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DANIEL RIDER 

Introduction. Let G be a compact abelian group and E a subset of its 
dual group V. A function/ £ ^(G) is called an E-function if f(y) = 0 for all 
y d E where 

IM = f f(x)y(-x)dx, y e r ; 
** G 

dx is the Haar measure on G. A trigonometric polynomial that is also an 
^-function is called an E-polynomial. 

DEFINITION. E is a Sidon set if there is a finite constant B depending on E 
such that 

(1) X^ I^(T)| < J31 l/l la, for every E-polynomialf. 
yeT 

In §1 we discuss the sufficient arithmetic condition considered by Steckin 
(7), Hewitt and Zuckerman (3), and Rudin (6), which assures that E is a 
Sidon set. The hypotheses and conclusion are slightly improved. In particular 
it is shown that the characteristic function of such a Sidon set may be uniformly 
approximated by Fourier-Stieltjes transforms. This enables us to prove that 
the union of such a Sidon set and any other Sidon set is again a Sidon set. 

Section 2 deals with the analogous question on spheres. S% will denote the 
surface of the unit sphere in Euclidean 3-space. If a function / on 5 2 is in-
tegrable with respect to ordinary Lebesgue measure, then / is associated with 
a series of surface spherical harmonic polynomials: 

CO 

(2) S[f](x) = £ / , ( * ) (1, Chapter 11). 

If £ is a subset of the natural numbers, then / is an E-function provided 
fn = 0 for all n g E. f is a polynomial if fn = 0 except for finitely many n. 
If/ satisfies both, it is an ^-polynomial. It is shown that there is no infinite 
set E and finite constant B such that 

S I \fn I loo < B | l/l |œ for every E-polynomial / . 
n—0 

We also show that there is no infinite-dimensional closed rotation-invariant 
subspace of L 1 ^ ) contained in L2(S2). 

If X is a locally compact space, M(X) will be the space of all complex-valued 
regular Borel measures on X with finite total variation. For \x G M(X), \\n\\ 
denotes the total variation of /i. 

Received December 28, 1964. 

389 

https://doi.org/10.4153/CJM-1966-041-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-041-0


390 DANIEL RIDER 

1. Sidon sets for compact abelian groups. 

1.1. The following two theorems concerning analytic properties of Sidon 
sets are well known (5, pp. 121, 123). 

THEOREM 1.1. Let E be a subset of the discrete group Y. The following are 
equivalent: 

(a) E is a Sidon set. 
(b) Every bounded E-function has an absolutely convergent Fourier series. 
(c) Every continuous E-function has an absolutely convergent Fourier series. 
(d) For every bounded function <£ on E there is a measure M G M (G) such that 

P ( T ) = <t>(y) for ally G E. 
(e) For every function <j> on E that vanishes at infinity there is a function 

f G IJ(G) such thatf(y) = 4>(y) for all y G E. 

THEOREM 1.2. A set E in the discrete group T is a Sidon set if to every function 
$ on E with 4>{y) = ± 1 there is a measure JJL G M (G) with 

(3) sup |M(Y) - *(7)| < 1. 
yeE 

A set £ is a Sidon set if and only if every countable subset of £ is a Sidon 
set. Thus we can restrict ourselves to countable groups r . 

DEFINITION 1.3. Let E C r and 71, 72, . . . be an enumeration of the elements 
of E. RS(E, y) is the number of representations of y in the form 

(4) 7 = db yni ± yn2 db . . . zb yns, tti < n2 < . . . < ns. 

0 will denote the trivial character. 

Rudin (5, p. 124) proves the following 

THEOREM 1.4. Let E C r satisfy the following: 
(a) IfytE and 2y ^ 0, then -y £ E. 
(b) There is a finite constant B and a decomposition of E into a finite union 

of disjoint sets Eif E2j . . . , EtJ such that 

(5) R,(E„ y) <B° ( 1 < j < /; 5 = 1, 2, 3, . . .) 

for all y G E and for 7 = 0. Then E is a Sidon set. 

Steckin, (7, p. 394) proves this for the circle T, provided (5) holds for all 
7 G Z, the integers. Hewitt and Zuckerman (3) have shown it when B = 1. 

It is possible to omit (a) from the hypotheses, to weaken (b), and to strength­
en the conclusion. 

THEOREM 1.5. Let E C r and 0 < B < &> be such that 

(6) Rs(E,0)<B° (5 = 1 ,2 , . . . ) . 

https://doi.org/10.4153/CJM-1966-041-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-041-0


GAP SERIES ON GROUPS AND SPHERES 391 

If 0 ( T ) — ± 1 on E\J (-E), then for every e > 0 there exists v G M {G) such 
that 

(7) | * ( T ) | < € (7 <2 E U ( - £ ) ) , 

IKT) - * ( T ) | < € (7 € E U ( - £ ) ) . 

We shall show that (6) implies that there is a finite constant $1 such that 

(8) R,(E, 7) < Si* (5 = 1 ,2 , . . .) for all 7 € r . 

It follows from Theorem 1.2 and the conclusion of Theorem 1.5 that if E 
satisfies (6), then E U ( —E) is a Sidon set. It also is an immediate consequence 
that if E is the finite union of sets each of which satisfies (6), then E U (—E) 
is a Sidon set. It is not known if every Sidon set is of this type. It is not even 
known if the union of two Sidon sets is always a Sidon set. However, it follows 
from (7) that if E is a set as in Theorem 1.5, then there are measures in M(G) 
whose Fourier-Stieltjes transforms uniformly approximate the characteristic 
function of E in V. 

This will allow us to prove 

THEOREM 1.6. / / F is a Sidon set and E is a Sidon set of the type of 1.5, then 
E U F is a Sidon set. 

1.2. Proofs. 

LEMMA 1.7. Let E C r and 1 < B < 00 be such that 

Rs(E,0) <Bs (s = 1 ,2 , . . . ) . 

Assume 7 6 E and 2y 9^ 0 implies — 7 g E. Then 

(9) Ë (2B)-SRS(E, 7 ) < 2 for all 7 G I\ 

It follows from (9) that 

RS(E, 7) < 2(2B)S (s = 1, 2, . . . ; 7 G r ) . 

Proof. Let /3 = (2B)~1 and 71, 72, . . . be the elements of E. Let 

/ r \ _ i1 + ̂ *M + Py^x) if 2 ^ * °' 
MX) - l l + j87*(*) if27* = 0, 

and form the Riesz products 
N 

(io) p»(*) =n/*(*)• 

Since j8 < è and 17*0)1 = 1, iV(*0 > 0. Expanding (10) we obtain 

where 

5 = 1 
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the inner summation runs over all yniJ yn2, . . . , yns satisfying (4). In particular 

icw(o)i < E P'RAE, o x i my < i. 
S = l 6 = 1 

Since PN > 0, \\PN\\i = 1 + CN(0) < 2. Thus 

(11) 1^(7)1 < 2 for all 7 G r . 

For 7 ^ 0 , PNM
 =

 CJVCT). Fix 7 and let iV —> 00. It is easily seen that 

00 

lim CN{y) = 2 0%(E, T). 

Hence by (11), 

00 

^fi'R,{E,y) < 2 for all 7 G T. 

Proof of Theorem 1.5. The proof follows closely that of Rudin (5, p. 125). 
Without loss of generality we may assume that B > 1, 0 (? £ , and that 
7 G E, 27 7̂  0 implies —7 g £ . 

By assumption, RS(E, 0) < Bs (s = 1, 2, . . .) so that by Lemma 1.7 we 
may assume (for a different 1?) 

(12) R,(E,y) <BS (7 G T;s = 1 ,2 , . . . ) . 

Let tf> be a function on £ U ( - £ ) such that 0(7) = ± 1 . Write E = El U FJ 
where 

E1 = {7 : 7 G £ and <f>(y) = <t>( — y)} 

and 

E2 = Î7 : 7 € £ and 0(7) = — *( —7)}. 

Let 0 = {KB2)-1 for some # > 2 and define 

(13) g W " W ( 7 ) if T e ^2. 

Let 71, 72, • • • be the elements of E, (J = 1,2) and put 

/ 1 / n <• , x _ J l + g(7*)T*(x) + g(7*)(-7*)(«) ^ 2 T , ^ 0, 
{ ' M ' ~\l+ g(y*)y*(x) if 2 7 , = 0. 

Form the Riesz products 

PN(X)=n/*(*)• 
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Then as in (5, p. 125) a subsequence of {PN} converges weakly to a positive 
measure nj £ M(G) with the following properties: 

oo 

(a) | k ! | < sup|P^(0)| < 1 + £ 0'R,(E,O). 
2 

(b) \ftj(yk) - g(y*)\ < sup\PN(yk) - g(yk)\ 
N 

<£,p'R.{E,yt) i f T * € £ y . 
2 

oo 

(c) | ^ ( - 7 * ) - 2(7.)I < E 0'U,(E, yk) if 7, 6 E1. 
2 

oo 

(d) \Hi(y)\ < Z P'R.(E, 7) if 7 $ E} U ( - £ 0 U {0}. 
2 

But by (12) 

£ HSRS(E, 7)< £ (/35)s = ~&^ <(K(K- m'y1 

so that if /z = /zi — i/x2, then by (13) 

IM(7) ~ ^ ( T ) | < 2(£2X(i£ - l))-i if 7 G E \J ( - £ ) 

and 

|M(T)| < 2(B*K(K - I))"1 if 7 g £ U ( - £ ) U {0}. 

Let j/ = jz/0. Then 

, n | K T ) - * ( T ) | < 2 ( ^ - 1 ) - 1 i f 7 6 £ W ( - £ ) , 
{ ° j \p(y)\ <2(K- l ) - 1 if 7 ? £ W ( - E ) U {0}. 

Given 6 > 0, choose X" so large that 2(i£ — l ) - 1 < e; then by adding a 
constant multiple of Haar measure to v, we obtain the desired measure. 

Proof of Theorem 1.6. Let F be any Sidon set and £ a Sidon set as in Theorem 
1.5. We may assume that £ = £ U ( - £ ) , E H F = 0, and 0 g E VJ F. 
Given e > 0, the theorem above shows that there is a measure Me G M (G) 
such that 

(16) SUp |jLte(7) - 0(7)| < € 

where 0 is the characteristic function of E. 
Let H e a function o n £ U F such that 6(7) = ± 1 . By Theorem 1.2 (d), 

there is m Ç M"(G) such that #1(7) = 0(7) for all y (z F. Similarly, there is 
M2 € M(G) such that 

#2(7) = "Mi (7) + b(y) 

for all 7 G £ . Let M = Mi + M2 * Me where 

(17) «<imint l lM. i l - 1 , (HMIII + I)"1]-
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Then 
(18) \ft(y) - ft(7)1 = |M2 * M.(7)| < \M\e < h for y G F 

and 

(19) \fi(y) - 6(7)1 = |Mi(7) - 6(7) + (~Mi(7) + b(y))fîe(y)\ 

< |1 - P«(7)||/ïi(7) - 6(7)1 < i for 7 G E. 

By Theorem 1.2, JE U F is a Sidon set. 

1.3. Remarks. The following gives an equivalent statement for the 
hypotheses of Theorem 1.5. If there is 7* Ç E such that RS(E} 7*) < Bs, 
s = 1, 2, 3, . . . , then Rt(E, 0) < 35'+1, 5 = 1,2, For suppose 

s 

(20) 0 = X) ±Yn&, 7n* € £ ; »i < ^2 < . . . < »,. 
1 

Then there are two possibilities. If ± 7 * appears in the sum in (20), then we 
have a way of writing 

* - i 

± 7 * = ]E ±7n*, ni < n2 < . . . < ns-i. 
1 

There are at most 2Rs-i(E, 7*) of these. If ± 7 * does not appear in (20), then 
by adding 7* to each side we have a way of writing 

7* = ]E ±7wfc, fit < n2 < . . . < nk. 
1 

There are at most Rs+i(Ey 7*) of these. Thus 

R,(E, 0) < 2R9-1(E, 7*) + Rs+i(E, 7*) 
< 25 s " 1 + Bs+1 < 35»+1. 

In the same way it can be shown that the condition for Theorem 1.5 is 
invariant when E is translated by an element of T (3, p. 7). 

2. Sidon sets for 52 . 
2.1. If / € UiSi), then / i s associated with a series of harmonic polynomials 

(21) S[f]x = £/„(*) 

w^here 

(22) Â(x) = (2n + 1) f P.«*. y»/Cv) *V. 

Pw are the Legendre polynomials given by 

1 °° 

(23) (1 - 2v cos 6 + v"T'2 = E «"P.(cos 6). 

(x, y) is the scalar product of x and y as vectors in -E3. 
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Define tyn to be the set of all such/w. It is well known that tyn contains the 
function f(x) = Pn((x, y0)) for each y0 in 52 and that $w is the smallest rotation-
invariant subspace of £2(52) containing Pn((x, y0)). Also if / Ç tyn, then 

(24) f(x) = (2w+ 1) f P . ( ^ , y » / ( y ) ^ 

In particular, 

(25) P««*,*>) = (2n + 1) f P . ( ( x j ) ) P . ( ( ^ ) ) ( i y . 

If x G 52, x' will denote the point antipodal to x, i.e. (x, x') = — 1. 
The question may be asked: Does there exist an infinite set of integers E 

and a finite constant B such that if / is an ^-polynomial on 52, then 

(26) £ll/.IU<5||/ |U? 

The answer is negative. For assume that (26) holds for every E-polynomial 
and l e t / b e a bounded E-iunction. Let aN

2(f; x) be the second Cesàro means of 

n=0 

Then 

(27) *N2(f',x)=itMx)a(N;n)= f f(y)KN((x, y)) dy 

where a(N\ n) —* 1 as N —> <», KN > 0, and 

*J s<> 
KN({x, y)) dy = 1 

(cf. 2, p. 81). Thus | |<V(/) | |œ < |l/l|co. But <V(f) is an ^-polynomial so that 
by (26) 

(28) £ lk/(/)»IL < ̂ IkAfllL < 5 l l / l l -
Letting N —» °° , we see from (27) and (28) that (26) must hold for all bounded 
^-functions. This is impossible by 

THEOREM 2.1. Suppose E is an infinite set of integers. Then there is a bounded 
E-function f on 52 such that \\fnk\\œ = 1 for an infinite number of nk £ E. Further­
more, f can be chosen so that it is continuous except at two points. 

Proof. Choose a sequence of distinct points of 52 converging to some point 
#o G 52 ; say Xi, x2, . . . . Choose a neighbourhood Uk about x^ so small that 
if U'JC is the set of points antipodal to Uk, then none of the Uk and U''j overlap. 
By (4, p. 311) we can choose nk G E so large that 

(29) \Pnk((x, xk))\ < 2-* for x <Z Uk U U'k. 
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Then 

2~t ^nk\\Xi Xk)) 
k=l 

converges uniformly on compact sets of S2 that miss x0 and x'0. Furthermore, 
since each x G 6*2 is in at most one Uk U Uf

k, (29) implies that 

(30) 

Since | |P„|L = 1, 

2-1 *nk\\Xi Xk)l < 1 + Ë 2 H = 2. 
k=i 

fi*) = H Pnk((x, X*)) 

is the desired function. 
A set of integers {nk} for which there is A with 

^ > X > 1 (*= 1 ,2 ,3 , . . . ) 
nk 

is called a Hadamard set. If £ is a Hadamard set, it is not possible to find a 
continuous function satisfying the conclusion of Theorem 2.1. 

THEOREM 2.2. If E is a Hadamard set, then every continuous E-function has 
a uniformly convergent Laplace series. That is, if f is an E-f unction, then 

N 

Hfn(x)->f(x) 

uniformly as N —» oo . 

In particular ||/w||œ —» 0 as n —•> o° , for such a function. 

Proof. Gronwall (4, p. 351) proves that the first Cesàro means of the Laplace 
series of a continuous function/on S2 converges t o / uniformly. By a theorem of 
Kolmogorofr (8, p. 79), a uniformly Cesàro summable series with its support on 
a Hadamard set has uniformly convergent partial sums. 

It is always possible to find a continuous E-iunction such that £ II/MIU
 = °° . 

We need only consider 

f O ) = 12 I -Pnk((x,Xk)) 

where \nk\ and {xk} are as in the proof of Theorem 2.1. 

2.2. If £ is a subset of the discrete abelian group T and £ is a Sidon set, 
then every E-f unction/ G L^G) is also in LP(G) (1 < p < ~ ) (cf. 5, p. 128). 
Since every infinite compact abelian group G has Sidon sets (5, p. 126), this 
shows that there are infinite-dimensional closed translation-invariant subspaces 
of Ll(G) contained in L2(G). Hewitt and Zuckerman (3, p. 15) consider this 
problem (without the condition of being translation-invariant) when G is not 
necessarily abelian. 
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We may consider the same problem on S2: Does there exist an infinite-
dimensional closed rotation-invariant subspace of L 1 ^ ) that is contained in 
Z 2 ^ ) ? The answer is negative. 

We shall show that there exists a sequence { Yn] (Yn G $n) such that 

(31, Wt>C-"'" 
for some positive constant C If a closed rotation-invariant subspace X of 
Ll(S2) contains a function / with fn 9^ 0, then X contains all of %} and hence 
Yn. If X C £2(S2), then || ||i and || ||2 are equivalent norms on X so that there 
is a finite constant B with 

(32) !l/l |2< JB||/ | | i for a l l / 6 X. 

If X is infinite-dimensional, it must contain infinitely many of the Yn. Equations 
(31) and (32) then give a contradiction. 

The Yn are defined by 

(33) Yn(6, <j>) = cos n(j) (sin 6)n. 

Yn £ tyn (4, pp. 95, 122). It is easy to calculate 

(34) | |F w | | 2
2 = -~2 (cos ncl>)2(sin d)2n sin 6 ddd<t> 

47T t / 0 «^0 

l r(w + l) 

and 
W*T(n + 3/2) 

(35) 11 Yn\ |i = 7-2 |cos w*| (sin 0)wsin 0 d ^ 0 

47T J o «/0 
-(3/2) r ( | n + l ) 

It is known that 
r(i» + 3/2) • 

Thus (34) and (35) imply (31). 
These results, appropriately modified, hold also for the surface of the unit 

sphere in Euclidean K space, K > 3. 
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