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Remainders of metric completions

C.J. Knight

Certain topological spaces X may bear various uniform structures

compatible with the topology of X ; to each uniform structure

there corresponds a completion of X , that is, a complete space

Z containing X as a dense subspace. For compact completions,

there has been extensive study of the relationship between X

and the possible remainders Z\X . This paper begins a study of

the more general, and apparently easier, problem of the relationship

between X and its not necessarily compact remainders. We find

that for spaces X admitting a complete metric, every space Y

which satisfies certain conditions obviously necessary for Y to

be the remainder of a completion of X in fact occurs as such a

completion.

A uniformisable topological space X may bear various proximity

structures, each of which corresponds to a compactifi cation of ^ , and

various uniformities, each of which corresponds to a completion of X [I].

We regard X itself as a subspace of each of its completions or

compactifications. If Z is any completion (compact or not) of X , we

shall refer to Z\X as the remainder of Z . There has been considerable

investigation of how many different compactifications are admitted by each

uniformisable space. Various conditions have been found [5, 6] on spaces

X and Y for Y to be the remainder of some compactification of X .

Also the lattice of all compactifications of X [7] has been studied, and

characterised as a lattice [3]. In this paper we contribute towards an

answer to the question: which spaces Y can be the remainder of some

completion of a space XI We consider the case when X and Y are
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metrisable» and use only elementary calculations with the metrics. Our
main result (Theorem 5) is that if X is any non-compact space admitting
a complete metric, and if X is any complete separable metric space, then
there is a metric p on X such that the remainder of the completion of
(X, p) is isometric to X .

We denote the set of natural numbers by N , and the set of real
numbers by R . The sign w denotes the disjoint union of two sets. We
write {a,, OU, a_, . . . } , for a family {a , tZp, a_, . . . } all of whose

members are distinct.

THEOREM 1. Let the metric t, on N be topologically discrete^ and

let the completion of (N, t,) be (NvX, r\) . Then (X, r\) is complete

and separable.

Proof. We f i r s t show that X i s closed in N v X . Let n € N , and

l e t U be an open neighbourhood of n in N w X such that U n N = M .

Suppose that y € U n X . Then U n B' {y, r\(y, n)) would be an open

neighbourhood of y containing no point of N , so tha t y could not l i e

in the completion of N . Thus in fact no such y can ex i s t , and V does

not meet X . Hence X i s closed in the complete space J u J , and so X

i s i t s e l f complete.

Furthermore, N w X i s separable and metric, and so second-countable.

Hence i t s subspace X i s second-countable, and thus separable. D

THEOREM 2. Let {X, n) be a complete separable metric space. Then
there is a topologically discrete metric t, on N , such that the
remainder of the completion of {S, c) is isometric to (X, n) .

Proof. We construct, on the set N w X , a complete metric £ which

i s equal t o n on X , which is topologically discrete on N , and which

makes N dense in N v X .

Suppose D i s countable and dense in X , where

D = {d,, dp, d3 , . . . } . . We divide N into the disjoint union of

sequences q. (k = 1, 2, 3 , . . . ) , one for each point d. . Let

N u X = 2 , and l e t t. : Z x 2 •+ R be defined as follows:
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* X = n ,

] 2~* + n ( ^ , y) , (J/ € J) ,

2 + n ( d i f <.) + 2 , (i * o) .

I t i s clear that C is a metric on Z , that (tf, C) i s topologically

discre te , and (by an easy diagonal construction) that N i s dense in

N w y . We show that (Z, C) i s complete.

Let (s ) be a. Cauchy sequence in Z . If [z ) has a subsequence

in Y , then as Z,\Y »• Y = r\ and (y, n) i s complete, th i s subsequence

converges and thus so does [z ) . If however [z J has no subsequence in

X , i t must have a subsequence in N ; and so i t i s enough for us to show

that every Cauchy sequence in {N, ?) converges in Z .

Suppose then that [zm : m = 1 , 2, 3 , • • . ) i s Cauchy, where

zm= ** (m) ' T h e n e i t h e r {i(.n>) : m = 1, 2, 3, • • •) i s f i n i t e , or there

is a subsequence of i(m) consisting of dis t inct values.

If {i{m) : m = 1, 2, 3, . . . } i s f i n i t e , then not more than one value

of i(m) can be repeated inf in i te ly often, since [z^ i s Cauchy. Thus

for a l l large m we have z •= q •• , for some i independent of m .
m if

B u t t h e n k ( m ) •* °° a s m •*• °° , a g a i n s i n c e [ z \ i s C a u c h y , a n d s o

z -*• d. a s m •*•<*>.m v

There remains the poss ibi l i ty that for some sequence of values of m ,

we have z = <J •( \ > where a l l values i(m) are d i s t inc t . Then, for m

and m' in th i s sequence we have

e tV V ) = ̂  + n(*i(m). di{mt)) *

and th is quantity can be made a rb i t ra r i ly small by choosing m and m'

large enough. Hence, as m runs through the sequence in question,
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[d./ \) i s a Cauchy sequence, and also k(m) •*• °° . But the Cauchy

sequence (^ ( m ) ) i n ? converges in Y , to y say: and then

Cfs . y) = 2 m + q ld . , , , i/) , which tends to 0 as m increases
fil I* \i7l )

through our sequence. Thus (a ) has a subsequence tending to y , and

hence the whole sequence [z ) has limit y . D

We seek to extend Theorem 2 to spaces other than N , with topologies

other than the discrete topology. We consider first some circumstances

under which the completion of a space is determined by a closed subset, of

the space.

THEOREM 3. Let (X, £) be a complete metric apace and let F be a

closed subset of X . Let p be a metric on X , topologically equivalent

to C , with p 5 £ and such that if p{x, 2) < p(x, F) then

p(x, 2) = 5(x, 2) . Then the remainder of the completion of {X, p) is

isometric to the remainder of the completion of {F, p) .

Proof. The remainder of the completion of (X, p) i s represented by

p-Cauchy sequences in X with no l imit in X . Two such sequences (x J

and (2 ) represent the same point of the remainder i f and only i f

p(x , 2 ) •*• 0 , and, more generally, the distance between the points

represented by (x J and by (2 ) i s limp ( 1 , 2 ) , We need then a

mapping H with the following properties:

(1) H{x ) i s defined whenever [x ) i s Cauchy and free in

(X, p) ;

( i i ) six
n)

 i s a sequence in F ;

( i i i ) H[x ) i s p-Cauchy;

(iv) H[x ) i s p-free;

(v) lim [{B[xn))r, (*(*„)),] = li£ (*„. \) •

Now let (x ) be a Cauchy sequence in (X, p) , and let us suppose
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f i r s t that p(x , F) i s bounded away from zero. That i s , we have 6 > 0

such that 6 S p(x , F) for a l l n . Let nQ tie chosen so that for a l l

m and n greater than n , p(x , x ) < S . Then for such m and n ,

p(xm' xr) < p(Xm> F^ » s o t h a t p(xm' X J = ^xm> xr) ' H e n c e ^xr) i s a

C-Cauchy sequence, so i t i s convergent in C and hence in p . Thus, i f

p[x , F) i s bounded away from zero, (x ) cannot be free.

Now l e t (x^) be a free Cauchy sequence in (Af, p) . Then p(* » F)

i s not bounded away from zero, and so for each positive integer r there

i s n(r) so that P{x
ntr)> F) < ~ . Hence there is a point f in F

such that P(*n( r)» fr) < ^ • We l e t H[x^ = (/ r) ; then the properties

( i ) to (v) above are a l l easy to check. •

We shal l use Theorem 3 by f i r s t modifying the metric of a given space

on a closed subset in such a way as wi l l produce a certain remainder, and

then extending the modification to the whole space. The chief tool used to

modify a metric while preserving the topology wil l be the following lemma.

LEMMA. Let X be a set and let the function a : X * X -*• R have the

following properties:

a(x, y) > 0 (all x and y ) ,

o(x, x) = 0 (all x ) ,

and

a(x, y) = a(y, x) (all x and y ) .

Moreover let p : X * X •*• R be defined as follows:

p(x, y) = inf{a(x, a^] + a ^ , a2) + . . . + o[am, y) •

m > 0, a. € X ( l £ j < m)} .,
0

where if m = 0 the sum is understood to be a (x , y) . Then p is a

pseudometrio on X .

Proof. Clearly, p i s symmetric and non-negative, and p(x, x) = 0 .

The sums o(x, a^) + . . . + o{am, y) + o(y, b^) + . . . + a(fc^, z) , whose
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infinmum i s p(x, y) + p(y, a) , a l l l i e in the class of sums whose infimum
i s p(x, s) . Thus p(x, 3) 5 p(x, y) + p(j/, s) . Q

We sha l l ca l l x, a^, a^, . . . , am, y a string of points from x to

y . ID the application of th i s lemma, we shall several times have occasion

to remark that certain s t r ings a;, a , , a2 a , y may be omitted from

the calculation of the infimum for p(x, y) 5 as the value of

0(3;, a-J + . . . + °(a
m» y) * s n o t less than the value of another such sum.

We shal l ca l l such s t r ings ignorable. When we consider a s t r ing

x, a^, a^, . . . , am, y from x to y we sha l l , without specific comment,

write cu = x and a . = y .

THEOREM 4, Let (X, C) be a complete metric space, and let F be a

closed subset of X . Let <p be a metric on F j topologi-cally equivalent

to E\F x F j and with ip 5 ^ , and let the remainder of the completion of

(F, ip) be (Y, r)) . Then there is a metric p on X ., topologically

equivalent to £, ., with p|F x P = <p j and such that -the remainder of the

completion of {X, p) is isometric to (Y, n) .

Proof. Let O : X * X + R be defined by

'<p(x, x') i f {1, x '} c F ,

o(x , a 1 ) = •

£(x, x') i f {x, x1} ± F .

Let p be the pseudometric constructed from 0 as in the lemma. As

cp S 5 , i t i s clear tha t p |F * F = <p . We prove that p i s a metric and

tha t i t s a t i s f i e s the hypotheses of Theorem 3.

( i ) To show that p i s a metric, we obtain a formula for i t rather

simpler than that given in the lemma. Now, for the calculation of p , any

s t r i ng x, a. , . . . , a , x ' with three consecutive terms a. . , a., a.
j . m 1—x t' v*x

in F is ignorable, since

Moreover, if two consecutive terms of the string x, a , ..., a^, x1 are

in X\F , and if m > 1 , then the string is ignorable since
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C(a._l5 a.) • C ( V ai+1) > C ^

Finally, if {a. ,, a. } c F and a. € X\F then

so again such a string is ignorable. I'hus to calculate p it is enough to

consider strings of the following forms :

x, x' {x, x'} c

x, ax, a2, x' {x, x'} cx\F , {a^ aj c F ;

a, a' {a, a'} <=_ F ;

a, ax, x {a, a^} <=^F , x t X\F ;

a, x a I F , x € X\F .

T h u s , i f {x, x'} <=_X\F and {a, a'} c ? , w e h a v e

p(a;, a:') = minU(x, x'),±nf{^[x, a^-np^, a2)+Z[a2, x') : {

and

p(a, a' ) = ip(a, a') ,

and

p(a, x) = inf{<p(a, a ^ + C ^ , *) : a^ S. F} .

We observe that the first of these formulae includes the other two, if x

and x' are allowed to range over the whole of X .

We now suppose that p(x, x' ) = 0 . Then either £(x, x') = 0 , and

so x = x' , or else

x, o1)+<p(a1, a2)+C(a2, *') : ia±, a^ c FJ = 0 .

If the l a s t equation holds, l e t [b ) and (c^) be sequences in F such

t h a t as n •*• °° ,
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€ ( x , bn) * 9[bn, an) * e ( e n , x 1 ) - 0 .

Then £(x, i ) •+• 0 , and so, as F is closed, we have x (. F . Similarly

x' € F . But then p(x, x1 ) = <p(x, x') and hence again x = x1 . Thus p
is a metric.

( i i) To show that p and £ are topologically equivalent, we
consider f irst the ba l l , centre x and radius e , in the two metrics. By
construction p - £ , and so ^D(x, £ ) 2 ^p(x> e ) f ° r *!! x and all e .

On the other hand, if x € X\F and if 6 = min{e, £(x, F)} , then i t is
easy to see that •B

D(X> ^) E ®r(x» e ) • We complete the proof by showing

that if x 6 F and if p(x, z ) -*• 0 then also £(x, z ) •*• 0 . For, since

p(x, zn) = inf{<p(x, a j + g ^ , 3M) : ax

we can select £> in F such that

But <p is topologically equivalent to £, , and hence also

c(x, zg + e(6n, zn) - o ,

so that C(x, s ) * 0 , as required.

( i i i ) We have already observed that p £ £, , since <e £ £ .

(iv) If p(x, 2) * £(x, z) then

s) = inf{£(x, aL)+(p(a1, a2)+i[a2> z) • {a^, a^ c F)

> inf{C(x,

, F)
2 P(x, F) ,

so that if p(x, s) < p(x, F) then p(x, z) - £(x, 2) . Thus al l the
hypotheses of Theorem 3 hold, and so the remainder of the completion of
(X, p) is isometric to.the remainder of the completion of (F, p) , which
since p|f * F = <p , is (X, n) . D

Finally we put together Theorems 2 and k.

THEOREM 5. Let (X> <) be a complete nan-compact metric apace and

https://doi.org/10.1017/S0004972700045214 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700045214


Remainders of metric completions 375

let (Y, n) be a complete separable metric space whose metric is bounded.

Then there is a metric p on X , topologically equivalent to K s such

that the remainder of (X, p) is isometric to (Y, n) •

Proof. Since X is complete but not compact, i t i s not to ta l ly

bounded. That i s , 3e > 0 such that for every f in i te set E in X there

is an x in X with K(X, E) - £ . We choose a a rb i t ra r i ly in X ,

and then inductively choose a such that

<[%> ^ 1 , a2
 a

n-})) - e • L e t F= {<*!» a2' a3' •••* * T h e n F i s

clearly closed in X , and every pair of dis t inct members a, a' of F

has K(a, a ' ) > e . Now le t L be a bound for the metric n, ; we define

a new metric C for X by writing

C ( x , x ' ) = e ^ d + L f r i x , x ' ) .

Then E, i s clearly uniformly equivalent to K , and £(a, a ' ) 2 1 + £ i f

{a, a1} c f . We take the space (Y, r|) , and construct on N the

corresponding metric ( as in Theorem 2, with the construction given in

the proof of that theorem. We observe t ha t , with th i s construction, C i s

bounded above by 1 + L . Let the metric cp be defined on F by

<P(V a
n) = C(m, n) .

Then for a l l a and a1 in F , • •

<p(a, a1) S 1 + L < C(a, a1) •

Thus (X, £,), F and cp satisfy the hypotheses of Theorem k, and the proof

of Theorem 5 is complete. D

COROLLARY 1. Every completely metrizable topological space eilHier is

compact or has uncountably many different uniformities compatible with its

topology.

Gal and Doss [4, 2] considered spaces which, though not compact, have

unique compatible uniformity. All the explici t examples seem to be

constructed from uncountable ordinals , and so are certainly not metrizable.

Corollary 1 shows that such a space can never bear a complete metric.
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Note added in proof. Theorem 5 of th i s paper overlaps considerably

with a result (Theorem 1) announced by V.K. Bel'nov in "On metric

extensions", Soviet Math. Dokl. 13 (1972), 220-221* = Dokl. Akad. Nauk SSSR

202 (1972), 991-994*.
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