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Generic Extensions and Canonical Bases
for Cyclic Quivers

Dedicated to Claus Michael Ringel on the occasion of his 60th birthday

Bangming Deng, Jie Du, and Jie Xiao

Abstract. We use the monomial basis theory developed by Deng and Du to present an elementary al-

gebraic construction of the canonical bases for both the Ringel–Hall algebra of a cyclic quiver and the

positive part U+ of the quantum affine sln. This construction relies on analysis of quiver representa-

tions and the introduction of a new integral PBW-like basis for the Lusztig Z[v, v−1]-form of U+.

1 Introduction

A landmark in Lie theory was G. Lusztig’s introduction [18] of the canonical basis

of the quantum enveloping algebra of a simple complex Lie algebra. He showed that

this basis has some remarkable properties, such as the positivity property for struc-

ture constants (see [15] for Hecke algebras), the compatibility with various natural

filtrations, and the fact that this basis is well adapted to all finite dimensional irre-

ducible representations. In this case Lusztig actually gave two constructions of the

canonical bases, namely, the elementary algebraic construction, involving analysis of

quiver representations, and the geometric construction, based on perverse sheaves

on representation varieties of a quiver. Nevertheless, the key steps in the proof of

the existence of the canonical bases are the use of the Ringel–Hall algebra associated

with the representation category of a quiver [25,27]. The geometric construction was

soon extended [19, 20] to an arbitrary Kac–Moody algebra (see [23]). Though there

are other elementary constructions including Kashiwara’s crystal basis approach [14]

for arbitrary Kac–Moody algebras and, in the affine case, the constructions given

in [1, 2], the algebraic construction for the general case involving analysis of quiver

representations remains unclear.

In this paper, we will present such a construction for cyclic quivers. The main in-

gredient in this construction is the strong monomial basis property established in [4].

This property is a systematic construction of many monomial bases for the subalge-

bra, the composition algebra, generated by simple modules of the generic (twisted)

Ringel–Hall algebra of a cyclic quiver. It is proved [26] that the composition algebra

is isomorphic to the positive part U+ of the quantum enveloping algebra U of the

affine Lie algebra ŝln. This realization together with the strong monomial basis prop-

erty allows us to introduce integral monomial/PBW-like bases for the Lusztig Z-form
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U +
Z

(Z = Z[v, v−1]) of U+ and to see the triangular relations of the bar involution

on these basis elements. In this way, a new basis is constructed through a standard

linear algebra method. We then prove that this basis agrees with Lusztig’s canonical

basis; see [16, 30]. We further extend the approach to produce a similar construction

for the canonical basis of the whole Ringel–Hall algebra. Note that the PBW bases

constructed in this paper do not involve braid group actions. It would be interesting

to find a relation between our PBW bases and those constructed in [2]. Note also

that the construction for the cyclic quiver case is a key step towards the completion

of a similar construction suitable for all affine Kac–Moody algebras with symmetric

generalized Cartan matrices; see [17].

The paper is organized as follows. We start with nilpotent representations of a

cyclic quiver ∆ and their associated Ringel–Hall algebra H in §2. We investigate in

§3 the generic extension monoid M of ∆ through a minimal set Ie of generators con-

sisting of simple and sincere semisimple representations. Thus we obtain a monoid

epimorphism ℘ from the free monoid over Ie to M. With ℘ , we construct in §4 a

distinguished word in every fibre of ℘ , and discuss the strong monomial basis prop-

erty for Ringel–Hall algebras in §5. From §6 onwards, we use the twisted Ringel–Hall

algebra HZ and its composition algebra CZ as a realization of U +
Z

(§6) to introduce a

new integral PBW basis from which we construct a so-called IC basis for U +
Z

(§7). In

§8, we show that this elementarily constructed IC basis coincides with the (geomet-

rically constructed) canonical basis for U +
Z

, and in the last section, we further extend

the construction to the whole Ringel–Hall algebra HZ.

1.1 Some Notation

For a finite dimensional quiver representation (or a finite dimensional module over

an algebra) M, let soc1 M = soc M (resp. rad1 M = rad M) denote the socle (resp.

radical) of M. Let soc0 M = 0, rad0 M = M and, for i > 1, let soci M be the inverse

image of soc(M/ soci−1 M) in M under the natural projection M → M/ soci−1 M

and radi M = rad(radi−1 M). We also set top M = M/ rad M.

Let Ll(M) denote the Loewy length of M, that is,

Ll(M) = min{s | rads M = 0} = min{t | soct M = M}.

Then M admits two natural filtrations: the radical filtration

M ⊇ rad M ⊇ · · · ⊇ radl−1 M ⊇ radl M = 0

and the socle filtration

M = socl M ⊇ socl−1 M ⊇ · · · ⊇ soc1 M ⊇ 0,

where l = Ll(M). We have obviously the following lemma.

Lemma 1.1 For each 0 ≤ s ≤ l, socs M is the unique maximal submodule of M of

Loewy length s, while M/ rads M is the unique maximal quotient module of M of Loewy
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length l − s. In other words, any filtration M = M0 ⊇ M1 ⊇ · · · ⊇ Ml−1 ⊇ Ml = 0

satisfying the property that Ms (resp. M/Ms) is a maximal submodule (resp. quotient

module) of Loewy length s (resp. l − s) coincides with the socle (resp. radical) filtration

of M.

2 Nilpotent Representations and Ringel–Hall Algebras

Let ∆ = ∆(n) be the cyclic quiver

b b b b b

b
n

1 2 3 n − 2 n − 1

with vertex set I := Z/nZ = {1, 2, . . . , n} and arrow set {i → i + 1 | 1 ≤ i ≤ n}, and

let k∆ be the path algebra of ∆ over a field k. For a representation M = (Vi , fi)i of

∆, let dim M =
∑n

i=1 dim Vi and dim M = (dim V1, . . . , dim Vn) ∈ Nn denote the

dimension and dimension vector of M, respectively, and let [M] denote the isoclass

(isomorphism class) of M. Further, for each a ≥ 1, we write

aM := M ⊕ · · · ⊕ M︸ ︷︷ ︸
a

.

If a = 0, we let aM = 0 by convention.

A representation M = (Vi , fi)i of ∆ over k (or a k∆-module) is called nilpo-

tent if the composition fn · · · f2 f1 : V1 → V1 is nilpotent, or equivalently, one of the

fi−1 · · · fn f1 · · · fi : Vi → Vi (2 ≤ i ≤ n) is nilpotent. Let Tk = Tk(n) denote the cat-

egory of finite-dimensional nilpotent representations of ∆ over k, and let Si = (Si)k,

i ∈ I (resp. Si[l]k, i ∈ I and l ≥ 1) be the irreducible (resp. indecomposable) objects

in Tk. Here Si[l]k is the (unique) indecomposable object with top (Si)k and length,

i.e., dimension, l.

Following [16], a (cyclic) multisegment is a formal finite sum

π =

∑

i∈I, l≥1

πi,l[i; l),

where πi,l ∈ N. Let Π denote the set of all multisegments. Then each multisegment

π =
∑

i,l πi,l[i; l) ∈ Π defines a representation in Tk

Mk(π) =

⊕

i∈I, l≥1

πi,lSi[l]k.

In this way we obtain a bijection between Π and the set of isoclasses of representations

in Tk. Note that this bijection is independent of the field k. Thus, throughout, the

subscripts k are often dropped for notational simplicity. We shall also write End(M),

Hom(M,N), etc. for Endk∆(M), Homk∆(M,N), etc.
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Remark 2.1 In [4, 28], nilpotent representations of ∆ are parametrized by n-tuples

of partitions. In fact, if we identify a multisegment π =
∑

i,l πi,l[i; l) ∈ Π as the

n-tuple (π(1), π(2), . . . , π(n)) of partitions, where, for each 1 ≤ i ≤ n, π(i) is the

partition dual to the partition (mπi,m , . . . , 2πi,2 , 1πi,1 ), where m is the maximal l for

which πi,l 6= 0 (i.e., m = Ll(M(π))), then the two parametrizations coincide.

A multisegment π =
∑

i,l πi,l[i; l) in Π is called aperiodic1 (see [19, p. 417]) if, for

each l ≥ 1, there is some i ∈ I such that πi,l = 0. Otherwise, π is called periodic. By

Π
a we denote the set of aperiodic multisegments. A representation M in T is called

aperiodic (resp. periodic) if M ∼= M(π) for some π ∈ Π
a (resp. π ∈ Π\Πa).

For d ∈ Nn, let

Πd = {λ ∈ Π | dim M(λ) = d} and Π
a
d = Π

a ∩ Πd.

Associated to a cyclic quiver, or more precisely, to T, Ringel introduced an associa-

tive algebra, the Ringel–Hall algebra, which can be defined at two levels: the integral

level and the generic level.

Let k be a finite field of qk elements and, for L,M,N in Tk, let FL
MN be the number

of submodules V of L such that V ∼= N and L/V ∼= M. More generally, given

modules M,N1, . . . ,Nm in Tk, we let FM
N1···Nm

be the number of the filtrations

M = M0 ⊇ M1 ⊇ · · · ⊇ Mm−1 ⊇ Mm = 0,

such that Mt−1/Mt
∼= Nt for all 1 ≤ t ≤ m. By [13,26], FM

N1···Nm
is a polynomial in qk.

In other words, for π, µ1, . . . , µm in Π, there is a polynomial ϕπµ1···µm
(q) ∈ A := Z[q]

such that for any finite field k of qk elements

ϕπµ1···µm
(qk) = FMk(π)

Mk(µ1)···Mk(µm).

The (generic) Ringel–Hall algebra H = HA(n) of ∆(n) is by definition the free

A-module with basis {uπ | π ∈ Π} and multiplication given by

uµ ◦ uν =

∑

π∈Π

ϕπµν(q)uπ.

By specializing q to the prime power qk, we obtain the integral Ringel–Hall algebra

associated with Tk.

In practice, we sometimes write uπ = u[M(π)] in order to make certain calculations

in terms of modules. Denote by C = CA(n) the subalgebra of H generated by ui :=

u[Si ], i ∈ I. This is called the (generic) composition algebra of ∆(n). It is easy to

see that C is a proper subalgebra of H. Moreover, both H and C admit a natural

Nn-grading by dimension vectors:

(2.1) H =

⊕

d∈Nn

Hd and C =

⊕

d∈Nn

Cd,

where Hd is spanned by all uλ with λ ∈ Πd and Cd = C ∩ Hd.

1In [26, 4.1], the corresponding n-tuple of partitions is called separated.
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3 The Generic Extension Monoid of a Cyclic Quiver

Let M (resp. Mc) be the set of all isoclasses of representations (resp. aperiodic repre-

sentations) in T. Given two objects M,N in T, there exists a unique (up to isomor-

phism) extension G of M by N with minimal dim End(G) [3, 4, 24]. The extension

G is called the generic extension2 of M by N and is denoted by G =: M ∗ N . Thus, if

we define [M] ∗ [N] = [M ∗ N], then it is known from [4] that ∗ is associative and

(M, ∗) is a monoid with identity [0].

Every semisimple module in T has the form Sa =
⊕n

i=1 aiSi for some a = (ai) ∈
Nn. We shall see below that every module in T is a sequence of generic extensions by

semisimple modules.

For each multisegment π =
∑

i,l πi,l[i; l) and each i ∈ I, we define

i ∗ π = π − [i + 1; l0) + [i; l0 + 1),

where l0 is maximal such that πi+1,l0 6= 0. Then by [4, Proposition 3.7], we have

Si ∗ M(π) ∼= M(i ∗ π).

Further, for each i ∈ I, we set π(i)
=

∑
l≥1 πi,l[i; l). Then π = π(1) + π(2) + · · ·+ π(n).

Finally, for every a = (ai) ∈ Nn, we define

a ∗ π =

∑

i∈I

i ∗ i ∗ · · · ∗ i︸ ︷︷ ︸
ai

∗π(i+1).

Lemma 3.1 Let a ∈ Nn and π ∈ Π. Then we have M(a ∗ π) ∼= Sa ∗ M(π). Dually, a

similar result holds for the generic extension of a module by a semisimple one.

Proof For each 1 ≤ i ≤ n, we set

Mi(π) = M(π(i)) =
⊕
l≥1

πi,lSi[l].

Then M(π) =
⊕n

i=1 Mi(π). Since Ext1(Si ,M j(π)) = 0 for all j 6= i + 1, we have

Sa ∗ M(π) =
⊕
i∈I

(aiSi) ∗ Mi+1(π).

Applying [4, Proposition 3.7] repeatedly gives

(aiSi) ∗ Mi+1(π) ∼= Si ∗ · · · ∗ Si︸ ︷︷ ︸
ai

∗M(π(i+1)) ∼= M(i ∗ · · · ∗ i︸ ︷︷ ︸
ai

∗π(i+1)).

Hence, M(a ∗ π) ∼= Sa ∗ M(π).

2Geometrically, when k is algebraically closed, each isoclass [M] of dimension vector d = dM = (di) ∈
Nn corresponds to a unique GL(d)-orbit OM in the representation variety R(d) =

Qn
i=1 Homk(kdi , kdi+1 )

on which GL(d) =
Qn

i=1 GLdi
(k) acts by conjugation. Thus, M ∗ N of dimension vector d = dM + dN

corresponds to the unique dense orbit O (of maximal dimension) in the extension variety E(M,N) =

{x ∈ R(d) | x defines an extension of M by N}.
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By Lemma 3.1, we obtain the following, cf. [22].

Corollary 3.2 Let M ∈ T with l = Ll(M). Then we have

M ∼= (M/ rad M) ∗ (rad M/ rad2 M) ∗ · · · ∗ (radl−2 M/ radl−1 M) ∗ (radl−1 M)

and

M ∼= (M/ socl−1 M) ∗ (socl−1 M/ socl−2 M) ∗ · · · ∗ (soc2 M/ soc M) ∗ (soc M).

In particular, we have for each 0 < s ≤ l,

(M/ rads M) ∗ (rads M) ∼= M ∼= (M/ socs M) ∗ (socs M).

A semi-simple module Sa =
⊕n

i=1 aiSi is called sincere if all ai ≥ 1. Clearly,

sincere semi-simple modules are in one-to-one correspondence with sincere vectors

a = (ai) ∈ Nn. Let Ie
= I ∪ {all sincere vectors in Nn}.

We have already proved the following result, cf. [22].

Proposition 3.3 The generic extension monoid M is generated by [Sa], a ∈ Ie, and

this generating set is minimal.

In [22], the structure of the monoids M and Mc in terms of generators and rela-

tions is investigated.

Let Σ (resp. Ω) denote the set of all words on the alphabet Ie (resp. I). For each

w = a1a2 · · · am ∈ Σ, we set M(w) = Sa1
∗ Sa2

∗ · · · ∗ Sam
. Then there is a unique

π ∈ Π such that M(w) ∼= M(π), and we set ℘ (w) = π. In this way we obtain a

surjective map ℘ : Σ → Π, w 7→ π = ℘ (w). Note that the map ℘ is independent of

the field k and that ℘ induces a surjection ℘ : Ω ։ Π
a (see [4, Theorem 4.1]).

Besides the monoid structure, M has also a poset structure. For two represen-

tations M,N ∈ T, we say that M degenerates to N (or N is a degeneration of M),

following [3], and write M ≤deg N , if dim Hom(X,M) ≤ dim Hom(X,N) for all X

in T (see also [31]).

Since the order relation is independent of the field k, we may turn Π into a poset

with the opposite partial order ≤ := (≤deg)op defined by setting3

µ ≤ λ⇐⇒ M(λ) ≤deg M(µ).

4 Distinguished Words and Distinguished Decompositions

We recall from [26, 2.3] and [4, Section 5] the definitions of a reduced filtration and

distinguished words in Ω. We now generalize them to the words in Σ.

For a ∈ Ie, we set ua = u[Sa]. Let w = a1a2 · · · am be a word in Σ and let ϕλw(q) be

the Hall polynomial ϕλµ1···µm
(q) with M(µr) ∼= Sar

. Then w can be uniquely expressed

3Geometrically, this ordering coincides with the Bruhat type ordering: µ ≤ λ if and only if OM(µ) ⊆

OM(λ), the closure of OM(λ); see [4, §3].
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in the tight form w = be1

1 be2

2 · · · bet
t , where er = 1 if br ∈ Ie\I, and er is the number of

consecutive occurrences of br if br ∈ I. A filtration

M = M0 ⊃ M1 ⊃ · · · ⊃ Mt−1 ⊃ Mt = 0

of a nilpotent representation M is called a reduced filtration of type w if Mr−1/Mr
∼=

erSbr
for all 1 ≤ r ≤ t . By γλw(q) we denote the Hall polynomial ϕλµ1···µt

(q), where

M(µr) = erSbr
. Thus, for any finite field k of qk elements, γλw(qk) is the number of

the reduced filtrations of Mk(λ) of type w. A word w is called distinguished if the

Hall polynomial γ℘ (w)
w (q) = 1. Note that w is distinguished if and only if, for an

algebraically closed field k, Mk(℘ (w)) has a unique reduced filtration of type w.

For each multisegment π =
∑

i,l πi,l[i; l), we define

p(π) = max{l | πi,l 6= 0 for all 1 ≤ i ≤ n}.

If no such an l exists, we set p(π) = 0. This is exactly the case where π is aperiodic.

In particular, a multisegment π is called strongly periodic if πi,l = 0 for all i ∈ I and

l > p(π). Clearly, we have

(4.1) p(a ∗ π) = p(π) + 1 whenever a ∈ N
n is sincere.

Let π ∈ Π with p = p(π) and consider the submodule M ′
= socp M(π) of M(π).

Then

M ′ ′ := M(π)/M ′
=

⊕
i∈I

⊕
l>p

πi,lSi[l − p].

Let π ′, π ′′ ∈ Π be such that M(π ′) ∼= M ′ and M(π ′ ′) ∼= M ′′. Then, obviously, π ′

is strongly periodic, π ′′ is aperiodic, and both π ′ and π ′′ are uniquely determined

by π. We call (π ′, π ′′) the associated pair of π. We have the following.

Lemma 4.1 Maintain the notation introduced above. We have M(π) ∼= M(π ′′) ∗
M(π ′). Moreover, M ′ is the unique submodule of M(π) isomorphic to M(π ′).

Proof The isomorphism follows from Corollary 3.2, while the uniqueness follows

from Lemma 1.1, since M ′
= socp M(π).

We have the following characterization of a strongly periodic multisegment.

Lemma 4.2 Let π ∈ Π and M = M(π). Then π is strongly periodic with p = p(π)

if and only if p = Ll(M) and every subquotient Sas
∼= socp−s+1 M/ socp−s M, 1 ≤

s ≤ p, in the socle filtration of M is sincere. Moreover, putting yπ = a1 · · · ap, we have

℘ (yπ) = π, and any filtration

M = M0 ⊇ M1 ⊇ · · · ⊇ Mp−1 ⊇ Mp = 0

satisfying Ms−1/Ms
∼= Sas

for all 1 ≤ s ≤ p is the socle filtration of M.
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Proof The sufficient part follows from (4.1). To see the necessary part, we apply

induction on p; the case for p = 1 is trivial. Assume now p > 1 and let π =∑
i,l πi,l[i; l). Then a1 = (π1,p, . . . , πn,p) is sincere. Putting

π1 = π −
∑

i

πi,p[i; p) +
∑

i

πi,p[i + 1; p − 1),

we have π = a1 ∗ π1, and π1 is strongly periodic with p(π1) = p − 1. Hence

Sa1
∗ M(π1) ∼= M(π) by Lemma 3.1. Clearly, M(π1) is isomorphic to a maximal

submodule M1 of M(π) with Loewy length p − 1. Hence, M1 = socp−1 M(π) by

Lemma 1.1, and the assertion follows from induction.

For an aperiodic π ∈ Π
a, we have the following which was not explicitly stated

in [4].

Proposition 4.3 For any π ∈ Π
a, there exists a distinguished word

wπ = je1

1 · · · jet
t ∈ Ω ∩ ℘−1(π),

where jr−1 6= jr , er ≥ 1 for all r, that is, M(π) has a unique filtration

M(π) = M0 ⊇ M1 ⊇ · · · ⊇ Mt−1 ⊇ Mt = 0

satisfying Mr−1/Mr
∼= erS jr

for all 1 ≤ r ≤ t.

Proof Let π =
∑

i,l πi,l[i; l) be an aperiodic multisegment. For each i ∈ I, we set

Mi =
⊕

l≥1 Si[l]. Then there is a j ∈ I (not necessarily unique) such that Ll(M j) >
Ll(M j+1). We write

M j = S j[l1] ⊕ S j[l2] ⊕ · · · ⊕ S j[lr]

with l1 ≥ l2 ≥ · · · ≥ lr ≥ 1. Choose e ≥ 1 such that le > le+1 and le > Ll(M j+1), and

define

µ = π −
(

[ j; l1) + · · · + [ j; le)
)

+
(

[ j + 1; l1 − 1) + · · · + [ j + 1; le − 1)
)
.

By [4, Lemma 5.4], there is a unique submodule X of M(π) such that X ∼= M(µ) and

M(π)/X ∼= eS j . We may assume that µ is aperiodic. For example, taking the maximal

index e with the property le > le+1 and le > Ll(M j+1) ensures that µ is aperiodic. By

induction, there is a distinguished word w1 ∈ Ω ∩ ℘−1(µ). Then w := jew1 is a

distinguished word in Ω ∩ ℘−1(π), as desired.

Note that by [4, Theorem 5.5], every distinguished word in ℘−1(π) can be ob-

tained in the above way.
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Example 4.4 Let n = 3 and π = [1; 4) + [1; 3) + [2; 2) + [2; 1) + 2 [3; 1). Then π
is aperiodic. From the proof of Proposition 4.3, we can take j1 = 1 or 2. Moreover,

if j1 = 1, then e1 = 1 or 2, and if j1 = 2, then e1 = 1. If we fix j1 = 1 and e1=2,

then j2 = 2 and e2 = 1 or 3. Continuing this process, we finally get all the seven

distinguished words in ℘−1(π):

1213323132, 1221342213, 1223323132, 12233521,

2121342213, 2122342213, 212223521.

In general, for any π ∈ Π with p = p(π), let (π ′, π ′′) be the associated pair,

where π ′ is strongly periodic with p(π ′) = p and π ′′ is aperiodic. By Lemma 4.2

and Proposition 4.3, there are distinguished words

(4.2) wπ ′ ′ = je1

1 · · · jet
t ∈ Ω∩℘−1(π ′ ′) and yπ ′ = a1a2 · · · ap ∈ Σ∩℘−1(π ′)

associated to π ′ and π ′′. Thus, we obtain a word

(4.3) wπ = wπ ′ ′ yπ ′ = je1

1 · · · jet
t a1 · · · ap ∈ ℘−1(π),

and a decomposition M(π) = e1S j1
∗ · · · ∗ et S jt

∗ Sa1
∗ · · · ∗ Sap

. We shall call such a

decomposition a distinguished decomposition because of the following.

Proposition 4.5 For any π ∈ Π, the word wπ defined in (4.3) is distinguished.

Proof The existence of a reduced filtration of type wπ obtained by refining M(π) ⊇
M ′

= socp M(π) ⊇ 0, follows from Lemmas 4.1 and 4.2, and Proposition 4.3. Sup-

pose now that M(π) has another filtration

M(π) = N0 ⊇ N1 ⊇ · · · ⊇ Nt−1 ⊇ Nt ⊇ · · · ⊇ Nt+p−1 ⊇ Nt+p = 0,

satisfying Ns−1/Ns
∼= esS js

for 1 ≤ s ≤ t and Nt+i−1/Nt+i
∼= Sai

for 1 ≤ i ≤ p. Then

we have Ll(Nt ) ≤ p. Since M ′ is the maximal submodule of M(π) of Loewy length

p, we infer Nt ⊆ M ′, and consequently, Nt = M ′ as dim Nt = dim M ′. Now the

uniqueness of the filtrations given in Lemma 4.2 and Proposition 4.3 forces that the

filtration above must be unique. Hence, wπ is distinguished.

5 The Strong Monomial Basis Property

For m ≥ 1, let [[m]]!
= [[1]][[2]] · · · [[m]], where [[e]] =

qe−1
q−1

.

For any w = a1a2 · · · am ∈ Σ, let uw = ua1
◦ ua2

◦ · · · ◦ uam
. The proof of the

following is entirely similar to that of [4, Proposition 9.1].

Lemma 5.1 For each w ∈ Σ with the tight form b1
e1 b2

e2 · · · bt
et , we have

(5.1) uw =

t∏

r=1

[[er]]
!

∑

λ≤℘ (w)

γλw(q)uλ.

In other words, we have the relation ϕλw(q) =
∏t

r=1 [[er]]
!γλw(q). Moreover, the coeffi-

cients appearing in the sum are all non-zero.
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For any π ∈ Π, choose an arbitrary wπ ∈ ℘−1(π). We shall call the set

{wπ | π ∈ Π} a section of Σ over Π. Similarly, we may define a section of Ω over

Π
a. A section is called distinguished if all its members are distinguished words. By the

invertibility of the matrix arising from (5.1) over the components Hd, Lemma 5.1

implies immediately the following strong monomial basis property for the Ringel–

Hall algebra associated with a cyclic quiver; see [4, 8.1] and [5, 1.1] for the quantum

group case.

Theorem 5.2 Let HQ(q) = H ⊗A Q(q) and, for w ∈ Σ, let

u(w)
=

1
∏t

r=1 [[er]]
!
uw.

(i) If {wπ | π ∈ Π} is a section of Σ over Π. Then the set {uwπ
| π ∈ Π} forms a

basis for HQ(q). In particular, the Ringel–Hall algebra HQ(q) is generated by ua,

a ∈ Ie.

(ii) If the section {wπ | π ∈ Π} is distinguished, then {u(wπ) | π ∈ Π} forms an

integral basis for H.

6 Twisted Ringel–Hall Algebras and Quantum Affine sln

Let Z = Z[v, v−1] be the Laurent polynomial ring over Z in indeterminate v. For

each m ≥ 1, let

[m] =
vm − v−m

v − v−1
and [m]!

= [1][2] · · · [m].

The twisted Ringel–Hall algebra HZ = HZ(n) of ∆(n) is by definition the free

Z-module with basis {uπ = u[M(π)] | π ∈ Π} and multiplication defined by

uµuν = vε(µ,ν)(uµ ◦ uν) = vε(µ,ν)
∑

π∈Π

ϕπµν(v2)uπ.

Here ε(µ, ν) = ε(dim M(µ), dim M(ν)) is the Euler form ε(−,−) : Zn × Zn → Z

associated with the cyclic quiver ∆ and defined by

ε(a, b) =

n∑

i=1

aibi −

n∑

i=1

aibi+1,

for a = (a1, . . . , an), b = (b1, . . . , bn) (noting n + 1 = 1 in I). It is well known that

for two representations M,N ∈ T, there holds

ε(dim M, dim N) = dimk Hom(M,N) − dimk Ext1(M,N).

The Z-subalgebra CZ of HZ generated by u(m)
i :=

um
i

[m]! , i ∈ I and m ≥ 1, is called

the twisted composition algebra. Then CZ is also generated by u[mSi ], i ∈ I, m ≥ 1,
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since u(m)
i = vm(m−1)u[mSi ]. Clearly, both HZ and CZ inherit the grading given in

(2.1).

Let H = HZ ⊗Z Q(v) and C = CZ ⊗Z Q(v). Let U = Uv(ŝln) be the quantum

ŝln (n ≥ 2) over Q(v), and let Ei, Fi ,K
±1
i (i ∈ I) be its generators; see [21]. Then

U admits a triangular decomposition U = U−U0U+ where U+ (resp. U−, U0) is the

subalgebra generated by the Ei ’s (resp. Fi ’s, K±1
i ’s). We denote by U +

Z
the Lusztig

form of U+, that is, U +
Z

is generated by all the divided powers E(m)
i := Em

i /[m]!. We

have the following important results.

Theorem 6.1

(i) There is a Z-algebra isomorphism

CZ

∼
−→ U +

Z, u(m)
i 7−→ E(m)

i , i ∈ I,m ≥ 1,

and hence a Q(v)-algebra isomorphism U+ ∼= C [26].

(ii) The algebra H is isomorphic to U+⊗Q(v) Q(v)[x1, x2, . . .], where Q(v)[x1, x2, . . .]
is an infinite polynomial algebra over Q(v) with xr central of degree (r, . . . , r) [29].

In the sequel, we will identify the two algebras U +
Z

and CZ. In particular, we shall

identify u(m)
i with E(m)

i , etc. Note that the Ringel–Hall algebra notation uλ will be

used to facilitate calculations involving modules.

The elementary construction of the canonical bases for UZ and HZ uses (integral)

monomials which we now define. For each w = i1 · · · im = je1

1 · · · jet
t ∈ Ω with

jr−1 6= jr for all r, let4

(6.1) mw = ui1
· · · uim

= Ei1
· · · Eim

and m
(w)

= u(e1)
j1

· · · u(et )
jt

= E(e1)
j1

· · ·E(et )
jt
.

Then we have by Lemma 5.1

(6.2) mw = vδ1(w)uw = vδ1(w)
∑

λ≤℘ (w)

ϕλw(v2)uλ,

where δ1(w) =
∑

1≤r<s≤m ε(dim Sir
, dim Sis

). If we put

(6.3) δ2(w) =

t∑

r=1

er(er − 1)

2
and δ(w) = δ1(w) + δ2(w),

then
∏t

r=1[er]
!
= v−δ2(w)

∏t
r=1 [[er]]

!, and

m
(w)

=

( t∏

r=1

[er]
!
)−1

mw =

( t∏

r=1

[[er]]
!
)−1

vδ1(w)+δ2(w)uw

= vδ(w)
∑

λ≤℘ (w)

γλw(v2)uλ.

(6.4)

4The element mw is denoted as Ew in [5].
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We now define (integral) monomials in HZ. For each a = (ai) ∈ Nn, we set

‖a‖ =
∑

i a2
i and |a| =

∑
i ai , and define

ũa = vdim End (Sa)−dim Sa ua = v‖a‖−|a|ua ∈ HZ.

In particular, for i ∈ I and e ≥ 1, we have

ũei = ve2−euei = u(e)
i ,

where uei = u[eSi ]. Note that if a = (ai) ∈ Nn is insincere, say ai = 0, then

ũa = ũai−1(i−1) · · · ũa11 ũann · · · ũai+1(i+1)

is a monomial in U +
Z

defined above.

In general, for a given word w = a1a2 · · · am ∈ Σ with tight form b1
e1 b2

e2 · · ·bt
et ,

we define monomials in HZ (cf. (6.1))

mw = ua1
· · · uam

and m
(w)

= ũe1b1
· · · ũet bt

.

Again by Lemma 5.1, we obtain

mw = v
P

1≤r<s≤m ε(dim Sar ,dim Sas )
∑

λ≤℘ (w)

ϕλw(v2)uλ

and

(6.5) m
(w)

= vδ
′(w)

∑

λ≤℘ (w)

γλw(v2)uλ,

where

δ ′(w) =

m∑

r=1

(
e2

r‖br‖ − er|br| −
er(er − 1)

2

)
+

∑

1≤r<s≤m

ε(dim Sar
, dim Sas

).

Note that if w ∈ Ω, then all ‖br‖ = |br| = 1, and so δ ′(w) = δ(w). Since δ ′ extends

δ, we will use the same letter δ for δ ′ in the sequel.

Here are the twisted version and the (non-integral) quantum group version of the

strong monomial basis property (Theorem 5.2). The integral quantum group version

of this property was not given in [4] and will be discussed in the next section as a key

step to the elementary construction.

Theorem 6.2

(i) For each π ∈ Π, choose a word wπ ∈ ℘−1(π). Then the set {mwπ
|π ∈ Π}

is a Q(v)-basis of H. Moreover, if all wπ are chosen to be distinguished, then the set

{m(wπ)|π ∈ Π} is a Z-basis of HZ.
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(ii) Let {wπ | π ∈ Π
a} be a section of Ω over Π

a. Then the set {mwπ
| π ∈ Π

a} is a

Q(v)-basis of U+ [4, 8.1].

By [30, Proposition 7.5]), there is a Z-linear ring involution ι : HZ → HZ satisfy-

ing ι(v) = v−1 and ι(m
(wπ)) = m

(wπ).

Remark 6.3 The construction of the ring involution ι is not algebraic and elemen-

tary, though its restriction to U +
Z

can be seen easily through the Drinfeld–Jimbo pre-

sentation. However, if we note that the ring homomorphism condition is not re-

quired in the (linear algebra) construction of IC bases, then we may use the basis

{m(w) | w ∈ D} for HZ described in Theorem 6.2(i) to define a semi-linear invo-

lution ι(D) on HZ, and then to construct an IC basis with respect to ι(D) (see [9]).

By Theorem 9.2, we shall see that the resulting IC bases constructed from the semi-

linear maps ι(D) are the same. This in turn shows that the definition of ι = ι(D) is

independent of the selection of distinguished sections (cf. Corollary 8.3). Hence, this

definition for ι is also somehow natural.

7 Integral PBW and Canonical Bases for Quantum Affine sln

In this section, we give two applications of Theorem 6.2(ii). First, it can be used

to prove that the Z-form U +
Z

is Z-free with many monomial bases determined by

distinguished words. Second, from every such a monomial basis, we may construct

an integral PBW basis for U +
Z

from which the canonical basis can be constructed by

a standard linear algebra argument.

Lemma 7.1 Let P be the subspace of H spanned by all uλ with λ ∈ Π\Πa. Then as a

vector space H = U+ ⊕ P.

Proof If suffices to prove that for each d ∈ Nn, Hd = U+
d ⊕ Pd, where Pd is the

Q(v)-subspace of Hd spanned by all uλ with λ ∈ Πd\Π
a
d.

First, we show U+
d ∩ Pd = 0. Take an x ∈ U+

d ∩ Pd and suppose x 6= 0. Since

x ∈ U+
d , we use the basis {mwπ

| π ∈ Π
a
d} for U+

d constructed in Theorem 6.2 to write

x =

∑

π∈Πa
d

aπmwπ

for some aπ ∈ Q(v). Now let µ ∈ Π
a
d be maximal such that aµ 6= 0. Using

(6.2), we can rewrite x =
∑

λ∈Πd
bλuλ. By the maximality of µ, we have bµ =

aµvδ1(wµ)ϕµwµ
(v2) 6= 0. This contradicts the fact that x ∈ Pd. Hence, U+

d ∩ Pd = 0.

Now a dimension comparison forces Hd = U+
d ⊕ Pd.

For each π ∈ Π
a, we now fix a distinguished word wπ ∈ Ω ∩ ℘−1(π) (see Propo-

sition 4.3). Since γπwπ
(v2) = 1, we may rewrite (6.4) as

(7.1) m
(wπ)

= vδ(wπ)uπ + vδ(wπ)
∑

λ<π

γλwπ
(v2)uλ.
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Definition 7.2 For each given distinguished section D = {wπ | π ∈ Π
a}, we

define inductively the elements Eπ = Eπ(D), π ∈ Π
a, as follows. For any d ∈ Nn and

π ∈ Π
a
d, if π is minimal, put Eπ = m

(wπ) ∈ U +
d := Ud ∩U +

Z
. Assume in general that

Eλ ∈ U +
d have been defined for all λ ∈ Π

a
d with λ < π. Then we define

(7.2) Eπ = m
(wπ) −

∑

λ∈Πa
d
, λ<π

vδ(wπ)−δ(wλ)γλwπ
(v2)Eλ ∈ U +

d .

In other words, we have

(7.3) m
(wπ)

= Eπ +
∑

λ∈Πa
d
, λ<π

vδ(wπ)−δ(wλ)γλwπ
(v2)Eλ.

Lemma 7.3 Let {wπ | π ∈ Π
a} be a given distinguished section. For each d ∈ Nn

and each π ∈ Π
a
d, we have

Eπ = vδ(wπ)uπ +
∑

λ∈Πd\Πa
d
, λ<π

ξπλuλ

for some ξπλ ∈ Z.

Proof By (7.1), we have

m
(wπ) −

∑

λ∈Πa
d
,λ≤π

vδ(wπ)γλwπ
(v2)uλ =

∑

λ∈Πd\Πa
d
, λ<π

vδ(wπ)γλwπ
(v2)uλ ∈ P.

On the other hand, replacing m(wπ) in the left-hand side by (7.2) yields

m
(wπ) −

∑

λ∈Πa
d
, λ≤π

vδ(wπ)γλwπ
(v2)uλ =

∑

λ∈Πa
d
, λ≤π

vδ(wπ)−δ(wλ)γλwπ
(v2)(Eλ− vδ(wλ)uλ) ∈ P.

Now an inductive argument concludes Eπ − vδ(wπ)uπ ∈ P. Hence,

Eπ = vδ(wπ)uπ +
∑

λ∈Πd\Π
a
d
,λ<π

ξπλuλ for some ξπλ ∈ Z,

as required.

Example 7.4 Let n = 3 and d = (1, 2, 3). Then Πd consists of 18 elements, i.e.,

there are 18 isoclasses of nilpotent representations of ∆(3) of dimension vector d.

Let π = [1; 3) + [2; 1) + 2[3; 1) ∈ Πd, i.e., M(π) = S1[3] ⊕ S2 ⊕ 2S3. Then

Π
≤π
d := {π ′ ∈ Πd | π ′ ≤ π} = {π, λ, µ, ν, τ}
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such that

M(λ) = S1[2] ⊕ S2[2] ⊕ 2S3, M(µ) = S1[2] ⊕ S2 ⊕ 3S3,

M(ν) = S1 ⊕ S2[2] ⊕ S2 ⊕ 2S3, M(τ ) = S1 ⊕ 2S2 ⊕ 3S3.

Clearly, π, λ, µ are aperiodic, ν, τ are periodic, and the Hasse diagram of (Π≤π
d ,≤)

has the form
π

λ

��
�� >>

>>

µ

@@
@@

ν

~~
~~

r

Take distinguished words w1 = 12332 ∈ ℘−1(π), w2 = 21332 ∈ ℘−1(λ), and

w3 = 13322 ∈ ℘−1(µ). Then we get

m
(w1)

= v2uπ + v2uλ + (v4 + v2)uµ + v2uν + (v4 + v2)uτ ,

m
(w2)

= v3uλ + v3uµ + v3uν + (v5 + v3)uτ ,

m
(w3)

= v6uµ + v6uτ .

Thus, with respect to the chosen distinguished words w1,w2,w3, we obtain

Eπ = v2uπ − v4uτ , m
(w1)

= Eπ + v−1Eλ + (v−2 + v−4)Eµ,

Eλ = v3uλ + v3uν + v5uτ , m
(w2)

= Eλ + v−3Eµ,

Eµ = v6uµ + v6uτ , m
(w3)

= Eµ.

Theorem 7.5 For each given distinguished section D = {wπ | π ∈ Π
a} of Ω over Π

a,

each of the following sets forms a Z-basis for U +
Z

:

(i) {m
(wπ) | π ∈ Π

a};

(ii) {Eλ | λ ∈ Π
a}, where Eλ = Eλ(D).

In particular, U +
Z

is a free Z-module.

Proof By Theorem 6.2(ii), m
(wπ), π ∈ Π

a, are Z-linearly independent. It suffices

to prove that for any dimension vector d ∈ Nn, the Z-module U +
d = U +

Z
∩ U+

d is

spanned by {m(wπ) | π ∈ Π
a
d}, or equivalently, spanned by {Eπ | π ∈ Π

a
d} by (7.3).

Let x ∈ U +
d and write

x ≡
∑

π∈Πa
d

aπuπ (mod P),

where aπ ∈ Z. Then we get by Lemma 7.3 that

x −
∑

π∈Πa
d

v−δ(wπ)aπEπ =

∑

π∈Πa
d

v−δ(wπ)aπ(vδ(wπ)uπ − Eπ) ∈ U +
d ∩ P.
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Since U +
d ∩ P = 0 by Lemma 7.1, we have x −

∑
π∈Πa

d
v−δ(wπ)aπEπ = 0, as required.

With the basis {Eπ}π∈Πa , we may follow the standard linear algebra method to

define (uniquely) an IC basis {Cπ}π as follows (see [10]).

The involution ι : HZ → HZ defined at the end of the last section restricts to an

involution ι : U +
Z

→ U +
Z

taking E(m)
i 7→ E(m)

i and v 7→ v−1. For each polynomial

f ∈ Z, we will denote ι( f ) by f̄ .

By restricting to Π
a
d, (7.3) gives a transition matrix ( fλ,π)λ,π∈Πa

d
for each fixed di-

mension vector d ∈ Nn. This matrix has an inverse (gλ,π)λ,π∈Πa
d

satisfying gλ,λ = 1

and gλ,π = 0 unless λ ≤ π. Thus we have

Eπ = m
(wπ) +

∑

λ<π

gλ,πm
(wλ).

Applying ι, we get

ι(Eπ) = m
(wπ) +

∑

λ<π

ḡλ,πm
(wλ)

= Eπ +
∑

λ<π

rλ,πEλ.

By [18, 7.10] (see [10] for more details), the system

pλ,π =

∑

λ≤µ≤π

rλ,µ p̄µ,π for λ ≤ π, λ, π ∈ Π
a
d

has a unique solution satisfying pλ,λ = 1, pλ,π ∈ v−1Z[v−1] for λ < π. Moreover,

the elements

Cπ =

∑

λ≤π, λ∈Πa
d

pλ,πEλ, π ∈ Π
a
d,

form a Z-basis of U +
d . We shall prove in the next section that {Cπ | π ∈ Π

a} is in fact

the canonical basis of U+ constructed in [20].

8 A Comparison of Canonical Bases for Quantum Affine sln

We first recall the geometric construction of Lusztig’s canonical basis for the (generic

twisted) Ringel–Hall algebra HZ.

For each π ∈ Π, we denote by Oπ the orbit corresponding to the module M(π)

(see footnote 2). Let χπ be the characteristic function of Oπ and put

〈Oπ〉 = vdim Oπχπ.

Thus, the Ringel–Hall algebra HL
Z

defined geometrically by Lusztig (see [16, 3.2]) has

the (twisted) multiplication

〈Oλ〉〈Oµ〉 =

∑

π

vα(λ,µ,π)ϕπλµ(v−2)〈Oπ〉,
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where

α(λ, µ, π) = dim Oλ + dim Oµ − dim Oπ + m(λ, µ)

with m(λ, µ) =
∑n

i=1 λiµi +
∑n

i=1 λiµi+1.
If we define for each π ∈ Π

(8.1) ũπ = vdim End(M(π))−dim M(π)uπ,

then we have the following.

Lemma 8.1 For λ, µ, π ∈ Π, let ψπλµ(v) ∈ Z satisfy ũλũµ =
∑

π ψ
π
λµ(v)ũπ. Then

ψπλµ(v) = v−α(λ,µ,π)ϕπλµ(v2).

Thus, we have a ring isomorphism L : HZ → HL
Z

sending v to v−1 and ũλ to 〈Oλ〉.

Proof By [16, 3.3(7)], we have

α(λ, µ, π) = −
(

dim End M(λ) + dim End M(µ) − dim End M(π)
)

+ ε(λ, µ).

Now the equality follows from the definition.

We further recall the geometric construction of the canonical basis for HL
Z

at

v = 0. Let Hi
Oλ

(ICOπ
) be the stalk at a point of Oπ of the i-th intersection coho-

mology sheaf of the closure Oλ of Oλ, and let

b
L
π =

∑

i, λ≤π

v−i+dim Oπ−dim Oλ dim Hi
Oλ

(ICOπ
)〈Oλ〉.

Then the set {b
L
π | π ∈ Π} is the canonical basis (at v = 0) of HL

Z
introduced

in [16, 30]. Denote by bπ the corresponding basis for HZ, that is, bπ is sent to bL
π

under the map L. Then the set {bπ | π ∈ Π} is the canonical basis (at v = ∞) for

HZ and the elements bπ with π ∈ Π are characterized as the unique elements of L

such that

(8.2) ι(bπ) = bπ, bπ ∈
∑

λ≤π

Z[v−1]ũλ and bπ ≡ ũπ(modv−1
L),

where ι is an involution on HZ satisfying ι(v) = v−1 and ι(ũa) = ũa for all a ∈ Nn,

and L is the Z[v−1]-submodule of HZ spanned by ũπ , π ∈ Π. In other words, for

any λ ≤ π in Π, the Laurent polynomials

Pλ,π :=
∑

i

vi−dim Oπ+dim Oλ dim Hi
Oλ

(ICOπ
)

satisfy Pπ,π = 1, Pλ,π ∈ v−1Z[v−1] for λ < π, and bπ =
∑

λ≤π Pλ,πũλ.

Note that it is shown in [20] that the subset {bπ | π ∈ Π
a} over Π

a is a basis for

UZ and is called the canonical basis of U +
Z

. We now use the uniqueness to prove that

the basis {Cπ}π∈Πa coincides with the basis {bπ | π ∈ Π
a}. We need a lemma.
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Lemma 8.2 Let π ∈ Π be aperiodic. Then for each distinguished word w ∈ Ω ∩
℘−1(π), we have

δ(w) = δ1(w) + δ2(w) = dim End(M(π)) − dim M(π).

Proof Let w = i1i2 · · · im ∈ ℘−1(π) be distinguished with the tight form

je1

1 je2

2 · · · jet
t . We write j = j1 and e = e1, and let w ′

= je−1 je2

2 · · · jet
t . From the

definition of a distinguished word, we have that w ′ is again distinguished. We further

set µ = ℘ (w ′). Thus, S j ∗ M(µ) = M(π).

We use induction on the length m of w. If m = 1, it is clear. Now let m > 1. By

induction hypothesis, we have for w ′

δ(w ′) = δ1(w ′) + δ2(w ′) = dim End(M(µ)) − dim M(µ).

On the other hand, we have clearly (see (6.2))

δ1(w) =

m∑

s=2

ε(dim S1, dim Sis
) + δ1(w ′) = δ1(w ′) + ε(dim S1, dim M(µ))

and (see (6.3))

δ2(w) =
e(e − 1)

2
+ δ2(w ′) −

(e − 1)(e − 2)

2
= δ2(w ′) + e − 1.

Thus, we obtain

(8.3) δ(w) = δ(w ′) + ε(dim S1, dim M(µ)) + e − 1.

Let µ =
∑

i,l µi,l[i; l) and take l0 maximal such that µ j+1,l0 6= 0. Then j ∗ µ = π
implies ν := π−[ j; l0 +1) = µ−[ j +1; l0). In other words, M(π) ∼= M(ν)⊕S j [l0 +1]

and M(µ) ∼= M(ν) ⊕ S j+1[l0]. Thus, we have

dim Hom(M(ν), S j[l0 + 1]) − dim Hom(M(ν), S j+1[l0]) =

∑

l>l0

ν j,l

= (π j,l0+1 − 1) +
∑

l>l0+1

π j,l.

Since w is distinguished, M(π) has a unique submodule isomorphic to

M(℘ ( je2

2 · · · jet
t )).

Equivalently, M j(π) = M(π( j)) has a unique submodule N with M j(π)/N ∼= eS j .

By [4, Lemma 5.4], the uniqueness implies e =
∑

l>l0
π j,l. Hence,

dim Hom(M(ν), S j[l0 + 1]) − dim Hom(M(ν), S j+1[l0]) = e − 1.

https://doi.org/10.4153/CJM-2007-054-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-054-7


1278 B. Deng, J. Du, and J. Xiao

From the maximality of l0, we compute

dim Hom(S j [l0 + 1],M(ν)) − dim Hom(S j+1[l0],M(ν)) = s − t,

where s denotes the multiplicity of S j in soc M(ν) and t =
∑

l≥1 ν j+1,l. This is be-

cause each map from S j[l0 + 1] into soc M(ν) is zero when restricted to S j+1[l0];

while each surjective map from S j+1[l0] onto each summand S j+1[l] of M(ν) cannot

be lifted to S j[l0 + 1]. Furthermore, we have

dim End(S j[l0 + 1]) =

{
dim End(S j+1[l0]) + 1 if n|l0,

dim End(S j+1[l0]) otherwise,

since soc S j[l0 + 1] = S j if and only if n|l0. Altogether, we obtain

dim End(M(π)) =

{
dim End(M(µ)) + s + e − t if n|l0,

dim End(M(µ)) + s + e − t − 1 otherwise.

We also have

ε(dim S j , dim M(µ)) = dim Hom(S j ,M(µ)) − dim Ext1(S j ,M(µ))

=

{
s − t if n|l0,

s − t − 1 otherwise.

Finally, putting everything into (8.3), we obtain that

δ(w) = δ1(w) + δ2(w) = dim End(M(π)) − dim M(π),

as required.

For each π ∈ Π
a, we pick a distinguished word wπ ∈ Ω ∩ ℘−1(π) to form a

distinguished section D = {wπ | π ∈ Π
a}, and let {Eπ | π ∈ Π

a} be the basis of U +
Z

defined with respect to D in Definition 7.2. Then by Lemmas 7.3 and 8.2, we have

for each π ∈ Π
a
d

(8.4)

Eπ = ũπ +
∑

λ∈Πd\Πa
d
, λ<π

ηπλ ũλ (ηπλ ∈ Z),

m
(wπ)

= Eπ +
∑

λ∈Πa
d
, λ<π

fλ,πEλ ( fλ,π = vδ(wπ)−δ(wλ)γλwπ
(v2) ∈ Z).

Corollary 8.3 The basis {Eπ | π ∈ Π
a} is independent of the selection of distin-

guished sections.

Proof Suppose D and D ′ are two distinguished sections. Then Eπ(D) − Eπ(D ′) is

a linear combination of uλ, λ ∈ Π\Πa, i.e., Eπ(D) − Eπ(D ′) ∈ U+ ∩ P. Hence it is

zero by Lemma 7.1.
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Lemma 8.4 For π ∈ Π
a
d and λ ∈ Π\Πa with λ < π, we have ηπλ ∈ v−1Z[v−1], that

is, Eπ ∈ L and Eπ ≡ ũπ(modv−1L).

Proof First, let π ∈ Π
a
d be minimal. Then

Eπ − bπ =

∑

λ∈Πd\Πa
d
, λ<π

(ηπλ − Pλ,π)ũλ ∈ U+
d ∩ Pd.

By Lemma 7.1, Eπ − bπ must be zero, that is, Eπ = bπ and ηπλ = Pλ,π ∈ v−1Z[v−1]

for all λ < π with λ 6∈ Π
a
d. Now let π ∈ Π

a
d and assume that the result is true for all

µ ∈ Π
a
d with µ < π, that is, for such a µ, we have ηµν ∈ v−1Z[v−1] for all ν ∈ Πd\Π

a
d

with ν < µ. Consider the element

bπ −
∑

λ∈Πa
d
, λ≤π

Pλ,πEλ = (ũπ − Eπ) +
∑

µ∈Πa
d
, µ<π

Pµ,π(ũµ − Eµ) +
∑

σ∈Πd\Πa
d
, σ<π

Pσ,π ũσ

= −
∑

λ∈Πd\Π
a
d
, λ<π

ηπλ ũλ −
∑

µ∈Π
a
d , µ<π

ν∈Πa\Π
a
d, ν<µ

Pµ,πη
µ
ν ũν +

∑

σ∈Πd\Π
a
d
, σ<π

Pσ,πũσ

which is clearly in U +
d ∩ Pd. Again, by Lemma 7.1, we must have

bπ −
∑

λ∈Πa
d
, λ<π

Pλ,πEλ = 0,

that is,
∑

λ∈Πd\Πa
d
, λ<π

ηπλ ũλ = −
∑

µ∈Π
a
d,µ<π

ν∈Πd\Π
a
d,ν<µ

Pµ,πη
µ
ν ũν +

∑

σ∈Πd\Πa
d
, σ<π

Pσ,π ũσ.

This implies by induction ηπλ ∈ v−1Z[v−1] for all λ < π, λ 6∈ Π
a
d.

With what we have done above, the following comparison now follows easily.

Theorem 8.5 For each π ∈ Π
a, we have Cπ = bπ.

Proof From the construction, we have ι(Cπ) = Cπ and

Cπ = Eπ +
∑

λ<π,λ∈Πa

pλ,πEλ,

where pλ,π ∈ v−1Z[v−1]. By Lemma 8.4, we see that

Cπ ∈
∑

λ≤π

Z[v−1]ũλ and Cπ ≡ Eπ ≡ ũπ(mod v−1
L).

Thus, {Cπ | π ∈ Π
a} also satisfies the three properties in (8.2). Hence, Cπ = bπ for

each π ∈ Π
a.
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Remark 8.6 (i) The basis {Eπ | π ∈ Π
a} plays a role as a PBW basis. It would be

interesting to know if the PBW type basis (for affine type A) constructed in [2, 3.9,

3.39], involving braid group actions, is the same as the basis Eπ presented here. It

would be also interesting to know the meaning of the coefficients ηπλ given in (8.4).

(ii) This elementary construction is an important component in a more general

elementary construction [17] of canonical bases for quantum groups associated to

all symmetric affine Kac–Moody Lie algebras. It is expected that one can extend this

elementary construction to the symmetrizable affine case using the theory developed

in [7, 8], or the new approach developed in [6].

9 An Algebraic Construction of the Canonical Basis for HZ

In this section, we shall use distinguished words of the form in (4.3) to present an

algebraic construction of the canonical basis for the whole Ringel–Hall algebra HZ.

Let π ∈ Π with (π ′, π ′′) its associated pair. Choose a distinguished pair as in (4.2):

wπ ′ ′ = je1

1 · · · jet
t ∈ Ω ∩ ℘−1(π ′ ′) ( jr−1 6= jr, ∀r),

yπ ′ = a1 · · · ap ∈ Σ ∩ ℘−1(π ′),

and form wπ = wπ ′ ′ yπ ′ . By (6.4) and (6.5), we have

m
(wπ ′ ′ )

= ũe1 j1
· · · ũet jt

= vδ(wπ ′ ′ )
∑

µ≤π ′ ′

γµwπ ′ ′
(v2)uµ,

m
(yπ ′ )

= ũa1
· · · ũap

= vδ(yπ ′ )
∑

ν≤π ′

γνyπ ′ (v2)uν ,

where

δ(yπ ′) :=

p∑

s=1

(‖as‖ − |as|) +
∑

1≤s<t≤p

ε(dim Sas
, dim Sat

).

Finally, we get

m
(wπ)

= m
(wπ ′ ′ )

m
(yπ ′ )

= vδ(wπ ′ ′ )+δ(yπ ′ )+ε(dim M(π ′ ′),dim M(π ′))
∑

λ≤π

γλwπ
(v2)uλ.

(9.1)

A key step in such a construction is to prove that the coefficient of ũπ in (9.1) is 1 (see

(8.1)).

Proposition 9.1 Let π =
∑

i∈I, l≥1 πi,l[i; l) ∈ Π with p = p(π) and (π ′, π ′′) be the

associated pair. For each distinguished word wπ ′ ′ ∈ Ω ∩ ℘−1(π ′ ′), we have

dim End(M(π)) − dim M(π) = δ(wπ ′ ′) + δ(yπ ′) + ε(dim M(π ′ ′), dim M(π ′)).
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Proof We prove the proposition by induction on p. If p = 0, i.e., π is aperiodic,

this is the case treated in Lemma 8.2. Suppose now p ≥ 1 and write M = M(π). Let

yπ ′ = a1a2 · · · ap. Then soc M ∼= Sap
. Let µ ∈ Π be such that M(µ) ∼= M/ soc M.

Then µ ′′
= π ′′ and yµ ′ = a1a2 · · · ap−1. In particular, wπ ′ ′ yµ ′ is a distinguished

word in ℘−1(µ). Since p(µ) = p − 1, we have by induction that

dim End(M(µ)) − dim M(µ) = δ(wπ ′ ′) + δ(yµ ′) + ε(dim M(π ′′), dim M(µ ′)).

It is clear that

dim M = dim M(µ) + dim soc M = dim M(µ) + |ap|,

δ(yπ ′) = δ(yµ ′) + ‖ap‖ − |ap| + ε(a1 + · · · + ap−1, ap),

and

ε(dim M(π ′′), dim M(π ′)) = ε(dim M(π ′′), dim M(µ ′))

+ ε(dim M(π ′′), dim soc M).

On the other hand, since each indecomposable summand of M is uniserial, we have

dim End(M) = dim End(M/ soc M) + dim Hom(M, soc M)

= dim End(M(µ)) + dim Hom(top M, soc M).

Note that ‖ap‖ = dim End(soc M), ap = dim soc M and

ε(a1 + · · · + ap−1, ap) + ε(dim M(π ′ ′), dim soc M) = ε(dim M(µ), dim soc M).

Hence, it remains to show that

dim Hom(top M, soc M) = ε(dim M(µ), dim soc M) + dim End(soc M).

Now let l = Ll(M) and for each 1 ≤ r ≤ l, set socl−r+1 M/ socl−r M = Sdr
for

some dr ∈ Nn. In particular, soc M = Sdl
, i.e., dl = ap. Now, for a = (ai), b = (bi) ∈

Nn, we define τa = (an, a1, . . . , an−1) and a · b =
∑n

i=1 aibi . Then by definition we

have that ε(a, b) = a · b − τa · b = (a − τa) · b. Furthermore, we have top M = Sc

with

c = dim top M = (
∑

l ′

π1,l ′ , . . . ,
∑

l ′

πn,l ′) =

l∑

l ′=1

(π1,l ′ , . . . , πn,l ′).

Hence, c = d1 + (d2 − τd1) + · · · + (dl − τdl−1). Finally, we obtain

dim Hom(top M, soc M) = c · dl =

l−1∑

r=1

(dr − τdr) · dl + dl · dl

= ε(d1 + · · · + dl−1, dl) + ‖dl‖

= ε(dim M/ soc M, dim soc M) + dim End(soc M),

as desired.
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We now have all the ingredients for the elementary construction of a canonical

basis. First, the Ringel–Hall algebra HZ admits the involution ι; see (8.2). Second,

we use the basis {ũπ | π ∈ Π} as a PBW basis. To see the triangular relation when

applying ι to ũπ , we use a monomial basis of the form {m(wπ) | π ∈ Π} constructed

in (9.1) whose members are fixed by ι. Thus, for each π ∈ Π with the associated pair

(π ′, π ′′), we fix a distinguished word wπ ′ ′ ∈ Ω ∩ ℘−1(π ′ ′). By Proposition 4.5, the

word wπ = wπ ′ ′ yπ ′ is also distinguished. By Proposition 9.1, (9.1) becomes

(9.2) m
(wπ)

= ũπ +
∑

λ<π

θλ,πũλ,

where θλ,π = vdim End(M(π))−dim End(M(λ))γλwπ
(v2). Solving (9.2) gives

ũπ = m
(wπ) +

∑

λ<π

ζλ,πm
(wλ).

Now, applying the standard construction at the end of §7 yields a new basis {cπ | π ∈
Π} of HZ satisfying

cπ =

∑

λ≤π

σλ,πũλ,

where σπ,π = 1 and σλ,π ∈ v−1Z[v−1] for λ < π. Since the basis {bπ | π ∈ Π}
satisfies the same property (see (8.2)), the uniqueness of the canonical basis implies

the following theorem (cf. Theorem 8.5).

Theorem 9.2 For each π ∈ Π, we have cπ = bπ. In particular, we have, for each

π ∈ Π
a, cπ = Cπ .
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