x
l) = Fx and

Corollary. / / Px is a pattern so that for some k, P{
x
) is of the form described in the

Main Lemma, then Px is of type K.
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3. Applications to equations over groups

Let e = ait
m'a2t

m2...akt
mk be an equation in the variable t with coefficients S =

{a,: 1 ^ i ^ fc} . We will associate to e the following labelled pattern Pe with centre v and
labelled with elements of S. We will consider edges leaving v to have a positive
direction, and edges entering v to have a negative direction. The labelled pattern Pe has
|wi1| + |m2|+•••+|m,t| edges directed so that as one circles v in a counter-clockwise
direction starting at the corner labelled a,, one encounters \nii\ edges directed with the
sign of m,; then the corner labelled a2, then \m2\ edges directed with the sign of m2; then
the corner labelled a3; continuing until one reaches the \mk\ edges directed with the sign
of mk, and then returns to the corner labelled av For example, if e = at2bt~lct3dt~l,
then Pe is shown in Figure 1. If we define e = d1t~

mkdkt~
mk-1 ...d2t~

m\ then Pg=Pe.
Similarly, if Px is a labelled pattern, then we define eP to be that equation with

coefficients from X so that Pep = Px- (ep is defined up to cyclic conjugation.) If e is an
equation, we define e', the derivative of e to be er where F = (Pe)'. Recursively,
e(k+1> = (e*)\

Let G be a group. An assignment of the coefficients S to the group G is a function
a:S->G. We use the convention a(a;)=g;. We call an assignment proper if for all
i(mod/c), »!,-_!»!,•<0 implies g , # l . We may consider e as an equation over G i.e.
e=git""g2t

m2...gkt
mk is an element of G*<t> where <t> is the infinite cyclic group

generated by t.
We say that e is solvable over G if the natural homomorphism 0:G->G*<t>/e is an

inclusion, and that e is solvable over G if e is solvable over G for any proper assignment
of the coefficients of e. We say that e is of type K if for every group G, and every proper
assignment a:S-»G such that for all i, gt has infinite order, e is solvable over G. In
particular, if e is of type K and G is torsion free, then e is solvable over G.

If a: S-*G is a proper assignment, and f is a Pe-graph, then a region R of F is
singular if the labels of R being read counter-clockwise yield a relation of G (via a). The
following lemma is just the dual situation to a well-known result of Howie [4], and
shall be stated without proof.

Lemma. Let e = ait""a2t
m2...akt

mk be an equation in the variable t with coefficients
S = {at: 1 ^ i^ fc} . Let G be a group, and a:S-*G be a proper assignment. Then if e is not
solvable over G, there exists a Pe-graph F and a region Ro of F so that each region

Q ofT is singular, but Ro is not singular.

Corollary. If Pe is of type K, then e is of type K.

Proof. Assume e is not of type K. Then there is a group G and a proper assignment
a:S->G so that each gt is of infinite order, and so that e is not solvable over G.

Then let F be the Pe-graph described by the previous lemma. We may assume that F
is minimal with respect to the number of its vertices. Since Pe is of type K, F has at
least one region R which is both singular and consistently labelled with some label a,. If
R had both positive and negative occurrences of ah then F could be reduced using
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standard methods (c.f. [7]). Since R is singular, it follows that g, has finite order. This
contradiction proves the corollary.

The following theorem is an immediate consequence of this corollary and the Main
Lemma.

Theorem. The equation e=(J~J?=1 ait~
1bit)(Y['j=i c/) is solvable over the torsion-free

group G for m^.2 and n^. 1.

Corollary. / / e is an equation so that some derivative of e has the form described in the
above theorem, then e is solvable over torsion free groups.

Assume e has exponent sum one in t. If there is only one occurrence of t in e, then for
any group G, and any assignment a, the natural homomorphism (p:G^>G*(t}/e is an
isomorphism, so e is solvable over G. So we will assume that t occurs more than once
in e.

In this case, it is clear that if one takes repeated derivatives of Pe, eventually one will
reach a labelled pattern with exactly one edge, i.e. degi{Pe)

n) = 1 for some n. If n is
minimal in this regard, then (Pe)""1 will be of the form shown in Figure 3.

This proves the following corollary:

Corollary. lfa{Px) = \ and deg{Px)>\, then Px is of type K.

We are now in a position to recover the result of Klyachko.

Corollary. / / the exponent sum of t in e is one, and G is torsion-free, then e is solvable
over G.
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