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Abstract

The essential aspects of the Boundary Integral Equation Method for the numerical
solution of elliptic type boundary value problems are presented. A numerical example
for a stress concentration problem in classical elasticity in three dimensions is given
along with several examples for a class of scalar problems in elastic torsion of non-cylin-
drical bars. Some discussion and criticism of the method itself and in comparison with
more widely used field methods is also presented.

1. Introduction

This paper is an account of what are, in the authors' view, the essential aspects
of the currently popular Boundary Integral Equation (BIE) method for the
numerical solution of a variety of problems in applied mathematics and en-
gineering. Emphasis here is on problems governed by systems of linear elliptic
partial differential equations. The BIE method has been used successfully for
parabolic and hyperbolic problems, and, to some extent, for nonlinear problems
in an incremental fashion (see for example [20], [1]). However, many, if not
most, of the current applications of the BIE method are for nontransient field
problems involving potential distributions or elastic stress. Such problems are
elliptic and the easiest for which to describe the essential BIE machinery.
Results from several illustrative numerical experiments are included.

Specifically, Sections 2 and 3 contain concise but reasonably self-contained
descriptions of a BIE formulation and a modern numerical solution process.
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382 F. J. Rizzo and D. J. Shippy [2 J

Section 4 contains results from recently completed research on a BIE solution
for the elastic stress concentration in a perforated plate in bending. This
problem, in three spatial dimensions, requires, as is inherent in the method, only
surface discretization, and is one of a type for which a BIE treatment is perhaps
used to best advantage. Section 5 contains results for several stress-concentra-
tion problems in the theory of torsion of axially symmetric, elastic shafts. This
class of problems, although governed by a single scalar equation, rather than a
vector set as for the problem of Section 4, involves a linear operator with
non-constant coefficients. The fundamental solution, only recently obtained,
required for the BIE formulation is a comparatively complicated complete
elliptic integral.

Finally, Section 6 contains some discussion and criticism of the BIE method
together with certain comparisons with field numerical methods.

2. BIE formulation

Consider the partial differential equation

L(w) = 0 inB, (2.1)

where B is a region of two (E2)- or three (£3)-dimensional space with surface S,
and L is a linear elliptic differential operator of order m with analytic coeffi-
cients operating on a sufficiently smooth scalar function w of variables x =
(*,, . . . , xn), n = 2 or 3. Green's reciprocal identity for the operator L may be
written

f \ uL(v) - vl(u)} dB= f M > , v) dS, (2.2)
JB JS

in which u and v are arbitrary functions, L is the operator adjoint to L, and Mr

is a bilinear differential operator of order m — 1, obtainable from L, and which
depends on the outward normal v to S (see, for example, [9]). All geometry is
assumed sufficiently regular (in the sense of Kellogg [10]) to permit application
of the divergence theorem. Now if v is chosen to be the fundamental solution
K(x,y) ([9, Chapter 3]) of (2.1) such that

L[K(x,y)] = 8(x-y), (2.3)

where x e B, y e B or S and 8 is the Dirac delta function, then (2.2) gives rise
to

u(x) = JMv[u(y), K(x,y)] dS{y) + fgK(x,y)L[u(y)] dB(y), (2.4)

where we have used the sifting property (see Stakgold [21]) of the delta function.
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(3 ] Boundary integrals and stress problems 383

Next, suppose L is self adjoint and u is a regular solution of (2.1) so that the B
integral in (2.4) vanishes. The remaining integrand may be expanded and an
appropriate limit process (Muskhelishvili [14]) performed to permit interpreta-
tion of the S integral when x as well as y is on S. Under these conditions, (2.4)
leads to

c(x)u(x) = f{u(y)Bp[K(x,y)] - K(x,y)B,[u(y)}} dS(y), (2.5)

in which the operator Br, obtainable from Mp and of the same order, may be
regarded as a generalized normal derivative. Further, c(x) is a coefficient with
value unity for x G B, zero for x in the region exterior to B, and one-half for
x G S, provided S has a unique tangent plane at x. Otherwise, c(x), x G S, is
given by (2.5) using u = a known elementary solution of (2.1).

Equation (2.5) is the formula upon which a BIE solution for boundary value
problems governed by (2.1) may be based (see [8] and [16] for early examples for
classical L's). Note first that a well posed problem governed by (2.1) requires
that u, or Bp(u), or a suitable linear combination of each function be prescribed
over S. Different prescriptions of such data may be made over parts of S to
describe so-called mixed problems. However, regardless of the type of problem,
u and By(u) are never simultaneously known in advance at arbitrary y on S.
Thus, either the first or second integral in (2.5) remains unknown over S (or
parts of S for mixed problems) following prescription of boundary data.

The solution strategy then, for u(x), x G B, via (2.5) is as follows. Choose x
and y on S in (2.5) and regard that equation as a constraint between the pair
{w, BP(U)}, defined on S, pertaining to one and the same function u defined in B
satisfying (2.1). Moreover, regard (2.5) as a BIE to be solved for that part of the
pair {u, Bp(u)} not known from the prescription of boundary data. Once this
integral equation is solved such that both parts of the pair {u, Bp(u)} are known
everywhere on S, choose x G B in (2.5) and generate u at any desired x G B to
complete the solution process.

If desired, gradients of u at x may be obtained by differentiation of the
integrand in (2.5), where we note that only the fundamental operator-dependent
functions K(x,y) and Bp[K(x, y)] are affected since they alone are functions of x
in (2.5).

Some remarks concerning the above approach and similarities with and
departures from classical integral approaches, with which the reader is un-
doubtedly familiar, will be made in the closing section. Clearly, however, a
strictly analytical solution to a BIE arising in any practical problem is entirely
out of the question. Some systematic numerical solution procedure of the type
outlined in the next section is in order.
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3. A numerical procedure

To numerically implement the BIE solution strategy, imagine that S of B,
B e. E3 is discretized into a number M of curvilinear surface elements of either
quadrilateral or triangular shape, and locate eight or six nodes, respectively, on
each element. Half of the nodes on each element are at the vertices and the
other half are on the curvilinear edges, usually midway between the vertex
nodes. The coordinates y" of each node are specified, and the coordinates of a
non-nodal point of an element are assumed to be given by*

y,(Z) = M"(Z)y,a, for a = 1, 2, . . . , 6 or 8, and i = 1, 2, 3, (3.1)
in which A/a(£) are second-order shape functions of intrinsic coordinates (£) =
(£i> £2) °f t n e tyPe m familiar use in finite element analyses (see for example
Zienkiewicz [27]). The geometry of S is thus approximated by a system of
piecewise quadratic curvilinear elements coincident at the nodes. Next, assume
that any of the functions of y alone in (2.5) varies over the elements according to

<HS) = A/<"(£)<r, (3-2)
where <j>" is the nodal value of the particular variable at issue. Thus, the
functions u(y) and BF[u(y)] are approximated by piecewise quadratic polynomi-
als over the elements.

Under these basic discretizing assumptions, (2.5) for x e S becomes

11" f
Jy

- u"»fM-(Z)K[x,,y(i)]J'(e) dZ, (3.3)

in which the notation w' = Bf[w) is introduced for brevity, a = 1, 2, . . . , M,
and r\ = \,2, . . . ,N, where iV is the total number of nodes on S. The quantities
<f>aa mean "the value of <j> at local node a on surface element Sa", and /"(£) is
simply the ratio dSa(y)/d£ for a particular element. Note too that (3.1) is the
function which maps Sa to the standard shape y which is either a square or
equilateral triangle in the space |,£2.

The integrals in (3.3) involve only known integrands now, and although
certain of them are improper whenever xv G So, and indeed sometimes have
meaning only in the sense of the Cauchy Principal Value, all are integrable
either analytically or by Gaussian quadrature following removal of the singular-
ity via transformation (see for example [11] or [18] for details). In any case,
adopting a global designation for <£"", and letting xv occupy all of the nodes,

Summation is implied on repeated indices a and a only.
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(3.3) is a square N X N system of linear algebraic equations of the form

Au = Bu', (3.4)

in which the square matrices A and B contain the known integrals (and the c(xn)
term) in (3.3), and the columns u and u' contain the globally numbered nodal
values of the original function pair {u, B^u)}.

The continuous BIE (2.5) for x G S is thus approximated by (3.4). A numeri-
cal solution to a given boundary value problem then requires an appropriate
combination of the pair {u, u'} to be specified, and (3.4) is solved for the
nonspecified part of the pair {u, u'}. Once this is done, an "interior version" of
(3.3) is used to generate u(x) pointwise at chosen x G B to complete the
solution. Note that for x G B the integrals in (3.3) are all proper.

Often, however, only the boundary solution is of interest, such that non-
specified u' or du/dS on S are all that are required as is the case with the
examples to follow.

For B G E2, S is a curve or union of several curves and the preceding
remarks apply essentially intact with an appropriate reduction in dimension.
Note that Sa is now an element of boundary curve, with nodes at each end and
one (usually midway) between. Now there are three shape functions A/a(£),
a = 1, 2, 3, £ is a single scalar variable, and y is simply the interval -1 to 1 (see
[5]).

4. An elasticity problem

The ideas in the preceding sections may be generalized so that L is a vector
operator, u and Br(u) are vector variables, K(x, y) and c(x) are multi-dimen-
sional vectors (or tensors) as required, and the terms in (2.5) involve the
appropriate inner product of functions to yield a vector function on both sides
of the equation.

Specifically, a vector equation of considerable practical interest is the Navier
equation (Love [12]) governing problems in classical elastostatics, that is

L(u) = (\ + «)grad div u + /n div grad u = 0, (4.1)

in which u is the elastic vector displacement field and A and fi are constants.
Following the ideas in Section 2, using U(x, y), the fundamental Kelvin solution
of (4.1) (see Appendix), the counterpart of (2.5) has the form

c(x)u(x) =j[t(y)U(x,y) - u{y)T(x,y)} dS(y), (4.2)
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in which t and T are, respectively, Bf(u) and Br( U) where

Br(u) = A(div u)v + /i[grad u + (grad u)T]v. (4.3)

Physically, t is the surface traction vector applied to B across S to induce the
stress field of interest.

Consider the specific problem of an elastic plate with dimensions 10 X 1 6 x 4
perforated with a hole of unit radius. Fig. 1 shows (to scale) one quarter of this
piate together with the surface element discretization pattern used to obtain a
numerical solution via the process of Section 3. The plate is loaded in lateral
bending by applying a linearly distributed bending traction (component of u'),
the tensile part of which is as shown in Fig. 2. The output for this problem, the
normal stress distribution (part of nonprescribed u') along the midsurface of the
hole is shown (tensile part only) in the same figure.

Fig. 1. Discretization of perforated plate.

Fig. 2. Stress distribution for perforated plate.
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Using M = 33 elements with N = 100 nodes the stress concentration, defined
as the ratio of the peak stress at the hole to the nominal bending stress, was
obtained from our solution to be 2.49. This compares favorably with an
expected value from the literature ([15, p . 231]) of 2.62. The computations
involved 3 X TV = 300 simultaneous equations and were made on an IBM
370/165 computer in 193 sec CPU time.

5. An axisymmetric torsion problem

Consider the class of problems governed by the scalar equation

L(v)=rAv + ^ ; - ^ = 0, (5.1)

with

where t; = v(r, z) is the transverse component of displacement of a point in an
elastic bar of circular cross-section, but variable diameter, subjected to torsion; r
and z are radial and axial coordinates, respectively. The maximum shear stress r
at the surface of such a bar is usually of interest and is given by

T = [u- (ty/dS, (5.2)

in which \p = v/r and /* is one of the elastic constants (shear modulus) referred
to earlier. Again, following the ideas in Section 2, the appropriate BIE for this
class of problems may be written (see [17], compare with [3])

c(x)r(x)+(x) = / J |Jf (>-)*,(*, y) ~ Hy)Kt(x, y) ] r(y) dS(y), (5.3)

in which Kx(x, y)/r(y) is the appropriate fundamental solution of (5.1) with
property (2.3). (Explicit forms of Kx and Kx are given in the Appendix.)

Consider the problem involving a grooved shaft as depicted in Fig. 3. We seek
the stress concentration k at the surface of the groove, defined to be the ratio of
the maximum surface shear stress to the nominal surface shear stress on a
uniform shaft of the smaller diameter d. For D/d = 1.05 and four values of the
groove radius, a, as depicted, the computed values kBIE are compared with
accepted values kT in Fig. 3. The domain of definition of the function v is the
axial cross section depicted in the figure, the boundary of which was discretized
using 25 nodes for each problem. A more stringent test is provided by consider-
ing a more deeply grooved shaft (not shown) with dimensions D — 10, d = 8,
and a = 0.1. Here, a total of 61 nodes was used, 13 of which were on the
semicircular groove, and the A:BIE = 3.11 so obtained compares favorably with
the kT = 3.10 value given by Rushton [19].
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Grooved Shaft
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Fig. 3. Stress concentration for grooved shaft.
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Fig. 4. Stress concentration for stepped shaft.
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The problem of a stepped shaft D/d = 1.2 is depicted in Fig. 4 along with a
curve of the variation of k with 2a/ d from Timoshenko and Goodier [23]. Two
BIE runs were made, and the results are shown as data points near the curve of
Fig. 4. N = 67 and N = A\ nodes were used, respectively, for the higher and
lower k values indicated.

For scalar problems such as these, the number of simultaneous equations
equals the number of nodes, and no individual computer run required more than
8 sec CPU time.

6. Discussion

The BIE method is clearly limited to linear, although not necessarily self-
adjoint operators L, and, in general, L's with variable coefficients present a
comparatively formidable problem in constructing the necessary K(x, y) (see [9],
[24] and [3]). The fundamental solution Kx(x,y)/r(y) of (5.1), itself in the form
of an integral, is perhaps only indicative of the difficulties associated with
variable coefficients in L.

If L(w) = M O (see (2.1)) where h is a prescribed function in B, the
associated BIE of the type (2.5) contains a B integral, albeit known. Such a
particular integral for certain h may often be conveniently converted to S
integrals (see [22]) by an additional application of Green's theorem.

It may be of interest to note that (2.5), with x G B, is but a step away from
the classical concept of representing the solution of a boundary value problem in
terms of a region-dependent Green's function. For example, if a regular solution
H of (2.1) is added to K(x,y), where H + K vanishes on S, the second of the
integrals in (2.5) vanishes and the solution is given via (2.5) in terms of
prescribed boundary data only. The difficulties associated with finding H are
sufficiently formidable usually to abandon such an approach for concrete
problems.

A variation of the present formulation, related to more classical ideas (see [13]
and [14]) is to recognize that each of the two integrals in (2.5) is a solution of
(2.1), and it suffices to seek a solution to a given boundary value problem in the
form of one such integral (for example [7]) where a density function <f>(y) is the
multiplier of K(x, y) or B,[K(x,y)] in the chosen integral. In the limit as
x £ B -» x G S, a BIE is obtained in the unknown <$>(y). This approach,
frequently called the "indirect BIE method" (for example [1]), has its merit in
that prescribed boundary data enter the problem directly rather than in the form
of integrals. Further, integral equations of the "second kind" ([13], [6]) with
better spectral characteristics arise. However, the present "direct" approach is

https://doi.org/10.1017/S0334270000002733 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002733


390 F. J. Rizzo and D. J. Shippy f 101

more flexible for mixed boundary data, and the physical variables appear
directly as unknowns. These are generally better behaved than a non-physical <j>
near corners and notches. Finally, in many problems for which the set u, B£u),
is all that is required, no integrals need be evaluated following the (numerical)
solution of the BIE.

The reader familiar with the currently most popular method for the numerical
solution of boundary value problems, namely the Finite Element (FE) method
(for example [27]), will note certain obvious similarities. Elements and nodes are
used, shape functions incorporated, etc., and the process leads to a system of
linear algebraic equations involving physical quantities such as stress and
displacement. Quite complex problems may be attacked with both methods,
although the FE method is more readily applied to inhomogeneous (variable
coefficient equations) and nonlinear problems. Indeed, the BIE method is often
called the "Boundary Element" method ([2] and [1]) which suggests to some that
the methods are basically the same except that only boundary elements are
needed in the one case.

We submit that such terminology focuses too quickly on the numerical
procedures of the type discussed here and clouds the essential fact that (2.5) is
an exact integral restatement of the boundary value problem governed by (2.1).
Such a restatement is made possible only by the existence and employment of
the fundamental singular solution of the original differential equation. This
solution with property (2.3) makes explicit, through (2.5), an exact boundary
constraint relation among complementary boundary data (w, Bv{u)) such that
once all such data are determined, the field is given by simple quadrature. The
analytical process reduces the dimension of the problem by one, and in reality
"the problem is solved" on the boundary. The BIE must be solved approxi-
mately in general, and the field quadratures performed in a nonexact fashion,
but elements as introduced herein are only one way to accomplish the objective.
They are in no way an essential part of the process as is the case with the FE
method.

The illustrative problems chosen here in E3 and E2 are rather far apart on the
spectrum of computational difficulty as the CPU times of 193 sec versus 8 sec
suggest. The square matrices A and B in (3.4) are full in every case and most of
the CPU time, for problems of the present size, is taken generating the matrix
elements. The contrast, then, between a vector problem in E3 versus a scalar one
in E1 is apparent.

Square matrices in the FE method are banded, so despite their generally
larger size based on a volume (area) versus surface (curve) for the BIE method,
for problems in E3 and E2, respectively, there is a trade-off in efficiency.
Nevertheless, there is usually a computational advantage with the BIE method
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(see for example [1] and [4]), especially for problems in which high gradients of
the relevant function occur on or near the boundary, such as in the presented
examples. Coarser meshes are possible with the BIE, leading to smaller (albeit
full) matrices, lower CPU times, not to mention the advantages of dealing with a
surface rather than a full-domain meshwork. However, the mushrooming capa-
bility in computer graphics and automatic mesh generation is beginning to be an
enormous convenience for both methods. Nevertheless, aside from such tactical
but often economically important questions of data handling, a key issue for the
analyst is the realization that the BIE represents an exact integral restatement of
a problem. The role played by K(x,y) has no counterpart with field methods,
and BIE methods should, in fact, be computationally superior for problems
where it can be used.

Modern methods of numerical analysis continue to allow errors with the BIE
method to be made very small indeed. Crude discretization procedures such as
piecewise constant or linear surface representation have given way to the
presently described quadratic isoparametric procedure. Cubic representations
[25] and Hermitian Cubics as well as spline representations [26] have been and
are still being developed. All are essentially collocation methods, but
successive-approximations or least-squares techniques can clearly be used as
well. However, a systematic error analysis for the BIE method based on any
approximation/discretization scheme remains to be performed. In any case, the
BIE method, by itself or through its "marriage" with the FE method, seems to
be emerging as an important numerical solution method for many practical
problems.
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Appendix

Kelvin Solution (£ 3 )

( b ) gradr(x'>')
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in which r(x, y) = \y — x\, 1 is the identity tensor, <E> represents the tensor
product,

_ n(3\ + 2ji) ,
£ = £ ^ HL a n d a =a n d a ^

A + n 2(X + n)
Torsion Fundamental Solution

where /? = [r\y) + r\x) - 2r(y)r(x)cos 9 + (z(y) - z(x))2]l/2.
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