ON THE LOCATION OF ZEROS OF POLYNOMIALS

A. Joyal, G. Labelle and Q.I. Rahman

(received July 3, 1966)

- 1. <u>Introduction</u>. The different results proved in this paper do not have very much in common. Since they all deal with the location of the zeros of a polynomial, we have decided to put them in one place. Improving upon a classical result of Cauchy we obtain in §2 a circle containing all the zeros of a polynomial. In §3 we obtain an extension of the well known theorem of Eneström and Kakeya concerning the zeros of a polynomial whose coefficients are non-negative and monotonic. We devote §4 to the study of the trinomial equation $1 z + cz^n = 0$. Finally, in §5 we present an elementary proof of a theorem of M. Zedek [5] on the zeros of linear combinations of polynomials.
- 2. A classical result of Cauchy on the location of the zeros of the polynomial

(1)
$$p(z) = z^{n} + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \dots + a_{0}$$

states that all the zeros are in the circle

$$|z| \le 1 + A$$

where
$$A = \max_{0 \le j \le n} |a_j|$$
.

Here we give a smaller circle containing all the zeros of the polynomial.

THEOREM 1. If B = $\max_{0 \le j < n-1} |a_j|$ then all the zeros of the polynomial (1) are contained in the circle

Canad. Math. Bull. vol. 10, no. 1, 1967

(3)
$$|z| \le \frac{1}{2} \{1 + |a_{n-1}| + \sqrt{(1-|a_{n-1}|)^2 + 4B}\}$$

The expression in (3) takes a very simple form if $a_{n-1} = 0$. If $|a_{n-1}| = 1$ it reduces to $1 + \sqrt{B}$.

Proof of Theorem 1. If $|z| > \frac{1}{2} \{1 + |a_{n-1}| + \sqrt{(1-|a_{n-1}|)^2 + 4B} \}$ hen |z| > 1 and

$$(|z| - 1)(|z| - |a_{n-1}|) - B > 0$$
.

Multiplying by $|z|^{n-1}$ and dividing by (|z|-1) we get

$$|z|^{n} - |a_{n-1}| |z|^{n-1} - B|z|^{n-1} /(|z| - 1) > 0$$
.

But

$$B|z|^{n-1}/(|z|-1) > B(1+|z|+|z|^2+...+|z|^{n-2})$$

$$\geq |a_{n-2}|z^{n-2}+a_{n-3}|z^{n-3}+...+a_0|$$

and

$$|z|^{n} - |a_{n-1}| |z|^{n-1} \le |z^{n} + a_{n-1}|^{2^{n-1}}|$$
.

Hence we have

$$|p(z)| \ge |z^{n} + a_{n-1}|z^{n-1}| - |a_{n-2}|z^{n-2} + \dots + a_{n-1}| > 0$$

and the proposition is proved.

By applying Theorem 1 to the polynomial $z^n P(1/z)$ we can deduce the following

COROLLARY 1. If
$$\beta = \max_{2 \le j \le n} |a_j|$$
 then the polynomial

$$P(z) = 1 + a_1 z + a_2 z^2 + ... + a_n z^n$$

has no zeros in the circle

$$|z| \le 2 / \{1 + |a_1| + \sqrt{(1-|a_1|)^2 + 4\beta} \}$$
.

The next corollary is obtained by applying the above theorem to the polynomial $(z - a_{n-1}) p(z)$.

COROLLARY 2. The polynomial (1) has all its zeros in the circle

$$|z| \leq \frac{1}{2}(1 + \sqrt{1 + 4B'})$$

where

$$B' = \max_{0 \le k \le n-1} |a_{n-1} a_k - a_{k-1}|, \qquad (a_{-1} = 0).$$

The following corollary is also an immediate consequence of our Theorem.

COROLLARY 3. The polynomial (1) has all its zeros in the circle

$$|z| < 1 + \sqrt{B''}$$

where

B'' =
$$\max_{0 \le k \le n-1} |(1 - a_{n-1})a_k + a_{k-1}|$$
, $(a_{-1} = 0)$.

In order to prove Corollary 3 we may apply Theorem 1 to the polynomial $(z + 1 - a_{n-1}) p(z)$.

We also prove the following

THEOREM 2. Let

$$\mathcal{B} = \left(\begin{array}{cc} \sum_{j=0}^{n-2} |a_j|^p \right)^{1/p}, \qquad p > 1.$$

Then all the roots of the polynomial (1) are contained in the circle $|z| \le k$ where $k \ge \max(1, |a_{n-1}|)$ is a root of the equation

(4)
$$(|z| - |a_{n-1}|)^q (|z|^q - 1) - B^q = 0, \qquad \frac{1}{p} + \frac{1}{q} = 1.$$

Proof of Theorem 2. It is clear that

$$|p(z)| \ge |z^n| - |a_{n-1}| |z^{n-1}| - |a_{n-2}| z^{n-2} + \dots + a_1 z + a_0|$$

and

$$|a_{n-2}|^{2^{n-2}} + \dots + a_{1}^{2^{n-2}} + a_{0}| \le \left(\sum_{j=0}^{n-2} |a_{j}|^{p}\right)^{1/p} \left(\sum_{j=0}^{n-2} |z|^{jq}\right)^{1/q}$$

$$= \mathcal{B} \left(\frac{|z|^{q(n-1)} - 1}{|z|^{q} - 1}\right)^{1/q}$$

$$< \mathcal{B} \frac{|z|^{n-1}}{(|z|^{q} - 1)^{1/q}}.$$

Hence

$$|p(z)| \ge |z|^n - |a_{n-1}| |z|^{n-1} - \mathcal{B} \frac{|z|^{n-1}}{(|z|^{q}-1)^{1/q}} > 0$$

if

$$(|z| - |a_{n-1}|)^{q} (|z|^{q} - 1) > B^{q}$$
.

From this the desired result follows.

3. The theorem of Eneström and Kakeya [2] mentioned in the introduction states that if

(5)
$$a_n \ge a_{n-1} \ge a_{n-2} \ge \dots \ge a_2 \ge a_1 \ge a_0 \ge 0$$

then the polynomial

(6)
$$f(z) = a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \dots + a_2 z^2 + a_1 z + a_0$$

has all its zeros in the unit circle. If we do not assume the coefficients to be non-negative the conclusion does not hold. However, we prove

THEOREM 3. If
$$a_n \ge a_{n-1} \ge a_{n-2} \ge \dots \ge a_2 \ge a_4 \ge a_0$$

then the polynomial (6) has all its zeros in the circle

(8)
$$|z| \le (a_n - a_0 + |a_0|) / |a_n|$$
.

If $a_0 \ge 0$, this result reduces to the theorem of Enestrőm and Kakeya.

<u>Proof of Theorem 3.</u> Consider the polynomial (1 - z)f(z) which can be written as

$$-a_n z^{n+1} + \phi(z)$$

where

$$\phi(z) \equiv (a_n - a_{n-1}) z^n + (a_{n-1} - a_{n-2}) z^{n-1} + \dots + (a_1 - a_0) z + a_0.$$

If
$$|z| = 1$$
, then
$$|\phi(z)| \le |a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + \dots + |a_1 - a_0| + |a_0|$$

$$= (a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_1 - a_0) + |a_0|$$

$$= a_n - a_0 + |a_0|.$$

It is clear that also

(9)
$$|z^{\hat{n}} \phi(1/z)| \leq a_{\hat{n}} - a_{\hat{n}} + |a_{\hat{n}}|$$

on the unit circle. Since the function $z^n \phi(1/z)$ is analytic in $|z| \leq 1$ the inequality (9) holds also inside the unit circle, i.e.

$$|\phi(1/z)| \le (a_n - a_0 + |a_0|) / |z|^n$$

for $|z| \le 1$. Replacing z by 1/z we get

$$|\phi(z)| \le (a_n - a_0 + |a_0|)|z|^n$$

for $|z| \ge 1$. Hence if $|z| > (a_n - a_0 + |a_0|) / |a_n|$, then

$$|(1-z) f(z)| = |-a_n z^{n+1} + \phi(z)| \ge |a_n| |z|^{n+1}$$

- $(a_n - a_0 + |a_0|) |z|^n > 0$,

i.e. the function (1 - z) f(z) has all its zeros in (8). The same is therefore true for f(z) and the theorem is proved.

4. Let us consider the trinomial equation

(10)
$$1 - z + c z^{n} = 0 (c \neq 0).$$

For every $n \ge 2$ this equation is known [1,4] to have a root in both the regions $|z-1| \ge 1$, $|z-1| \le 1$. To start with we present a very simple proof of this fact.

It is easy to verify that the result is true for $\,n=2$. In fact, if we put $\,\xi=z-1\,$ the equation reduces to

$$c \xi^2 + (2c - 1)\xi + c = 0$$
.

The product of the moduli of the roots of this equation is 1. Hence both the roots cannot lie in $|\xi| < 1$. They cannot both lie in $|\xi| > 1$ either. From this the result follows.

So let $n \ge 3$ and suppose if possible that all the roots of the trinomial equation (10) lie in $|z-1| \le 1$. By the Gauss-Lucas theorem all the roots of the derived equation

(11)
$$\operatorname{cn} z^{n-1} - 1 = 0$$

also lie in $|z-1| \le 1$. It is however obvious that if $n \ge 3$ this equation cannot have all its roots in $|z-1| \le 1$. Thus we get a contradiction and the original equation must have a root in |z-1| > 1.

In order to prove that it also has a root in $|z-1| \le 1$ we may prove that the equation

$$-\xi + c(\xi + 1)^n = 0$$

has a root in $|\xi| \le 1$ or that the equation

$$-\xi^{n-1} + c(\xi + 1)^n = 0$$

has a root in $\left|\xi\right|\geq 1$. This is equivalent to the fact that the equation

(12)
$$-(z-1)^{n-1}+cz^{n}=0$$

has a root in $|z-1| \ge 1$. We prove this again by contradiction. If the equation (12) has all its roots in |z-1| < 1 then the roots of the successively derived equations will also lie in |z-1| < 1. In particular, the roots of the equation

$$1 - z + \frac{cn}{2}z^2 = 0$$

lie in |z-1| < 1. But we have proved above that this equation has a root in $|z-1| \ge 1$ whatever be the value of $\frac{cn}{2}$. Hence we get a contradiction which proves that the trinomial equation (10) has a root in |z-1| < 1.

We also prove

THEOREM 4. If $n \ge 3$ the trinomial equation (10) has a root outside every circle which passes through the origin.

<u>Proof of Theorem</u> 4. Suppose if possible that there exists a circle

$$|z - \alpha| = |\alpha|$$

passing through the origin which includes all the roots of the trinomial equation (10). Putting $z = \alpha \xi$ we conclude that the circular region

$$|\xi - 1| \leq 1$$

contains all the roots of the equation

$$1 - \alpha \xi + c \alpha^n \xi^n = 0$$

and so also of the derived equation

$$-\alpha + \operatorname{cn}^{n}_{\alpha} \xi^{n-1} = 0$$

by the Gauss-Lucas theorem. But all the roots of this last equation cannot lie in $|\xi-1|\leq 1$ if $n\geq 3$. This is a contradiction which proves the theorem.

Theorem 4 is a special case of the following more general principle which is an immediate consequence of the Gauss-Lucas theorem.

If P(z) is a polynomial of degree n such that $P^{(k)}(0) = 0$ for some k, where 0 < k < n, then every convex region excluding the origin also excludes a zero of P(z).

Thus a lacunary polynomial cannot have all its zeros in a convex region which excludes the origin.

5. <u>Linear combinations of two polynomials</u>. The following theorem is due to M. Zedek ([5], Theorem 4).

THEOREM 5. Let $f_m(z) \equiv z^m + a_{m-1} z^{m-1} + \ldots + a_0$ and $g_n(z) \equiv z^n + b_{m-1} z^{m-1} + \ldots + b_0$ be two polynomials whose zeros lie, respectively, in the discs $|z - c_1| \leq R_1$ and $|z - c_2| \leq R_2$ and suppose $m > n \geq 1$. For a fixed λ let $F(z, \lambda) \equiv f_m(z) + \lambda g_n(z)$. Then:

I. <u>If</u> ρ₁ is the unique positive root of the equation

(13)
$$C(x) = x^{m} - |\lambda|(x + |c_{2} - c_{1}| + R_{1} + R_{2})^{n} = 0,$$

then the m zeros of $F(z, \lambda)$ lie in $|z - c_1| \le R_1 + \rho_1$.

II. Setting $L = m^n(|c_2 - c_1| + R_1 + R_2)^m / n^n(m-n)^{m-n}$, the equation

(14)
$$D(x) = |\lambda| x^{n} - (x + |c_{2} - c_{1}| + R_{1} + R_{2})^{m} = 0$$

has two positive roots ρ_2 , ρ_3 ($\rho_2 \le \rho_3$), provided $|\lambda| \ge L$.

At least n zeros of $F(z, \lambda)$ lie in $|z - c_2| \le R_2 + \rho_2$.

Part I of this theorem has been proved independently and by a different method by Z. Rubinstein ([3], Theorem 2). We give a very simple proof of Theorem 5. It is perhaps the simplest one can think of.

Proof of Theorem 5. Let us denote by ξ_1 , ξ_2 , ..., ξ_m the zeros of $f_m(z)$ and by z_1 , z_2 , ..., z_n the zeros of $g_n(z)$.

If
$$|z - c_1| = R_1 + \rho$$
 then for $1 \le j \le n$

$$|z - z_j| = |z - c_1 + c_1 - c_2 - (z_j - c_2)|$$

$$\le |z - c_1| + |c_2 - c_1| + |z_j - c_2|$$

$$\le R_4 + \rho + |c_2 - c_4| + R_2.$$

Consequently

(15)
$$\left| \lambda g_{n}(z) \right| = \left| \lambda \right| \prod_{j=1}^{n} \left| z - z_{j} \right| \le \left| \lambda \right| \left(\rho + \left| c_{2} - c_{1} \right| + R_{1} + R_{2} \right)^{n}$$
.

Again for $|z - c_1| = R_1 + \rho$, we have

$$|f_{\mathbf{m}}(z)| = \prod_{j=1}^{m} |z - \xi_{j}|$$

$$\geq \prod_{j=1}^{m} (|z - c_{1}| - |\xi_{j} - c_{1}|)$$

$$\geq \prod_{j=1}^{m} (R_{1} + \rho - R_{1})$$

$$= \rho^{m}.$$

It is clear that equation (13) has only one positive root $\rho_{\mbox{\scriptsize 1}}$ Thus if $~\rho > \rho_{\mbox{\scriptsize 1}}$,

$$|\lambda| (\rho + |c_2 - c_1| + R_1 + R_2)^n < \rho^m$$
 i.e.
$$|\lambda| g_n(z)| < |f_m(z)|$$

if $|z-c_1|=R_1+\rho$ where $\rho>\rho_1$. The polynomial $f_m(z)+\lambda g_n(z)$ cannot therefore vanish for any z such that $|z-c_1|=R_1+\rho$ and $\rho>\rho_1$, i.e. it has all its zeros in $|z-c_1|\leq R_1+\rho_1$.

In order to prove the second part of Theorem 5 let

 $|\lambda| \ge L$ so that the equation D(x) = 0 has two positive roots ρ_2 , ρ_3 ($\rho_2 \le \rho_3$). There are two different possibilities.

$$\underline{\text{Case}}$$
 (i). $\rho_2 \neq \rho_3$. For $\rho_2 < \rho < \rho_3$

(17)
$$|\lambda| \rho^{n} > (\rho + |c_{2} - c_{1}| + R_{1} + R_{2})^{m}.$$

Hence if $|z - c_2| = R_2 + \rho$ where $\rho_2 < \rho < \rho_3$, then

(18)
$$|\lambda g_n(z)| \ge |\lambda| \rho^n > (\rho + |c_2 - c_1| + R_1 + R_2)^m \ge f_m(z)$$
.

By Rouché's theorem the functions $f_m(z) + \lambda g_n(z)$ and $g_n(z)$ have the same number of zeros in $|z - c_2| \le R_2 + \rho$, i.e. n. On account of (18), $f_m(z) + \lambda g_n(z) \neq 0$ in $\rho_2 < \rho < \rho_3$, hence it has precisely n zeros in $|z - c_2| \le R_2 + \rho_2$.

Case (ii). $\rho_2 = \rho_3 = \rho'$ (say). In this case $\lambda = L$. Now suppose if possible that only n'(< n) zeros of $f_m(z) + \lambda g_n(z)$ lie in $|z - c_2| \le R_2 + \rho'$. There exists $\rho'' > \rho'$ such that $f_m(z) + \lambda g_n(z)$ has no zero in the annulus $R_2 + \rho' < |z - c_2| < R_2 + \rho''$. Since the zeros of a polynomial vary continuously with the coefficients, we may increase λ by such a small amount ϵ that the smaller of the two distinct positive roots which

(14')
$$\left| \lambda + \epsilon \right| x^{n} - (x + \left| c_{2} - c_{4} \right| + R_{4} + R_{2})^{m} = 0$$

has is less than $(\rho' + \rho'')/2$ and that $f_m(z) + (\lambda + \epsilon) g_n(z)$ has exactly n' zeros in $|z - c_2| \le R_2 + (\rho' + \rho'')/2$. But from Case (i), $f_m(z) + (\lambda + \epsilon) g_n(z)$ must have at least n zeros in $|z - c_2| \le R_2 + (\rho' + \rho'')/2$. Thus we get a contradiction.

REFERENCES

1. L. Fejér, Über Kreisgebiete, in denen eine Wurzel einer algebraischen Gleichung liegt, Jahresbericht der deutschen Math. Vereinigling, 26 (1917), pages 114-128.

- 2. M. Marden, The geometry of the zeros of a polynomial in a complex variable. Math. Surveys No. 3, Amer. Math. Soc., Providence, R.I. (1949).
- 3. Z. Rubinstein, Some results in the location of the zeros of linear combinations of polynomials. Transactions of the American Mathematical Society, 116 (1965) pages 1-8.
- 4. G. Szegő, Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen. Math. Zeitschrift, 13 (1922), pages 28-55.
- 5. M. Zedek, Continuity and location of zeros of linear combinations of polynomials. Proc. Amer. Math. Soc., 16 (1965), pages 78-84.

Université de Montréal