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1. INTRODUCTION

1.1. Goal of the Special Issue

This Special Issue provides a justification and a proposed re-
search direction for establishing a common benchmarking
scheme for function representations that are developed and
deployed throughout academia and practice with the ultimate
goal of providing industry with practically usable function
modeling tools and concepts. Earlier work on function bench-
marking was presented at the International Conference on
Engineering Design in 2013 (Summers et al., 2013) and
revisited in a companion paper of this Special Issue (Sum-
mers et al., 2017). Despite decades of research into function
descriptions (Eastman, 1969; Freeman & Newell, 1971; Ro-
denacker, 1971; Collins et al., 1976; Sembugamoorthy &
Chandrasekaran, 1986; Andreasen & Hein, 1987; Hubka &
Eder, 1988; Ullman et al., 1988; Vescovi et al., 1993; Sasa-
jima et al., 1995; Bracewell & Sharpe, 1996; Qian & Gero,
1996; Umeda et al., 1996; Goel, 1997; Kirschman & Fadel,
1998; Gero & Kannengiesser, 2002; Hirtz et al., 2002; Chan-
drasekaran, 2005; Albers et al., 2008; Erden et al., 2008;
Yang et al., 2010; Linz, 2011; Sen et al., 2011; Srinivasan
et al., 2012; Pahl et al., 2013; Schultz et al., 2014), industry
has not appeared to have practiced function modeling while
professing a need to express product information beyond
form (Eckert, 2013; Arlitt et al., 2016). A possible reason
contributing to industry’s resistance might be that there is
no canonical definition of function, with various approaches
to function modeling being grounded in different conceptu-
alizations. Research efforts have resulted in several distinct
views of function in engineering design (e.g., Deng, 2002;

Goel et al., 2009; Crilly, 2010; Eckert, 2013; Vermaas,
2013). These perspectives have been formalized into different
modeling approaches. For example, several design textbooks
talk about using function-flow networks to capture the se-
quence and dependencies for the desired function of a product
or system (Shishko & Aster, 1995; Ulrich & Eppinger, 2008;
Ullman, 2010; Buede, 2011; Haskins & Forsberg, 2011; Pahl
et al., 2013).

A preceding Special Issue in this journal in 2013 edited by
Pieter Vermaas and Claudia Eckert asked for research papers
concerning how and for what purpose function models could
be applied, based on position papers covering different no-
tions of function (Vermaas, 2013), a discussion of engineers
working with different notions of function in practice (Eckert,
2013), and the evolution of an approach to function–
structure–behavior over decades (Goel, 2013). The editorial
concluded that there is still a culture that “. . . my function
model is better than yours!”, which ignores that this ambigu-
ity about what function modeling is and how it is done is in
itself a barrier to widespread adoption and use of function
models and descriptions (Vermaas & Eckert, 2013). One of
the reasons for the plethora of different approaches is that dif-
ferent researchers are working on different aspects of the
function modeling problem, at different scales, with the
goal to support different types of reasoning, in different in-
dustry sectors, and most with varying research goals.

In response to the disconnect among those researching
functions, we assert that each approach has its own strengths
and weaknesses, and each may be well suited to specific do-
mains. Rather than developing a single, unified definition of
function, we aim to foster a discussion on the usefulness and
applicability for different reasoning applications and do-
mains. Therefore, we are proposing a different approach to
function research by developing a set of comparative bench-
marks that can be explored with the different modeling
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approaches. By utilizing benchmark problems, the commu-
nity can start to discern which approaches are more useful
for different needs, and perhaps to discover which elements
of the representations and vocabularies are most conducive
for different elements of function thinking.

Benchmarking is used in other fields routinely to enable
comparative insights, but it has not been used previously in
research on engineering design. Therefore, this Special Issue
is also an exploration of benchmarking and related techniques
to understand the strengths and weaknesses of different
modeling approaches or representations. For example, we
could see different process modeling approaches or creativity
methods being benchmarked. To assist the contributors of
this Special Issue to explore and advance the possibility of
benchmarking function modeling approaches, two texts
were distributed: a brief sketch of benchmarking written by
Pieter Vermaas and an abridged version of the paper (Sum-
mers et al., 2017), which was attended by of many of the
contributors. The next section contains this sketch of bench-
marking.

2. DISCUSSION ON BENCHMARKING

This section, authored by Pieter Vermaas, starts by introduc-
ing two different forms of function model benchmarking ap-
proaches. The first form aims at improving a specific function
modeling approach by analyzing other approaches. The sec-
ond form aims at comparing function modeling approaches
used for similar tasks. Next, a precondition is analyzed that
is relevant for specifically the second form of benchmarking.
The precondition is that function modeling approaches can be
categorized by classes of approach that are similar. The final
section considers benchmarking problems for function mod-
eling approaches and their role in the two forms of bench-
marking.

2.1. Two forms of benchmarking function modeling
approaches

When taking for a moment distance from function modeling
and focusing on benchmarking in general one can distinguish
two main forms of benchmarking (for a richer and more de-
tailed discussion, see Stapenhurst, 2009). In the first form,
producers of a product analyze other products for determining
how they can improve their own product. This may be seen as
producer-driven benchmarking. In the second form of bench-
marking, users analyze a set of similar products for comparing
them. Here, this shall be called user-driven benchmarking.

In producer-driven benchmarking, it is the producers of the
product who have an active role. They decide to evaluate and
improve their product, decide which aspect of the product
should be evaluated and improved, and decide what other pro-
ducts are to be analyzed for the evaluation and improvement.
Moreover, producer-driven benchmarking is primarily serv-
ing the interests of the producer. The product to be evaluated
and improved is not necessarily compared with similar, rival

products (say, for improving seating procedure in a theater,
one can compare the theater with a plane), the outcomes of
the comparison are not meant for or made public to users of
the product, and if all goes well, the producer benefits by ac-
quiring the means to improve its product.

In user-driven benchmarking it is the users of a product, or
a representative of the users, who have an active role. The
users decide to evaluate the product in comparison to a set
of similar products, and the users decide which aspects of
the product are included in the comparison. User-driven
benchmarking serves primarily the interests of the users.
The products are compared with rival products (say, a set of
mobile phones are compared), and the outcomes of the com-
parison are made public to the users such that these users can
determine which of the compared products serve their inter-
ests best. The producers of a compared product have a passive
role of providing their product, and may hope that things go
well, and that their product fares well in the comparison.
However, user-driven benchmarking may also serve the inter-
ests of producers in the long run, as it informs producers what
aspects users value in products.

For function modeling approaches, the producers are the
modelers of functions in design research and the users are
taken to be industry. Producer-driving benchmarking of func-
tion modeling approaches may therefore be called modeler-
driven benchmarking, and user-driving benchmarking may
be called industry-driven benchmarking.

Modeler-driven benchmarking thus means that modelers
improve some aspect A of their function modeling approach
M by analyzing other approaches M0, M00, . . . . Modeler-
driven benchmarking involves evaluation for it implies deter-
mining how the other function modeling approaches score
well on the aspect A. Yet this evaluation is not meant as judg-
mental; the other function modeling approaches M0, M00, . . . ,
that are evaluated may not even be meant for supporting the
task for which the approach M is meant to support. For in-
stance, M can be meant for ideation in conceptual design,
whereas M0 is for reverse engineering.

Industry-driven benchmarking is, in contrast, judgmental.
It involves comparing a series of function modeling ap-
proaches M, M0, M00, . . . that support the same engineering
task by measuring them against a number of aspects A, A0,
A00, . . . that industry values in using function modeling ap-
proaches for the task. The outcomes of the comparison are
then used by industry to select the approaches that best serve
the task.

2.2. Categories of function modeling approaches

User-driven benchmarking has, as said, the goal of compar-
ing a set of similar products on various aspects relevant to
users of the product. A precondition to this form of bench-
marking is therefore that products can be categorized in
classes that are similar, where similarity may mean a variety
of things with more or with less specificity. For instance,
users can be interested in benchmarking products that realize
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a broad goal, as, for instance, traveling from Clemson, South
Carolina in the United States, to Milton Keynes in the United
Kingdom. Multiple different combinations of trips with a
variety of means as planes, trains, cars, and boats may then
be categorized as similar and surface as such in the compar-
ison. Or users can be interested in a more specific goal, as a
laptop with particular technical characteristics and with a par-
ticular prize, in which case only a few products make up the
category of similar products that are compared.

In the case of function modeling approaches, this categor-
ization warrants attention as it is by far clear whether these ap-
proaches can be taken as similar. Design research has created
many function modeling approaches (see the 2013 AI EDAM
Special Issue on function modeling; Vermaas & Eckert,
2013). This variety may be understood as preliminary to
the stage that design researchers find consensus about the
best or most tenable approach. Unconditionally, benchmark-
ing the current approaches (in both forms of benchmarking)
may then be seen as speeding up the process to find this ulti-
mate function modeling approach. An alternative understand-
ing is that the variety of function modeling approaches is due
to the different tasks for which function modeling is used, as,
say, supporting ideation in conceptual design, supporting ar-
chiving of existing products, or enabling incremental changes
in electromechanical engineering (e.g., Vermaas, 2013). On
this second understanding, specific industry-driven bench-
marking should take into account that function modeling
approaches can only be taken as similar if they are meant to
support the same engineering task.

Ignoring this task dependency of function modeling can
lead to unnecessary negative judgments. Consider, for in-
stance, a function modeling approach M that is developed
for the task of supporting incremental changes in electrome-
chanical products, and does a good job for this task. Industry-
driven benchmarking of function modeling approaches for
task T can then reveal that M scores good on all aspects A,
A0, . . . that are relevant to task T. This function modeling ap-
proach M may now also be of use for another task T0 as, say,
supporting failure mode analysis in products. If now this ad-
ditional use is presented as proof that M is a versatile ap-
proach that has also T0 as its goal, then M can also be included
in industry-driven benchmarking of function modeling ap-
proaches for task T0. This second industry-driven benchmark-
ing effort judges M on other aspects A000, A000 0, . . . relevant to
T0, and M may now end up as a relative mediocre function
modeling approach.

For modeler-driven benchmarking, determining the tasks
for which the function modeling approaches are meant is
less necessary, although informative. When modelers want
to improve their function modeling approach on aspect A,
they should look at function modeling approaches that are do-
ing well on that aspect, and knowing the tasks for which other
approaches are meant may provide information on which
function modeling approaches are doing well on aspect A.

When function modeling approaches are simply character-
ized by means of a number of features, the tasks T, T0, T00, . . .

for which the approaches are meant and the aspects A, A0,
A00, . . . by which they are evaluated are not specified. The dis-
tinction between modeler-driven and industry-driven bench-
marking is then suppressed, making the characterization
somewhat ambiguous. In Summers et al. (2017) more than
20 dimensions are introduced for characterizing function
modeling approaches. These dimensions include, for instance,

† scope of an approach: the domain for which the ap-
proach is intended;

† flexibility: the ability to modify and adapt the represen-
tation of functions by an approach to address new prob-
lems;

† closeness of mapping: the modeling conventions that
need to be learned to apply the approach and how intui-
tive the resulting models are;

† error-proneness: whether the notation used in an ap-
proach induces “careless mistakes”;

† interpretability: how consistent and precise the inter-
pretation of the function models is across different
individuals, domain, and expertise; and

† change propagation: whether the representation of
functions supports discovery about the effects of pertur-
bations in a system.

A characterization of function modeling approaches
along these dimensions can however be turned into mod-
eler-driven or industry-driven benchmarking. For modeler-
driven benchmarking, the characterization of function model-
ing approaches along the various dimensions gives modelers
information about which approaches to analyze for improving
their own function modeling approach on a specific aspect
A. If, for instance, a modeler is interested in reducing the error
proneness of his approach, the characterization gives rapid in-
formation about which other function modeling approaches
score low on this aspect/dimension. For industry-driven
benchmarking, something similar can be done by taking
some of the dimensions as fixing the task T that singles out
the category of function modeling approaches that are com-
pared, and by taking other dimensions as the aspects A, A0,
. . . that drive the comparison. If, for instance, this industry-
driven benchmarking concerns function modeling approaches
for supporting the analysis of changes in product-services sys-
tems, then the characterizations by scope and change propaga-
tion fix the approaches that are compared. In addition, if an
aspect A on which the approaches are compared is consis-
tency among the function modelers, the characterization
along the interpretability dimension determines the judgment
of which approach is the best.

2.3. Benchmarking problems for function modeling
approaches

Setting a benchmarking problem for function modeling ap-
proaches also introduces ambiguity between modeler-driven
and industry-driven benchmarking. In general, benchmarking
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problems can be defined by producers for making the differ-
ences explicit between their products and for creating a
threshold the producers want to pass. Competitions between
solar-propelled cars count as such challenges, and then the
goal of the producers is to create cars that can do it and that
can do it better than others. In this Special Issue, reverse en-
gineering a glue gun is the benchmarking problem for func-
tion modeling approaches, and when taking it as modeler-
driven benchmarking, taking up this problem means attempt-
ing to get the function structure of the glue gun right and show
others how it can be done with different approaches.

Benchmarking problems can also be set by users, with ex-
amples including competitions between producers to win a
contract. Proposals by the producers are then evaluated by
the users for judging which proposal is best and who gets
the contract. From this perspective, the challenge of reverse
engineering a glue gun becomes industry-driven benchmark-
ing for showing to industry which approach is best in captur-
ing the function structure of the glue gun.

3. EXPLANATION OF THE THREE THEMES

In this Special Issue, the glue gun challenge is to be seen as
a modeler-driven benchmarking problem for developing
within design research the language and practice of compar-
ing function modeling approaches. To this end, we invited
special contributions in three specific areas:

1. papers that present a function model created within the
author’s representation of choice, applied against the
glue gun example challenge problem, and a detailed cri-
tique of the approach explaining its capabilities and lim-
itations using the function model(s) for the problem.
These are used to demonstrate how a single benchmark
problem can be used to compare multiple different
modeling approaches.

2. papers that present a suite of benchmark challenge
problems. To this end, papers that illustrate design prob-
lems for function modeling that can be used to compare
function modeling approaches were sought. The prob-
lems should be fully detailed in terms of scope, size,
and domain, and clearly illustrate the criteria of compar-
ing modeling approaches for which this problem can be
used as a benchmark.

3. papers presenting empirical studies comparing perfor-
mance of multiple function modeling approaches with
respect to select benchmark dimensions of the authors’
choice. This might include studies comparing the per-
formance of two approaches to support: ease of model-
ing, human interpretability of models, teachability of
modeling approaches, ability to support innovative
ideation, physics-based reasoning using the models,
or any other dimension(s) of authors’ choice.

Many papers were received, reviewed, and evaluated for
appropriateness for inclusion in this Special Issue. The se-

lected papers presented as a collection for this Special Issue
are primarily addressing the first theme in which researchers
applied their models against a common benchmark product,
the glue gun. While the goal of the Special Issue was also
to include proposals for new benchmark challenge problems,
the community did not respond with offers of problems. This
might suggest that our research community is still evolving in
thinking about the research challenges from a more coordi-
nated and distributed point of view. For the editors, this suggests
an opportunity to address the gap in the literature through
creative and innovative means in the future. Finally, a few pa-
pers were received that presented findings for direct compar-
isons between different models. Again, this suggests that the
community has not yet reached a maturity level where peer
function modeling approaches are understood well enough
to be directly benchmarked/compared against each other.

3.1. Theme 1: Model demonstration with glue gun

Unal Yildrim, Felician Campean, and Huw Williams have de-
veloped system state flow diagram (SSFD), a framework that
can assist modeling solution-neutral functions of multidisci-
plinary systems at various levels of complexity (Yildirim
et al., 2017). This framework is intended to support design-
ing, modeling, and analysis of products and systems. The
SSFD originates from fault analysis in automotive engineer-
ing. The analysis starts with the definition of input and output
states of the operand, conceptualized as an object, in terms of
the measurable attributes or properties that describe the states.
The function is defined in relation to the transformation
needed to change the values of attributes from the initial input
to the final output state. The SSFD model is developed by de-
composing the function through identification of intermedi-
ate states of the flow between the input state and the output
state. The function model of a product or system is repre-
sented as a chain of state transitions, including the transitions
in the main flow, connecting flows, and branching flows. Fur-
ther, to this function model, conditional fork node heuristics
are added to describe the distinct, multiple modes of opera-
tion corresponding to various use cases in a complex, multi-
disciplinary system. While SSFD has been applied success-
fully in automotive companies as it supports modeling across
multiple domains, this paper presents a rigorous academic ba-
sis and guidelines to the application of the method. Similar to
work proposed by others (Otto & Wood, 2001), the SSFD of-
fers guidelines for how to construct flow models. The paper
sets SSFD in the context of other function modeling ap-
proaches. Like other function modeling approaches, the
SSFD supports abstract top-down decomposition, but it
also allows modeling multiple modes of operations that are
adopted in a complex system over its lifecycle through
branching points in the model that describe different modes
of operation. The SSFD framework has been used in industry,
and its several features are illustrated by applying it to develop
function models of a glue gun and the powertrain of an elec-
tric vehicle.

M. Bohm et al.396

https://doi.org/10.1017/S0890060417000531 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000531


The paper by Kilian Gericke and Boris Eisenbart, titled
“The Integrated Function Modeling Framework and Its
Relation to Function Structures,” proposes a novel approach
to function modeling called integrated function modeling
(IFM) framework, which combines multiple viewpoint on
functions in a single model (Gericke & Eisenbart, 2017).
Building on work by (Vermaas, 2009, 2013; Vermaas & Eck-
ert, 2013) and others, the IFM incorporates a behavior-related
notion, an outcome-related notion, and task or goal-related
notion of function into a single model, as the authors see an
inherent lack of function modeling approaches to provide
guidance in linking between different contents and view-
points in particularly across design disciplines such as me-
chanical engineering, electrical engineering, and software,
which have to come together in most complex contemporary
systems. The IFM uses a design structure matrix to combine a
state view, a use case view, an actor view, an effect view, and
an interaction view centered on a process flow view, which
presents a view of the qualitative flow of different types of
processes and represents a behavioral view of the product
showing causal link between transformations. It assumes
that a team would select the views that are beneficial to their
specific tasks rather than always work with a comprehensive
model. The approach starts with a hierarchical decomposition
of the overall function, the main functions, and the auxiliary
functions and the assumption they incorporate using an ab-
stract verb–noun representation stating its inputs and outputs.
These are combined into a final model, which breaks the
function steps down as transformations of energy, matter,
and information. The paper shows the different views for
the glue gun as well as the resulting combined matrix. The
IFM models are compared to the function structures approach
(Pahl et al., 2013). The authors argue that the two modeling
approaches complement each other, but that IFM provides a
richer and, therefore, potentially more useful representation
as it centers multiple representations around a function
model.

In another offering, “Introduction to Quantitative Engi-
neering Design Methods Via Controls Engineering,” Briana
M. Lucero, Matthew J. Adams, and Cameron J. Turner first
observe that function models of electromechanical products
commonly practiced and taught in design education, such
as those stored in the Oregon State Design Repository, do
not include satisfactory modeling protocol for signal flows,
despite signal being one of the three major flow types in func-
tion literature alongside material and energy (Lucero et al.,
2017). The authors suspect that this gap could be the result
of a lack of formalism for modeling signals as nonconserved
flows that are carried by material or energy flows. To address
this gap, the authors further observe that currently existing
formalism of modeling control systems as chains of blocks
and arrows already provide sufficient formalism to address
this gap. The authors then propose a formalism based on con-
trols theory, using four similarities between controls engi-
neering and functions, such as schematic similarity, similarity
of control variables with nondimensional flows in function

models, similarity of the differential equations of transfer
functions with the bond graph representation of functions,
and isomorphic matching. The authors then apply these ideas
to three design models, including the benchmark model of a
glue gun, to illustrate their approach. The paper demonstrates
that the key performance parameters of a mechanical system
could be computed through function modeling using dimen-
sional analysis techniques, such as Buckingham–Pi. It also
shows that the functions in the function basis vocabulary
could be modeled as transfer functions of control systems,
using bond graphs, because the five basic elements of bond
graphs (resistive, capacitive, inductive, transformer, and gyra-
tor) are analogous to basic mechanical functions.

Next, Hossein Mokhtarian, Eric Coatanéa, and Henri Paris,
in “Function Modeling Combined With Physics-Based Rea-
soning for Assessing Design Options Supporting Innovative
Ideation,” present the dimensional analysis conceptual mod-
eling framework of function modeling, which is an approach
to use a physics-based representation of functions that com-
bines dimensional analysis, bond graphs, cause and effect,
and a TRIZ-like representation (Hossein et al., 2017). The
framework is shown to facilitate physics-based reasoning,
the exploration of design options, and generating ideas for de-
sign variants, within the context of reverse engineering or in-
cremental design. The dimensional analysis conceptual mod-
eling framework is used through eight steps. These steps are
system and boundary definition, function modeling using the
bond graph vocabulary as functions, identifying the variable
list, assigning variables to the function model, applying
causal reasoning rules to the function model, generating the
causal model/graph, computing the behavioral laws of the
model, and using the model for analysis and design reason-
ing. The glue gun example is used to illustrate the ideas of
the paper. The method can detect TRIZ-like contradictions
such as the simultaneous need to both increase and decrease
the glue stick diameter in order to maximize glue flow rate.

3.2. Theme 2: Exemplar problems

While this theme was presented for the potential authors in
this edition, no papers were received that specifically ad-
dressed this topic.

3.3. Theme 3: Comparative studies

In “Transforming Function Models to Critical Chain Models
Via Expert Knowledge and Automatic Parsing Rules for De-
sign Analogy Identification,” Malena Agyemang, Julie Lin-
sey, and Cameron J. Turner seek to determine if pruning rules
are a viable method to transform a complex function model
into a model that only illustrates critical functions and critical
flows (Agyemang et al., 2017). The authors use as a bench-
mark a set of expertly (manually) derived function models
and compare those to models derived using pruning or pars-
ing rules. Finally, the authors use the manually and automat-
ically generated critical chain models as input to a design
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analogy system. Their work shows promise that pruning rules
are approaching a capability of replacing the daunting task of
manually creating critical chain function models.

Next, Margherita Peruzzini, Roberto Raffaeli, Marco Ma-
latesta, and Michele Germani, in “Toward a Function-Based
IT Platform for Variant Redesign of Household Appliances,”
demonstrate how function and other product models can be
leveraged to support innovation (Peruzzini et al., 2017).
Specifically, they present an approach for using function in
the generation of new product variants. The authors’ work
goes beyond current function-based concept generation ap-
proaches by adding several layers of models and interactions,
specifically modular and structural levels. Most notably the
authors use a rule-based component configuration system to
help assemble the “new” design. Finally, the authors present
a case study done in partnership with Electrolux to demon-
strate the systems capabilities by designing a new kitchen
range variant.

Unlike the previous two papers, in their paper “A Bridge to
Systems Thinking in Engineering Design: An Examination of
Students’ Ability to Identify Functions at Varying Levels of
Abstraction,” Megan Tomko, Jacob Nelson, Robert Nagel,
Matthew Bohm, and Julie Linsey demonstrate how different
function modeling approaches impact student learning and
their ability to think in terms of systems (Tomko et al.,
2017). To test this empirically, two groups of students, con-
stituting the modeling and the enumerating groups, are asked
to generate functions for different products and their re-
sponses compared using the following criteria: correctness
and abstraction levels of functions. Prior to this experiment,
the students in the modeling group are taught systems abstrac-
tion, function enumeration, and function modeling, but the
students in the enumeration group are only taught systems ab-
straction and function enumeration. The correctness of func-
tions is categorized into correct, partially correct, and incor-
rect functions. Correct and partially correct functions are
further categorized into: high level, low level, interface, and
ambiguous. Tomko et al. observed that the students in the
modeling group generated more low-level, interface, and am-
biguous functions, but lesser high-level functions than the
students in the enumerating group. In addition, the students
in the modeling group also generated less incorrect functions
than the students in the enumerating group. These results sig-
nify that the students in the modeling group can comprehend
functions better at various levels of abstraction and, therefore,
have better holistic systems thinking ability than the students
in the enumerating group.

Finally, an approach to comparing the inferencing capabil-
ities of function representations is presented in “Comparing
Function Structures and Pruned Function Structures for
Market Price Prediction: An Approach to Benchmarking
Representation Inferencing Value,” by Amaninder Singh
Gill, Joshua D. Summers, and Cameron J. Turner. In this
comparison paper (Singh Gill et al., 2017), several different
representations of function models generated using different
grammar and vocabulary restrictions are used to predict the

market price for test products. This approach to evaluating
the value or benefit of a representation to draw inferences is
one approach that can be used to compare different repre-
sentations. It was found that the unpruned representations
were able to more accurately predict the market prices, while
previous work had found that the pruned representations were
able to support human interpretation better (Caldwell et al.,
2012). Where others directly compared representations with
respect to student learning, concept generation, or transfor-
mation, this approach for benchmarking focused on quantita-
tively measuring the reasoning support of a representation.

4. THE NEXT STEPS

This Special Issue contains four papers with models of the
glue gun. The next logical step is to analyze the strengths
and weakness of the models and provide the results of the
benchmarking exercise. The editors of the Special Issue are
planning to engage in this as a next step based on the final pa-
pers in this Special Issue and intend to submit a follow-on
stand-alone article summarizing the findings. In the spirit
of benchmarking, we also invite others to create their own
comparisons and benchmarking problems and protocols.
The benchmarking exercise will have two distinct audiences:
common-sense suggestions for practitioners and a theoretical
reflection over the merits of benchmarking for the academic
community.

This Special Issue has shown there is still a lively interest in
function modeling in the engineering design research com-
munity as a new generation of authors has embraced the issue.
While they have made huge strides to engage with the work
of previous generations, we have also seen that older work
has been somewhat ignored and the old questions, such as
“should function be solution neutral” are nowhere near to
being resolved. With the exception of Yildirim et al.
(2017), in general the papers have again started from a theo-
retical perspective rather than embrace the challenges that in-
dustry is facing. However Gericke and Eisenbart (2017) and
Yildirim et al. (2017) have been embracing the challenges of
using function modeling to bridge across the different disci-
plines, as products become more complex and initiatives
like Industry 4.0 or the Internet of Things push companies
to bring hardware, electronics, and software closer together.
We can still look forward to decades of interesting research
on functions.

The editors collectively agree that while this issue shows
great strides in the applicability and usefulness of function
modeling, a majority of the papers submitted are an extension
of the authors’ previous works. However, the call for bench-
marking has led to a more thorough validation and illustration
of the modeling approaches and yield a set of models of the
same object: the glue gun. The papers presented here do ad-
dress the original calls of the Special Issue, but none particu-
larly address the issue of benchmarking problems. Thus, the
editors believe that more discussion regarding benchmarking
as well as model validation and verification must occur.
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The formal and mathematically rigorous approach of classify-
ing formal languages in computing theory, such as the
Chomsky hierarchy, could be used as a reference point for
this discussion and to illustrate an equivalent gap in function
research. It is because of this formalism that all computing
problems within a given problem class of the hierarchy,
such as the context-sensitive languages or recursively enu-
merable problems, could be shown to be computationally
equivalent to each other, and a newly described problem
could be formally classified within the hierarchy. As a result,
newly proposed algorithms could be “tested” against these
classes to evaluate their “goodness.” For example, the travel-
ing salesman problem is often used as a representative of the
class of NP-complete problems and as a test bed for novel al-
gorithms that attempt to address that class. While classifying
design problems is, by nature, a different type of challenge
than classifying computing problems, this comparison goes
to show that function research in engineering design does still
not have a metric or a yardstick to describe how well a particu-
lar solution approach lends itself to a particular problem.
Computer scientists can easily evaluate the effectiveness of
their algorithms by assessing run-time/complexity/Big-O;
however, those who investigate function still lack the basic
assessment or benchmarking techniques to evaluate the effec-
tiveness of their approaches in specific domains. The editors
plan to further develop a suite of benchmarking problems and
ask that the engineering design community also contribute to
this cause. The long-term goal is to introduce benchmarking
to the cannon of methods used regularly in engineering de-
sign to present tools, methods, and modeling approaches to-
gether with a description of their scope and the area of appli-
cation to which they are most useful.
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