J. Functional Programming 2 (3): 345-364, July 1992 © 1992 Cambridge University Press 345

Efficient self-interpretation in lambda calculus

TORBEN £ MOGENSEN
DIKU, University of Copenhagen, Denmark

Abstract

We start by giving a compact representation schema for A-terms, and show how this leads to
an exceedingly small and elegant self-interpreter. We then define the notion of a self-reducer,
and show how this too can be written as a small A-term. Both the self-interpreter and the self-
reducer are proved correct. We finally give a constructive proof for the second fixed point
theorem for the representation schema. All the constructions have been implemented on a
computer, and experiments verify their correctness. Timings show that the self-interpreter and
self-reducer are quite efficient, being about 35 and 50 times slower than direct execution using
a call-by-need reductions strategy

Capsule review

In this paper the author introduces an internal coding for lambda terms that assigns to
M e A a normal for [M]. The coding makes use of the representation of data types in second
order lambda calculus and hence in type-free lambda calculus. A self-interpretation E and
a self reducer R are constructed in a very elegant way. These satisfy for all MeA°.

E[M.=BM;
R [M]. =B [M"], if M has nf M™;
has no nf, else.

The first equation is even valid for all MeA.

1 Preliminaries
The set of A-terms A is defined by the abstract syntax
A=V[IAAILV.A

where V is a countable infinite set of distinct variables. (Possibly subscripted) lower
case letters a, b, x, y, ..., are used for variables, and capital letters M, N, E, ... for A-
terms. We will assume familiarity with the rules for reduction in the lambda calculus,
and mention these without reference. The shorthand Ax,...x,.M abbreviates
Ax;...Ax,.M and M, M,... M, abbreviates (... (M, M,)... M).

Two A-terms are considered identical if they only differ in the names of bound
variables (i.e. they are a-convertible), and equal if they can be B-reduced to identical

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

346 T. £. Mogensen

A-terms. We use the symbol = for identity and = ; for equality. M — N means that
M reduces to N by one B-reduction. M —» N means that M reduces to N by zero or
more B-reductions.

When a A-term M has a normal form, we use the notation NF,, to mean the normal
form of M. NF, is the set of A-terms in normal form. FV(M) denotes the set of free
variables in M. A° denotes the set of closed A-terms.

Data is usually represented in pure lambda calculus by A-terms in normal form (e.g.
Church numerals). Normal form A-terms are indeed ‘constants’ with respect to
reduction, which is a natural requirement for data. Normally, data values are
represented in such a way that the required operations on them are simple to do in
pure lambda calculus. Note that the only way to inspect a A-term from within the
lambda calculus is to apply it to one or more arguments. Also, note that an
application in itself does not involve evaluation, it is a mere syntactic construction.
Reduction must be explicitly stated by NF or by use of the = relation.

A representation schema for the lambda calculus is an injective (up to identity)
mapping [-]: A— NF,. That is, [-] will represent any A-term by a A-term in normal
form. Furthermore, the representations of two A-terms are identical iff the A-terms
are.

A self-interpreter is a A-term E, such that

AM| =, M

for any A-term M. That is, E applied to the representation of M is equal to M itself.
A self-reducer is a A-term R, such that

RIM| =¢[NF,]

for any A-term M that has a normal form. If M has no normal form, neither should
R[M].

Thus R applied to the representation of M reduces to the representation of M’s
normal form, iff such exist.

The difference between a self-interpreter and a self-reducer is mainly that the self-
reducer reduces to a representation of the normal form of its argument, whereas the
self-interpreter reduces directly to the normal form itself, if such exist. Note that p-
convertibility is required between a A-term M, and the self-interpreter applied to M,
even when no normal form exist for M. The right-hand side of the equation involving
the self-reducer is undefined if M has no normal form, so we need to specify separately
what should happen in that case.

The second fixed point theorem (see, for example, Barendregt, 1984) states that
there for all A-terms F exist a A-term X such that

FIX] =4 X.
Furthermore, there exists a ‘second-fixed-point” combinator @, such that
X =0[F|=FlX|=¢X.

Note that this theorem is dependent on the representation schema, so we need to
prove that it is valid for the schema we present below.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 347

2 A representation schema

Barendregt (1991) used a two-step representation schema: first A-terms were
represented as GoOdel numbers, then these were represented as Church numerals.
While this is a theoretically nice encoding, as it combines two well-known
constructions, it is hardly compact. The size of representations of A-terms using this
schema grows (at least) exponentially in the size of the terms. Operations on this
representation are also extremely expensive.

To construct a more compact representation schema we will use a combination of
higher order abstract syntax (Pfenning and Elliot, 1988) and a well-known way of
representing signatures using A-terms. The latter is, in fact, so well-known that the
author doesn’t know where it originated, but it is used in Reynolds (1985).
Steensgaard-Madsen (1989) contains this, and several other ways of representing data
in pure lambda calculus.

Higher order abstract syntax is an abstract syntax representation that extends
syntax trees with the abstraction mechanism of the lambda calculus. The idea is to
represent scope rules by A-abstraction. It is no surprise, then, that higher order
abstract syntax easily captures the scope rules of the lambda calculus. A higher order
abstract syntax representation || of A using unary constructors Var and 4bs and a

binary constructor App is
y PP 1x] = Var(x)

M N| = App(M],|N))
|Ax. M) = Abs(hx.|M]).

Note that binding of variables is handled meta-circularly by binding of variables. For
example, the coding of Ax.xx is

Abs(Ax . App(Var(x), Var(x))).

Representation of signatures can be done by combining and generalizing the standard
representations of pairs and booleans in the pure lambda calculus.

Given a signature X, for any sort S'in Z let Sc,, i = 1 ... n, be the constructors in that
sort. We represent the term Sc(t,, ...,¢,,) by

AX,, s X Xyt

where t_, 1s the representation of the term ¢, As an example, the signature of lists can
be represented as —_

Nil =Axy.x

Cons(A, B) = Axy.yAB.

Note that pairs are isomorphic to a sort with one dyadic constructor, Pair. The
representation of this is Pair(4, B) = Ax.x A B, which is the traditional representation
of pairs. Booleans are isomorphic to a signature with two nullary constructors True
and False. These are represented by True = Axy.x and False = Axy.y. Again, this is
the standard representation.

This coding allows a switch (case) on constructor names to be implemented in a
simple fashion in the lambda calculus. For example

case E of Nil = F, Cons(a,b) = G = EF(Aab.G).

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

348 T. £. Mogensen

When applied to booleans, this construction yields the classical implementation of if-
then-else in lambda calculus.

Combining higher order abstract syntax and the coding of signatures, we get the
following representation schema for the lambda calculus

[x] = Aabc.ax
[MN] =labc.b[M][N]
[Ax.M] = Aabc.c(Ax.[M))

where a, b, ¢ are variables not occurring free in the A-term on the left-hand side of
the equation. Such variables can always be found, for example, by choosing from
the start three variables that do not occur in the entire A-term. It is clear that the
conditions (normal form and injectivity) for representation schemae are fulfilled.

Note that
ote tha FV(M) = FV(MY).
As an example, the coding of Ax.x x is shown below:
Aabc.c(Ax.(Aabc.b(habc .ax)(habc,a. x))).

It is easy to see that this representation is linear in the size of the represented A-terms.
In fact, the size (measured as the number of variables plus the number of applications
plus the number of abstractions) of the representation is roughly seven times the size
of the original term. Operations like testing, decomposition and building of terms are
quite efficient using this representation, requiring only a few p-reductions each.

Useful variants of this representation schema exist; one can, for example, avoid
constructors on bound variables at the cost of complicating the self-interpreter
slightly. The presented schema is, in our opinion, the simplest and most elegant.

Pfenning and Lee (1991) use a similar representation for their (almost) metacircular
interpreter for typed lambda calculus. Their representation schema is somewhat more
complex and even after removal of the complications that handle type parameters, the
result is not quite the same.

3 Self-interpretation

We will (for the sake of readability) initially present the self-interpreter using
recursive equations and uncoded higher order syntax. Then we will use the coding
from above to convert this into the pure lambda calculus.

B-reduction of the abstractions in the higher order syntax is used to perform
substitution in the interpreter. Thus no environment is needed. The effect is that some
B-redexes perform substitution, and others simulate reduction in the interpreted
program. Apart from this slight subtlety, the interpreter below is remarkably easy to

understand EVar(x)] —
ElApp(M, N)] = EIM] E[N]
E[Abs(M)] = hv.E[(Mv)].

It is easy to prove by induction that recursive application of these equations and
reduction of the redexes of form (M v) from the third equation, will reduce E[| NV]} to
a A-term that is identical to N, for any A-term N. Note that this includes A-terms with

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 349

free variables. This is not the case for the representation that Barendregt used, as
explained in his article.

We now code the syntax as A-terms, replace the pattern matching by application (as
explained in the previous section), and use a fixed point combinator to eliminate
explicit recursion. This yields the complete self-interpreter

E=Yhe.lm.m(Ax.x)
(Amn.(em)(en))
(Am.\v.e(mv))

where Y = M. (Ax . h(x x)) (Ax . A(x X)).

By a similar reasoning as above, it can be shown that it is possible to reduce E[N] to
a A-term that is identical to N. This is stronger than our requirement for self-
interpretation: we didn’t require reduction of E[N] to N, just that E[N] and N could
be reduced to identical terms. Appendix A contains the proof of correctness for E.

4 Self-reduction

Reduction to normal form consists of repeatedly selecting and reducing redexes until
none are left. The selection is usually made explicit in a reducer by some programmed
strategy, but perhaps we can let this be implicit in the underlying reduction of the self-
reducer applied to its argument? This has the advantage that whatever sharing of
reductions that the system makes might be exploited by the self-reducer to get a
similar sharing.

We do present such a self-reducer. It is a bit more complex than the self-interpreter,
but, we believe, less complex that a self-reducer with explicit redex selection.

The benefits of returning a (representation of) a normal form rather than a function
when evaluating lambda terms are discussed by Berger and Schwichtenberg (1991).
To obtain this they define a procedure that, given the function returned by the
evaluator, returns a normal form term corresponding to the function. The procedure
is controlled by the type of the term in question, so it'is not applicable to our problem.
The idea of letting the underlying evaluation mechanism handle the reduction is,
however, similar to ours.

The reducer is restricted to closed A-terms. We believe it is not possible to make
a reducer that handles general A-terms using the representation schema presented
above. This has to do with the fact that it is not possible to distinguish free and bound
variables, and these have to be treated differently. This is in contrast to what
happened in the interpreter, where they are indeed treated in the same fashion. If the
representation schema is extended to distinguish free and bound variables, it would
be a simple matter to extend the self-reducer below to handle terms with free variables
correctly.

The reducer works in a rather novel way. The method avoids repeated rewrites and
scans for redexes in the term, thus (as we shall see) making it quite efficient. For rather
subtle reasons having to do with the higher order abstract syntax (you cannot inspect
the bindings of variables), it is difficult to write a reducer in a more straightforward
manner using the present representation schema.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

350 T. £. Mogensen

When we have an application App(M, N), we want to evaluate or reduce M to a
function that takes (the normal form of) N as argument (as in the interpreter). But
what if M does not reduce to an abstraction? This could happen when reducing the
body of a top-level A-abstraction, for example, in Ax .x E. Here x must evaluate to a
function that takes (the normal form of) E and returns the representation of the
expression x NF(E), which in turn becomes part of the representation of Ax.x NF(E).
The result of applying a variable to an argument could again be applied to a further
argument, etc., so any expression that does not reduce to an abstraction must evaluate
to a function that builds an application node when given an argument.

When an expression is applied to an argument, we want it to be a function, and
when it is not, we want it to be a representation. These conflicting demands can be
handled using an evaluation function in the first case, and a reduction function in the
latter, or (as we will do) a single function which produces a pair of a function and a
representation.

Again, we start by showing an equational system using higher order abstract
syntax. We have used the constructor Pair and selectors fst and snd

R[M] = snd(R'[M])
R'[Var(x)] = x
R'[App(M, N)] = fst(R'[M]) R'[N]
R[Abs(M)] = let g = hv. R'[(M v)] in
Pair(g, Abs(Aw . snd(g P[Var(w)])))
P[M] = Pair(hv. P[App(M, snd(v))], M).

R’[M] produces a pair of a function and a representation, so we take the second
component to get the representation for the final answer. Variables will be substituted
by such pairs by the time we see them, so the pair is just returned. If we have an
application App(M, N), we evaluate M to a pair and apply the first component to the
(pair) value of N. If we have an abstraction, we build a pair of a function and a
representation. The function behaves like the functional value in the interpreter. The
representation is an abstraction node with a body that is obtained by evaluating the
body of the original abstraction to a pair, and then taking the second component.
When evaluating the body, the bound variable is given a value that builds an
application node whenever it is applied to an argument. This is handled by the
function P. Note that the recursive nature of P ensures that any number of arguments
produces a corresponding number of application nodes. If, for example, the variable
x is applied to an argument M, an application x M is produced by applying the
function part of the pair bound to x to M. But if x M is again applied to an argument
N, another application (x M N) must be produced, etc. This is handled by using P
on the constructed applications. If P was unfolded fully, it would yield an infinite
term, but unless no normal form exists for the argument to the reducer, only a finite
part of the result of P will be needed. The application of the equations and reduction
of redexes can (but need not) be driven by having to reduce the snd operation against
a Pair. In the rule for abstractions, this will introduce another application of snd,

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 351

which must also be reduced, etc. If snd is reduced against the Pair from the P rule,
no extra reduction is required.
An interesting thing to note is that there is no required reduction strategy: it
depends on how the equational system is used.
The representations of Pair, fst and snd is just a special case of the representation
of signatures described above
Pair(A,By=Ax.xAB
f3t(A) = A(Aab.a)
snd(A) = A(hab.b).
So we get the following complete self-reducer
R =2Mm.R m(hab.b)
Yir.dm.m(hx.x)
(Amn . (rm) (Aab.a)(rn))
(Am.
(rg.
Ax.xg(habc.c(Aw.g(PArabc.aw)(rab.b))))
Av.r(mv))

where P= YAp. Mﬁ .(Ax.x(Av.p(habc. b m(v(hab . b)))) m)
and Y = Ah.(Ax. h(x x)) (Ax . h(x x)).

Though this might seem overwhelming, it is a fairly mechanical translation of the
equational system from above. In Appendix B we present an outline of a proof of
correctness for the self-reducer. It is in two parts: the first part shows that R[M] =,
[NF,,] when M has a normal form NF,,. The other part shows that R[M] has no
normal form if M doesn’t. The first part relies on two basic properties of R: if M =,
N, then R[M] =4 R[N], and if M is in normal form then R{M| = ;[M]. The second part
is more complex and proves that if there exist an infinite left-most reduction path for
M, then there exist an infinite quasi-left-most reduction path for R[M].

where R’

It

5 Benchmarks

Both the self-interpreter and the self-reducer have been tried out, running on a call-
by-need lambda calculus reducer implemented (using a ‘pair-of-value-and-
representation’ structure similar to the self-reducer) in Chez Scheme (Dybvig, 1987)
on a SPARC-station. The experiments indicate that both ‘ programs’ are correct with

Table 1. Reduction times

Reduction Time (s) Normalized

(Ackermann 3, ...} > 61 prcn 0-77 1
E [(Ackermann 3, .)]- 61y, o 26-59 35
R [(Ackermann 3,)]-»[61 38:35 50

Chu'ch]

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

352 T. £. Mogensen

respect to the equations. In Table 1 are shown timings for reducing (Ackermann
3churen) to normal form, where Ackermann is Ackermann’s function on Church

numerals
Ackermann = An.n (A fm . f(mf(hx.x)))
(Amf x.flm f x))
n
and 3Church =)"fx f(f(fx))

The timings are shown both in seconds and relative to direct execution. They show
the reduction performed directly, then using the self-interpreter and finally using the
self-reducer. The slowdown of the interpreter over direct execution is comparable to
the usual difference between interpreted and compiled languages. Also, even though
it returns a representation, the reducer is not much slower than the interpreter. Note
that EJM could first be reduced to M, and then to normal form. Such a strategy
would make the required number of reductions much smaller than when call-by-need
reduction is used. This would correspond closely to partial evaluation of the
interpreter with respect to [M] followed by execution of the residual program. (See
Gomard and Jones, 1991 for more details.) A forthcoming paper will describe self-
applicable partial evaluation of pure lambda-calculus using the same techniques as in
this paper.

6 The second fixed-point theorem

The second fixed-point theorem shows the existence and construction of A-terms with
special properties, like a self-representing term. This corresponds to the usual puzzle
of writing a program that returns its own ‘text’. The theorem is due to Kleene (1952),
and Barendregt (1984) shows a version for the lambda calculus. Since the theorem
involves representation of terms, it is necessary to prove if for any particular
representation schema. It is fortunately easy to do so.

The second fixed point theorem states that there for all A-terms F exist a A-term X

t
such tha FIX] =, X.

It is even the case that
X —» F[X].

Furthermore, there exists a ‘second-fixed-point’ combinator @, such that
X =0Q[F]=X—>»F[X).
We start by assuming that we have a A-term @, such that
O[M—»[[M]].

That is, Q adds a level of representation to an already represented A-term. Note that
the restriction that Q is applied only to represented arguments is necessary, as
explained in Barendregt (1991). Now, define

X = A[A]
where A = An.F App(n(Qn)).

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 353

Now we can see that
X = A[A]
— F App([A1(Q]A])) by definition of 4
- FApp([41([[A4]])) by property of O
= F[(A[A)] by representation of applications
= F[X] by definition of X.
So X is indeed a fixed point of F. Note that if Fis the identity, X is a self-representing
term. All we need now is to construct Q. First we show Q as an equational system,
and then as a A-term
QOlVar(x)] = Abs(ha. Abs(Ab. Abs(hc. App(Var(a), Var(x)))))
QlApp(M, N)] = Abs(ra. Abs(rb. Abs(hc. App(App(Var(b), QIM1), QIND)))
QlAbs(M)] = Abs(ha.Abs(Ab. Abs(Ac. App(Var(c), Abs(Av. Q[(M v)])))).
The idea is simple: we represent the A-terms that correspond to the constructors, and
put the representations of the arguments inside these. The lambda calculus version of
e Q= YAhq.Mm.m (Ax.(habc.
c(ha’.(habc.
c(Ab".(habc.
e(Ae’ . (habc.
b(habc.aa’) (habc.ax))))))))
(Amn.(habc.
c(Aa’.(habc.
c(Ab".(Aabc.
c(Ac’.(habc.
b(rabc.b(rabc .ab") (gm)) (g n)))))))
(Am.(habc.
c(ha’.(habc.
c(Ab".(habc.
c(Ae’.(habc.
b(habc.ac’)
(Aabc.cv . g(m o)),
where Y = M. (Ax. h(x x)) (Ax. h(x x)).

The proof that Q has the stated property is simple, but takes some space, so we leave
it as an exercise for the reader.

We have constructed a self-representing term by using the construction in the
theorem. Instead of letting F be Ax.x, we simply omit it. We will not present the self-
reducing term in its full form, as it is rather large. It has been reduced by computer,
and it does indeed yield its own representation.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

354 T. £. Mogensen

The construction of a second-fixed-point combinator can be derived in a few steps
from the requirement
O[F] - F[O[F]).

Using the self-interpreter E, we see that if
O —»MAf.(Ef)App(O), 2f)
then © will be a second-fixed-point combinator. The proof is simple:

O[F]»(Af.(Ef) App([©), Q) [F] by assumption
- (EF)) 4pp(1®], Q[F))

—» F App([®], O[F]) by property of E
- FApp([O], [[F1) by property of Q
= F[O[F]] by representation of applications.

But this property of @ is just a special case of the second fixed-point theorem. Thus
@ = A[A]

where A =in.G App(n(Q n))
G=MAAES)App(t,Qf)

® is quite large when written as a pure A-term, so we will refrain from doing so.
Doubitless there exist much smaller second-fixed-point combinators. Indeed, it is easy
to reduce ® somewhat by unfolding the application of G in the definition of 4, and
by abstracting out common subexpressions in Q.

Appendix A: Proof of correctness for the self-interpreter

We will prove

Theorem 1
EM]>»>M
where E is the self-interpreter:
E=YFE
where E =Xe.im.m(Ax.x)

(Amn.(em)(en))
(Am.v.e(mv))
Y = Ah.(Ax. h(x x)) (Ax. h(x x)).

Proof
We start by observing that

EIM)—~E’'[M] and E’'[M]—[M]E, E,E,

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 355

where E' = (Ax.E'(xx))(Ax.E'(x X))
E =kx.x
E, = Amn.(E"m)(E"n)
E, = m. M. E'(mv).
We conclude by proving that
E'[M]»M.

The proof is by induction over the structure of M. We assume that the property holds
for all proper substructures of a term M, and conclude that it also holds for M. We
look at the cases where M is a variable, an application or an abstraction

M=x, xeV
E'[M|>[M|E E, E,

= (Aabc.ax)E, E, E, by representation of variables
—»E x
=(Ax.x)x
—->Xx
=M

M=MM,

E'M)~[M)E, E, E,

= (Aabc.bIM }IM,)E, E, E, by representation of applications
- E,[M|][M,]

= (Mmn . (E" m) (E" n))[M,]1[M,]
- (E'[M,]) (E"[M,])

M M, by induction assumption (twice)
=M

M=ix.M,
E'[M|~[M\E, E, E,

= (habc.c(Ax.[M\))) E, E, E; by representation of abstractions
- Ey(Ax.[M,])

= (Mm. . E"(mv)) Ax.[M,]) where v does not occur free in M,
>hv. E"((Ax.[M|])v)

=Ax. E((Ax.[M,])x) by a-conversion
—Ax.E"[M)]

»Aix. M, by induction assumption
=M.

The only non-obvious step is the use of a-conversion in the last case.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

356 T. £. Mogensen

Appendix B: Outline of Proof of correctness for the self-reducer

We will start by proving that the self-reducer yields the representation of the normal
form of its argument, when the argument has a normal form. Then we show that there
is no normal form for the reducer applied to a term with no normal form.

For reasons of space, the proofs of some lemmas have been omitted. The proof of
lemma 1 has been kept in full as an example of the techniques used. A complete proof
can be obtained by contacting the author.

When there is a normal form
We assume that the term M e A® reduces to a normal form NF,,. We then show that
RIM] =g[NF,]
where R=MAm.R m()»ab.b)
R = YAr.Am.mR, R, R,
R, = (x.x)
R, = (Amn.(rm)(Aab.a)(rn))
5 = Am. Ry(Av. r(mv))
R, = Ag.Ax.xg(habc.c(w.g(PAabc.aw)(rab.b)))
P =YP
P =xp.Am.(Ax.x(hv.p(habc.bm(v(hab.b)))) m)
Y =M (Ax . h(x x)) (Ax . h(x x)).

We first show a few lemmas and corollaries.

Lemma 1
For all A-terms M, N, and variables x

R'(JM][x = R[N)) =(R'[M[x = N]I.

Proof
We do induction over the structure of M

M=x
R'(IM][x = R[N])
R'((Aabc.ax)[x= R[N]]) representation of x

= R'(habc.a(R’[N])) substitution

=5 R(R[NT]) reduction

=5 R[N] reduction

= R'[x[x=N]| inverse substitution.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 357

M=y, y+x
R(IM][x:= R[N
= R'((Mabc.ay)[x = R’[N]]) representation of y
= R'(Aabc.ay) substitution
= R'[y] representation of y
= R'[y[x = N]J| inverse substitution
M=MM,
R'(IM|[x = RN)
= R'((habc.b[M,||[M,;))[x = R[N]]) representation of A, M,
= R'(Aabc.b[M,][x = R'[N]][M,][x = R'[N]})
=g Ry[r = R'][M,][x = R'[N]][M,] [x := R[N]] reduction
=3 (R[M][x:= R[N]))(Aab.a) (R'[M,][x = R'[N]]) reduction
=g (R[M\[x = N1|) (Aab.a) (R'[M,[x = NTJ) induction (twice)
=g R,[r = R'][M,[x = N]|[M,[x = NJ| inverse reduction
=g R'(Mabc .b[M,[x = N]|[M,[x = N]) inverse reduction
=y R'[(M, M,)[x = NT)) representation of M, M,
= (RTM[x = N])
M=\.M,
R'(IM][x:=R[NT)
= R'((Aabc.c(Ay.[M,])[x = R[N representation of Ay. M,
= R'(Aabc.c(\y.[M,][x:=R[N1])
= Ry[r = R1(Ay.[M,][x = R'[N]]) reduction
=5 (Am. Rj(Av. R'(mv))) Ay .[M,] [x:=R[N]}) substitution
=3 R3(\. R'((Ay.[M,][x = R[N))v)) reduction
=g Ry(Ay. R'(\y.[M,][x = R[N »)) o-conversion
=g Ry(A\y. R'[M,][x = R'[NT)) reduction
=, R3(Ay. R[M,[x = NT) induction
=p Ry(Ay. R'((My .[M[x = NT))) inverse reduction
=g Ry(Av. R'(Ay .[M [x = NT})v)) g-conversion
=5 (Am. Ri(Av. R’ (mv))) (Ay .[M,[x = NT)) inverse reduction
=g Ry[r:== R1(Ay.[M [x = N])) inverse substitution
=3 R'(Aabc. Ly .[M [x = N]))) inverse reduction
=3 R'[(Ay. M,)[x = N]| representation of Ay. M,
=3 R[M[x = N]|.

The only non-trivial parts are the use of a-conversion and inverse reduction. The
latter can be seen as starting from both ends and working towards the middle using

14 FPR 2

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

358 T. £. Mogensen

forwards reduction only. We use =, rather than -» when we say ‘reduction’, as we
in addition to plain reduction use the equivalence Y F =4 F(Y F).
Lemma 1 has a few useful corollaries:

Corollary 1
For all A-terms M, N, and variables y

R[(hy. M)N] =4 R[M[x = N]I.

Proof
Ry .M)N]
=g R'[Ay. M (hab.a) R'[N] reduction
=g(R3(A. R'((Ly .[M)v))) (Aab.a) R'[N] reduction
=5 (R;(Ay.R'[M))(Aab.a) R'[N] o-conversion and reduction
=4 (Ag.Ax.xg(habc.c(hw.g(Phabc.aw)(rab. b))))
(Ay.R[M1])(Aab.a) R[N] substitution
=5 (Ay.R[MT) R'[N] reduction
- R[M][y=R[N]]
=4 R'[M[y = N1J] Lemma 1.
Corollary 2

For all A-terms M, N
if M—N then R[M]=;R[N]

Proof
We omit the proof, which is a simple induction on the location of the redex.

Corollary 3
For all A-terms M, N

if M—»N then R[M]=,R[N]
Proof

This is a simple induction on the number of reduction steps. If zero, M = N, if more
than zero, we use Corollary 2 to reduce the number of reduction steps.

Corollary 4
For all A-terms, M, N

if M=gN then R[M]=;R[N}]
Proof .

If M = N, then there exist a A-term T, such that A/ — T and N—» T. By Corollary 3,
R[M] =3 R|T| =, R[N].

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 359

We have now proven that R’, and thus R respects equivalence. We now need to
show that R will return its argument unchanged if it is in normal form.

Lemma 2
For all A-terms M, there exist a A-term M’, such that

PIM|=gAx.x M'[M].

Proof

P{M]
=3(Ax.x(Av. P(habc.b[M (v(hab.b)))) [M])
=g(Ax.x M'[M])
where M’ = (Av. P(habc. b M| (v(hab . b)))).
Lemma 3

For all A-terms M, N, and N’
PIM|(Aab.b)(Ax.x N'[N]) =s IM N1.

Proof
PIM|(hab.a)(Ax.x N'[N])

=3 (Ax.x(Av. P(Aabc.b{M (v(rab . b)))) [M]) (Aab.a) (Ax. x N'[NT)
=3 (M. P(habc .b[M | (v(hab.b)))) (Ax.x N'[NT])

=p P(habc.b[M]((Ax.x N'[N]) (Aab.b)))

=g P(Aabc.c[M][NY)

=, PIMN].

Lemma 4
Given a normal form A-term MeNF,, where FV(M) ={z,,...,z,}, if M =Aiy. M,
then there exists a A-term M’ such that

R(M](z, = Plz]]) =gAx.x M'[M]
otherwise R(M][z,:= Plz,]]) =4 P[M]
where we use the notation [z, :== P[z]] as an abbreviation of [z, = P[z,], ..., z, = Plz,]].
Note that by Lemma 2, P[M]=gAx.x M'[M] for some M’.
Proof
We do induction over the structure of M. Details omitted.
Now we finally get to
Theorem 2
Given a closed A-term M e A° with a normal form NF, e NF,, we have

RIM =4INF,].

14-2

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

360 T. £. Mogensen

Proof
R[M]
=4 R'[M|(hab.b) reduction
=g R[NF,/] (hab.b) Corollary 3
=g(Ax.x M'[NF,])(Aab.b) Lemmas 4and 2
=g[NF,D reduction.

When there is no normal form

We will start by presenting two functions R[| and R’[] that map A-terms to A-terms.
Then we show that R[M] =, R[M][], then that if M — N then R[M] p—» R[N] p using
at least one left-most reduction step. Finally, we use this to conclude that if there is
an infinite left-most reduction path for M, then there is an infinite quasi-left most
reduction path for R[M][], and thus we see that if M has no normal form, then

neither has R[M]. We will use — to describe a single left-most reduction step.
l

We first define
P =(x.P(xx)(Ax.P(xXx))
P" =Am.(Ax.x(\v. P"(Aabc. bm(v(hab .b)))) m)
and note that P—» P” and P”— P".

In the mappings R[] and R’[] we use environments p, p’, etc. We use [] to signify
the empty environment and use p[x,—M,,...,x,~ M,] as the environment p
extended by binding x, to M,, etc. Environments will always bind variables either to
themselves or to their representations

RlxM,... M,) p = Aabc.b(...(habc. b[x]R[M,]p)..)R[M,]p ifn=0,px=]x]

RxM,.. Mp=R[xM,.. M]p(hab.b) ifnz0,px=x

Ri(Ax. MOM, .. M Jp=R[Ax. M)M,.. M Jp(hab.b) ifnz1

R[Ax. Ml p = Aabc.c(hx . R[M,] p[x+ [x]])

RixM,...M,Jp= P'(habc.b(... (habc . b[x]R[M,] p) ...)R[M,] p)
ifn=0,px=[x]

RixM,.. M,Jp=x(hab.a)R'[M,lp...(hab.a) R'[M,Jp ifnz0,px=x

R[(Ax. MM, ... M Jp=Ax.R[M]plx—x])R[MIp...(kab.a) R'[M] p

ifn=>1
R[Ax. Myl p = Az.z(Ax. R'[M,] p[x— x]) (Aabc . c(Ax . RIM,] plx+ [x]])).

Lemma 5
If M is in normal form and p x = [x] for all free variables in M, then R[M]p = [M].

Proof

If the conditions are true, only the first and last rule of R[] are used. It is easy to see
that they build the representations of their arguments. Note that when applying R[|
under a lambda, the environment is updated in such a fashion as to preserve the
conditions.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 361

Lemma 6
For all A-terms M and all environments p

R'[M] p(hab.b) - R{M] p.

Proof

All but the first rule of R’[] give the result trivially. It is easy to see that P" M —
Ax.x M’ M for some M’. Thus P” M(hab.b)—» M, which when applied to the first
rule of R’[] give the desired result.

Lemma 7
For all A-terms M with free variables v, and v,

R[M][v; = Plv)]] = B R'[M][v, v, (ind Uj]-

Proof
We do induction over the structure of M. Details omitted.

Corollary 5
For all A-terms M with free variables v, and v,

RIM[v; = Plo]] =4 RIM][v,~ [v,l, v, v].

Froof RIM1[o,= Plo,]
- R[M][v, = Plv,]] (hab.b)
=, R'[M][v, = Plv],v,~v,](Aab.b) Lemma 7
—-» RIM] [v, = Pjv,],v,~)] Lemma 6.
Lemma 8

For all A-terms M and N
R'[M]p(rab.a)R'[N]p-»R'[MN]p.

Proof
We do induction over the structure of M. Details omitted.

We say that a variable is free in an environment p, if it is free in p x for some x.

Lemma 9

For all A-terms M and N, environments p and variables y not free in p
(RIM]ply=yD [y =RN]p]»R[M[y = Nlp

and (RiM] ply~ yD 1y = R'[N] p]» RIM[y = N]] p.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

362 T. A£. Mogensen

Proof
We do induction over the structure of M. Details omitted.

We are now getting close to the end:

Lemma 10
For all A-terms M, ..., M,, n > 1 and all environments p

RIAY. M) M, M, ... M,] p—»RI(M,[y = M]M,...M,]p

using at least one left-most reduction step.

Proof
R{Ay . M) M\ M, ... M,]p
=RIQy. MYyM, M,...M,] p(hab.b)
= (\y. R M] ply ~ yD) R'IM,] p(hab.a) R[M,] p
...(hab.a)R'[M,] p(Aab.b)
> (RIM] ply=>yD 1y =R[M]p] (hab.a)R'[M,] p
...(hab.a) R’[M] p(rab.b)
>R [Myy=M]lphab.a) R'[M,]p...(kab.a) R'[M,] p(hab.b) Lemma?9
»>R[My=M]IM,... M p(rab.b) Lemma 8
»>RIM[y=M]IM,...M]p Lemma 6.

We now generalize this to arbitrary redexes.

Lemma 11

For all A-terms M and N where M — N and all environments p, where p x = [x] for
l

all variables xe FV(M)
R[M]p—R[N]p

using at least one left-most reduction step.

Proof

We do induction on the position of the left-most redex
M=GAx.M)M,,...M,, n=1.

We get the result directly from Lemma 10

M=xM,..M,.. M, n=0, theleft-most redex isin M, M,— N,
i

RIM=xM,..M,...M,]p
= Ahabc.b(... (habc . b[x|R[M,]p...R[M]Jp..)R[M,]p
—»Aabe . b(... (habe . b[x]R[M,]p...R[N]p...)R[M,]p byinduction
=R[M=xM,..N,...M,]p.

In the induction step we use that for j < i, R[M,] p = [M}], since M, is in normal form
(Lemma 5). This means that R[] p contains no redexes, so the left-most redex of the

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

Efficient self-interpretation in lambda calculus 363

entire expression must be the left-most redex of R[M] p. Hence we get the required
left-most reduction step.

M=\x.M,
RAx. M} p

= Aabc. c(Ax . R[M] p[x~ [x]])
—» Aabc. c(Ax.R[N] p[x~[x]]) byinduction
= R[Ax.N,] p.

Again, we note that the left-most redex in R[M,] p[x > [x]] is the left-most redex in the
entire expression.
Now we are ready for the finale:

Theorem 3
If a closed A-term M has no normal form, then R[M]has no normal form either.

Proof
If M has no normal form, then the sequence of left-most reduction steps is infinite

MM ->M,- ...
i]

[

By Lemma 11 we have
RIM][]->RIMI[] > RIM,J [] ...

where each of the —» contains at least one left-most reduction step. As we have only
finitely many reductions between each left-most reduction step, we have an infinite
quasi-left-most reduction sequence for R[M][], so by Theorem 13.2.6 in Barendregt
(1984) it has no normal form. Since R[M| =, R[M][] by Lemma 5, it has no normal
form either.

References

Barendregt, H. 1984. The Lambda Calculus: Its Syntax and Semantics (revised edition). North-
Holland.

Barendregt, H. 1991. Self-interpretation in lambda calculus. J. Functional Program., 1 (2):
229-33,

Berger, U. and Schwichtenberg, H. 1991. An Inverse of the Evaluation Functional for Typed
A-calculus. Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science,
IEEE Computer Society Press, 203-211.

Dybvig, R. K. 1987. The Scheme Programming Language. Prentice-Hall.

Gomard, C. and Jones, N. D. 1991. A Partial Evaluator for the Untyped Lambda Calculus. J.
Functional Program., 1 (1): 21-69.

Kleene, S. C. 1952. Introduction to Metamathematics. North-Holland.

Pfenning, F. and Elliot, C. 1988. Higher-Order Abstract Syntax. In Proc. ACM-SIGPLAN
Conf. on Programming Language Design and Implementation, pp. 199-208. ACM Press.
Pfenning, F. and Lee, P. 1991. Metacircularity in the polymorphic A-calculus. Theoretical

Computer Science, 89: 137-159.

Reynolds, J. C. 1985. Three Approaches to Type Structure. Vol. 85 of Lecture Notes in
Computer Science, pp. 97-138. Springer-Verlag.

Steensgaard-Madsen, J. 1989. Typed Representation of Objects by Functions. TOPLAS, 11
(1): 67-89.

https://doi.org/10.1017/50956796800000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000423

