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Multiple Lattice Tilings in Euclidean Spaces
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Abstract. In 1885, Fedorov discovered that a convex domain can form a lattice tiling of the Euclidean
plane if and only if it is a parallelogram or a centrally symmetric hexagon. his paper proves the
following results. Except for parallelograms and centrally symmetric hexagons, there are no other
convex domains that can form two-, three- or four-fold lattice tilings in the Euclidean plane. However,
there are both octagons and decagons that can form ûve-fold lattice tilings. Whenever n ⩾ 3, there are
non-parallelohedral polytopes that can form ûve-fold lattice tilings in the n-dimensional Euclidean
space.

1 Introduction

Planar tiling is an ancient subject in our civilization. It has been considered in the
arts by cra�smen since antiquity. It is still an active research ûeld in mathematics and
some basic problems remain unsolved. In 1885, Fedorov [11] discovered that there
are only two types of two-dimensional lattice tiles: parallelograms and centrally sym-
metric hexagons. In 1917, Bieberbach suggested that Reinhardt determine all the two-
dimensional convex congruent tiles (see [25]). However, to complete the list turns
out to be challenging and dramatic. Over the years, the list has been successively ex-
tended by Reinhardt, Kershner, James, Rice, Stein, Mann, McLoud-Mann, and Von
Derau (see [32, 21]); its completeness has been mistakenly announced several times.
In 2017,M. Rao [24] announced a completeness proof based on computer checks.

he three-dimensional case was also studied in ancient times. More than 2,300
years ago, Aristotle claimed that both identical regular tetrahedra and identical cubes
can ûll the whole space without gap. His cube case is obvious. However, his tetrahe-
dron case is wrong; such a tiling is impossible [20].

Let K be a convex body with (relative) interior int(K), (relative) boundary ∂(K)
and volume vol(K), and let X be a discrete set, both inEn . We call K +X a translative
tiling of En and K a translative tile if K + X = En and the translates int(K) + xi ,
and xi ∈ X, are pairwise disjoint, i.e., if K + X is both a packing and a covering in
En . In particular, we call K +Λ a lattice tiling of En and K a lattice tile if Λ is an n-
dimensional lattice. Apparently, a translative tilemust be a convex polytope. Usually,
a lattice tile is called a parallelohedron.
Fedorov [11] also characterized the three-dimensional lattice tiles: A three-

dimensional lattice tile must be a parallelotope, a hexagonal prism, a rhombic
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dodecahedron, an elongated dodecahedron, or a truncated octahedron. he situa-
tions in higher dimensions turn out to be very complicated. hrough the works of
Delone [7], Stogrin [27], and Engel [10], we know that there are exactly 52 combina-
torially diòerent types of parallelohedra in E4. A computer classiûcation for the ûve-
dimensional parallelohedra was announced by Dutour Sikirić, Garber, Schürmann,
andWaldmann [9] only in 2015.

Let Λ be an n-dimensional lattice. he Dirichlet–Voronoi cell of Λ is deûned by
C = {x ∶ x ∈ En , ∥x, o∥ ≤ ∥x,Λ∥}, where ∥X ,Y∥ denotes the Euclidean distance
between X and Y . Clearly, C + Λ is a lattice tiling and the Dirichlet–Voronoi cell C
is a parallelohedron. In 1908, Voronoi [29] conjectured that every parallelohedron
is a linear transformation image of the Dirichlet–Voronoi cell of a suitable lattice.
In E2, E3, and E4, this conjecture was conûrmed by Delone [7] in 1929. In higher
dimensions, it is still open.

To characterize the translative tiles is another fascinating problem. In 1897,
Minkowski [23] showed that every translative tile must be centrally symmetric. In
1954, Venkov [28] proved that every translative tile must be a lattice tile (see [1] for
generalizations). Later,McMullen [22] independently discovered a new proof for this
beautiful result.

Let X be a discrete multiset in En and let k be a positive integer. We call K + X
a k-fold translative tiling of En and K a k-fold translative tile if every point x ∈ En

belongs to at least k translates of K in K + X and every point x ∈ En belongs to at
most k translates of int(K) in int(K) + X. In other words, K + X is both a k-fold
packing and a k-fold covering in En . In particular, we call K +Λ a k-fold lattice tiling
of En and K a k-fold lattice tile if Λ is an n-dimensional lattice. Apparently, a k-fold
translative tile must be a convex polytope. In fact, as shown by Gravin, Robins, and
Shiryaev [14], a k-fold translative tile must be a centrally symmetric polytope with
centrally symmetric facets.

Multiple tilings were ûrst investigated by Furtwängler [13] in 1936 as a generaliza-
tion ofMinkowski’s conjecture on cube tilings. Let C denote the n-dimensional unit
cube. Furtwängler conjectured that every k-fold lattice tiling C +Λ has twin cubes,
i.e., every multiple lattice tiling C + Λ has two cubes sharing a whole facet. In the
same paper, he proved the two- and three-dimensional cases. Unfortunately, when
n ≥ 4, Hajós [18] disproved this beautiful conjecture in 1941. In 1979, Robinson [26]
determined all the integer pairs {n, k} for which Furtwängler’s conjecture is false.
We refer to Zong [30, 31] for an introduction and a detailed account, respectively, of
this fascinating problem, and to pp. 82–84 of Gruber and Lekkerkerker [17] for some
generalizations.

In 1994, Bolle [5] proved that every centrally symmetric lattice polygon is a mul-
tiple lattice tile. Let Λ denote the two-dimensional integer lattice and let D8 denote
the octagon with vertices (1, 0), (2, 0), (3, 1), (3, 2), (2, 3), (1, 3), (0, 2) and (0, 1).
As a particular example of Bolle’s theorem,Gravin, Robins, and Shiryaev [14] discov-
ered that D8 + Λ is a seven-fold lattice tiling of E2. Apparently, the octagon D8 is
not a lattice tile. Based on this example and McMullen’s criterion on parallelohedra
(see Lemma 4 in Section 3), one can easily deduce that whenever n ≥ 2, there is a
non-parallelohedral polytope that can form a seven-fold lattice tiling in En .
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In 2000, Kolountzakis [19] proved that if D is a two-dimensional convex domain
that is not a parallelogram and D+X is amultiple tiling inE2, then X must be a ûnite
union of translated two-dimensional lattices. In 2013, Gravin, Kolountzakis, Robins,
and Shiryaev [15] discovered a similar result in E3.

Let P denote an n-dimensional centrally symmetric convex polytope, let τ(P) de-
note the smallest integer k such that P is a k-fold translative tile, and let τ∗(P) denote
the smallest integer k such that P is a k-fold lattice tile. For convenience, we deûne
τ(P) = ∞ (or τ∗(P) = ∞) if P cannot form a translative tiling (or a lattice tiling)
of any multiplicity. Clearly, for every centrally symmetric convex polytope we have
τ(P) ≤ τ∗(P).

It is a basic and natural problem to study the distribution of the integers τ(P) or
τ∗(P) when P runs over all n-dimensional polytopes. In particular, is there an n-
dimensional polytope P satisfying τ(P) = 2 or 3? Is there an n-dimensional polytope
P satisfying τ(P) /= τ∗(P)? Is there a convex domain D satisfying 2 ≤ τ∗(D) ≤ 6?

In this paper, we will prove the following results.

heorem 1 If D is a two-dimensional centrally symmetric convex domain that is nei-
ther a parallelogramnor a centrally symmetric hexagon, thenwe have τ∗(D) ≥ 5,where
the equality holds when D is a suitable octagon or a suitable decagon.

heorem 2 Whenever n ≥ 3, there are n-dimensional convex polytopes P such that
2 ≤ τ∗(P) ≤ 5.

2 Proof of Theorem 1

In 1994, Bolle [5] proved the following criterion for the two-dimensional multiple
lattice tilings.

Lemma 1 A convex polygon is a k-fold lattice tile for a lattice Λ and some positive
integer k if and only if the following conditions are satisûed.

(i) It is centrally symmetric.
(ii) When it is centered at the origin, in the relative interior of each edge G there is a

point of 1
2Λ.

(iii) If themidpoint of G is not in 1
2Λ, then G is a lattice vector of Λ.

Let D denote a two-dimensional centrally symmetric compact convex domain, let
δ∗(D) denote the density of the densest lattice packings of D, and let θ∗(D) denote
the density of the thinnest lattice coverings of D. hen the two-dimensional case of
Fedorov’s discovery implies the following statement.

Lemma 2 For every two-dimensional centrally symmetric compact convex domain
D we have δ∗(D) ≤ 1, where the equality holds if and only if D is a parallelogram or a
centrally symmetric hexagon.
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Figure 1: An octagon ûve-fold lattice tile

Let δ∗k (D) denote the density of the densest k-fold lattice packings of D and let
θ∗k(D) denote the density of the thinnest k-fold lattice coverings of D (see [32]).
Clearly, we have δ∗k (D) ≥ k ⋅ δ∗(D) and θ∗k(D) ≤ k ⋅ θ∗(D).
For smaller k, Dumir andHans-Gill [8] andG. Fejes Tóth [12] proved the following

explicit result. In fact, Dumir andHans-Gill proved the k = 2 case, and G. Fejes Tóth
proved the k = 3 and k = 4 cases.

Lemma 3 If k = 2, 3, or 4, then δ∗k (D) = k ⋅ δ∗(D) holds for every two-dimensional
centrally symmetric convex domain D.

Proof of Theorem 1 Let k be a positive integer satisfying k ≤ 4. If D is a two-
dimensional centrally symmetric convex domain that can form a k-fold lattice tiling
in the Euclidean plane, then we have δ∗k (D) = k. By Lemma 3 it follows that δ∗(D) =
δ∗k (D)

k = 1. hen it follows by Lemma 2 that D must be a parallelogram or a centrally
symmetric hexagon. In other words, if D is neither a parallelogram nor a centrally
symmetric hexagon, then we have

(1) τ∗(D) ≥ 5.

We take Λ = Z2. Let D8 denote the octagon with vertices

v1 = (−
3
10 ,−2), v2 = (

3
10 ,−1),

v3 = (
7
10 , 0), v4 = (

13
10 , 2),

v5 = ( 3
10 , 2), v6 = (−

3
10 , 1),

v7 = (−
7
10 , 0), v8 = (− 13

10 ,−2),

as shown in Figure 1. It can be easily veriûed that

ui =
1
2 (vi + vi+1) ∈

1
2Λ, i = 1, 2, . . . , 8,

where v9 = v1, and vol(D8) = 5. It follows from Lemma 1 that D8 + Λ is a ûve-fold
lattice tiling. Combined with (1), it can be deduced that τ∗(D8) = 5.
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Figure 2: A decagon ûve-fold lattice tile

Similarly, let D10 denote the decagon with vertices

v1 = (−
3
5 ,−

5
4 ), v2 = (

3
5 ,−

3
4 ),

v3 = (
7
5 ,−

1
4 ), v4 = (

8
5 ,

1
4 ),

v5 = ( 7
5 ,

3
4 ), v6 = (

3
5 ,

5
4 ),

v7 = (−
3
5 ,

3
4 ), v8 = (− 7

5 ,
1
4 ),

v9 = (−
8
5 ,−

1
4 ), v10 = (−

7
5 ,−

3
4 ),

as shown in Figure 2. It can be easily veriûed that

ui =
1
2
(vi + vi+1) ∈

1
2
Λ, i = 1, 2, . . . , 10,

where v11 = v1, and vol(D10) = 5. It follows from Lemma 1 that D10 + Λ is a ûve-fold
lattice tiling. Combined with (1), it can be deduced that τ∗(D10) = 5. ∎

3 Comparisons and Generalizations

It is interesting to make comparisons with multiple packings andmultiple coverings
(see [32] for a detailed survey). Let O denote the unit circular disk. Blunden [2,3] dis-
covered that δ∗k (O) = k ⋅ δ∗(O) is no longer true when k ≥ 5, and θ∗k(O) = k ⋅ θ∗(O)
is no longer true when k ≥ 3. So the packing case is rather similar to tilings, while the
covering case is much diòerent.

On the other hand, for every two-dimensional convex domain D, Cohn [6], Bolle
[4], and Groemer [16] proved that

lim
k→∞

δ∗k (D)
k

= lim
k→∞

θ∗k(D)
k

= 1.

In other words, from the density point of view, when the multiplicity is big, there is
not much diòerence among packing, covering, and tiling.
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Let P denote an n-dimensional centrally symmetric convex polytopewith centrally
symmetric facets and let V denote an (n − 2)-dimensional face of P. We call the
collection of all those facets of P that contain a translate of V as a subface a belt of P.

In 1980, P. McMullen [22] proved the following criterion for parallelohedra.

Lemma 4 A convex body K is a parallelohedron if and only if it is a centrally sym-
metric polytope with centrally symmetric facets and each belt contains four or six facets.

Proof of Theorem 2 For convenience, we write En
= E2

× En−2. Let P2m be a cen-
trally symmetric 2m-gon (m ≥ 4) such that P2m + Z2 is a k-fold lattice tiling of
E2, let In−2 denote the unit cube {(x3 , x4 , . . . , xn) ∶ ∣x i ∣ ≤

1
2} in En−2, and deûne

P = P2m × In−2. It is easy to see that P +Zn is a k-fold lattice tiling of En .
Let v1, v2 , . . . , v2m be the 2m vertices of P2m , let G1, G2 , . . . ,G2m denote the 2m

edges of P2m , and deûne V = v1 × In−2 and Fi = G i × In−2. Clearly, {F1 , F2 , . . . , F2m}

is a belt of P with 2m facets. herefore, byMcMullen’s criterion it follows that P is not
a parallelohedron in En . In particular, the octagon D8 and the decagon D10 deûned
in the proof ofheorem 1 produce non-parallelohedral ûve-fold lattice tiles D8 × In−2

and D10 × In−2, respectively. hus, we have both

2 ≤ τ∗(D8 × In−2
) ≤ 5 and 2 ≤ τ∗(D10 × In−2

) ≤ 5. ∎
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