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Remainders of metric completions

C.J. Knight

‘Certain topological spaces X may bear various uniform structures
compatible with the topology of X ; to each uniform structure
there corresponds a completion of X , that is, a complete space

Z containing X as a dense subspace. For compact completions,
there has been extensive study of the relationship between X

and the possible remainders Z\X . This paper begins a study of
the more general, and apparently easier, problem of the relationship
between X and its not necessarily compact remainders. We find
that for spaces X admitting a complete metric, every space Y
which satisfies certain conditions obviously necessary for Y to
be the remainder of a completion of X in fact occurs as such a

completion.

A uniformisable topologicel space X may bear various proximity
structures, each of which corresponds to a compactification of X , and
various uniformities, each of which corresponds to a completion of X [1].
We regard X itself as a subspace of each of its completions or
compactifications. If Z is any completion (compact or not) of X , we
shall refer to Z\X as the remainder of Z . There has been considerable
investigation of how many different compactifications are admitted by each
uniformisable space. Various conditions have been found [5, 6] on spaces
X and Y for Y to be the remainder of some compactification of X .
Also the lattice of all compactifications of X [7] has been studied, and
characterised as a lattice [3]. In this paper we contribute towards an
answer to the question: which spaces Y can be the remainder of some

completion of a space X ? We consider the case when X and Y are
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metrisable, and use only elementary calculations with the metries. Our

main result (Theorem 5) is that if X is any non-compact space admitting
a complete metric, and if Y is any complete separable metric space, then
there is a metriec p on X such that the remainder of the completion of

(X, p) is isometric to Y .

We denote the set of natural numbers by & , and the set of real
numbers by A . The sign w denotes the disjoint union of two sets. We

write {al, ays Az ...};é for a family {al, ays a ...} all of whose

3,
menbers are distinct.

THEOREM 1. Let the metric [ on N be topologically discrete, and
let the completion of (N, r) be (Nu¥, n) . Then (Y, n) is complete
and separable.

Proof. We first show that Y is clcsed in N w Y . Let =n € N , and
let U be an open neighbourhood of n in N w Y such that Un ¥ = {n} .
Suppose that y € U nY . Then U n Bn(y, n(y, n)) would be an open

neighbourhood of Yy containing no point of # , so that y could not lie
in the cowpletion of N . Thus in fact no such y can exist, and U does
not meet Y . Hence Y is closed in the complete space N wY , and so Y

is itself complete.

Furthermore, N w Y 1is separable and metric, and so second-countable.

Hence its subspace Y is second-countable, and thus separable. 0

THEOREM 2, Let (¥, n) be a complete separable metric space. Then
there is a topologically discrete metrie { on N , such that the
remainder of the completion of (N, §) is ieometric to (¥, n) .

Proof. We construct, on the set ¥ w Y , a complete metric ¢ which
is equal to n on Y , which is topologically discrete on ¥ , and which
makes N dense in NwulY .

Suppose D 1is countable and dense in Y , where

D=1{d , d,, d3, ve.} We divide ¥ into the disjoint union of

£ °
sequences qiz (k =1,2, 3, ...) , one for each point di . Let

NYUY=2,andlet T : 2 x 2 +R be defined as follows:
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]y x¥Y =1,

k) -k
c[y, q; c(qif, y} =27 +nld,y), (yey),

A - -
clek. o) = 1272

D qi‘

k1) -k -1 .o

C(qi’ qjJ 2 + n(di’ dj) + 2 ] v (1’ # J) .
It is clear that ¢ is a metricon Z , that (N, ) is topologically
discrete, and (by an easy diagonal construction) that ¥ is dense in
N w Y . We show that (Z, £) is complete.

Let [zm) be & Cauchy sequence in 2 . If (zm] has a subsequence

in Y , then as CI.Y xY=n and (Y, n) is complete, this subsequence

converges and thus so does [zm) . If however (z”‘) has no subsequence in

Y , it must have a subsequence in ¥ ; and so it is enough for us to show

that every Cauchy sequence in (N, L) converges in 2 .
Suppose then that (zm tm=1, 2, 3, ) is Cauchy, where

. = gim)

m i(m) * Then either {i(m) : m=1, 2, 3, ...} is finite, or there

is a subsequence of <Z(m) consisting of distinct values.

1r {¢(m) : m=1, 2, 3, ...} 1is finite, then not more than one value

of i(m) can be repeated infinitely often, since (zm) is Cauchy. Thus

k(m)

for all large m we have z = qi , for some 7 independent of m .
But then k(m) > ® as m + > , again since (zm) is Cauchy, and so

2 +d. as m+® .
m 2

There remains the possibility that for some sequence of values of m ,

k(m)

we have z = U (m) where all values <(m) are distinct. Then, for m

and m' in this sequence we have

Sl 2y) = 27 N (myr F(m)) * 2 gy,

and this quantity can be made arbitrarily small by choosing m and m'

large enough. Hence, as m runs through the sequence in question,
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(di(m)) is a Cauchy sequence, and also k(m) - ® . But the Cauchy
sequence (di(m)) in Y converges in Y , to y say: and then

C(zm’ y) = 2—k(m) +

through our sequence. Thus [zm) has a subsequence tending to y , and

n(di(m)’ y) , which tends to 0 as m increases

hence the whole sequence [zm] has limit y . 0O

We seek to extend Theorem 2 to spaces other than N , with topologies
other than the discrete topology. We consider first some circumstances
under which the completion of a space is determined by & closed subset. of

the space.

THEOREM 3. Let (X, E) be a complete metric space and let F be a
closed subset of X . Let p be a metriec on X , topologically equivalent
to &, with p =& and such that if p(x, z) < p{x, F} then
p(x, 2) = E(x, 3) . Then the remainder of the completion of (X, p) 1is
igometric to the remainder of the completion of (F, p) .

Proof. The remainder of the completion of (X, p) is represented by

p-Cauchy sequences in X with no limit in X . Two such sequences (xn)
and (zn] represent the same point of the remainder if and only if
p(xn, zn) + 0 , and, more generally, the distance between the points
represented by (a:n) and by (zn) is limp[:cn, zn) . We need then a
mapping H with the following properties:
(1) H(xn) is defined whenever (a:n] is Cauchy and free in
(x, p) 3

(ii) H(xn) is a sequence in F ;
(iii) H(xn) is p-Cauchy;

(iv) H(xn) is p-free;
(v) 1lim ((a(xn))r, (H(zn))rl - 1in (s, 2)
e e

Now let (xn) be a Cauchy sequence in (X, p) , and let us suppose
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first that p(:z:n, F) is bounded away from zero. That is, we have 6 > 0

such that 6 = p(xn, F] for ail n . Let n, be chosen so that for all

0
m and n greater than ny s p(:z:m, xn] <8 . Then for such m and n ,
p(z,, z,) <plz,, F) , sothat o(z,, z) = E(z,, z,) . Hence (z,) is s
gE-Cauchy sequence, so it is convergent in & and hence in p . Thus, if

p[:z:n, F] is bounded awsy from zero, (:cn] cannot be free.

Nov let (xn) be a free Cauchy sequence in (X, p) . Then p(:x:n, F)
is not bounded away from zero, and so for each positive integer »r there

. 1
<l - : .
is n(r) so that p(xn(r), F) % - Hence there is a point f_  in F

such that oz fr) < %; . We let H(:rn) = (fr) 3 then the properties

n(r)?
(1) to (v) above are all easy to check. O

We shall use Theorem 3 by first modifying the metric of a given space
on & closed subset in such a way as will produce a certain remainder, and
then extending the modification to the whole space. The chief tool used to
modify & metric while preserving the topology will be the following lemma.

LEMMA. Let X be a set and let the function 0 : X X X + R have the
folloawing properties:

olx, y) 20 (all = and y ),

olx, ) =0 (all =x= ),

and

olx, y) =oly, ) (all = and y ).
Moreover let p : X X X + R be defined as follows:
plx, y) = inf{o(x, al] + o[al, a2) o+ o(am, y)
m= 0, a; €x (1L=g4=m)},
where if m =0 the sum is wunderstood to be o{x, y) . Then o is a

pseudometric on X .

Proof. Clearly, p is symmetric and non-negative, and p(x, x) = 0 .
The sums O [z, al) + ...t G(am, y) + oy, bl) ..t o(bk, z) , vhose
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infinmm is p(x, y) + p(y, 2) , all lie in the class of sums whose infimum
is p(z, 2) . Thus op(z, 2) =p(x, y) + p(y, 2) . D

We shall call «x, Ays Gys vees Qs Y @ string of points from =x to

Y . Ip the application of this lemma, we shell several times have occasion

to remark that certain strings «, al, Ans ooy @ Yy may be omitted from

the calculation of the infimum for p{(x, y) , as the value of

0(.7:, al) + ...t o(am, y) is not less than the value of another such sum.

We shall call such strings Zgnorable. When we consider a string

Ty Ays Gy ones a.s y from x to y we shall, without specific comment,

write ay = x and Ay Y -

THEOREM 4, Let (X, £) be a complete metric space, and let F be a
closed subset of X . Let ¢ be a metric on F , topologically equivalent
to E|F xF , and with ¢ = & , and let the remainder of the completion of
(F, 9) be (Y, n) . Then there is a metric p on X , topologically
equivalent to & , with p|F X F = ¢ , and such that the remainder of the
completion of (X, p) is isometric to (¥, n) .

Proof. Let ¢ : X X X + R be defined by

olx, z') if {z, z'}cF,
olz, ') =
glz, z') it {z, '} ¢ F .
Let p be the pseudometric constructed from O as in the lemma. As
¢ £ & , it is clear that plF XxF=¢ . We prove that p 1is a metric and
that it satisfies the hypotheses of Theorem 3.
(i) To show that p is a metric, we obtain a formula for it rather

simpler than that given in the lemma. ©Now, for the calculation of £ , any

string <, @, «.., am, x' with three consecutive terms ai-l’ ai, a

i+l
in F 1is ignorable, since
ola;_y» a) + olags a,) 2 elay s apy,)
'

Moreover, if two consecutive terms of the string <, al, cees @, T are

in X\F , and if m = 1 , then the string is ignorable since
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Blag 0 a) + Elay, a;) 2 E(a; .0 a,)

i i . . < .
Finally, if {at a +l} CF and a; ¢ X\F then

-1’ g

olay_y» 4) +olags ap,y) = lay; 0 @) + Elags a;,))

v

& (ai-l ’ ai+1)

v

ola; > a;,) =ola; 5 a) s

so again such a string is ignorable. Thus to calculate P it is enough to
consider strings of the following forms:
x, z' {x, '} S X\F ;

T, Qs Ay, ' {x, z'} cx\¢ , {al, a2} cF

a, a' {a,a'tcF;
a, a, {a,al}EF,xéx\F;
a, x a€F , x €X\F,

Thus, if {x, '} S X\F and {a, a'} S F , we have
plx, ') = min{&(a:, z'),inf{&(x, al)ﬁp[al, a2)+£(a2, z') : {a), a,} SF}} ,
and
pla, a') = ¢la, a') ,
and

pla, z) = inflo(a, al)+£(a1, x) + a €F}.

We observe that the first of these formulae includes the other two, if <«

and x' are allowed to range over the whole of X .

We now suppose that p(x, ') = 0 . Then either E&(x, ') = 0 , and

so z =x' , or else
inf{&(x, a1)+<p[al, a2)+£(a2, z') : {al, a2} c F} =0 .

If the last equation holds, let [bn) and (cn) be sequences in F such

that as n + ©
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gz, b)) +olb,, ¢) + &e,, =') »0 .

Then E(:c, bn] + 0 , and so, as F 1is closed, we have x € F . Similarly

x' € F. But then p(x, ') = ¢{x, ') and hence again z = x' . Thus o
is a metric.

(ii) To show that p and £ are topologically equivalent, we
consider first the ball, centre x and radius € , in the two metrics. By

construction p = £ , and so Bp(x, €) _D_Bg(x, €) for all x and all € .

On the other hand, if « € X\F and if 6 = minfe, &(x, F)} , then it is
easy to see that Bp(x, §) c Bg(:x:, €) . We complete the proof by showing

that if z € F and if pl(x, zn) + 0 then a.lso‘- £z, zn) + 0 . For, since
plz, z,) = inflole, aj)+tla), 2,) : a, €F},

we can select bn in F such that
olz, b)) + €, 2,) > 0.

But ¢ 1is topologically equivalent to &£ , and hence also
E(z, b)) + £(b,, 2,) >0,

so that E(:c, zn) + 0 , as required.

(iii) We have already observed that p = & , since ¢ = & .

(iv) If p(x, 2) # E(x, 2) then

1]

p(x, z) = inf{§(z, al)w(als a2)+€(a2, z) : {a)5 a,} c F}

> inf{§(x, al) Pay € F}

E(x, F)
> p(x, F) ,

so that if p(x, 2) < p(x, F) then plx, 38) = &(x, 2) . Thus all the
hypotheses of Theorem 3 hold, and so the remainder of the completion of
(X, p) 1is isometric to, the remainder of the completion of (F, p) , which
since p|FxF=¢ ,is (¥, n). o

Finally we put together Theorems 2 and L.

THEOREM 5. Let (X, k) be a complete non-compact metric space and
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let (Y, n) be a complete separable metric space whose metric is bounded.
Then there is a metric p on X , topologically equivalent to K , such
that the remainder of (X, p) 1is isometric to (Y, n) .

Proof. Since X is complete but not compact, it is not totally
bounded. That is, 3e& > 0 such that for every finite set E in X there

is an x in X with k(x, BE) = € . We choose a, arbitrarily in X,

and then inductively choose a, such that
K(an, {al, Qys -oes an—l}) >g. Let F = {al, ays as ...} . Then F is

clearly closed in X , and every pair of distinct members a, a' of F
has k{a, a') 2 € . Now let L be a bound for the metric n ; we define

a new metric £ for X by writing

-1
E(x, ') = ¢ (+L)k(z, ') .
Then £ 1is clearly uniformly equivalent to k , and &(a, a') 21 + L if
{a, a'} € F . We teke the space (¥, n) , and construct on N the
corresponding metric & as in Theorem 2, with the construction given in
the proof of that theorem. We observe that, with this construction, § 1is

bounded above by 1 + L . Let the metric ¢ be defined on F by
ola,, a)) = tlm, n) .

Then for all a and &' in F ,
¢la, a') =1 +L = &la, a')
Thus (X, £€), F and ¢ satisfy the hypotheses of Theorem 4, and the proof

of Theorem 5 is complete. 0

COROLLARY 1. Every completely metrizable topological space either is
compact or has wncountably many different uniformities compatible with its
topology.

G4l and Doss [4, 2] considered spaces which, though not compact, have
unique compatible uniformity. All the explicit examples seem to be
constructed from uncountable ordinels, and so are certainly not metrizable.

Corollary 1 shows that such a space can never bear a complete metric.
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Note added in proof. Theorem 5 of this paper overlaps considerably
with a result (Theorem 1) announced by V.K. Bel'nov in "On metric
extensions'", Soviet Math. Dokl. 13 (1972), 220-224 = Dokl. Akad. Nawk SSSR
202 (1972), 991-99k.
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