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HOW TO CONSTRUCT ALMOST FREE GROUPS 

ALAN H. MEKLER 

0. I n t r o d u c t i o n . Almost free groups were introduced in [9] as groups 
all of whose "smal l " subgroups are free. Here *'small" means generated 
by fewer elements than the cardinal i ty of the group. Th is concept is a 
generalization of locally free. Suppose K is a cardinal > co. A group is 
K-free if every subgroup generated by fewer than K elements is free. A 
group of cardinali ty K which is K-free is almost free. There are two related 
concepts which are closer approximations to freeness. 

0.1. Definition. If A is K-free, a subgroup B is K-pure if B is a free factor 
of B + D, where \D\ < K. (\D\ denotes the cardinal i ty of the group or 
set.) A K-free group A is strongly K-free if every subset of A of cardinali ty 
< K is contained in a K-pure subgroup generated by fewer than K elements. 
A K-free group, A, is K-separable if every subset of cardinal i ty < K is con­
tained in a free factor generated by fewer than K elements. 

Of these notions t ha t of being strongly K-free is of part icular interest 
because of the following theorem. 

0.2. T H E O R E M . ([3], [13]) A group is L^-equivalent to a free group 
(LœK-free) if and only if it is strongly K-free. 

Proof. Since the proof of this result follows t h a t of [3] (for abelian 
groups) , we will jus t indicate how it is proved. T h e necessity follows from 
the fact t h a t being strongly K-free is expressible by a sentence of LœK and 
is t rue for all free groups. In order to show the sufficiency wre can set up 
as Eklof did part ial isomorphisms between free factors of a fixed free 
group and K-pure subgroups of the strongly K-free group. 

0.3. Remark. T h e terminology of 0.1 is imported from abelian group 
theory. In most of this paper we t rea t groups and abelian groups simul­
taneously. T h e reader can subst i tu te direct summand for free factor and 
direct sum for free product in order to obtain the results for abelian 
groups. Some of our results will be established only for abelian groups 
(or non-abelian groups) . We will alert the reader to these. 

0.4. Outline of Paper. This paper has two main par ts . T h e first section 
is devoted to a description of possible non-free K-free groups. In the 
remaining sections, various K-free groups are constructed. T h e central idea 
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is t ha t every K-free group of cardinality K can be expressed as the union of 
a smooth chain (of length K) of free groups. For regular K (this is the 
only interesting case, cf. Theorem 1.1), this leads to a function, T, which 
assigns an invariant to /c-free groups. Roughly this invariant tells which 
elements of the chain are not /c-pure. In Section 1, we s tudy K-free groups 
by proving results which say a x-free group can be expressed as the union 
of a chain of subgroups satisfying certain properties. For example, 
Theorem 1.13 restricts the possible range a t I \ 

In Section 2, we construct many strongly /c-free groups. This is done by 
inductively defining smooth chains of free groups. From these inductive 
constructions there arise two other notions, t ha t of a criterion for freeness 
and tha t of an embedding property. A criterion for freeness tells us tha t 
the groups constructed a t limit stages are free. An embedding property 
is used to go from one stage to the next. Some of these constructions 
require consequences of Godel's Axiom of Construct :bil i ty, (V — L). 
These constructions provide relative consistency results. For example, 
Theorem 2.15 says if ( F = L) , then for successor cardinals all strongly 
/c-free abelian groups possible in light of Lemma 1.9 and Theorem 1.13 
actually occur. 

In Section 3, we use trees and embeddings to construct K-free not 
strongly /c-free groups. In Section 4, we vary the embeddings in order to 
construct para-free groups. I t is shown tha t we can demand all the non-
abelian group constructed in Sections 2 and 3 be para-free as well. 

If we restrict ourselves to abelian groups, we can obtain more sophis­
ticated embeddings and criteria for freeness. In Section 5, we prove a 
number of "real world" results. In particular, we show for all n > 0 tha t 
r applied to strongly ww-free abelian groups of cardinali ty œn can take 
any value. 

We end the paper with a number of questions. 

0.5. Definition. A cardinal is an initial ordinal. An ordinal is identified 
with the set of its predecessors X«r = ov = {v\v < œa}. A subset, C, of an 
ordinal, v, is closed and unbounded (a cub) if it is closed under unions and 
for all r < v there is an a G C such tha t a > r. A set E Ç v is stationary 
if it has non-empty intersection with every cub. 

0.6. Acknowledgment. Some of the results in this paper are from the 
author ' s doctoral dissertation. I would like to express my gra t i tude to 
my thesis advisor, Paul Eklof, for his help during the preparat ion of my 
thesis and the years after. 

1. S t r u c t u r e of a l m o s t free groups . We wish to analyze some of 
the s t ructure of non-free almost free groups. The following results tell us 
we can restrict ourselves to considering K-free groups where K is regular 
and not weakly compact. 
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1.1. T H E O R E M . (1) ([18]) / / A is n-free and K is singular then A is 
K+-free. 

(2) ([13]) If K is weakly compact (resp. strongly compact) and A is a 
K-free group of cardinality K (resp. of arbitrary cardinality), then A is free. 

Proof. See [6] Theorem 2.6 for a proof of (2). 

In the following, unless otherwise s tated, K will always be a regular, 
non-weakly compact cardinal and A a K-free group of cardinal i ty K. The 
most obvious thing we can say of A is t ha t it is a union of a chain of free 
groups. 

1.2. Definition. A K-filtration of A is an increasing chain, A = [Av\ 
v < K\ of subgroups of A satisfying for all v < K: 

(i) \AV\ < K ; 

(ii) A = \JV<KAV\ a n d 

(iii) if v is a limit ordinal, Av = U M o A^. 

A chain satisfying (iii) is said to be smooth. 

T h e following observation is essentially due to Eklof. 

1.3. T H E O R E M . ([6], Theorem 2.5) Suppose A is a K-filtration of A and 
E = {v\A „ is K-pure}. A is free if and only if E is not stationary. 

Proof. If E is not s ta t ionary, we can find a cub C Q K such that 
C P\ E = 0. L e t / enumerate C and let 

Ar = {BV\BV = Afiv)}. 

Since we have a K-filtration of A by K-pure free groups, we can inductively 
obtain a set of free generators for A. 

Assume A and E are as in the hypothesis of the theorem. Suppose 
A' = {Bv\v C *} is some other K-filtration of A. An easy a rgument shows 
C = {v\Bv = Av) is a cub. If A is free there is a K-filtration Ar by K-pure 
subgroups. Let C be as above. Then C C\ E = 0. 

1.4. Description of T. There is a natura l equivalence relation on the 
subsets of K. Two sets, E\ and E2, are equivalent if there is a cub C such 
t ha t C C\ Ei = C C\ E2, or equivalently (E\ — E2) ^J (E2 — Ei) is not 
s ta t ionary. For any set E C K, let E indicate the equivalence class 
determined by E. This gives the Boolean algebra, P(K)/I, where / is the 
ideal of non-stat ionary sets. W e will use U , f \ 1, 0 for the Boolean 
algebra operations and constants . 

T h e proof of Theorem 1.3 shows t ha t E is an invar iant of A. In [6] the 
function which assigns E to A was called T. T h a t is, if A is a K-filtration of 
A and E = {v\Av is not K-pure} then T(A) = E. A major concern of this 
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paper is to discover possible values of T. Note tha t if T(A) ^ 1 ( = K) 
then A is strongly K-free (the converse is not t rue) . In [8], the model 
theoretic significance of F is explained. 

In [14], we a t t empted to give a construction which given an almost 
free abelian group A such tha t T(A) = Ë would produce for E\ C E a B 
such tha t T(B) = E\. Unfortunately, there is a flaw in the construction. 
We tacitly assumed A was strongly K-iree. The above result is true for 
strongly K-free abelian groups bu t we will see tha t given certain set 
theoretic assumptions (namely V = L and there exists a weakly compact 
cardinal) it fails in general. So Theorem 1.1 of [14] should read: 

1.5. T H E O R E M . If there exists a non-free strongly K-free abelian group of 
cardinality K, then there exists 2K strongly K-free abelian groups of cardinality 
K. 

In this paper we will be able to strengthen this result to recover the 
original result in some cases. Strangely enough Theorem 1.2 of [14] and 
its proof are correct as writ ten. 

Although a K-free group need not be strongly K-free it is strongly 
p-free for all p < K. We begin by showing the following. 

1.6. T H E O R E M . / / K is a regular cardinal and A is K+-free then A is 
strongly K-free. 

Proof. Suppose first K > co. Assume the theorem is false and A is a 
counter example. There is a B C A, \B\ < K such tha t B is not contained 
in a K-pure subgroup of cardinali ty <K. We now define for ordinals v < K 
a sequence of subgroups Bv. 

Let Bo = B. If Bv has been defined, choose Bv+X 2 Bv such tha t 
|-B„+i| < K and Bv is not a free factor of BP+1. If Bv has been defined for 
v < X where X is a limit ordinal, let B\ = U*><\ Bv. Let BK — \JV<*. Bv. 
By Theorem 1.3, BK is not free. However BK Ç A and \BK\ = K. SO BK is 
free, a contradiction. 

Suppose now tha t A is on-free and B is a finitely generated subgroup 
which is not contained in an co-pure subgroup. Choose a sequence of 
countable subgroups Bn by B0 = B\ if C C Bn is not co-pure and C is 
finitely generated then C is not co-pure as a subgroup of Bn+1. Let 
Bœ = [Jn<uBn. By the construction, B is not contained in a finitely 
generated free factor of Bu. So Bœ is not free, a contradiction. 

For limit cardinals we have a stronger result. 

1.7. T H E O R E M . If X is a limit cardinal and A is \-free then A is strongly 
\~free. 

Proof. Since A is X-free, it is K++-free for all K < X. Suppose B C A and 
\B\ = K. By Theorem 1.6 there is a C 3 B such tha t \C\ = K and C is 
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/c+-pure. We must show C is X-pure. Suppose D I ) C and \D\ < X. Since 
D is free, there is a free factor II of D which contains C and is of cardi­
nali ty K. Since C is K+-pure, C is a free factor of II and hence of D. 

We now turn our a t ten t ion to abelian groups. An approach to dis­
covering more about K-free groups is to place stronger constraints on the 
filtration. 

1.8. LEMMA. Suppose A is a K+-free abelian group and K is regular. If 

A 2 B and B = \Jr<^Br (not necessarily smooth), /x a regular cardinal 

and each BT is n-pure, then B is fx-pure. In other words the union of a 

\x-chain of \x-pure subgroups is Li-pure. 

Proof. Suppose D C A and \D\ < /*. Choose BT such tha t B C\ D C BT. 

Now 

(B + D)B o^ D/(B C\D)c^ BT + D/BT 

which is free. 

1.9. LEMMA. Assume A is as in Lemma 1.8. There is a K+-filtration 
A = [Av\v < K+} such that each Av+\ is K-pure and if X is a limit ordinal 
then A\ is ci (\)-pure. 

Proof. Enumera te A as {av\v < K + } . Appealing to Theorem 1.0, 
choose AQ to be any K-pure subgroup of A. Suppose Av has been defined. 
Since \AV\ ^ K, we can write Av as U/3<K B$ where \B$\ < K. Choose 
K-pure subgroups C$ such t ha t 

| Q | < K, Co ^B,\J {a,}, and Q 3 ( U K ^ C0) U Bp. 

Let A „+i = UJ3<K C/3. By Lemma 1.8, 4̂ „+i is K-pure. Again by Lemma 1.8, 
if for limit ordinals X we define A\ as U K \ ^ ^ then A\ is cf (X)-pure. 

1.10 T H E O R E M . If A is a n+-free abelian group such that Y(A) C\ 
Ë 9^ 0 where E = \v\ci(y) = K}, then there exists a K-free non-free abelian 
group of cardinality K. 

Proof. Filter A as in Lemma 1.9. For some X of cofmality K, there exists 
A\ which is K-pure bu t not K+-pure. Choose B ~D A\ such t ha t \B\ — K 
and B/A\ is not free. Since A\ is K-pure, B/A\ is the group required. 

Combining Theorems 1.1(2) and 1.10 yields the following corollary. 

1.11. COROLLARY. / / K is weakly compact and A is K+-free abelian then A 
is strongly n+-free. In fact T(A) C\ W = 0, where W = {v\ci(v) = K). 

This result shows (once appropr ia te existence results are established) 
t ha t the existence of a strongly K-free not K+-free abelian group does not 
necessarily imply the existence of a non-strongly K-free abelian group. 
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In [4] it is shown tha t if a /c-free not /c+-free abelian group exists, then 
there are 2K+ strongly /c+-free not /c++-free abelian groups. Using this we 
get a strengthening of Theorem 1.5. 

1.12. T H E O R E M . / / K is either a regular limit cardinal or the successor of 
a regular cardinal and a K-free not K+-free abelian group exists, then there 
are 2K strongly K-free not K+-free abelian groups. 

Proof. Suppose A is K-free, not free and \A\ — K. If A is strongly /c-free 
then we are done (by Theorem 1.5). If not then K = p+ where p is a regular 
cardinal, since for limit cardinals /c every K-free group is strongly /c-free. 
By Theorem 1.10, there is a p-free not p+-free group. So by the results of 
[4] mentioned above, we are done. 

For strongly /c-free abelian groups wre can do much bet ter than Corollary 
1.11, in our a t t emp t to describe T. The next theorem says any strongly 
/c-free abelian group of cardinality /c has a filtration whose " b a d " points 
include no ordinals with a wTeakly compact cofinality. 

1.13. T H E O R E M . Suppose A is a strongly K-free abelian group and 
\A| = K then T(A) C\ W = 0 where W = {v\c((v) is weakly compact}. 

Proof. We can filter A as {Av\v < K} such tha t Av+i is /c-pure. If cf (X) 
is weakly compact then A\ is the union of a chain of /c-pure subgroups. In 
order to show A\ is /c-pure it is enough to prove the following claim. 

Claim. Suppose for a weakly compact cardinal, r, we have free abelian 
groups F'3 K = U(7<r Ka and F/Ka is free. Then F/K is free. 

Proof of Claim. Assume not. Let p be the least cardinal such that 
F 2 K = Ua<rKa form a counter example to the claim and \F\ = p. 
First note t ha t F/K is p-free. Suppose G Ç F and |G| < p. Since 

G/(K„ r\G)^(G + Ka)/Ka c F/K., 

G/(Ka H G) is free. Hence G, G C\ K = Ua<T(G H Ka) satisfy the hy­
pothesis of the claim. So by the minimality of p, G + K/K c^ G/K H G is 
free. By Theorem 1.1, p is regular and p > r. 

Choose a p-filtration, { Fv\v < p}, of F such tha t ; Fv is a direct summand 
of F and if {Fv + K)/K is not p-pure in F/K, then (Fv+1 + K)/(FV + K) 
is not free. Now for each a < r, define 

C* = {v\Fv + Ka/Ka is p-pure in F/Ka). 

Since F/Ka is free, Ca is a cub. Let C = P W r Da. Since p > T and p is 
regular, C is a cub. Since F/K is not free there is a v G C such tha t 
(F,+i + K)/(FV + K) is not free. By the definition of C, (Fv+1 + Ka)/ 
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(Fv + Kff) is free for all a < r. Note t ha t 

(Fv+1 + K)/(FV + K) ~ F,+1/(FV + (Kn Fv+1)), 

( /Vu + K„)/(FV + Ka) ~ F , + i / ( ^ + ( X . H Fv+1)) and 

/% + (# r\ FV+1) = u.<T(/% + (x. n F , + 1 ) ) . 

So 

/ V H 2 ( F , + ( I H F , + 1 ) ) - U*<T(FV + (Kv C\ Fv+1)) 

satisfy the hypothesis of the claim. Since \Fv+\\ < p, (Fv+i + K)/ 
(Fv + K) is free. This is a contradiction. 

Although the above is the best possible result for successor cardinals 
(cf. Theorem 2.13), for some regular limit cardinals we can obtain more 
information. 

1.14. Definition. A cardinal, K, is a Mahlo cardinal if the set of regular 
cardinals less than K is s ta t ionary in K. (The first Mahlo cardinal (if any) 
is less than the first weakly compact cardinal.) 

1.15. T H E O R E M . Suppose K is a cardinal and E C K is such that 
F = {v < K\E H v is stationary in v and vis a regular cardinal] is stationary 
in K. For no A does T(A) = Ë. 

Note the hypothesis forces K to be a Mahlo cardinal. 

Proof. Assume tha t A is a counterexample. Choose a K-riltration 
\Ap\v < K) of A such tha t : If A „ is not K-pure, then A v is not a free factor 
of Av+i; and \AV\ = \v\. By the assumption on F and E we can find a 
cardinal r Ç F such tha t {v < T\AV is not a free factor of ^ „ + i ) is sta­
t ionary in r. Since \AV\ = |^| < r, ylT is not free. This is a contradiction. 

This not only eliminates 1 as a possible value for T bu t also such sets as 

HcfOO = co}. 

2. C o n s t r u c t i o n of s t rong ly K-free g r o u p s . In this section we begin 
our description of the construction of almost free groups. We will use 
Godel 's axiom of constructabil i ty, (V = L), for some of our construc­
tions. T h e constructible universe, L, is a pleasant place where many 
otherwise independent set theoretic principles, including G C H , hold. We 
will explain these principles as we need them. Aside from any intrinsic 
interest constructions in L may have, they provide consistency results 
for the existence of certain groups. These show the results of Section 1 
are the best general results possible. 

In order to mot iva te the constructions to come, we will sketch the 
construction in [9] of an wi-free group. 
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2.1. Higman s Construction. We s tar t with a countably generated free 
group AQ. If we have defined AV} we choose a set of free generators 
{an\n £ co) for Av. We then take the Av+\ a group freely generated by 
{bn\n G coj. We embed Av in Av+1 by identifying r/„ with bn(bn+i)~2. 

Remark. This embedding has two properties we will see again: 

(i) Any finitely generated free factor of A„ is a free factor of Av+i (a 
complementary factor of (a0, • • • , O is (&m|w )w)); and 

(ii) Av is not a free factor of Av+\. 

If X is a limit ordinal we let A\ = Uv<\Av. We let A = \Jv<Wl Av. To 
show this construction works we must show Av is free and tha t A is not. 
Since c f ( \ ) = co, using par t (i) of the remark we can write A\ as the 
union of countable chain of free groups each of which is a free factor of 
the succeeding elements of the chain. The group A is coi-free since every 
countable subset is contained in some A „. Since for all v A „ is not on-pure, 
A is not free (Theorem 1.3). 

In fact A is not strongly on-free. Let B be the smallest normal subgroup 
containing a2 for each a Ç A. Then \A\ > co and \A/B\ = co. Since B is 
a definable subgroup, this is expressible in LœU1. As this is not true for 
any free group, A is not strongly on-free. 

One way of viewing the above construction is tha t two ingrecliants are 
involved; an embedding a t one free group in another, and a criterion for 
freeness. T h e embedding is used to pass from one stage to the next. The 
criterion for freeness is used to guarantee tha t the groups constructed at 
limit stages are free. Eklof, by using moderately sophisticated set theory, 
was able to use a simple criterion, namely the union of smooth chain of 
free groups each of which is a free factor of the next group in the chain 
is free (cf. [4], Theorem 2.2). 

We now define the relevant set theoretic idea. 

2.2. Definition. Suppose K is a regular cardinal. A set E C K is sparse if 
E C\ v is not s ta t ionary in v. 

Jensen [11] has established the following principle which has since 
been called E(K). 

2.3. T H E O R E M . (Jensen) Assume (V = L). E(K) holds for each regular 
non-weakly compact cardinal K where E(K) asserts that there is a sparse 
stationary subset of K consisting of ordinals of co finality co. 

This allows us to construct /c-separable groups. This construction is 
closely related to tha t of [5]. 

2.4. T H E O R E M . Suppose E(K) holds. If K is a regular cardinal then there 
are 2K n-separable groups of cardinality K. 
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Proof. Choose E to witness E(K). We will define a /{-filtration induc­
tively. As well as the groups Av, we will need certain auxiliary groups. 
For each v < K, we will construct a group Av satisfying: 

(i) Av QAT, if T ^ v\ 
(ii) 4̂x = U»<x A\, if X is a limit ordinal; and 

(iii) Av is a free factor of ^4„+i if and only ii v i E. 
For each v ([ E and r ^ 1/ wTe will construct a free group BVT satisfying: 
(iv) Av * BVT = ^ T ; 
(v) J3VT Ç J5„p, if p ^ r; and 

(v i ) BVT * -£>TP = Bvp, ii v ^ T ^ p a n d p, T Q E. 
If we have these groups and set A = {JV<K Av, A is not free (Theorem 

1.3). Further if v $ E, it is clear that A = Av* (Uv<TByT). So A is one 
of the groups required to prove the theorem. Note that T(A) = Ë. 

We will now define the necessary subgroups by induction. For nota-
tional convenience a set of generators will always be free. There are 
several cases. 

Case 0. (y = 0) Let AQ = <1>, B0Q = <1>. 
Case 1. (y = p + 1, p $ £ ) . Let 4̂„ = ^4P * (a,), and £„„ = (1). For 

T ^ p and T d E, let 5T„ = 23rp * (a„). It is clear that if the groups 
defined prior to stage v satisfy (i)-(vi), so do Av and the BTV. 

Case 2. (y is a limit ordinal) Let Av = UP<v^4P. To see that 4̂„ is free, 
let {T$|£ < cf (i>)} be a closed unbounded sequence in v such that for all 
£, r^ g £ . (This is possible by the choice of E.) Also choose r0 = 0. So 

Ay — * ( ^ r j T ^ K c l W -

If r < j/ and T d E, let J5T„ = U K K ^ ^ . (This definition is forced by 
(i)-(vi).) If v dt E, let Bvv = (1); otherwise leave it undefined. For much 
the same reason that Av is free, the BTV satisfy (iv)-(vi). 

Case 3. (v = p + 1, p £ £ ) This case is the crux of the construction. 
Since p G E, p = \Jn<w Tn where rn is a successor ordinal for each n. Let 

A = ATQ* (BTn+iTn+l)n<03. 

Then 

Y4„ = A' * (^r„+l)w<«. 

Let Ay = ^4' * (anv)n<0>. Identify aTn+i with (anv) (are+i„)_2 and extend this 
to the embedding of Ap into Av which is the identity on A'. Note that Ap 

is not a free factor of Av. To see this, let C be the smallest normal sub­
group of A v containing Ap. Then A V/C is an abelian group which contains 
a non-zero element which can be divided by arbitrary powers of 2. 

We now must define the Brv. As usual let Bvv = (1). Before we define 
the other BTV note the following. For all m < co, (anv)n<0) is freely generated 
by 

{flo,(aiv)-2 cwOwi*) - 2 ! W {am+ir, . . .}. 
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This follows since {a0j,(aiv)~
2, . . . , amv(am+iv)~

2, am+\v) is a set of m + 2 
generators of a free group of rank m + 2, namely (a0,, . . . , am + i„) . So 
these elements must freely generate this group (cf. [121, Corollary 2.13.1, 
p. 110). 

For each of the rn, let 

\i T Q E and r < v, choose n such tha t rn is the least of the rn ^ r. Define 
BTV = £ r r n * BTnV. By the observation in the preceding paragraph it is 
clear t ha t if r < v and T d E, then ^4 r* BTV = Av. Since 

aTw+i = amv(am+lv)~
2 and aTm+i £ J3T{ for r < rm + 1 ^ £, 

BT^B^V = J3T„ where r ^ ^ ^ v and r, £ g E. Also if r ^ £ ^ *>, then 
^r£ £ 5̂™ (r £ £ ) . So properties ( i ) - (vi) hold. 

This construction produces a /c-separable group A such tha t r(^4) = Ë 
where £ is a set witnessing E(K). We can complete this proof if we know 
there are 2* non-equivalent sets witnessing E (K) (This is an idea of Shelah ). 
The existence of these sets follows from the existence of one by the follow­
ing celebrated results of [19]. 

T H E O R E M . Assume K is a regular cardinal. Every stationary subset of K 
can be partitioned into K disjoint stationary subsets. 

As previously noted E(K) holds for all regular non-weakly compact 
cardinals in L. In the real world E(wi) holds. (Let E = {v\cî(p) = œ\.) 
So with no set theoretic hypothesis, we have a construction of an coi-
separable group. 

In [7] groups of cardinality K which are strongly K-free and indecom­
posable were constructed in L. So in L if we want K-separable groups we 
must do more than construct strongly /c-free groups. Curiously we have 
the following. 

2.5. T H E O R E M . Assume Martin's Axiom and 2œ ^ o>2. / / A is a strongly 
coi-free abelian group and \A\ = OJI, then A is &i-separable. 

Proof. We will sketch the modifications to Shelah's proof tha t a group 
of type II or I I I is a Whitehead group (cf. [17] or [5]). Suppose B is an 
coi-pure countable subgroup of A. We have the exact sequence 0 —-» B —•> 
A —» B/A —•> 0. I t is easy to show B/A is again strongly coi-free and hence 
not of type I. Suppose D is coi-free and not of type I. In Shelah's proof all 
t ha t is needed to show tha t 0—> Z —> C —> D —> 0 splits is t ha t Z is free 
and countable. So 0 —-> B —> A —* A/B —> 0 splits. Hence B is a direct 
summand of A. 

If in Theorem 2.4 we had only been interested in constructing strongly 
K-free groups, we could have omit ted the BTV, as they are only used to 
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show the group is K-separable. We can now describe the construction of 
strongly K-free groups more abstract ly . 

2.6. Definition. Suppose K is a regular cardinal. We say K has the 
embedding proper ty F(K) if there exists a free group F, and a smooth 
chain of subgroups Kv(v < K) such tha t : 

(i) \F\ = K; 

(ii) Kv is generated by fewer than a elements and Kv is a free factor of 
F\ and 

(iii) \JV<K Kv = K and K is not a free factor of F. 

2.7. Remark. F(œ) is true. For abelian groups F(K) is implied by the 
existence of a K-free non-free abelian group of cardinali ty K. This comes 
from the following lemma. 

2.8. LEMMA. ([4]) Suppose F is a free abelian group of cardinality K. If 
F/K is K-free and K\ C K is a direct summand of K such that \K\\ < K, 
then F/Ki is free. 

Proof. Choose a direct summand D of F such tha t D 3 K\ and 
\D\ < K. Since (D + K)/K is free, D/Kx is free. So F/Kx is free. 

T h e si tuation for (non-abelian) groups seems more complicated. We 
can however show the following. 

2.9. LEMMA. Suppose p is a regular cardinal and there is a sparse 
stationary subset E Ç p such that for all v 6 E, cî(v) = K. If F(K) is true 
then F(p) is true. In particular for regular p, if E(p) is true then sois F(p). 

We will omit the proof of this lemma. I t is a ra ther horrible inducive 
construction, somewhat similar to t ha t of Theorem 2.4. This lemma is 
proved in [13]. T h e general construction can now be given. 

2.10. T H E O R E M . Suppose K is regular and E Ç K is a sparse stationary 
subset consisting of limit ordinals such that for all v G E if p = cf (i>), then 
F(p) is true. There is a strongly K-free group A of cardinality K such that 
T(A) = E. 

Proof. T h e proof is very similar to tha t of Theorem 2.4. So we will just 
sketch the construction. Again we construct a /{-filtration [Av\v < K} of 
free groups such tha t Av is a free factor of each succeeding group if 
v Q E. If v Ç E then Av is not a free factor of Av+i. We have the same 
cases as before. 

Case 0. Let AQ = (1). 
Case 1. (v = p + 1, p d E) Given Ap, define A „ to be the free product 

of Ap and a free group on \v\ generators. 
Case 2. (v is a limit ordinal) Let Av = \Jr<vAT. Since £ is a sparse, 

A v can be wri t ten as the union of a smooth chain of free groups each of 
which is a free factor of the succeeding group. 

https://doi.org/10.4153/CJM-1980-090-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-090-1


ALMOST FREE GROUPS 1217 

Case 3. {v = p + 1, p Ç £ ) Suppose r = cf (p) and F Z) K = U ^ ^ 
witness tha t F ( r ) holds. Again since E is sparse, we can write Ap as the 
union of a smooth r-chain {Af^)\£ < r]. We impose the conditions tha t 
/ (£) € £ and tha t if K$+1 is freely generated by /x elements over X^, then 
Aftf+i) is freely generated by a t least /x elements over Af(^. Using the 
above setup we can choose a free group for Av and embed Ap into Av so 
tha t Ap is not a free factor of Av bu t each Af(^ is. Finally if (3 < v and 
(3 d E, then there is a J such tha t / (£) > 0. So A0 is a free factor of Af(^ 
and hence of Av. 

In order to push this method we need examples of sparse s ta t ionary 
sets. 

2.11. Example. If K is regular then {v < K+\CÎ(V) = K] is a sparse 
s ta t ionary subset of K+. An induction as in [4] shows tha t there exists a 
2wn strongly avfree groups of cardinality œn. 

In L we can do much better. Jensen [11] showed the principle • « holds 
in L. We need the following consequence of Q*, which is due essentially 
to Magidor and independently to Solovay. 

2.12. T H E O R E M . ([16], Lemma 5.4) Assume • * . If E C *+, / ^ n £ is 
the union of at most K sparse sets. 

Combining several results we have a complete description in L of the 
range of V on abelian groups for successor cardinals. 

2.13. T H E O R E M . Assume (V = L). Suppose K is a successor cardinal and 
E C K. There exists a strongly K-free group A of .cardinality K such that 
T(A) = E if \v G E\<d(y) is weakly compact] is not stationary. 

Proof. We can assume for all v Ç E tha t cf (y) is not weakly compact . 
Suppose K = p + . Choose {Ev\v < p] such tha t each Ev is sparse and 
E = \JV<PEV. For each v < p, construct Av such tha t r(^4„) = Ev. This 
is possible since F(cf(r)) holds for each r Ç Ev. Let 4̂ = *(^4„)y<p. 

2.14. T H E O R E M . Assume {V = L ) . Suppose K is a successor cardinal and 
E Ç K. There is a strongly K-free abelian group A with T(A) = E if and 
only if {v ^ E\ol(v) is weakly compact] is not stationary. 

These constructions give more information. For abelian groups let 
œ be the least equivalence relation closed under c^ and direct sums with 
free abelian groups. This allows us to describe the groups better. 

2.15. T H E O R E M . Assume (V = L). Suppose K is a successor cardinal and 
6:K —» abelian groups is a function such that: Q(v) is free if v is a successor 
cardinal or ci(v) is weakly compact; and 6{v) = F/K = Ua<cf (^ a ) F and 
F/Ka are free, and \F\ < K. There exists a strongly K-free abelian group A of 
cardinality K with a K-filtration A = {Av\v < K] such that Av+i/Av œ B{v). 
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T o prove Theorem 2.15 it is necessary to show tha t if fDk= Ua<PKa, 
F and F/Ka are free, then K = \Ja<PHa (smooth) where F/Ha is free. T o 
see this fix X a set of free generators for K. Let Ha+i be the group generated 
b y i n Ka+i. 

2.16. Remark. Again the logical significance of this result is explained 
in [8]. The relevant algebraic notion is quotient-equivalence. If A and B 
are strongly K-free abelian groups of cardinali ty K, they are quotient 
equivalent if there are K-filtrations A = U K K ^ . , B = Ux<* Bv such that 
for every v < K,A V+I/A v c^ Bv+\/Bv. Quotient-equivalence does not imply 
isomorphism (cf. [8], Section 5) . By Lemma 1.9 and Theorem 1.13 every 
quotient-equivalence class of strongly K-free abelian groups is determined 
by a function 6 : K —-> abelian groups satisfying the hypothesis of Theorem 
2.15. So Theorem 2.15 characterizes, in L, all quotient-equivalence classes 
of strongly K-free abelian groups. 

3. C o n s t r u c t i o n of K-free g r o u p s w h i c h are n o t s t rong ly K-free. 
We now turn to a ra ther mysterious class of groups, those which are 
K-free bu t not strongly K-free. Again set theory enters essentially into our 
construction. 

3.1. Definition. A partial ly ordered set (7 \ < ) is a tree if for all / t 7\ 
{x\x < t} is well ordered. If t £ T, the height of /, h t ( 0 , is the ordinal v 
such tha t ({x\x < / } , < ) ~ (v, > ). T h e height of T is sup{ht (0 |* £ F\. 
A branch, B, is a map from an ordinal v such t ha t for all r < a < v, 
ht(B(a)) = a and i3(r) < i3(a) . If B \v —> T is a branch, ^ is the length 
oiB. 

3.2. Example. The full binary tree of height K is the set of sequences of 
O's and l ' s of length < K , ordered by inclusion. 

3.3. Definition. Assume K is regular. A tree of height K is a Canadian 
tree if \T\ = K and T has K+ branches of length K. 

3.4. Remarks. This somewhat unfor tunate name originated with Frank 
Tall and has been used by Baumgar tner [1]. T h e concept itself is older 
(cf. [15]). 

T h e full binary tree of height w is a Canadian tree. If 2* = K then 
there is a Canadian tree of height K, namely the full b inary tree of height 
K. In part icular if (V = L), there is such a tree for each regular K. T h e 
existence of a Canadian tree of height K does not depend on 2k = K. 
For example in the usual forcing extension of L, which make 2" whatever 
is desired, there are Canadian trees of all regular heights. However the 
existence of a Canadian tree does not seem to follow from ZFC. The 
si tuation is explained by the following theorem of [15]. 
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3.5. T H E O R E M (Mitchell). (1) If ZFC and there exists an inaccessible 
cardinal is consistent then it is consistent with ZFC that there is no Canadian 
tree of height coi and 2U1 = co2. 

(2) If it is consistent with ZFC that for some regular cardinal K there is no 
Canadian tree of height K, then ZFC and there exists an inaccessible is 
consistent. 

The following method of defining a group is a modification of a con­
struction of Shelah. 

3.6. T H E O R E M . Suppose there exists a Canadian tree of height K and that 
F(K) holds. There is a n+-free group which is not strongly a+-free. 

Proof. Let (T, < ) be a Canadian tree of height K and {Bv\v < K+] be 
a set of pairwise different branches of length K. Let F 2 K = Ur<* KT 

witness F(K). Choose groups HT such tha t Ka = *(HT)T<(T. Note if X is a 
limit ordinal, then H\ = (1). For each t £ T, we take a free group Ht 

isomorphic to HT where r = \\t(t). Take Go = *(Ht)teT. For each 
v < K+ choose free groups Av~^ Dv = *(CVT)T<K an isomorphic copy of 
F^D K = * (HT)T<K. Let G be the amalgamated product of Go and the A „'s 
where we identify CVT with HBV{T). In other words we a t tach A v to G0 by 
identifying Dv along branch Bv. 

We must now show G is K+4ree. This follows easily once we have 
established the following claim. 

Claim. Suppose F is a presentation of G and for every Q Ç P such tha t 
\Q\ = K there is P ^ Qf 2 Q such tha t Qf is the presentation of a free 
group. Then G is /c+-free. 

Proof of Claim. Suppose for some G' C G, G' is not free and \G\ = K. 
We can choose Q C P with \Q\ = K such tha t each element of G' is a word 
in the generator of Q and if two words in Q are equal (as elements of G) 
then their equali ty is deducible from the relations of Q. So if P 2 Qf 2 Q 
then Qf is the presentation of a group which contains an isomorphic copy 
of G'. So Qf is not the presentation of a free group. 

Since we have described a presentation for G it will suffice to show 
appropria te subsets of this presentation are presentations of free groups. 
Suppose we have any a branches of T. For notational convenience we 
can assume the branches are Ba, a < K. We can also assume each t £ T 
is B<T(p), for some a, p < K. Take the presentation, Q, whose generators 
are Go, Aa (a < K) and whose relations are the identifications described 
above. To see the group presented by Q is free, we construct the group as 
a free product of free groups. 

T a k e F = *(Fa)a<K, the free product of K free groups of rank K. Choose 
an isomorphism from A0 to F0. In general a t stage a, we let p be the least 
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ordinal such t ha t Bff(p) ^ B$(p), for all /3 < a. Such a p exists, since K is 
regular. Let ^4ff be a complementary factor of *(CffT)T<p in ^4ff. We then 
choose an isomorphism from Âa to Fa. This process shows Q is the presen­
tat ion of a free group. 

T o see tha t G is not strongly K+-free, note t ha t Go cannot be contained 
in any K+-pure subgroup and |G0| = K. In fact let GoN be the smallest 
normal subgroup of G containing Go and let KN be the smallest normal 
subgroup of F containing K. Then G/GN is isomorphic to a free product 
of K+ copies of F/KN. 

Although the existence of a Canadian tree of height coi implies the 
existence of an coo-free group which is not strongly co2-free, the converse 
is false (for abelian groups) (cf. Theorem 5.2). 

One reason why K-free not strongly K-free groups are mysterious from 
a logical point of view is tha t they need not be Lœ K-equivalent. 

3.7. T H E O R E M . (1) Assume ( T = L). If K is a regular non-weakly 
compact cardinal then there exist 2K ( = K+) K+-free groups which are pair wise 
not LœK+-equivalent. 

(2) There exist 2" ui-free groups which are pairwise not Z^avequivalent. 
(3) If there exists a Canadian tree of height con there are 2Wn o:n+i-free 

groups which are pairwise not Lœù)n+l-equivalent. 
(4) Suppose that there is a strongly K-free abelian group which is not n+-free 

and that there is a Canadian tree of height K. There exist 2K K+-free abelian 
groups which are pairwise not LmK +-equivalent. 

Proof. We will only prove (4). T h e proofs of the others are similar. 
Suppose A\ and A-> are K-free abelian groups of cardinal i ty K such tha t 
r ( T i ) 9e r ( . 4 2 ) . Using the construction of the last theorem we can 
construct K+-free abelian groups G\ and Gi. These groups have the 
proper ty that G\ satisfies the sentence, " a n y set of size K is contained in a 
subgroup B such tha t Gt/B satisfies the sentence 'every set of size a is 
contained in a K+-pure subgroup which is the direct sum of copies of 
A\ ' " . This is a sentence of LœK+. So G\ is not Lœ K +-equivalent to G2. 
Since we can find 2K K-free groups whose images under Y are pairwise 
different, we are done. 

4. Para-free g r o u p s . The groups constructed in this section have no 
clear abelian analogues: Baumslag [2] opened the s tudy of para-free 
groups in an a t t e m p t to find a non-free group of cohomological dimension 
one. We now know this is an impossible task. In any case it is interesting 
tha t groups can be constructed which share with free groups not only the 
local proper ty of being (strongly) K-free bu t also the global proper ty of 
being para-free. 
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4.1. Definition. Let G be a group. If a, b Ç G, [a, b] denotes the 
commutator a~1b~1ab of a and b. The subgroups Gn of the lower central series 
are defined by Gi = G and g £ Gn+i if g = [gi, £2] where gi G Cn and 
gi c G. The sequence G/G2, G/G3, . . . is the lower central sequence of G. 
Two groups G and iif have the same lower central sequence if there are 
isomorphisms 6n\H/Hn—> G/Gn such tha t dn+i induces dn. A group is 
para-free if it has the same lower central sequence as a free group and is 
residually nilpotent. 

The constructions of this section are like those of the preceding sections 
except we need different embeddings. We want an embedding of a free 
group K into F which has the properties of F(K) bu t which becomes 
trivial when we mod out by Fn. 

4.2. Definition. A group, G, is nilpotent of class n (nil-n) if Gn+i = (1). 
There are free nil-n groups and a nil-n free product. We say K has the 
embedding property F\(K) if there exists a free group F, and a smooth 
chain of subgroups Kv (v < K), such tha t : F 3 K = \JV<KKV witness 
F(K) ; and there exists { ft\i £ /} Ç F such tha t for all n > 0 K is a 
nil-n free factor of F and j ff\i f I) freely generate a complementary 
summand of K. (The bar indicates image mod Fn+i.) 

4.3. LEMMA. (1) Fi(co) holds. 
(2) Suppose K is a regular cardinal and there is a sparse stationary 

subset of K all of whose elements are of cofinality v. If F\(v) holds then 
FI(K) holds. 

(3) For all n, Fi(œn) holds. 

Proof. (1) Let F be the free group on generators [am\m < co}. Let 

K° = (ao[au a2]), Kl = (a0[au a2],fli[[>3, « J , [a5, a6]]), 

and so on. For each n, Kn * {am)m>n = F. For any n, i£ + Fw = /^ so we 
can take { ft\i G /} = <j>. Finally since a0 ? F and K + F2 = ^ , K is not 
a free factor of F. We will omit proving (2), for the same reason we 
didn ' t prove Lemma 2.9. An induction argument establishes (3). 

Note tha t the example which established (1) has the properties used 
in Theorem 2.4 to construct /{-separable groups. We can now add the 
word para-free to most of our previous results. 

4.4. T H E O R E M . (1) Assume K is a regular cardinal and E{K) holds. Fhere 
exist 2K K-separable para-free groups. 

(2) Assume (V = L). For all regular non-weakly compact cardinals K 
and E Ç. K — W where W = \v < K\CÎ(V) is weakly compact} there is a 
para-free strongly K-free group, A, such that Y {A) — Ë. 

(3) For all n > 0, there exist 2œn para-free strongly con-free groups of 
cardinality œn. 
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(4) Suppose K is regular, F\(K) holds and there is a Canadian tree of 
height K. There is a para-free K+-free group which is not strongly K+-free. 

Proof. In each case we use the same construction as was used to prove 
the result without the requiring the groups to be para-free, except we 
use an embedding which witnesses FI(K). We will prove (4) as that case 
illustrates the modifications to the previous proofs. 

We can view the group constructed in Theorem 3.6 as the union of a 
smooth chain of free groups. Using the notation of Theorem 3.6, let Gv 

be the group generated by G0 and {A$\$<v). To obtain Gv+\ from Gv, we 
first write Gv as (HBp * G') where 

HBV = *{HBV(O))<T<K-

We then embed HBy into Av so that 

Av 2 HBv = Ua<K*(HBv{(3))fêa and \fvi\i (z I) 

witness F\(K). Let Gv+i = Av * G'. For any n, 

G = Go*(fvi\i e: /> ,<„ 

where the bars denote the image modGn and * is the nil-w free product. 
(Go is as in Theorem 3.6, but Gn is the nth element of the lower central 
series.) So G has the same lower central sequence as a free group. Since 
any coi-free group is residually nilpotent (this can be expressed as a 
sentence in LœU), G is para-free. 

5. Almost free abelian groups. In this section by "group" we shall 
mean "abelian group". The major results of this section are: The descrip­
tion of F for wn, namely that it can take any value; and the construction 
of wn-separable groups. The construction will require a more complicated 
embedding and a more elaborate criterion for freeness. Hill [10] defined, 
for each non-negative integer n, a class of group ^n. The class ^{) 

consists of all countable torsion free groups. Inductively, G Ç ^~„+i if 
G = \Jv<\xGv (smooth) where n ^ wn+i, each Gv is free, and Gv+i/Gv G ^'n. 
The following criterion for freeness holds. 

5.1. THEOREM. ([10]) For every positive n if G Ç &~n, then G is œn-free. 

This yields an alternate construction of an oon-iree not strongly avfree 
group. 

5.2. THEOREM. Assume, for some n < co, 2œn = œn+i. There exists an 
wn+i-free group which is not strongly œn+i-free. 

Proof. We define a group, G, whose underlying set is oon+i. Let 
{Xv\v < cow+i} be an enumeration of the subsets of o>n+i whose cardinality 
is oon. Further, assume each set occurs core+i times in this enumeration. Let 
Go £ Un+i be a free group on œn generators. More exactly the set under-
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lying Go is contained in cow+i. Suppose X„ Ç G„ and Gv/Xv is free. Choose 
G^^J {p} C G„+1 C a < cow+i, such tha t Gv+\/Gv (E J^~„ and Gv+\/Xv is 
not free. This is possible since there is 4̂ G S^n with |^4| = ww and 4̂ is 
not free (cf. Theorem 2.10). Otherwise given Gv, choose Gv \J [v\ Ç 
Gv+i Ç a < a>„+i such tha t G^+i/G,, Ç J ^ . If X is a limit ordinal, let 
G\ = \JV<\GV. Let G = Uy<œn+1GV. By Theorem 5.1, G is a>„+i-free. G is 
not strongly co^+i-free, since G has no avH-pure subgroup of size <jon. 

5.3. COROLLARY. Assume, for some n < co, / t o 2Wft = w*+i. There are 4 
œn+ï-free groups of cardinality œn+i which are pairwise not LÇXjWn -équivalent. 

Proof. Let G be the group constructed above. Choose F and Fi, free 
groups of cardinality œn and oon+i respectively. Then Fx, G, G © F, and 
G © Fi are the required groups. 

We will distill from Hill's proof of Theorem 5.1 a weaker result which 
will suffice in what follows and can be generalized. 

5.4. Definition. Suppose ooa is a regular cardinal. Define inductively, for 
each n < co, a class of groups <?a,w. We will usually suppress the a and write 
En. The class E0 consists of the coa-free groups of cardinali ty cca. In 
particular if a = 0, (f o is the class of countable torsion free groups. 
Inductively A G $n+i if there exists, {Av\v < coa+n+i}, an wa+„+i-filtration 
of A be free groups such tha t : 

(i) if cî(v) < coa then AT is wa+re+i-pure; and 
(ii) Av+i/Av e (on, for all v. 

5.4. LEMMA. (Criterion for freeness) Fix n. Suppose B = U^<x Bv 

{smooth) and each Bv is a free group on œa+n generators. Further suppose Bv 

satisfies (i) and (ii) of Definition 5.3. If X < œa+n+i, then B is free. 

Proof. We can assume tha t X is a cardinal. The lemma is proved by 
induction on n. If n = 0, condition (i) gives B as the union of a smooth 
chain of coa+1-pure free groups. Hence B is free. 

Assume the lemma is true for m and suppose n = m + 1. For each 
v < X, choose a set of free generators {xt\i Ç /„} for Bv. Impose the 
further condition tha t if cf (y) < ooa, then 

{Xi\i G Iv+i) 2 {^<|i G -M-

If *> is a limit ordinal choose {BVT\r < coa+/î}, an coa+/rfiltration of Bv+i/Bv 

satisfying (i) and (ii) (relative torn). There are now two cases. 
Case 0. Assume X = œa+n. Choose {Cp\@ < o)a+n} an coa+w-filtration of B 

such tha t : 
(1) CfiQBfi; 
(2) Cp H B = ( x ^ ' G J(j8, £) Ç J^), if /3 is a successor ordinal; 
(3) CpC\Bv= (Xi\i G / O s 0) C J , ) , if v < fi; 
(4) ( Q Pi Bv+i) + Bv/Bv = ByT, for some r when v is a limit ordinal 

and v < fi. 
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I t is not hard to see such a filtration exists. Since Cp Q B0J Cp is free. 
When we have shown Cp+i/Cp is free, we will be done. 

If (3 is a successor ordinal, then clause (2) and our choice of generating 
sets guarantees Q + i / Q is free. Suppose now tha t /3 is a limit ordinal. 
Since for some r 

C , + 1 / ( C W i n B , ) ~ B , r 

which is a free group, it is enough to show (C^+i P Bp)/Cp is free. Now 

( G + i n ^ ) / Q - U ^ ( ( Q + i H 5 , ) + Q ) / Q . 

Note tha t 

((Q+1 p 5,) + c^/Ce ~ (Q+1 P JS , ) / (Q P 2*,) 

which by (3) is free. So (Cp+i P Bp)/Cp is the union of a smooth chain of 
free groups. 

Next consider the following isomorphisms: 

(((Q+1 P sv+1) + Q)/c,))/(((c,+i n 5,) + Q)/Q) 
~ ((Q+1 P £,+1) + c,)/((Q+1 P ^,) + Q) 
~ ((Q+i P s,+1) + (Q P sv+1) + BV)/ 

Ucp+1nBv) + (c0r^Bv+1) + BV) 
~ ( ( Q + 1 Pi £ , + 1 ) + BV)/((CP P 5 , + 1 ) + £ , ) 

~ ( ( ( Q + i P 5 ,+i ) + Bv)/Bv)/(((Cp P £ , + 1 ) + £ , ) / £ , ) . 

This group is free if cf(i>) < coa and is isomorphic to BVT/Bva for some 
T > a otherwise. Since BVT/BV(T Ç é\n, Cp+i P Bp/Cp is free. 

Case 1. Assume X < toa+n. In this case we again choose an coa+n-hltra-
tion, {Cp\/3 < w a + n}, of B. Here we require: 

(1) Cfir\Bv= (xt\i e J(v, 0) C J , ) ; and 
(2) ( ( Q P J 5 , + I ) + £ „ ) / £ „ = BVT1 for some r when d(v) ^ coa. 

Since Q = U^<\ ^ P Q , Cp is the union of a smooth chain of free 
groups. Fur ther since Bu+i/Bv is coa+rrfree and BV/(BVC\ Cp) is free, 
Bv+i/ (Bv P Q ) is free. Hence ( 5 y + i P Cp)/ (Bv P C5) is free. So Q is 
free. Since 

Cp+i/Cp = U.<x((£V+-i P -$ „ ) + Cp)/Cp, 

the same proof as tha t of Case 0 shows 5 is free. 

We now turn to the embeddings. 

5.5. LEMMA. Suppose G G S\ and coa ^ K ̂  o>a+n. There exist free 
groups A ^D B = Uv<< Bv such that A/Bv is free and A/B c^ G. 
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Proof. (By induction) If n = 0 any free resolution by groups of 
cardinality œa can be made to work (cf. Lemma 2.8). Next we suppose 
the lemma is true for n, and a t t empt to prove it for n + 1. There are two 
cases, K S ua+n and K = coa+rt+i. 

Assume K f^ œa+n and G G é°n+1. As in [14] we can view G as 

T<o>a+n+l 

where each FT is a free group and KT is either (0) or KT embeds a com­
plementary summand CT of 0 ^ < r Kv (as a subgroup of ©^< r Fv) into FT. 
T h a t is KT is generated by elements of the form c — f, where / £ FT is 
the image of c under the embedding. Fur ther (using a bar to indicate 
images) FT/ CT is an SJ

n group. 
Suppose KT y* (0). By the induction hypothesis, we can find free 

groups A, B = U/3<* B0 such that A/B o^ FT/ CT and A/Bp is free. There 
is an isomorphism 6:A —» F r such tha t 0 (#) = CT. Let CTp = 6(Bp). Let 
i£T/3 be the subgroup of KT which associates CTp with CT/3 (i.e. i£T/3 = 
(CT + CT0) H 2£T). If KT = (0) then let i£r/3 = (0). 

For each (3, we wish to show ®(KTp)T<K is a direct summand of 
© ( / \ ) r < * . This is easy. Let ®(KTfi)T<K = &. Then 

@(FT)T<K/KV = \JV<K(&(FT)T<V + &)/&. 

Since 

(0(*V)r<, + Kf>)/K^®(FT)T<M{KvT)T<„, 

we have a smooth chain of free groups. Also, 

((e(*v)T<,+i + &)/&)/m (i\) ,<, + K0)/m ~ F,/cff, 
which is a free group. So ®{FT)T<K/K^ is free. 

If K = co„.|_i then any free resolution of G, by groups of cardinali ty 
cow+i, can be made to work. 

The above embedding lemma goes through without change for ^ n 

groups. We now have the following theorems. 

5.6. T H E O R E M . (1) For all n > 0 and E Ç con, //zer<? w a strongly 
œn-free group A of cardinality œn such that Y {A) = Ë. 

(2) Suppose there is an coa-free not œa+1~free group. For all n > 0 and 
£ Ç jjy < ooa+n\cî(v) ^ coa), //^re is an wa+n-free group A of cardinality 
coa+n such that Y (A) = Ë. 

As with Theorem 2.15, the groups constructed by this method can be 
described. 

5.7. T H E O R E M . (1) For all n > 0 and d:œn —* ^~„_i, //ze/r w « strongly 
œn-free, A, with an un-filtration {Av\v < con\ such that Av+\/Av tt 0(v). 
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(2) Suppose coa is a regular cardinal. For all n > 0 and d:ook+n —* ê'n_x 

such that B(y) is free when cf (v) < œa; there is an œa+n-free group A with 

an a)a+n-filtration, {Av\v < coa+w} such that Av+i/Av tt 6{y). 

Proof (of Theorems 5.6 and 5.7). W e will content ourselves with proving 
Theorem 5.7(1). Suppose n and 6 are as in the hypothesis of the theorem. 
For each m < n define a group Am inductively by defining an ^- f i l t ra ­
tion, {Av\v < un}, of Am. This filtration will have the proper ty t ha t Av is 
wn-pure if cf(i>) ^ œm and Av+i/Av œ B(v) if ci{v) = com. 

Case 0. Let ^40 be a free group on a>w_i generators. 
Case 1. Assume cf(i>) ^ com. Let ^4„+i be the direct sum of Av and a 

free group on wn_i generators. 
Case 2. Assume y is a limit ordinal. Let Av = U K ^ T . By Lemma 5.1, 

/I „ is free. 
Case 3. Assume cî(v) = o)m. Choose a continuous increasing function 

f:o)m—>v such tha t c f ( / ( r ) ) = com. So 4̂ = Ur<com^4/(r) and A/Af(T) is 
free for each r < wm. By Lemma 5.2 we can choose Av+\ such tha t 
Av+\/Av tt 0(v) and Av+1/Af(T) is free. 

Finally A = @(Am)m<n is the required group. 

We will end this section with a construction of con-separable groups. 
In the construction we combine the methods of Theorem 2.4 with those 
of this chapter. We begin with an embedding lemma. 

5.8. LEMMA. For each n and G G ^ n , there exist free groups A ~D B = 
Bm, Cm, Cms (m < s < w) satisfying: 

(i) A/B = G; 
(ii) Bm © Cmm+\ = Bm+i; 

(iii) Bm © Cm = A ; 
(iv) Cm = Cms © Cs. 

Proof. By Lemma 5.5, there are free groups A Z) B = Um<w ^m such 
t ha t ^4/.S ^ G and A/Bm is free. Choose C0 such t h a t B0 © C0 = A. In 
general if we have defined Cw and Cms for m, s < t, let C^+i = B t+i C^ Ct. 
Choose Ct+i such tha t Ctt+i © Ct+\ = Ct. Finally let Cmt+i = Cmt © 

Cn+i-

5.9. T H E O R E M . (1) For each n > 0, //zere are 2"n œn-separable groups of 
cardinality con. 

(2) Suppose n > 0 awa7 0 : wTO —> ^~w_i is swcft that 6 (V) is free if ci (v) ^ co. 
There is an ^-separable group, A, with an con--filtration, {Av\v < cow}, swc/& 

Proof. I t suffices to prove (2). We will define inductively an wn-filtra-
tion, {Av\v < ww}, of A and auxiliary groups, BVT (v < r and 0(p) is free). 
These groups will satisfy: 
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(i) AT = Av © Bpr, if v < T and 6(v) is free; 
(ii) Bvk ® BaT = Bvr, if v < a < T and 6{y) and 0(a) are free; 

(iii) if B(v) is free and X is a limit ordinal >v, then 

Bv\ = U K T < X BVT; and 

(iv) £„* C BVT, ii v < a < T and 0(y) is free. 

The proof again divides into 4 cases. We will only do the crucial case 
when B(v) is not free. Since 6(a) is free if cf (a) ^ co, we can choose rm 

such tha t 0(rm) is free and Um<« Tm = p. So 

4 = C © © ( 5 
TmTm +1 )m<0)i 

for some free group C. Using Lemma 5.8, we can choose Av+\, BTmV+i such 
tha t : 

Arm © 5Tm„+i = -4,+ lî 

^ r T O r s © ^ r s , + l = ^ r m ^ + l » ^X 7YI < S ) a n d 

4 „ + I A 4 „ ~ 0 ( J / ) . 

The rest of the proof follows tha t of Theorem 2.4. 

6. S o m e q u e s t i o n s . 

6.1. Which of our results for abelian groups can be established for 
groups? Of relevance here is a result announced in [18] (p. 322) which 
says for any cardinal, K, there is a K-free not K+-free abelian group if and 
only if there exists a /c-free not /c+-free group. More generally, it seems 
tha t we use only a minimal amount of specifically group theoretic 
methods. Where else can these methods be used? 

6.2. If K is a regular limit cardinal, what are the possible values for T 
on /c-free groups of cardinality K? A possible result (which probably 
requires something like (V — L)) is tha t if E C K and {v\E C\ v is sta­
t ionary in v) C \v\v is not a regular cardinal}, then there exists a K-free 
group A of cardinality K such tha t T(A) = Ë. 

6.3. If K is the successor of a singular cardinal, can there exist a K-free 
(abelian) group which is not strongly /c-free? 

6.4. Can we construct an co^-free not strongly cow-free (abelian) group 
without any set theoretic assumptions? 

6.5. Is it possible for some K t ha t there is a /c-free not strongly /c-free 
group and no strongly /c-free non-free group of cardinali ty K? If this 
can ' t happen this would rescue Theorem 1.1 of [14] (cf. Theorem 1.5). 
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