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Abstract

Okasaki introduced the canonical formulation of functional red-black trees when he gave

a concise, elegant method of persistent element insertion. Persistent element deletion, on

the other hand, has not enjoyed the same treatment. For this reason, many functional

implementations simply omit persistent deletion. Those that include deletion typically take

one of two approaches. The more-common approach is a superficial translation of the standard

imperative algorithm. The resulting algorithm has functional airs but remains clumsy and

verbose, characteristic of its imperative heritage. (Indeed, even the term insertion is a holdover

from imperative origins, but is now established in functional contexts. Accordingly, we use

the term deletion which has the same connotation.) The less-common approach leverages the

features of advanced type systems, which obscures the essence of the algorithm. Nevertheless,

foreign-language implementors reference such implementations and, apparently unable to

tease apart the algorithm and its type specification, transliterate the entirety unnecessarily.

Our goal is to provide for persistent deletion what Okasaki did for insertion: a succinct,

comprehensible method that will liberate implementors. We conceptually simplify deletion by

temporarily introducing a “double-black” color into Okasaki’s tree type. This third color,

with its natural interpretation, significantly simplifies the preservation of invariants during

deletion.

1 Introduction

Red-black trees are an efficient representation of ordered sets, and many common

operations, such as search and insertion, are possible in logarithmic time. Their

efficiency stems from their mostly-balanced nature, which is guaranteed by their

structural invariants.

A red-black tree is a binary tree in which each node is colored red or black, and

whose construction satisfies two properties:

1. the local property that every red node has two black children, and

2. the global property that every path from the root to a leaf1 node contains the

same number of black nodes.

1 For our purposes, leaf nodes do not house a value and are colored black.
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These conditions guarantee that the longest path from root to leaf can be no more

than twice the shortest (the only difference being individual red nodes interspersed

along the way), so the penalty of locating an element in a red-black tree is minor

relative to that in a perfectly-balanced tree.

Okasaki properly introduced red-black trees into the functional world when he

gave a concise, elegant method of element insertion (Okasaki, 1999). In Okasaki’s

formulation, insertion of an element begins by traversing the tree, in typical recursive

fashion, to find the location on the fringe to place it (or find that insertion

unnecessary, in the case that the element is encountered). The newly-added node is

colored red, an assignment which may introduce a local property violation. (This

act characterizes Okasaki’s algorithm: the preservation of the global property at the

expense of the local one.) To account for the local property violation, the tree is

re-balanced as the traversal recedes. This operation rearranges trees of one of the

forms
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Fig. 1. (Colour online)

to obtain
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Fig. 2. (Colour online)

The final step of Okasaki’s insertion algorithm is to blacken the root of the tree,

which may resolve a red-red violation outside the scope of balance.

The concision and elegance of insertion can be manifest in code as well. We

use the Racket language (Flatt & PLT, 2010) for this purpose, but any modern

functional programming language will do.2

First, we define a datatype to represent red-black trees with

(struct RBT {})

Its variants include internal nodes, defined by

(struct N RBT {color left-child value right-child})

and leaf nodes, defined by

(struct L RBT {})

2 We also provide a Haskell (Peyton Jones, 2003) implementation in the appendix.
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We define the macro (R a x b) to match and construct red nodes and the macros

(B a x b) and (B) to match and construct black internal nodes and leaves. We also

define (R? a) and (B? a) which match nodes without deconstructing them, and bind

each to a .

With this syntax in hand, Okasaki’s insertion algorithm is indeed concise.

(define (insert t v )

(define-match ins

[(B) (R (B) v (B))]

[(N c a x b)

(switch-compare

(v x )

[< (balance (N c (ins a) x b))]

[= (N c a x b)]

[> (balance (N c a x (ins b)))])])

(blacken (ins t)))

(define-match balance

[(or (B (R (R a x b) y c) z d )

(B (R a x (R b y c)) z d )

(B a x (R (R b y c) z d ))

(B a x (R b y (R c z d ))))

(R (B a x b) y (B c z d ))]

[t t])

(define-match blacken

[(R a x b)

(B a x b)]

[t t])

2 Deletion

Deletion is dual to insertion: where insertion is found unnecessary at the presence

of an element, deletion is found unnecessary at its absence. The deletion of any

element from the empty tree yields, of course, the empty tree.

Fig. 3

However, insertion into binary trees has the advantage that a new node is

added only to the fringe, whereas deletion might also target an interior node.

We accommodate this complication by replacing the value in a targeted interior

node with its inorder successor3, if it exists, and deleting its fringe node. If its

inorder successor doesn’t exist, we can replace the targeted interior node with its

left subtree. This substree may be empty, to be handled by the following example on

the left, or may be a red singleton, to be handled by the same example on the right.

v

x

v

x

Fig. 4. (Colour online)

In order to preserve the global property, the root color of the resulting tree must be

a combination of the root colors of the original tree and its left child that preserves

3 That is, the value of the leftmost node of the interior node’s right child.
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their respective path contributions. For pre-transformation root colors of red and

black, a post-transformation black root satisfies this requirement. So constrained,

we are naturally led to wonder how the tree root of

v

should be colored under deletion of v .

In response, we introduce a transitory color, double-black, to temporarily preserve

the global invariant which both nodes and leaves can take on. We permit double-

black leaves by another variant of the red-black tree datatype with

(struct L2 RBT {})

and double-black nodes by another color ’BB. As before, we also define macros to

match and construct double-black (BB) nodes and leaves. The -B function demotes

a double-black node or leaf to its black counterpart and will prove useful.

Double-black nodes and leaves, depicted with “reversed polarity” as

a b

x

contribute two black nodes to any path through them. With a color with this

property made available, it becomes obvious how to handle a singleton black node:

v

Fig. 5

Of course, a tree which includes double-black nodes is not a red-black tree, but just

as Okasaki balanced red-red violations away by pulling them higher in the tree, we

can rotate double-black nodes (and leaves) away in the same fashion. We attempt to

discharge a double-black node, if one exists, at each step of the traversal unwinding.

If discharge isn’t possible at a particular step, we arrange for it to be considered

by the next step by pulling it higher in the tree. In this way, the double-black node

bubbles upward until it is extinguished. At each of these steps, we encounter one

of only three tree arrangements (and their reflections) which require double-black

node treatment.
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In the first case, we can discharge the double-black node immediately with the

rotation
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Fig. 6. (Colour online)

but, if the subtree c is red-rooted, this rotation introduces a red-red violation. We

compose balance with the rotation to rectify the violation if it occurs. We match this

case and its reflection within the rotate function by

[(R (BB? a-x-b) y (B c z d ))

(balance (B (R (-B a-x-b) y c) z d ))]

[(R (B a x b) y (BB? c-z-d ))

(balance (B a x (R b y (-B c-z-d ))))]

It’s simple to verify that this rotation preserves the global property: count the

number of black nodes in each path through the original subtree and see that the

rotation preserves each.

In the next case, a similar rotation
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Fig. 7. (Colour online)

does not discharge the double-black node. This case is susceptible to the same red-

red violation as the previous, but, rooted by a double-black node, cannot be handled

by balance. We solve this simply by extending balance to include the transformations
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Fig. 8. (Colour online)

i.e., by adding

[(or (BB (R a x (R b y c)) z d )

(BB a x (R (R b y c) z d )))

(B (B a x b) y (B c z d ))]
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to its case analysis. Unlike the original cases of its design, these cases of balance,

introducing no red nodes themselves, cannot introduce red-red violations.

It is hopeless to attempt to rearrange the final case

a b
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to satisfy the global and local properties simultaneously (not to mention ordering),

even with the help of balance and rotate. However, we observe that in order for each

path through this tree to have the same number of black nodes, the red node must

have black nodes as children. Including the inner child in our consideration gives us

just enough to satisfy every property.
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Fig. 9. (Colour online)

The possibility of a red-red violation is present here, but occurs deeper in the

tree, and so cannot readily be handled after the rotation. Instead, we must integrate

balance into the process. As cases for the rotate function, this is expressed by

[(B (BB? a-w-b) x (R (B c y d ) z e))

(B (balance (B (R (-B a-w-b) x c) y d )) z e)]

[(B (R a w (B b x c)) y (BB? d-z-e))

(B a w (balance (B b x (R c y (-B d-z-e)))))]

At the final step of unwinding, a double-black node might reach the root of the

tree, outside the domain of rotate. Such an occurrence would not be fatal since the

newly-colored root node could be soundly demoted by unilaterally blackening it

after deletion, just as Okasaki does for insertion. This would expose blacken to the

transient double-black color. In the interest of containing double-black to balance

and rotate, we adopt a coloring policy which prevents a double-black node from

ever reaching the root.

Observe that, in any non-empty red-black tree, either one of the root’s children is

red or the root can be colored red without violating any invariant. So colored, this

configuration guarantees a bubbling double-black node will be discharged before it

reaches the root, if only just before. We codify this strategy by prefixing deletion

with a redden operation, which provides that a tree’s root may be blackened after
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an insertion only to be reddened before a deletion. To avoid such unnecessary

operations, we admit red roots in red-black trees—our invariants in fact never

excluded them—and weaken blacken to do so only if the red-black construction

demands it. This reveals another view of the duality of insertion and deletion: just

as the final step of insertion is to blacken the root if necessary, the initial step of

deletion is to redden it if possible.

Deleting the inorder successor from the right child can be accomplished by

invoking delete directly, but this requires many unnecessary comparisons and that

the value of the successor be retrieved beforehand. We define min/delete to extract

and delete a tree’s minimum element efficiently.

(define-match min/delete

[(B) (error ’min/delete "empty tree")]

[(R (B) x (B)) (values x (B))]

[(B (B) x (B)) (values x (BB))]

[(B (B) x (R a y b)) (values x (B a y b))]

[(N c a x b) (let-values ([(v a∗) (min/delete a)])

(values v (rotate (N c a∗ x b))))])

With these definitions, the deletion algorithm can be expressed succinctly.

(define-match balance

; Figures 1 and 2

[(or (B (R (R a x b) y c) z d )

(B (R a x (R b y c)) z d )

(B a x (R (R b y c) z d ))

(B a x (R b y (R c z d ))))

(R (B a x b) y (B c z d ))]

; Figure 8

[(or (BB (R a x (R b y c)) z d )

(BB a x (R (R b y c) z d )))

(B (B a x b) y (B c z d ))]

[t t])

(define-match rotate

; first case, Figure 6

[(R (BB? a-x-b) y (B c z d ))

(balance (B (R (-B a-x-b) y c) z d ))]

[(R (B a x b) y (BB? c-z-d ))

(balance (B a x (R b y (-B c-z-d ))))]

; second case, Figure 7

[(B (BB? a-x-b) y (B c z d ))

(balance (BB (R (-B a-x-b) y c) z d ))]

[(B (B a x b) y (BB? c-z-d ))

(balance (BB a x (R b y (-B c-z-d ))))]

; third case, Figure 9

[(B (BB? a-w-b) x (R (B c y d ) z e))

(B (balance (B (R (-B a-w-b) x c) y d )) z e)]

[(B (R a w (B b x c)) y (BB? d-z-e))

(B a w (balance (B b x (R c y (-B d-z-e)))))]

; fall through

[t t])

(define-match -B

[(BB) (B)]

[(BB a x b) (B a x b)])

(define (delete t v )

(define-match del

; Figure 3

[(B) (B)]

; Figure 4

[(R (B) (== v ) (B))

(B)]

; Figure 4

[(B (R a x b) (== v ) (B))

(B a x b)]

; Figure 5

[(B (B) (== v ) (B))

(BB)]

[(N c a x b)

(switch-compare

(v x )

[< (rotate (N c (del a v ) x b))]

[= (let-values ([(v∗ b∗) (min/delete b)])

(rotate (N c a v∗ b∗)))]

[> (rotate (N c a x (del b v )))])])

(del (redden t)))

(define-match redden

[(B (B? a) x (B? b))

(R a x b)]

[t t])
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Fig. 10. Time benchmark comparison.

3 Evaluation

The primary goal of the preceding account of persistent deletion is comprehensibility.

Once the algorithm is understood, many opportunities become apparent to make the

algorithm more efficient (but, we contend, less clear). For instance, the balance cases

can be partitioned by the root node color—black or double-black–and in which

child the red-red violation may occur—left or right.

We evaluated the implementation, both as presented and so-“optimized”, against

the so-called untyped formulation of Kahrs (Kahrs, 2001).4 In order to make a more

direct comparison, we translated Kahrs’ formulation into Racket. While originally

implemented in Haskell, his untyped formulation, as one would expect, does not

leverage Haskell’s type system in any appreciable way, so we are confident our port

to Racket is faithful.

We performed a benchmark consisting of a sequence of cascading deletions from

trees increasing exponentially in size, repeated five times for each size.

Figure 10 illustrates the execution time of each implementation as a graph of

execution time over log-scaled tree size. Kahrs’ algorithm performed twice as fast

as the presented implementation and still significantly faster than the optimized

version. This advantage may be due to his extraction method: instead of replacing

the target node’s value with that of its inorder successor, it stitches the subtrees of

the target node together.

Each implementation uses essentially the same representation for red-black trees,

so memory usage for a given tree in each is the same. An instrumented garbage

4 We intended to include a zipper-based implementation in the evaluation, but the Scheme port as found
was incorrect.

https://doi.org/10.1017/S0956796814000227 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000227


Functional pearl 431

collector revealed revealed differences in the behavior of each implementation with

regard to it. For each benchmark, the presented and optimized implementations

allocated in total 26G and 25G, and 22% and 32% of execution time was under

control of the garbage collector, respectively. In contrast, Kahrs’ implementation

allocated 34G in total, and 32% of execution time was under control of the garbage

collector.

4 Related work

The standard imperative algorithm can be found in many textbooks, such as Cormen

et al. (Cormen et al., 2001). Translations of this algorithm have been found in

SML/NJ (Appel & MacQueen, 1991) and some Scheme implementations (Dybvig,

2003). Despite the use of Huet’s zippers (Huet, 1997) and Hinze’s linear-time

construction method (Hinze et al., 1999), these translations retain the imperative

character of their ancestry.

Static type systems have been used to great effect to encode the red-black tree in-

variants. Kahrs (Kahrs, 2001) leverages Haskell’s type system to promote correctness

and Appel (Appel, 2011) outright proves Kahrs’ approach correct using Coq (Bertot

& Castéran, 2004), as Filliâtre does with his own implementation (Filliâtre &

Letouzey, 2004). Kahrs’ algorithm has been transliterated into languages with ill-

suited type systems such as Scala’s collections library (Odersky, 2009) and several

Scheme implementations.

5 Conclusion

In spite of the existence of faster methods of persistent deletion, the numerous

transliterated and even incorrect implementations underscore the need for a com-

prehensible account. We have endeavored to give such an account. Once the method

is understood, clarity can be spent for efficiency, and the performance of the resulting

algorithm is competitive with other methods.
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Appendix A. Haskell code

data Color = R | B | BB deriving (Show)

data Tree elt = E | EE | T Color (Tree elt) elt (Tree elt) deriving (Show)

type Set a = Tree a

empty :: Set elt

empty = E

insert :: Ord elt => elt -> Set elt -> Set elt

insert x s = blacken (ins s)

where ins E = T R E x E

ins (T color a y b) | x < y = balance color (ins a) y b

| x == y = T color a y b

| x > y = balance color a y (ins b)

blacken (T R (T R a x b) y c) = T B (T R a x b) y c

blacken (T R a x (T R b y c)) = T B a x (T R b y c)

blacken t = t

balance B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)

balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)

balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)

balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)

balance BB a x (T R (T R b y c) z d) = T B (T B a x b) y (T B c z d)

balance BB (T R a x (T R b y c)) z d = T B (T B a x b) y (T B c z d)

balance color a x b = T color a x b

delete :: Ord elt => elt -> Set elt -> Set elt

delete x s = del (redden s)

where del E = E

del (T R E y E) | x == y = E

| x /= y = T R E y E
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del (T B E y E) | x == y = EE

| x /= y = T B E y E

del (T B (T R E y E) z E) | x < z = T B (del (T R E y E)) z E

| x == z = T B E y E

| x > z = T B (T R E y E) z E

del (T c a y b) | x < y = rotate c (del a) y b

| x == y = let (y’,b’) = min_del b

in rotate c a y’ b’

| x > y = rotate c a y (del b)

redden (T B (T B a x b) y (T B c z d)) =

T R (T B a x b) y (T B c z d)

redden t = t

rotate R (T BB a x b) y (T B c z d) = balance B (T R (T B a x b) y c) z d

rotate R EE y (T B c z d) = balance B (T R E y c) z d

rotate R (T B a x b) y (T BB c z d) = balance B a x (T R b y (T B c z d))

rotate R (T B a x b) y EE = balance B a x (T R b y E)

rotate B (T BB a x b) y (T B c z d) = balance BB (T R (T B a x b) y c) z d

rotate B EE y (T B c z d) = balance BB (T R E y c) z d

rotate B (T B a x b) y (T BB c z d) = balance BB a x (T R b y (T B c z d))

rotate B (T B a x b) y EE = balance BB a x (T R b y E)

rotate B (T BB a w b) x (T R (T B c y d) z e) =

T B (balance B (T R (T B a w b) x c) y d) z e

rotate B EE x (T R (T B c y d) z e) = T B (balance B (T R E x c) y d) z e

rotate B (T R a w (T B b x c)) y (T BB d z e) =

T B a w (balance B b x (T R c y (T B d z e)))

rotate B (T R a w (T B b x c)) y EE = T B a w (balance B b x (T R c y E))

rotate color a x b = T color a x b

min_del (T R E x E) = (x,E)

min_del (T B E x E) = (x,EE)

min_del (T B E x (T R E y E)) = (x,T B E y E)

min_del (T c a x b) = let (x’,a’) = min_del a

in (x’,rotate c a’ x b)
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