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HOW TO CONSTRUCT ALMOST FREE GROUPS
ALAN H. MEKLER

0. Introduction. Almost free groups were introduced in [9] as groups
all of whose ‘‘small’”’ subgroups are free. Here ‘‘small’”’ means generated
by fewer elements than the cardinality of the group. This concept is a
generalization of locally free. Suppose « is a cardinal > w. A group is
k-free if every subgroup generated by fewer than « elements is free. A
group of cardinality « which is k-free is almost free. There are two related
concepts which are closer approximations to freeness.

0.1. Definition. 1f A is x-free, a subgroup B is k-pure if B is a free factor
of B + D, where |D| < «. (|D| denotes the cardinality of the group or
set.) A k-free group A4 is strongly x-free if every subset of 4 of cardinality
<k is contained in a k-pure subgroup generated by fewer than « elements.
A k-free group, 4, is k-separable if every subset of cardinality <« is con-
tained in a free factor generated by fewer than « elements.

Of these notions that of being strongly «-free is of particular interest
because of the following theorem.

0.2. TuEorREM. ([3], [13]) A group 1is L.-equivalent to a free group
(Lo«-free) if and only if it is strongly k-free.

Proof. Since the proof of this result follows that of [3] (for abelian
groups), we will just indicate how it is proved. The necessity follows from
the fact that being strongly k-free is expressible by a sentence of L, and
is true for all free groups. In order to show the sufficiency we can set up
as Eklof did partial isomorphisms between free factors of a fixed free
group and «-pure subgroups of the strongly «-free group.

0.3. Remark. The terminology of 0.1 is imported from abelian group
theory. In most of this paper we treat groups and abelian groups simul-
taneously. The reader can substitute direct summand for free factor and
direct sum for free product in order to obtain the results for abelian
groups. Some of our results will be established only for abelian groups
(or non-abelian groups). We will alert the reader to these.

0.4. Outline of Paper. This paper has two main parts. The first section
is devoted to a description of possible non-free k-free groups. In the
remaining sections, various k-free groups are constructed. The central idea
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is that every k-free group of cardinality k can be expressed as the union of
a smooth chain (of length «) of free groups. For regular « (this is the
only interesting case, c.f. Theorem 1.1), this leads to a function, T', which
assigns an invariant to k-free groups. Roughly this invariant tells which
elements of the chain are not «-pure. In Section 1, we study «-free groups
by proving results which say a «-free group can be expressed as the union
of a chain of subgroups satisfying certain properties. For example,
Theorem 1.13 restricts the possible range at T.

In Section 2, we construct many strongly «-free groups. This is done by
inductively defining smooth chains of free groups. From these inductive
constructions there arise two other notions, that of a criterion for freeness
and that of an embedding property. A criterion for freeness tells us that
the groups constructed at limit stages are free. An embedding property
is used to go from one stage to the next. Some of these constructions
require consequences of Gédel’'s Axiom of Construct'bility, (7 = L).
These constructions provide relative consistency results. For example,
Theorem 2.15 says if (17 = L), then for successor cardinals all strongly
k-free abelian groups possible in light of Lemma 1.9 and Theorem 1.13
actually occur.

In Section 3, we use trees and embeddings to construct k-free not
strongly x-free groups. In Section 4, we vary the embeddings in order to
construct para-free groups. It is shown that we can demand all the non-
abelian group constructed in Sections 2 and 3 be para-free as well.

If we restrict ourselves to abelian groups, we can obtain more sophis-
ticated embeddings and criteria for freeness. In Section 5, we prove a
number of ‘“‘real world" results. In particular, we show for all » > 0 that
I' applied to strongly w,-free abelian groups of cardinality w, can take
any value.

We end the paper with a number of questions.

0.5. Definition. A cardinal is an initial ordinal. An ordinal is identified
with the set of its predecessors X, = w, = {r|r < w,}. A subset, C, of an
ordinal, v, is closed and unbounded (a cub) if it is closed under unions and
for all 7 < v there is an o € C such thata > 7. A set E C v is stationary
if it has non-empty intersection with every cub.

0.6. Acknowledgment. Some of the results in this paper are from the
author’s doctoral dissertation. I would like to express my gratitude to
my thesis advisor, Paul Eklof, for his help during the preparation of my
thesis and the years after.

1. Structure of almost free groups. We wish to analyze some of
the structure of non-free almost free groups. The following results tell us
we can restrict ourselves to considering k-free groups where « is regular
and not weakly compact.
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1.1. TueoreM. (1) ([18]) If A is x-free and «x is singular then A 1is
kt-free.

(2) ((13]) If « 1s weakly compact (vesp. strongly compact) and A is
k-free group of cardinality x (resp. of arbitrary cardinality), then A 1is free.

Proof. See [6] Theorem 2.6 for a proof of (2).

In the following, unless otherwise stated, « will always be a regular,
non-weakly compact cardinal and 4 a x-free group of cardinality . The
most obvious thing we can say of 4 is that it is a union of a chain of free
groups.

1.2. Definition. A «-filtration of 4 is an increasing chain, A = |4,]
v < k} of subgroups of A satisfying for all v < «:

(1) 14, < x;
(i) A = U,«x 4,; and
(iii) if v is a limit ordinal, Av = U,<, 4,.

A chain satisfying (iii) is said to be smooth.
The following observation is essentially due to Eklof.

1.3. THEOREM. ([6], Theorem 2.5) Suppose A is a k-filtration of A and
E = {v|A, is k-pure}. A is free if and only if E is not stationary.

Proof. If E is not stationary, we can find a cub C C « such that
CNMN E = 0. Let f enumerate C and let

A" = {B,|B, = A}

Since we have a k-filtration of 4 by «-pure free groups, we can inductively
obtain a set of free generators for 4.

Assume A and £ are as in the hypothesis of the theorem. Suppose
A" = {B,|v C «} is some other k-filtration of 4. An easy argument shows
C = {v|B, = 4,} isacub. If 4 is free there is a k-filtration A’ by k-pure
subgroups. Let C be as above. Then CM E = 0.

1.4. Description of T. There is a natural equivalence relation on the
subsets of k. Two sets, £, and E,, are equivalent if there is a cub C such
that C M\ E, = C M E,, or equivalently (£, — E,) U (E, — E;) is not
stationary. For any set E C «, let £ indicate the equivalence class
determined by E. This gives the Boolean algebra, P (x)/I, where I is the
ideal of non-stationary sets. We will use \U, M, 1, 0 for the Boolean
algebra operations and constants.

The proof of Theorem 1.3 shows that £ is an invariant of 4. In [6] the
function which assigns % to 4 was called T'. That is, if A is a «-filtration of
A and E = {v|A4, is not k-pure} then T'(4) = E. A major concern of this
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paper is to discover possible values of T. Note that if T'(4) # 1 (= &)
then A4 is strongly «-free (the converse is not true). In [8], the model
theoretic significance of T is explained.

In [14], we attempted to give a construction which given an almost
free abelian group 4 such that I'(4) = E would produce for E; C E a B
such that I'(B) = E,. Unfortunately, there is a flaw in the construction.
We tacitly assumed 4 was strongly «-free. The above result is true for
strongly k-free abelian groups but we will see that given certain set
theoretic assumptions (namely 17 = L and there exists a weakly compact
cardinal) it fails in general. So Theorem 1.1 of [14] should read:

1.5. THEOREM. If there exists a non-free strongly x-free abelian group of
cardinality k, then there exists 2% strongly k-free abelian groups of cardinality
K.

In this paper we will be able to strengthen this result to recover the
original result in some cases. Strangely enough Theorem 1.2 of [14] and
its proof are correct as written.

Although a «-free group need not be strongly «k-free it is strongly
p-free for all p < x. We begin by showing the following.

1.6. THEOREM. If « is « regular cardinal and A 1is k*-free then A is
strongly k-free.

Proof. Suppose first x > w. Assume the theorem is false and 4 is a
counter example. Thereisa B C 4, |B| < «such that B is not contained
in a k-pure subgroup of cardinality <x. We now define for ordinals v < &
a sequence of subgroups B,.

Let By = B. If B, has been defined, choose B,.; 2 B, such that
|B.y1] < k and B, is not a free factor of B,,,. If B, has been defined for
v < X\ where \ is a limit ordinal, let By = U,«x B,. Let B, = U<« B..
By Theorem 1.3, By is not free. However B, € 4 and |B,| = «. So B, is
free, a contradiction.

Suppose now that 4 is w;-free and B is a finitely generated subgroup
which is not contained in an w-pure subgroup. Choose a sequence of
countable subgroups B, by By, = B; if C C B, is not w-pure and C is
finitely generated then C is not w-pure as a subgroup of B,y;. Let
B, = U,<. B,. By the construction, B is not contained in a finitely
generated free factor of B,. So B, is not free, a contradiction.

For limit cardinals we have a stronger result.

1.7. THEOREM. If \ s « limit cardinal and A 1s N-free then A s strongly
\-free.

Proof. Since 4 is M-free, it is k¥ +-free for all k < X\. Suppose B € 4 and
|B| = k. By Theorem 1.6 there is a C 2 B such that |C| = k and C is
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xt-pure. We must show C is A\-pure. Suppose D 2 C and |D| < \. Since
D is free, there is a free factor  of D which contains C and is of cardi-
nality «. Since C is k*-pure, C is a free factor of H and hence of D.

We now turn our attention to abelian groups. An approach to dis-
covering more about k-free groups is to place stronger constraints on the
filtration.

1.8. LEMMA. Suppose 4 s a k*-free abelian group and x is regular. If
A DB and B = U,<, B, (not necessarily smooth), u a regular cardinul
and each B, 1s u-pure, then B 1s u-pure. In other words the union of «
u-chain of u-pure subgroups is u-pure.

Proof. Suppose D € A and |D| < p. Choose B, such that BN\ D C B..
Now

B+ D)B~D/(BMN\D)~B,+ D/B,
which is free.

1.9. LEMMA. Assume A 1s as in Lemma 1.8. There is a k' -filtration
A = {A,|v < «*} such that each A,y 1s k-pure and if N 1s a limit ordinal
then Ay is cf(N)-pure.

Proof. Enumerate 4 as {a,|v < «*}. Appealing to Theorem 1.6,
choose 4y to be any k-pure subgroup of A. Suppose 4, has been defined.
Since |4, £ x, we can write 4, as Ug<« Bsg where |Bg| < k. Choose
k-pure subgroups Cg such that

[Csl < &, Co = Bo\J {a,},and Cs 2 (U< Cp) \J Bg.

Let 4,41 = Ugex Cs. By Lemma 1.8, 4, is k-pure. Again by Lemma 1.8,
if for limit ordinals A we define 4y as U,«\ 4, then 4, is cf (\)-pure.

1.10 THEOREM. If A is a &kT-free abelian group such that T(4d) M
E 5 0 where E = {v|cf(v) = k|, then there exists a «-free non-free abeliun
group of cardinality «.

Proof. Filter A as in Lemma 1.9. For some X of cofinality «, there exists
Ay which is k-pure but not «*-pure. Choose B D A4, such that |B| = «
and B/A, is not free. Since A, is k-pure, B/ A, is the group required.

Combining Theorems 1.1(2) and 1.10 yields the following corollary.

1.11. COROLLARY. If « is weakly compact and A 1s x*-free abelian then -
is strongly k*-free. In fact T(A) N\ W = 0, where W = {v|cf(v) = k.

This result shows (once appropriate existence results are established)
that the existence of a strongly «-free not x*-free abelian group does not
necessarily imply the existence of a non-strongly k-free abelian group.
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In [4] it is shown that if a «-free not «x*-free abelian group exists, then
there are 2** strongly x*-free not «*+-free abelian groups. Using this we
get a strengthening of Theorem 1.5.

1.12. THEOREM. If « 1s either « regular limit cardinal or the successor of
a regular cardinal and a k-free not k*-free abelian group exists, then there
are 2% strongly x-free not k*-free abelian groups.

Proof. Suppose 4 is k-free, not free and [4| = «. If 4 is strongly «-free
then we are done (by Theorem 1.5). If not then x = p* where pisa regular
cardinal, since for limit cardinals k every k-free group is strongly «-free.
By Theorem 1.10, there is a p-free not p*-free group. So by the results of
[4] mentioned above, we are done.

For strongly «-free abelian groups we can do much better than Corollary
1.11, in our attempt to describe I'. The next theorem says any strongly
k-free abelian group of cardinality « has a filtration whose ‘‘bad’’ points
include no ordinals with a weakly compact cofinality.

1.13. THEOREM. Suppose A 1is a strongly x-free abelian group and
|4| = « then T(4) N\ W = 0 where W = {v|cf(v) is weakly compact}.

Proof. We can filter 4 as {4,|» < «} such that 4,,; is k-pure. If cf()\)
is weakly compact then 4, is the union of a chain of k-pure subgroups. In
order to show 4, is k-pure it is enough to prove the following claim.

Claim. Suppose for a weakly compact cardinal, 7, we have free abelian
groups ' 2 K = U,<, K, and F/K, is free. Then F/K is free.

Proof of Clavm. Assume not. Let p be the least cardinal such that
F 2O K = U,<. K, form a counter example to the claim and |F| = p.
First note that F/K is p-free. Suppose G C F and |G| < p. Since

G/ (K, M G) ~ (G + K,)/K, & F/K,,

G/(K, M G) is free. Hence G,G N K = U,<.(G M K,) satisfy the hy-
pothesis of the claim. So by the minimality of p, G + K/K ~G/K M G is
free. By Theorem 1.1, p is regular and p > 7.

Choose a p-filtration, { F,|v < p}, of Fsuch that; F, is a direct summand
of Fandif (F, + K)/K isnot p-pure in /K, then (F,., + K)/(F, + K)
is not free. Now for each ¢ < 7, define

Co = w|F, + K,/K, is p-pure in F/K,}.

Since F/K, is free, C, is a cub. Let C = MN,<. D,. Since p > 7 and p is
regular, C is a cub. Since F/K is not free there is a » € C such that
(Foy1 + K)/(F, + K) is not free. By the definition of C, (F,;; + K,)/
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(F, + K,) is free for all ¢ < 7. Note that

(Fopr + K)/(Fy + K) >~ Fopr/ (Fy + (KN Foa)),
(Fopr + Ko/ (Fy + K;) >~ Fooi/ (F, + (K, M Fupr)) and
1"1’ + (K m ]"vr’rl) = Ua<1<[“v + (Ka m P‘y—*’l)).
So
["v+1 _D_ (FV _+_ (K m ]"H—l)) = Uo<r(]4‘v + (Ka m ]"v-}»l))

satisfy the hypothesis of the claim. Since |F,.i| < p, (foy1 + K)/
(I°, + K) is free. This is a contradiction.

Although the above is the best possible result for successor cardinals
(cf. Theorem 2.13), for some regular limit cardinals we can obtain more
information.

1.14. Definition. A cardinal, «, is a Mahlo cardinal if the set of regular
cardinals less than « is stationary in «. (The first Mahlo cardinal (if any)
is less than the first weakly compact cardinal.)

1.15. THEOREM. Suppose « 1s a cardinal and E C k 1s such (hat
F = {v < |E M visstationary in v and v is a regular cardinal} is stattonary
i k. For no A does T'(4) = E.

Note the hypothesis forces « to be a Mahlo cardinal.

Proof. Assume that A is a counterexample. Choose a «-filtration
{A4,]v < k} of A such that: If 4, is not «-pure, then 4, is not a free factor

of 4,.1; and |4, = |»|. By the assumption on F and E we can find a
cardinal 7 € F such that {r < 7|4, is not a free factor of 4,,,} is sta-
tionary in 7. Since |4,| = [v| < 7, 4, is not free. This is a contradiction.

This not only eliminates 1 as a possible value for T but also such sets as

et (v) = wl.

2. Construction of strongly x-free groups. In this section we begin
our description of the construction of almost free groups. We will use
Godel’s axiom of constructability, (17 = L), for some of our construc-
tions. The constructible universe, L, is a pleasant place where many
otherwise independent set theoretic principles, including GCH, hold. We
will explain these principles as we need them. Aside from any intrinsic
interest constructions in L may have, they provide consistency results
for the existence of certain groups. These show the results of Section 1
are the best general results possible.

In order to motivate the constructions to come, we will sketch the
construction in [9] of an wi-free group.
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2.1. Higman's Construction. We start with a countably generated free
group 4¢. If we have defined 4,, we choose a set of free generators
{anln € w} for 4,. We then take the 4,.; a group freely generated by
{baJn € w}. We embed 4, in 4,,; by identifying a, with b, (b,41)"2

Remark. This embedding has two properties we will see again:

(i) Any finitely generated free factor of 4, is a free factor of 4,,; (a
complementary factor of {a, ..., «,)is (bylm )n)); and
(i1) 4, is not a free factor of 4,,,.

If X is a limit ordinal we let 4y = U, 4,. We let 4 = U<y, .. To
show this construction works we must show 4, is free and that 4 is not.
Since cf(\) = w, using part (i) of the remark we can write 4y as the
union of countable chain of free groups each of which is a free factor of
the succeeding elements of the chain. The group 4 is w;-free since every
countable subset is contained in some 4,. Since for all v 4, is not w;-pure,
A is not free (Theorem 1.3).

In fact 4 is not strongly w;-free. Let B be the smallest normal subgroup
containing a? for each « € 4. Then |4| > w and |4/B| = w. Since B is
a definable subgroup, this is expressible in L_,,. As this is not true for
any free group, 4 is not strongly w-free.

One way of viewing the above construction is that two ingrediants are
involved; an embedding at one free group in another, and a criterion for
freeness. The embedding is used to pass from one stage to the next. The
criterion for freeness is used to guarantee that the groups constructed at
limit stages are free. IEklof, by using moderately sophisticated set theory,
was able to use a simple criterion, namely the union of smooth chain of
free groups each of which is a free factor of the next group in the chain
is free (c.f. [4], Theorem 2.2).

We now define the relevant set theoretic idea.

2.2. Definition. Suppose « is a regular cardinal. A set £ C « is sparse if
E M v is not stationary in ».

Jensen [11] has established the following principle which has since
been called E (k).

2.3. THEOREM. (Jensen) Assume (17 = L). E(x) holds for each regular
non-weakly compact cardinal « where E(k) asserts that there is a sparse
stationary subset of k consisting of ordinals of cofinality w.

This allows us to construct k-separable groups. This construction is
closely related to that of [5].

2.4, THEOREM. Suppose L (k) holds. If k is a regular cardinal then there
are 2% k-separable groups of cardinality k.
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Proof. Choose E to witness E(x). We will define a «-filtration induc-
tively. As well as the groups 4,, we will need certain auxiliary groups.
For each v < «, we will construct a group 4, satisfying:

1) 4, C 4, ifr =y,
(i) Ay = U, 4y, if N is a limit ordinal; and

(iii) 4, is a free factor of 4,4, if and only if v ¢ E.

For eachv ¢ E and 7 = » we will construct a free group B, satisfying:

(iv) 4, B,, = 4.;

(v) By, € B,,, if p 2 7; and

(vi) Byy* B,, = B,,,iff v =7 < pand v, 7 ¢ E.

If we have these groups and set A = U ,«< 4,, 4 is not free (Theorem
1.3). Further if » € E, it is clear that 4 = A, * (U,<.B,.). So 4 is one
of the groups required to prove the theorem. Note that T'(4) = E.

We will now define the necessary subgroups by induction. For nota-
tional convenience a set of generators will always be free. There are
several cases.

Case 0. (v = 0) Let Ag = (1), Boo = (1).

Casel. (v =p+1,p¢ E). Let A, = A,*{a,), and B,, = (1). For
1< pand r¢ E, let B,, = B,,*{a,). It is clear that if the groups
defined prior to stage v satisfy (i)-(vi), so do 4, and the B,,.

Case 2. (v is a limit ordinal) Let 4, = U,<, 4,. To see that 4, is free,
let {7¢]¢ < cf(»)} be a closed unbounded sequence in » such that for all
£, 7¢ ¢ E. (This is possible by the choice of E.) Also choose 7o = 0. So

4, = x* (-BT£1£+1)E<01(V)‘

Ifr<vandr ¢ E, let B,, = U,<t<y Brt. (This definition is forced by
(1)—-(vi).) If » ¢ E.let B,, = (1); otherwise leave it undefined. For much
the same reason that 4, is free, the B,, satisfy (iv)—(vi).

Case 3. (v = p+ 1, p € E) This case is the crux of the construction.
Since p € E, p = U,<w 7, Where 7, is a successor ordinal for each n. Let

A = A70 * (Bfn+11'n+1)n<w-
Then
Ay 14, * <a1n+1>n<w-

Let A, = A’ * {ay» )u<w. Identify a,, 11 with (a,,) (a.41,)~2 and extend this
to the embedding of 4, into 4, which is the identity on 4’. Note that 4,
is not a free factor of 4,. To see this, let C be the smallest normal sub-
group of 4, containing 4,. Then A4,/C is an abelian group which contains
a non-zero element which can be divided by arbitrary powers of 2.

We now must define the B,,. As usual let B,, = (1). Before we define
the other B, note the following. For all m < w, (@, )n<s is freely generated
by

It

{(10,((11,,)_2, LI yamu(am+U)—2} U {am+1w L] }
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This follows since {ao,(@1,)7% . . ., Gy (@my1s) 72, W1y} 1s @ set of m + 2
generators of a free group of rank m + 2, namely {ao,, . . ., @ps1,). So
these elements must freely generate this group (cf. [12], Corollary 2.13.1,
p. 110).

For each of the 7,, let

B‘rnV = * (-B‘f,,,+1‘r,,. +1)n§m * <amv>n§m-

If » ¢ Eand r < v, choose # such that 7, is the least of the 7, = 7. Define
B., = B;., * B.,,. By the observation in the preceding paragraph it is
clear that if r < vand 7 ¢ E, then 4.x B,, = 4,. Since

Qrmi1 = Apuy(@pyry)~2and .41 € Byeforr < 7, + 1 2§,

B.t%Bg, = B,, wherer <t <vand r, ¢4 E. Alsoif 1 £ ¢ < v, then
B.: © B,, (r € E). So properties (i)-(vi) hold.

This construction produces a «-separable group 4 such that T'(4) = E
where E is a set witnessing £ (k). We can complete this proof if we know
there are 2* non-equivalent sets witnessing E (x) (This is an idea of Shelah).
The existence of these sets follows from the existence of one by the follow-
ing celebrated results of [19].

THEOREM. Assume k is a regular cardinal. Every stationary subset of «
can be partitioned into k disjoint stationary subsets.

As previously noted E(x) holds for all regular non-weakly compact
cardinals in L. In the real world E(w;) holds. (Let E = {»[cf(v) = w}.)
So with no set theoretic hypothesis, we have a construction of an w;-
separable group.

In [7] groups of cardinality x which are strongly «-free and indecom-
posable were constructed in L. So in L if we want k-separable groups we
must do more than construct strongly «-free groups. Curiously we have
the following.

2.5. THEOREM. Assume Martin's Axiom and 2° Z ws. If A is a strongly
wi-free abelian group and |A| = wi, then A is wi-separable.

Proof. We will sketch the modifications to Shelah’s proof that a group
of type Il or I1I is a Whitehead group (cf. [17] or [5]). Suppose B is an
wi-pure countable subgroup of 4. We have the exact sequence 0 — B —
A — B/A — 0. Itis easy to show B/A is again strongly w;-free and hence
not of type I. Suppose D is w;-free and not of type I. In Shelah’s proof all
that is needed to show that 0 — Z — C — D — 0 splits is that Z is free
and countable. So 0 - B — 4 — 4/B — 0 splits. Hence B is a direct
summand of 4.

If in Theorem 2.4 we had only been interested in constructing strongly
k-free groups, we could have omitted the B,,, as they are only used to
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show the group is k-separable. We can now describe the construction of
strongly k-free groups more abstractly.

2.6. Definition. Suppose « is a regular cardinal. We say « has the
embedding property F(x) if there exists a free group F, and a smooth
chain of subgroups K,(» < «) such that:

() [F] =«
(i1) K, is generated by fewer than k elements and K, is a free factor of
F;and

(ili) U,«¢ K, = K and K is not a free factor of I

2.7. Remark. I'(w) is true. For abelian groups /(x) is implied by the
existence of a k-free non-free abelian group of cardinality «. This comes
from the following lemma.

2.8. LEmma. ([4]) Suppose I is a free abelian group of cardinality . If
F/K is x-free and K, C K is a direct summand of K such that |K,| < «,
then F/K. is free.

Proof. Choose a direct summand D of /° such that D 2 K, and
|D| < «. Since (D 4+ K)/K is free, D/K, is free. So F/K; is free.

The situation for (non-abelian) groups seems more complicated. We
can however show the following.

2.9. LEMMA. Suppose p is « regular cardinal and there 1is « spuarse
stationary subset E C p such that for all v € E, cf(v) = . If I'(x) s true
then F(p) is true. In particular for regular p, if E{(p) is true then sois I'(p).

We will omit the proof of this lemma. It is a rather horrible inducive
construction, somewhat similar to that of Theorem 2.4. This lemma is
proved in [13]. The general construction can now be given.

2.10. THEOREM. Suppose « is regular and E C « 1is a sparse stationary
subset consisting of limit ordinals such that for all v € E if p = cf(v), then
F(p) 1s true. There is a strongly k-free group A of cardinalily k such that
r) = E.

Proof. The proof is very similar to that of Theorem 2.4. So we will just
sketch the construction. Again we construct a x-filtration {4,|r < «} of
free groups such that 4, is a free factor of each succeeding group if
v & E. If v € E then 4, is not a free factor of 4,,;. We have the same
cases as before.

Case 0. Let 4, = (1).

Case 1. (v = p+ 1,p ¢ E) Given 4,, define 4, to be the free product
of 4, and a free group on |»| generators.

Case 2. (v 1s a limit ordinal) Let 4, = U.,«, 4,. Since E is a sparse,
A4, can be written as the union of a smooth chain of free groups each of
which is a free factor of the succeeding group.
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Case3. (v = p+1,p € E) Suppose r = cf(p)and F D K = U;, K:
witness that F(r) holds. Again since E is sparse, we can write A, as the
union of a smooth 7-chain {4 ,4|¢ < 7}. We impose the conditions that
f(¢) ¢ E and that if K¢, is freely generated by u clements over K, then
Ay is freely generated by at least p elements over 4. Using the
above setup we can choose a free group for 4, and embed A4, into 4, so
that A4, is not a free factor of 4, but each 4, is. Finally if 8 < » and
B8 € E, then there is a £ such that f(£) > 8. So A is a free factor of A,
and hence of 4,.

In order to push this method we need examples of sparse stationary
sets.

2.11. Example. If « is regular then {v < «Tlcf(v) = «} is a sparse
stationary subset of «*. An induction as in (4] shows that there exists a
2¢n strongly w,-free groups of cardinality w,.

In L we can do much better. Jensen [11] showed the principle [ ], holds
in L. We need the following consequence of [ ],, which is due essentially
to Magidor and independently to Solovay.

2.12. TuroreEM. ([16], Lemma 5.4) Assume [ .. If E C «*, then E is
the union of at most k sparse sets.

Combining several results we have a complete description in L of the
range of T' on abelian groups for successor cardinals.

2.13. TaeorREM. Assume (V' = L). Suppose k is a successor cardinal and
E C k. There exists a strongly k-free group A of cardinality « such that
I'(4) = Eif {v € Elcf(v) is weakly compact} is not stationary.

Proof. We can assume for all v ¢ E that cf(») is not weakly compact.
Suppose « = p*. Choose {E,|v < p} such that each E, is sparse and
E = U,<,E,. For each » < p, construct 4, such that I'(4,) = E,. This
is possible since F(cf(r)) holds for each 7 € E,. Let 4 = %(4,),<,.

2.14. THEOREM. Assume (17 = L). Suppose x is a successor cardinal and
E C «. There is a strongly k-free abelian group A with T(A) = E if and
only if {v & E|cf(v) is weakly compact} is not stationary.

These constructions give more information. For abelian groups let
= be the least equivalence relation closed under ~ and direct sums with
free abelian groups. This allows us to describe the groups better.

2.15. THEOREM. Assume (V = L). Suppose x is a successor cardinal and
0:x — abelian groups is a function such that: 0(v) is free if v is a successor
cardinal or cf(v) 1s weakly compact; and 0(v) = F/K = Ua<ct(yka, F and
F/K, are free, and |F| < «. There exists a strongly k-free abelian group A of
cardinality k with a x-fillration A = {A,|v < «} such that A, 1/ A, = 0(»).
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To prove Theorem 2.15 it is necessary to show that if I' Dk = U<, Ko,
Fand F/K, are free, then K = U<, H, (smooth) where FF/H, is free. To
see this fix X a set of free generators for K. Let H,,1be the group generated
by X f\ Kov{-l-

2.16. Remark. Again the logical significance of this result is explained
in [8]. The relevant algebraic notion is quotient-equivalence. If 4 and 53
are strongly k-free abelian groups of cardinality «, they are quolicnt
equivalent if there are x-filtrations 4 = U,<. 4,, B = U,«« B, such that
foreveryy < «k, 4,,1/4, >~ B,.1/B,. Quotient-equivalence does not imply
isomorphism (cf. |8], Section 5). By Lemma 1.9 and Theorem 1.13 every
quotient-equivalence class of strongly k-free abelian groups is determined
by a function 8:«x — abelian groups satisfying the hypothesis of Theorem
2.15. So Theorem 2.15 characterizes, in L, all quotient-equivalence classes
of strongly k-free abelian groups.

3. Construction of «-free groups which are not strongly «-free.
We now turn to a rather mysterious class of groups, those which are
k-free but not strongly k-free. Again set theory enters essentially into our
construction.

3.1. Definition. A partially ordered set (17, <) is a tree if for all t - 7',
{x]x < t} is well ordered. 1f ¢ € T, the height of t, ht({), is the ordinal »
such that ({x|x < ¢}, <) >~ (v, >). The height of T is sup{ht(¢)]t ¢ 17}.
A branch, B, is a map from an ordinal » such that for all + < o <,
ht(B(a)) = a and B(r) < B(«). If B:v — 1" is a branch, v is the length
of B.

3.2, Example. The full binary tree of height « is the set of sequences of
0’s and 1's of length <«, ordered by inclusion.

3.3. Definition. Assume « is regular. A tree of height « is a Canadian
tree if |7 = k and 7 has «* branches of length «.

3.4. Remurks. This somewhat unfortunate name originated with Frank
Tall and has been used by Baumgartner [1]. The concept itself is older

(cf. [15]).

The full binary tree of height w is a Canadian tree. If 2% = « then
there is a Canadian tree of height k, namely the full binary tree of height
k. In particular if (17 = L), there is such a tree for each regular . The
existence of a Canadian tree of height x does not depend on 2% = &,
For example in the usual forcing extension of L, which make 2% whatever
is desired, there are Canadian trees of all regular heights. However the
existence of a Canadian tree does not seem to follow from ZFC. The
situation is explained by the following theorem of [15].
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3.5. THEOREM (Mitchell). (1) If ZFC and there exists an inaccessible
cardinal is consistent then it is consistent with ZFC that there is no Canadian
tree of height w; and 29 = w,.

(2) If it is consistent with ZEC that for some regular cardinal k there is no
Canadian tree of height x, then ZFC and there exists an inaccessible s
consistent.

The following method of defining a group is a modification of a con-
struction of Shelah.

3.6. THEOREM. Suppose there exists a Canadian tree of height k and that
F(k) holds. There is a x*-free group which is not strongly k*-free.

Proof. Let (T, <) be a Canadian tree of height x and {B,|r < «*} be
a set of pairwise different branches of length «. Let F D K = .« K,
witness F(x). Choose groups H. such that K, = *x(H,).<,. Note if N is a
limit ordinal, then H, = (1). For each t € T, we take a free group H,
isomorphic to H, where 7 = ht(t). Take Gy, = *(H,),cr. For each
v < k' choose free groups 4, D D, = %(C,,).<, an isomorphic copy of
FDO K = %(H.,),<. Let G be the amalgamated product of Gy and the 4,’s
where we identify C,, with Hp, ). In other words we attach 4, to Go by
identifying D, along branch B,.

We must now show G is K+-free. This follows easily once we have
established the following claim.

Claim. Suppose P is a presentation of G and for every Q C P such that
|O] = « there is P2 Q" 2 Q such that Q' is the presentation of a free
group. Then G is x*-free.

Proof of Claim. Suppose for some G’ € G, G’ is not free and |G| = «.
We can choose Q € P with |Q| = «such that each element of G’ is a word
in the generator of Q and if two words in Q are equal (as elements of G)
then their equality is deducible from the relations of Q. Soif P 2D Q' 2 Q
then Q' is the presentation of a group which contains an isomorphic copy
of G'. So Q' is not the presentation of a free group.

Since we have described a presentation for G it will suffice to show
appropriate subsets of this presentation are presentations of free groups.
Suppose we have any « branches of 7. For notational convenience we
can assume the branches are B,, ¢ < x. We can also assume each ¢t € T
is B,(p), for some o, p < k. Take the presentation, Q, whose generators
are Gy, 4, (¢ < x) and whose relations are the identifications described
above. To see the group presented by Q is free, we construct the group as
a free product of free groups.

Take F = #(F,),<« the free product of « free groups of rank «. Choose
an isomorphism from 4, to Fy. In general at stage o, we let p be the least
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ordinal such that B,(p) # Bs(p), for all 8 < ¢. Such a p exists, since « is
regular. Let 4, be a complementary factor of *(C,,),<, in 4,. We then
choose an isomorphism from A, to F,. This process shows Q is the presen-
tation of a free group.

To see that G is not strongly «x*-free, note that G, cannot be contained
in any «*-pure subgroup and |G¢| = «. In fact let Go¥ be the smallest
normal subgroup of G containing G, and let K¥ be the smallest normal
subgroup of F containing K. Then G/G¥ is isomorphic to a free product
of k* copies of F/K¥.

Although the existence of a Canadian tree of height w; implies the
existence of an ws-free group which is not strongly ws-free, the converse
is false (for abelian groups) (cf. Theorem 5.2).

One reason why k-free not strongly x-free groups are mysterious from
a logical point of view is that they need not be L -equivalent.

il

3.7. TaEorREM. (1) Assume (17 = L). If « is a regular non-weakly
compact cardinal then there exist 2% (=«x*) kT-free groups which are patrwise
not L . +-equivalent.

(2) There exist 2% wi-free groups which are pairwise not L w,-equivalent.

(3) If there exists « Canadian tree of height w, there are 29n w,i1-free
groups which are pairwise not L., ,,-equivalent.

(4) Suppose that thereis a strongly x-free abelian group which is not x*-free
and that there is « Cunadian tree of height x. There exist 2% k*-free abeliun
groups which are pairwise nol L, -equivalent.

Proof. We will only prove (4). The proofs of the others are similar.
Suppose A, and A, are k-free abelian groups of cardinality « such that
I'(4,) # T'(4.). Using the construction of the last theorem we can
construct k*-free abelian groups G; and G, These groups have the
property that (7; satisfies the sentence, ‘‘any set of size « is contained in a
subgroup B such that G,/B satisfies the sentence ‘every set of size « is
contained in a «*-pure subgroup which is the direct sum of copies of
Ay 7. This is a sentence of L.+ So G; is not L, +-equivalent to G.
Since we can find 2% k-free groups whose images under I' are pairwise
different, we are done.

4. Para-free groups. The groups constructed in this section have no
clear abelian analogues: Baumslag [2] opened the study of para-free
groups in an attempt to find a non-free group of cohomological dimension
one. We now know this is an impossible task. In any case it is interesting
that groups can be constructed which share with free groups not only the
local property of being (strongly) k-free but also the global property of
being para-free.
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4.1. Definition. Let G be a group. If «,b € G, la,b] denotes the
comutator a='b—'ab of @ and b. The subgroups G, of the lower central series
are defined by G; = G and ¢ € G,y if ¢ = [gy, g2] where ¢; € G, and
¢2 € G. The sequence G/Gs, G/Gs, . . . is the lower central sequence of G.
Two groups G and H have the same lower central sequence if there are
isomorphisms 6,: H/H, — G/G, such that 6,,, induces 6,. A group is
para-free if it has the same lower central sequence as a free group and is
residually nilpotent.

The constructions of this section are like those of the preceding sections
except we need different embeddings. We want an embedding of a free
group K into /' which has the properties of F(x) but which becomes
trivial when we mod out by F,.

4.2, Definition. A group, G, is nilpotent of class n (nil-n) if G,41 = (1).
There are free nil-n groups and a nil-n free product. We say « has the
embedding property Fi(k) if there exists a free group F, and a smooth
chain of subgroups K’ (v < k), such that: FF 2D K = U,«, K’ witness
F(x); and there exists { f;|t € I} € F such that for all # > 0 K is a
nil-n free factor of F and | f,/i € I} freely generate a complementary
summand of K. (The bar indicates image mod F,1.)

4.3. LEmMa. (1) Fi(w) holds.

(2) Suppose « is a regular cardinal and there 1is « sparse stalionary
subset of k «ll of whose elements are of cofinality v. If Fi(v) holds then
Fi(k) holds.

(3) For all n, Fi(w,) holds.

Proof. (1) Let F be the free group on generators {a,|m < w}. Let
K = (alay, as]), K' = {aolay, o) arllas, adl, [as, as)]),

and so on. For each n, K" * (¢, )y>, = F. For any n, K + F, = Fso we
can take { fi|¢ € I} = ¢. Finally since ¢y ¢ Fand K + Fy = F, K is not
a free factor of F. We will omit proving (2), for the same reason we
didn’t prove Lemma 2.9. An induction argument establishes (3).

Note that the example which established (1) has the properties used
in Theorem 2.4 to construct x-separable groups. We can now add the
word para-free to most of our previous results.

4.4. THEOREM. (1) Assume k 1s a regular cardinal and E (k) holds. There
extist 2% k-separable para-free groups.

(2) Assume (V = L). For all regular non-weakly compact cardinals «
and E C x — W where W = {v < «|cf(v) is weakly compact} there 1s «
para-free strongly k-free group, A, such that T(A) = E.

(8) For all m > 0, there exist 2» para-free strongly w,-free groups of
cardinality w,.

https://doi.org/10.4153/CJM-1980-090-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-090-1

1222 A. H. MEKLER

(4) Suppose « is regular, Fi(x) holds and there is « Canadian tree of
height k. There is a para-free k*-free group which is not strongly k*-free.

Proof. In each case we use the same construction as was used to prove
the result without the requiring the groups to be para-free, except we
use an embedding which witnesses (k). We will prove (4) as that case
illustrates the modifications to the previous proofs.

We can view the group constructed in Theorem 3.6 as the union of a
smooth chain of free groups. Using the notation of Theorem 3.6, let G,
be the group generated by G, and {A4g|s<,}. To obtain G,+; from G,, we
first write G, as (Hp, * G') where

Hp, = *(Hp,))s <.
We then embed Hp, into 4, so that

4, 2 HB,, = Ua<x*(HBV<B>)ﬁ§a and {fm'ii € [}
witness [ (x). Let G,y = 4, x G'. For any #,

G = Gu * <fvi[i c 1)<y,

where the bars denote the image modG, and # is the nil-n free product.
(G is as in Theorem 3.6, but G, is the »'™ element of the lower central
series.) So G has the same lower central sequence as a free group. Since
any wi-free group is residually nilpotent (this can be expressed as a
sentence in L_,), G is para-free.

5. Almost free abelian groups. In this section by ‘“‘group’” we shall
mean ‘‘abelian group’’. The major results of this section are: The descrip-
tion of T for w,, namely that it can take any value; and the construction
of w,-separable groups. The construction will require a more complicated
embedding and a more elaborate criterion for freeness. Hill {10] defined,
for each non-negative integer #, a class of group #,. The class %
consists of all countable torsion free groups. Inductively, G ¢ # ., if
G = U,<,G, (smooth) where u < w,41, each G, is free,and G,41/G, € F,.
The following criterion for freeness holds.

5.1. TuroreM. ([10]) For every positive n if G € F ,, then G is w,~free.

This yields an alternate construction of an w,-free not strongly w,-frec
group.

5.2. THEOREM. Assume, for some n < w, 29" = w,1. LThere exists an

wot1-free group which is not strongly w,.1-free.

Proof. We define a group, G, whose underlying set is w,41. Let
{X,|v < wyy1} be an enumeration of the subsets of w,1 whose cardinality
is w,. Further, assume each set occurs w,; times in this enumeration. Let
Gy € wyy1 be a free group on w, generators. More exactly the set under-
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lying Gy is contained in w,1. Suppose X, € G, and G,/X, is free. Choose
G, \J ) € G € a < wyyr, such that G,y /G, € F, and G, /X, is
not free. This is possible since there is 4 € #, with |4]| = w, and 4 is
not free (cf. Theorem 2.10). Otherwise given G,, choose G, \J {»} C
Gyp1 € a < wyq such that G,y1/G, € F,. If X is a limit ordinal, let
G = U, G, Let G = U<, , G, By Theorem 5.1, G is w,y1-free. G is
not strongly w,,1-free, since G has no w,,1-pure subgroup of size w,.

5.3. COROLLARY. Assume, for some n < w, that 2°» = w,,,. There are 4
wyr1-free groups of cardinality w, 1 which are patrwise not L -equivalent.

Wy 4

Proof. Let G be the group constructed above. Choose F and £y, free
groups of cardinality w, and w,,; respectively. Then Fy, G, G @ F, and
G @ F; are the required groups.

We will distill from Hill’s proof of Theorem 5.1 a weaker result which
will suffice in what follows and can be generalized.

5.4. Definition. Suppose w, is a regular cardinal. Define inductively, for
each 7 < w, a class of groups ¢, ,,. We will usually suppress the o and write
E,. The class E, consists of the w,-free groups of cardinality w,. In
particular if a = 0, & is the class of countable torsion free groups.
Inductively 4 € &, 1 if there exists, {4,y < warnp1}, AN Wapppi-filtration
of 4 be free groups such that:

(i) if cf(v) < wy then A, is waynp1-pure; and

(i1) A,41/4, € &, for all ».

5.4. LEmMa. (Criterion for freeness) Fix n. Suppose B =\J,o B,
(smooth) and each B, is a free group on wa,, generators. Further suppose B,
satisfies (1) and (11) of Definition 5.3. If N < waini1, then B s free.

Proof. We can assume that \ is a cardinal. The lemma is proved by
induction on #. If n = 0, condition (i) gives B as the union of a smooth
chain of w,y1-pure free groups. Hence B is free.

Assume the lemma is true for m and suppose » = m 4 1. For each
v < N, choose a set of free generators {x,i € I,} for B,. Impose the
further condition that if cf(v) < w,, then

lild € L} 2 {xifi € L.

If » is a limit ordinal choose {B,.|7 < Wain}, an we,-filtration of B,/ B,
satisfying (i) and (ii) (relative to m). There are now two cases.

Case 0. Assume N = wqy,. Choose {CslB8 < wayn} an wyi,~filtration of B
such that:

(1) Cs S Bg;

(2) Cs MY B = (x|t € J(B,B) € Ig), if B is a successor ordinal;

(3) CsM B, = (xii € J(v,8) S 1,), if v < B;

4) (Cs™ B,y1) + B,/B, = B,., for some 7 when v is a limit ordinal
and » < 8.
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It is not hard to see such a filtration exists. Since Cs © Bg, (5 is free.
When we have shown Cg,1/Cp is free, we will be done.

If 8 is a successor ordinal, then clause (2) and our choice of generating
sets guarantees Cgy1/Cy is free. Suppose now that 8 is a limit ordinal.
Since for some 7

Co+1/(Cgi1 M Bg) ~ Bg-

which is a free group, it is enough to show (Cgy1 M Bp)/Cp is free. Now
(Car1 M Bg)/Cs = Useg((Cgn M By) + C3)/ G

Note that
((Cas1 MY By) + C3)/Cs >~ (Co1a M B,)/(Cs M By)

which by (3) is free. So (Csy 1 M Bg)/Cy is the union of a smooth chain of
free groups.
Next consider the following isomorphisms:

(((Cos1 MY Bur) + C3)/Cs))/ (((Coa MY By) + C)/C)
>~ ((Copr M Buyr) + Cp)/ ((Coir M By) + C)
>~ ((Cor1 M Boyr) + (Co M Buy) + B.)/
((Cosr M By) + (CGs M Buya) + B))
=~ ((Cgyr M Bosr) + B)/((Cs M Byyy) + By)
~ (((Cor1 M\ Byy1) + B,)/B,)/((Cs M Byyy) + B,)/B)).

This group is free if cf(v) < w, and is isomorphic to B,./B,, for some
T > o otherwise. Since B,./B,, € &, Css1 (M Bg/Cy is free.

Case 1. Assume N < wq4,. In this case we again choose an wq,-filtra-
tion, {Csl8 < wain}, of B. Here we require:

(1) CsM B, = (x)ji € J(»,8) € I,); and
(2) ((Ce M\ Byy1) + B,)/B, = B,,, for some 7 when cf(v) Z w,.

Since Cg3 = U,en B, M Cg, Cg is the union of a smooth chain of free
groups. Further since B,y1/B, is wap,-free and B,/ (B, M () is free,
B,/ (B, M (Cp) is free. Hence (B,.1 M Cg)/ (B, M Cp) is free. So (j is
free. Since

Co11/Cs = Uvarn((Coyr M B,) + C5)/ Gy,

the same proof as that of Case 0 shows B is free.
We now turn to the embeddings.

5.5. LEMMA. Suppose G € &, and wy < K < warn. Lhere exist free
groups A 2D B = U,<« B, such that A/B, is free and A/B ~ G.
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Proof. (By induction) If n = 0 any free resolution by groups of
cardinality w, can be made to work (cf. Lemma 2.8). Next we suppose
the lemma is true for #, and attempt to prove it for n + 1. There are two
Cases, K = Weyn and K = wWappp1.

Assume k £ waypand G € & 41, As in [14] we can view G as

@ (Ff)7<wa +n ﬂ/@ (Kr)r<wa +n 41

where each F, is a free group and K. is either (0) or K, embeds a com-
plementary summand C, of @, K, (as a subgroup of @,, F,) into F,.
That is K, is generated by elements of the form ¢ — f, where [ € I, is
the image of ¢ under the embedding. Further (using a bar to indicate
images) F./C.is an &, group.

Suppose K., 5 (0). By the induction hypothesis, we can find free
groups 4, B = Ug<. Bgsuch that 4/B ~ F,/C, and 4/B; is free. There
is an isomorphism 6:4 — I, such that 6(B) = C,. Let C.53 = 0(B;). Let
K.5 be the subgroup of K, which associates C,3 with C.s (i.e. K5 =
(C, + Cx) NVK,). If K, = (0) then let K53 = (0).

For each 8, we wish to show @ (K.5).<« is a direct summand of
@D (F.).<«. This is easy. Let @ (K.3),<« = K*. Then

D (Fr)ree/ K = Ui (@B (F7) <, + KP)/KP.
Since

(B (F)rer + KF)/KE > D (F1)rcs/D (K1) 1y
we have a smooth chain of free groups. Also,

(B (F))rcvir + K°)/KP) /(D (1)<, + KF)/KP) >~ I,/ Cy,
which is a free group. So @ (F,),«./K? is free.

If x = w,q1 then any free resolution of G, by groups of cardinality

wyy1, can be made to work.

The above embedding lemma goes through without change for %,
groups. We now have the following theorems.

5.6. THEOREM. (1) For «ll n >0 und E C w,, there is a strongly
wa-free group A of cardinality w, such that T(4) = E.

(2) Suppose there is an wy-free not wey1-free group. For all n > 0 and
EC {y < warnlcfv) = w,), there is an woy,-free group A of cardinality
Wain Stch that T(4) = E.

As with Theorem 2.15, the groups constructed by this method can be
described.

5.7. THEOREM. (1) For all n > 0 and 0:w, — F ,_1, there is a strongly
wa-free, A, with an w,-filtration {4,|v < w,} such that A,,/A4, = 0(v).
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(2) Suppose w, is a regular cardinal. For all n > 0 and 0:wipn — & ns
such that 9(v) is free when cf (v) < w,, there is an wa,-free group A with
an wen-filtration, {A,|v < wein} such that A,1/A, = 0(v).

Proof (of Theorems 5.6 and 5.7). We will content ourselves with proving
Theorem 5.7(1). Suppose # and 6 are as in the hypothesis of the theorem.
For each m < n define a group 4™ inductively by defining an w,-filtra-
tion, {A4,|v < w,}, of A™. This filtration will have the property that 4, is
wy-pure if cf (v) # w, and 4,.1/4, (@) if cf(v) = w,.

Case 0. Let 4, be a free group on w,_; generators.

Case 1. Assume cf(v) # w,. Let 4,,1 be the direct sum of 4, and a
free group on w,_1 generators.

Case 2. Assume v is a limit ordinal. Let 4, = U<, 4,. By Lemma 5.1,
A, is free.

Case 3. Assume cf (v) = w,. Choose a continuous increasing function
fiw, — v such that cf(f(7)) = wp. S0 A = Uscond i and A/A,q is
free for each 7 < w,. By Lemma 5.2 we can choose 4,,; such that
A,1/A, = 0(v) and 4,11/A ;¢ 1s free.

Finally 4 = @ (4,.)m<x is the required group.

We will end this section with a construction of w,-separable groups.
In the construction we combine the methods of Theorem 2.4 with those
of this chapter. We begin with an embedding lemma.

5.8. LEMMA. For each n and G € ¥, there exist free groups A D B =
Unm<o By Cny Cus (m < s < w) satisfying:
(i) 4/B = G;
(11) Bm ©) Cmm,+1 = BnH—l;
(iii) By ® C, = 4;
(iv) Cp = Cpsy @ C.

Proof. By Lemma 5.5, there are free groups 4 D B = Upu<w Bn such
that 4/B ~ G and A/B,, is free. Choose Cq such that By ® Cy = 4. In
general if we have defined C,, and C, form,s < t,let C, sy = Bi1 M C..
Choose Cy; such that Cypy ® Ciyy = Cy. Finally let Cpypr = Gy @
Ciigr

5.9. THEOREM. (1) For each n > 0, there are 2¢~ w,-separable groups of
cardinality w,.

(2) Supposen > 0and :w, — F ,_11s such that 6 (v) is free if cf (v) # w.
There is an w,-separable group, A, with an w.-filtration, {A,\v < w,}, such
that A,/ A, ~ ().

Proof. It suffices to prove (2). We will define inductively an w,-filtra-
tion, {4,|» < w,}, of 4 and auxiliary groups, B, (v < 7 and 8(») is free).
These groups will satisfy:
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(i) A, = A4, ® B, if v < rand 6(») is free;

(ii) Byx @ Bar = B,., if v < a < 7 and 6(v) and 6(a) are free;
(iii) if 6(») is free and X is a limit ordinal >v, then

By)\ = Uv<r<)\ B”; and
(iv) By € B,,, if v < a < 7and 6(v) is free.

The proof again divides into 4 cases. We will only do the crucial case
when 6(v) is not free. Since 6(a) is free if cf(a) # w, we can choose 7,
such that 6(7,) is free and Uy<o 7 = ». So

A = C @ @(-BTme+l)m<WY

for some free group C. Using Lemma 5.8, we can choose 4,1, B-,,,+1 such
that:

A‘fm @ B-rmH—I = Av+1;
Birpre ® Bryyy1 = By, form < s; and
Avpr/A, ~0().

The rest of the proof follows that of Theorem 2.4,

6. Some questions.

6.1. Which of our results for abelian groups can be established for
groups? Of relevance here is a result announced in [18] (p. 322) which
says for any cardinal, «, there is a k-free not «*-free abelian group if and
only if there exists a k-free not «*-free group. More generally, it seems
that we use only a minimal amount of specifically group theoretic
methods. Where else can these methods be used?

6.2. If « is a regular limit cardinal, what are the possible values for T
on k-free groups of cardinality x? A possible result (which probably
requires something like (77 = L)) is that if E C « and {v|E M v is sta-
tionary in »} C {»|v is not a regular cardinal}, then there exists a x-free

group 4 of cardinality « such that T'(4) = E.

6.3. If x is the successor of a singular cardinal, can there exist a «-free
(abelian) group which is not strongly «-free?

6.4. Can we construct an w,-free not strongly w,-free (abelian) group
without any set theoretic assumptions?

6.5. Is it possible for some « that there is a k-free not strongly «x-free
group and no strongly «-free non-free group of cardinality «? If this
can’t happen this would rescue Theorem 1.1 of [14] (cf. Theorem 1.5).
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