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1. Introduction. The different results proved in this paper
do not have very much in common. Since they all deal with the
location of the zeros of a polynomial, we have decided to put them
in one place. Improving upon a classical result of Cauchy we ob-
tain in §2 a circle containing all the zeros of a polynomial. In
§3 we obtain an extension of the well known theorem of Enestrém
and Kakeya concerning the zeros of a polynomial whose coefficients
are non-negative and monotonic. We devote §4 to the study of the

trinomial equation 41 - z + cz" = 0 . Finally, in §5 we present
an elementary proof of a theorem of M. Zedek [5] on the zeros
of linear combinations of polynomials.

2. A classical result of Cauchy on the location of the
zeros of the polynomial

n
(1) p(z) = z +an_1 z +an_2z +...+ao

states that all the zeros are in the circle
(2) |z] <1 +A

where A = max la.l .
0<j<n

Here we give a smaller circle containing all the zeros of
the polynomial.

THEOREM 1. X B = max |a,| then all the zeros
0<j<n-1
of the polynomial (1) are contained in the circle
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1 2
(3) lzl <5 {t+la |+ /(1—|an_1|) +4B} -

The expression in (3) takes a very simple form if a 4= 0.

If Ian-il =1 itreducesto 1 +VB .

1 . 2
Proof of Theorem 1. If lzl >2 {1 +.lan-1’+\/(1_lan—1l) +4B}

then [z| >1 and

(zl - 1) (|z] - lan_il)- B>0.

Multiplying by ]zln-1 and dividing by (|z| - 1) we get

217~ fa_ | 12™ % = B1a™ ! /(]a] - 150
But
Blz|™ /(2] - 1)>BU+ [2] + |22+ ... +]z[*F
> la zn-2 +a zn-3 + +a l
n-2 n-3 o
and
2] a_ Hzl™ < 2" +a_, "7
-1 -1
Hence we have
-1 -2
lp(z)l_>_lzn+an_1zn | - [an_zzn +...+ao,>0

and the proposition is proved.

By applying Theorem 1 to the polynomial zm P(1/z) we
can deduce the following

COROLLARY 1. If B = max |a.| then the polynomial
2<jgn !

P(z)=1+a1z+azzz+... +a z

has no zeros in the circle
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2l <2/ {1+]a,] +/1-]a, )" +4p) .

The next corollary is obtained by applying the above
theorem to the polynomial (z - a_ 1) plz) .

COROLLARY 2. The polynomial (1) has all its zeros in
the circle

lz| < %(1 + /1 +4B")
where

B! = max
0<k<n-1

(a , =0).

lan-i ak_ak-il ’ -1

The following corollary is also an immediate consequence
of our Theorem.-

COROLLARY 3. The polynomial (1) has all its zeros in
the circle

|z] <1 +B"
where

" - -
B max | (1 an—i)ak +a

|
0<k<n-1 k-1

In order to prove Corollary 3 we may apply Theorem 1 to
the polynomial (z + 1 - an-i) p(z) .

We also prove the following

THEOREM 2. Let

n_-Z 1/
B =( = Iajlp) P, p>1 .
j=0

Then all the roots of the polynomial (1) are contained in the circle
lzl < k where k> max(1, [an 1!) is a root of the equation

1.1
(4) (lzl' lan-1l)q(lzlq_1)_gq___o, ;'l'z:i.
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Proof of Theorem 2. It is clear that

otz > 12%] - o, | 12"

and

i
sy
T
N
=R
o]
]
i -~
1
-
~——

Hence

n n-1
lp(2)] 2 21" - la__ [ 2] - Bm s

- q q q
(zl - la__, D3 (=l 1)> g3,
From this the desired result follows.

3. The theorem of Enestrdm and Kakeya [2] mentioned
in the introduction states that if

> a > > ...
(5) a2 n-i‘an-Z— >a,>a >a >0

then the polynomial

n 2
(6) f(z)-anz +an_1z +an_zz +...+a2z +a1z+a0

has all its zeros in the unit circle. If we do not assume the
coefficients to be non-negative the conclusion does not hold.
However, we prove

THEOREM 3. I

(7) a >a ,2a ,>...22
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then the polynomial (6) has all its zeros in the circle

) ol <ta_-a +la )/ ]a].

It ao > 0, this result reduces to the theorem of Enestrém and

Kakeya.

Proof of Theorem 3. Consider the polynomial (1 - z)f(z)
which can be written as

-a zn+1+ o (z)
where
o(z) =(a_ - a )z + (a - a )zn-1+ +(a,-a)z+a
-1 1 n-2 1 o
If |z| =1, then
l¢(z)l<lan-a_1l+lan_1—a 2]+ +|a1-ao,+|aol
=(an-a_1+an_1aan_2+ +a -ao)+|aol
= a -a <+ la I .
n o o
It is clear that also
n
o) [ ett/al<a, - a + |

on the unit circle. Since the function z" ¢(1/z) is analytic in
|z] < 1 the inequality (9) holds also inside the unit circle, i.e.

n
le(t/2) < (a - a +]a )/ |z
for |z| <1 . Replacing z by 1/z we get
n
o < (a_-a +a ]zl

for |z| >1 . Henceif |z| >(an- a Iaol) / Ianl , then
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(4= 20 £(2)] = |- a_ 2" 1 o(2)] > la_| |2

-(a_-a +]a I)]z]n>0,
n o o

i.e. the function (1 - z) f(z) has all its zeros in (8). The same
is therefore true for f(z) and the theorem is proved.

4. Let us consider the trinomial equation
(10) 1-z+czn=0 (C#O),

For every n> 2 this equation is known [1, 4] to have a root in
both the regions |z - 1| >1, |z - 1] <1 . To start with we
present a very simple proof of this fact.

It is easy to verify that the result is true for n=2 . In
fact, if we put £ =z - 1 the equation reduces to

c §2+(2c-1)§+c=0,

The product of the moduli of the roots of this equationis 1 .
Hence both the roots cannot lie in ] 3 [ < 1 . They cannot both
lie in |£ , > 1 either. From this the result follows.

So let n> 3 and suppose if possible that all the roots of
the trinomial equation (40) lie in |z - 1| < 1 . By the Gauss-
Lucas theorem all the roots of the derived equation

(11) cnzn_'1 -1 =0
also lie in ,z - 1[ <1 . Itis however obvious thatif n> 3
this equation cannot have all its roots in |z - 1] <1 . Thus we

get a contradiction and the original equation must have a root
in [z - 1I > 1.

In order to prove that it also has a rootin |z - 1| < 1 we
may prove that the equation

~t+c(e+1) =0
has a root in [£ | < 1 or that the equation

e e+ )™= 0
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has a root in lg I > 1 . This is equivalent to the fact that the
equation

(12) - (z - 1)n-1+czn=0

has a root in |z - 1] > 1. We prove this again by contradiction.
If the equation (12) has all its roots in |z - 1] < 1 then the roots
of the successively derived equations will also lie in lz - 1] <1.
In particular, the roots of the equation

2
1-2z+ _c?n z =0
lie in ,z - 1| <1 . But we have proved above that this equation

has a rootin |z - 1| > 1 whatever be the value of 322 . Hence

we get a contradiction which proves that the trinomial equation
(10) has a rootin |z - 1] <1 .

We also prove

THEOREM 4. If n> 3 the trinomial equation (10) has a
root outside every circle which passes through the origin.

Proof of Theorem 4. Suppose if possible that there exists
a circle

|z - af = |af
passing through the origin which includes all the roots of the
trinomial equation (10). Putting z = of we conclude that the
circular region

le - 1] <1
contains all the roots of the equation

1-attca g =0

and so also of the derived equation

n-1 _

-a+cnan§ 0

by the Gauss- Lucas theorem. But all the roots of this last
equation cannot lie in |§ - 1] <1 if n>3 . This is a contra-
diction which proves the theorem.
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Theorem 4 is a special case of the following more general
principle which is an immediate consequence of the Gauss- Lucas
theorem.

If P(z) is a polynomial of degree n such that P(k)(O) =0
for some k, where 0< k< n, then every convex region ex-
cluding the origin also excludes a zero of P(z) .

Thus a lacunary polynomial cannot have all its zeros in a
convex region which excludes the origin.

5. Linear combinations of two polynomials. The
following theorem is due to M. Zedek ([5], Theorem 4).

THEOREM 5. Let f (z)=z 2z +a S va
- m m-1 o

1 zm—i + ...+ bO be two polynomials whose
n_

zeros lie, respectively, in the discs Iz - Cil < R1 and

and gn(Z) =z +b

[z- CZISRZ and suppose m>n>1 . For a fixed X\ let

F(z, ») (z) + gn(z) . Then:

=f
m

I. I p1 is the unique positive root of the equation

(13) C(x)sxm- ,)\l(x+,c2—c1l+R1+R2)n‘=O,

then the m =zeros of F(z,\) lie in ]z— ciliR ~§-p1 .

1

II. Setting L = rnn(lc:2 - c1[ + R1 + Rz)m /nn(m_n)m-n ,

the equation
m
)y =

> 0

(14) D(x)':‘I)\lxn~(x+|c2—c1|+R1+R

has two positive roots Py p3(p2 _<_p3) , provided |)\| > L.

At least n zeros of F(z,)\) liein |z - c2[ < R2 te, -

Part I of this theorem has been proved independently and
by a different method by Z. Rubinstein ([3], Theorem 2). We
give a very simple proof of Theorem 5. It is perhaps the
simplest one can think of.

Proof of Theorem 5. Let us denote by gi N gz , eees gm

the zeros of f (z) and by z, , z z the zeros of gn(z) .
m

1772 """ "n
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If lz-c1l=R1+p then for 1< j<n

Iz-zj|=,z-c1+c1-c2-(zj-c2)]
< lzw Cil +,c2- Cil +lzj— c2|
§R1+p+|c2-cil+R2. )
Consequently
n
n
(15) I)\gn(z)l = hljr:l1lz-zjl < x| (p+,c2 - Ci’ +R1+R2) .
Again for lz- c1[ =R1 +p , we have
m
lf_(z)]= 1 [z-¢.]
m j=1 j
m
20 (lz-c)] - lg,-c, D)
(16) IS
m
> .I'I (R1 +p -Ri)
j=1
= pm,

It is clear that equation (413) has only one positive root P,

Thus if p>p1,
n m
])\I(p+lc2—c1|+R1+R2)<p ,
[ gn(z)|< l£_(=)]

if Iz - Ci’ = R1 +p where p > Py - TFhe polynomial

fm(z) + Ag (z) cannot therefore vanish for any z such that
n ;

[z - c1| = R1 + p and p >p1 , i.e. it has all its zeros in

lz-c1|_<_R1+p1.

In order to prove the second part of Theorem 5 let
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[x] > L so that the equation D(x) = 0 has two positive roots

Py p3 (p.2 < p3) . There are two different possibilities.

Case (i) .
ase (i) pzzf:p3 For p2<p<p3

n m
(17) [x]p >(p+|c2-c1I+R1+R.2) .

Hence if lz- c =R2+p where ¢:>2<p<p3 , then

N
(18) BN gn(z), > || pn> (p + ICZ - Cil +R1+R2)m_>_fm(z) .

By Rouché's theorem the functions fm(z) + )\ gn(z) and g (z)
n

have the same number of zeros in |z - CZ' <R_+p, i.e. n.

2
On account of (18), fm(z) + )\gn(z) # 0 in p2'< p < Py hence it

has precisely n zeros in |z - czl < R2 + P

Case (ii). p2=p3=p' (say). In this case X = L. Now

suppose if possible that only n'(<n) zeros of fm(z) + 2\ gn(z) lie

in lz— CZISR +p'. There exists p'' > p' such that

2

f (z) + X g (z) has no zero in the annulus R +p‘<]z—c |<R +ptt .
m n 2 2

2
Since the zeros of a polynomial vary continuously with the co-
efficients, we may increase A by such a small amount ¢ that the
smaller of the two distinct positive roots which

n m
(141) l)\+€|X 7(x+iC2-C1[+R1+R2) = 0

has is less than (p' +p'')/2 and that fm(z) + (n +¢) gn(z) has

exactly n' zeros in 'z - CZI <R_+(p'+p')/2 . Butfrom

2
Case (i), fm(z) +( N+ ¢€) gn(z) must have at least n zeros in

|z - czl < R2 + (p' +p'")/2 . Thus we get a contradiction.
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