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Abstract. We provide �-filtrations on the negative part Uq(n−) of the quantum
group associated to a finite-dimensional simple Lie algebra g, such that the associated
graded algebra is a skew-polynomial algebra on n−. The filtration is obtained by
assigning degrees to Lusztig’s quantum PBW root vectors. The possible degrees can
be described as lattice points in certain polyhedral cones. In the classical limit, such
a degree induces an �-filtration on any finite-dimensional simple g-module. We prove
for type An, Cn, B3, D4 and G2 that a degree can be chosen such that the associated
graded modules are defined by monomial ideals, and conjecture that this is true for
any g.

1. Introduction.

1.1. Motivation. Let g be a finite-dimensional simple Lie algebra with a
triangular decomposition g = n+ ⊕ h ⊕ n−. Let U(n−) be the corresponding universal
enveloping algebra. Lusztig [18] introduced the canonical basis for the quantized
enveloping algebra Uq(n−). Subsequently, Kashiwara [14] gave a different construction
of this basis under the name global crystal basis. When the quantum parameter is
specialized to 1, the canonical basis is specialized to a linear basis B of U(n−). Let V (λ)
be the finite-dimensional irreducible representation of U(g) of highest weight λ and vλ

be a fixed highest weight vector. The canonical basis B of U(n−) induces a canonical
basis of V (λ) by

Bλ = {b · vλ | b ∈ B, b · vλ �= 0}.

This is one of the most important properties of the canonical basis.
In this paper, motivated by [7–9], we are interested in the existence of monomial

bases E of U(n−) satisfying the following properties:

(P1) There exists an �-filtration F on U(n−) such that the associated graded algebra is
the polynomial algebra S(n−); the set E is a linear basis of the associated graded
algebra.

https://doi.org/10.1017/S0017089516000422 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000422


596 TEODOR BACKHAUS, XIN FANG AND GHISLAIN FOURIER

(P2) Let VF (λ) be the associated graded S(n−)-module with cyclic vector vF
λ ,

Eλ = {
b · vF

λ | b ∈ E, b · vF
λ �= 0

}
is a linear basis of VF (λ), hence a linear basis of V (λ).

An equivalent formulation of (P2) in terms of monomial ideals is:

(P2′) find an �-filtration F on U(n−) such that for any dominant integral weight λ,
the defining ideal of grF V (λ) is monomial.

By turning back to quantum groups, we may ask similar questions:

(Q1) Is there an �-filtration of Uq(n−) such that the associated graded algebra is Sq(n−)
(a skew-polynomial algebra on the vector space n−).

1.2. Answering (Q1). The answer to (P1) is rather trivial. We fix a weighted basis
of n−, indexed by positive roots �+, and let d : n− −→ � be a degree function on n−

such that for any basis elements x, y ∈ n−:

d(x) + d(y) > d([x, y]).

This induces an �-filtration on U(n−) and the induced associated graded algebra is
isomorphic to S(n−). We denote D, called the classical degree cone, the real cone
generated by all degree functions on n− (respectively �+) satisfying these inequalities.

To construct an �-filtration on Uq(n−), it is not enough to consider its Chevalley
generators F1, . . . , Fn, since Uq(n−) is already a graded algebra for any grading on
these generators, and the defining ideals of simple modules are seldom monomial.

There is another basis of Uq(n−) given by Lusztig [19], called quantum PBW basis.
Let w0 = si1 . . . siN be a reduced decomposition of the longest Weyl group element. We
associate a sequence of elements Fβ1 , . . . , FβN ∈ Uq(n−), where {β1, . . . , βN} is the set
of positive roots and Fβi is a quantum PBW root vector of weight −βi. Then, Lusztig
has shown that ordered monomials in Fβ1 , . . . , FβN form a linear basis of Uq(n−).

The naive approach of setting the degree of Fβi to 1 for all βi does not provide
gr Uq(n−) ∼= Sq(n−) for the induced filtration:

EXAMPLE. Let g = sl4 be of type A3. Fix the reduced decomposition w0 = s1s2s1s3s2s1

of the longest element w0 in the Weyl group of g. We denote by Fi i+1···k the quantum
PBW root vector corresponding to the root −(αi + αi+1 + · · · + αk). The following
relation holds in Uq(n−):

F23F12 = F12F23 − (q − q−1)F2F123.

In general, the commutation relations in Uq(n−) are given by the following
Levendorskii–Soibelman (L–S for short) formula: for any i < j:

Fβj Fβi − q−(βi,βj)Fβi Fβj =
∑

ni+1,...,nj−1≥0

c(ni+1, . . . , nj−1)Fni+1
βi+1

. . . Fnj−1

βj−1
.

These commutation relations depend heavily on the choice of reduced decomposition
w0. For a given reduced decomposition w0, we seek for degree functions on the set of
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positive roots

d : �+ −→ �,

such that letting deg(Fβ) = d(β) for β ∈ �+ defines a filtered algebra structure on
Uq(n−) and the associated graded algebra satisfies grd Uq(n−) ∼= Sq(n−). Inspired by
the L–S formula, we define for any reduced decomposition w0 the quantum degree cone
Dq

w0
by

Dq
w0

:=
{

(dβ) ∈ �
|�+|
+ | for any i < j, dβi + dβj >

j−1∑
k=i+1

nkdβk if c(ni+1, . . . , nj−1) �= 0

}
.

The first main theorem of this paper is:

THEOREM A. Let w0 be a reduced decomposition. Then,

(1) the set Dq
w0

is a non-empty, open polyhedral cone;
(2) a degree function d : �+ −→ � defines a filtered algebra structure on Uq(n−)

such that grd Uq(n−) ∼= Sq(n−) if and only if d ∈ Dq
w0

∩ �N .

It is natural to ask whether there is a uniform degree function d which is compatible
with every reduced decomposition. We will show that for a simple Lie algebra g, such
a function exists if and only if the rank of g is less or equal than 2, i.e. for any g of rank
larger than 2, we have ⋂

w0∈R(w0)

Dq
w0

= ∅,

where R(w0) is the set of all reduced decompositions of w0.
Suppose g is of simply laced type and the reduced decomposition is adapted to

an orientation of the associated Dynkin quiver. Using the Hall algebra realization
of Uq(n−), the coordinates of the lattice points in the quantum degree cone have
an interpretation as dimensions of certain homomorphism spaces for the particular
Dynkin quiver [7].

1.3. Answering (P2′). We turn from the quantum situation to the classical one
and analyse the implication of the induced filtration for finite-dimensional simple
modules.

Let V (λ) be the simple module of highest weight λ. Since V (λ) = U(n−) · vλ, any
filtration on U(n−) induces a filtration on V (λ).

Let d : �+ → � be a degree function for U(n−) such that grd U(n−) ∼= S(n−). The
associated graded module grd V (λ) of the induced filtration is a cyclic S(n−)-module.
Hence, there exists an ideal Id(λ) ⊂ S(n−) such that grd V (λ) ∼= S(n−)/Id(λ).

Our second aim of the paper is to find monomial bases of grd V (λ). If the ideal
Id(λ) is monomial, there exists a unique monomial basis for grd V (λ). We will focus on
this case in the paper.

The global monomial set Sgm consists of all degree functions d : �+ → � such that
for any dominant integral weight λ, Id(λ) is a monomial ideal. As the other main result
of this paper, all monomial bases appearing in the context of PBW filtration in the
literature can be actually obtained through a degree in the global monomial set.
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THEOREM B. Let g be a simple Lie algebra of type An, Cn, B3, D4 or G2. Then,Sgm �= ∅.

We provide a degree function in the global monomial set in each case (for the
An-case this has been done already in [7]). Based on the evidence of several further
examples, we conjecture:

CONJECTURE. (1) Sgm �= ∅ for any simple finite-dimensional Lie algebra g.
(2) For any simply laced simple Lie algebra, there exists w0 such that Sgm ∩ Dq

w0
is

non-empty.

1.4. Remarks on the boundary of the classical degree cone. Let g be of type An.
The boundary of D, denoted by ∂D, is defined as the difference of the closure of D
and its relative interior. Let S(∂D) := ∂D ∩ ��+ be the lattice points in ∂D.

Let d ∈ S(∂D). Then, d defines a filtration Fd on U(n−). In general, the associated
graded algebra is no longer the commutative algebra S(n−), but some algebra which
is a degenerated version of U(n−) and admits a further degeneration to S(n−). This
associated graded algebra is the universal enveloping algebra of the Lie algebra n−,d,
which is a contraction the Lie bracket of n− on the prescribed roots by d (see [4] for
details).

For λ ∈ P+, we can similarly define the associated graded module Vd(λ): It is a
cyclic U(n−,d)-module with cyclic vector vd

λ. It is proved in [4] that the highest weight
orbit

Fd(λ) := exp(n−,d) · [vd
λ] ⊂ �(Vd(λ))

is a flat degeneration of the partial flag variety F(λ).
Moreover, for some d ∈ S(∂D), it is conjectured in [5] that a monomial basis of

the representation Vd(λ) can be parameterized by the lattice points in a chain-order
polytope associated to a marked poset.

1.5. Organization of paper. In Section 2, we fix notations, introduce the classical
degree cone, the local and global monomial sets. Quantum degree cones are defined
in Section 3, where Theorem A is proved. We provide examples and properties of
the quantum degree cone in Section 4. In Section 5, examples for local and global
monomials sets are given and Theorem B is proved. We conclude with some examples
on quantum degree cones in Section 6.

2. Lie algebras and the classical degree cones.

2.1. Notations and basic properties. Let g be a simple Lie algebra of rank n over
the field of complex numbers �. We fix a triangular decomposition g = n+ ⊕ h ⊕ n−

and a set of simple roots � = {α1, . . . , αn} of g. The set of positive roots of g will
be denoted by �+ with cardinality N. Let Q+ = ∑n

i=1 ��i be the root monoid. Let
ρ = 1

2

∑
α∈�+ α be the half sum of positive roots. For α ∈ �+, we pick a root vector fα

of weight −α. Let �i, i = 1, . . . , n be the fundamental weights, P be the weight lattice
and P+ = ∑n

i=1 ��i be the set of dominant integral weights. For a dominant integral
weight λ ∈ P+, let V (λ) be the finite-dimensional irreducible representation of g of
highest weight λ and vλ a highest weight vector. Let U(n−) be the enveloping algebra

https://doi.org/10.1017/S0017089516000422 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000422


DEGREE CONES AND MONOMIAL BASES OF QUANTUM GROUPS 599

of n− and S(n−) be the symmetric algebra of n−. For λ = ∑n
i=1 λi�i ∈ P+, denote the

height of λ by |λ| := ∑n
i=1 mi.

We define ��+ := {f : �+ → � is a function}. It is an �-vector space of dimension
N. Let �

�+
≥0 ⊂ ��+ be the set of functions taking positive values, we define similarly

��+ and ��+ . A function d ∈ ��+ is determined by its values (dβ := d(β))β∈�+ . Once
a sequence of positive roots (β1, β2, . . . , βN) is fixed, ��+ is identified with �N via:
d 
→ (dβ1 , dβ2 , . . . , dβN ).

Let W be the Weyl group of g with generators s1, . . . , sn and w0 ∈ W be the longest
element. We denote R(w0) the set of all reduced decompositions of w0.

For any reduced decomposition w0 = si1 . . . siN ∈ R(w0), we associate a convex
total order on �+: for 1 ≤ t ≤ N, we denote βt = si1 . . . sit−1 (αit ), then �+ =
{β1, . . . , βN} and β1 < β2 < . . . < βN is the desired convex total order. It is proved
by Papi [20] that the above association induces a bijection between R(w0) and the set
of all convex total orders on �+.

For the simple Lie algebra sln+1 of type An and 1 ≤ i ≤ j ≤ n, we denote αi,j := αi +
· · · + αj, then �+ = {αi,j | 1 ≤ i ≤ j ≤ n}. For the simple Lie algebra of type Bn and 1 ≤
i ≤ j ≤ n, we denote αi,j := αi + · · · + αj and for αi,j := αi + · · · + αn + αn + · · · + αj,
then �+ = {αi,j, αk,l | 1 ≤ i ≤ j ≤ n, 1 ≤ k < l ≤ n}. For the simple Lie algebra sp2n
of type Cn and 1 ≤ i ≤ j ≤ n, we denote αi,j := αi + · · · + αj and αi,j := αi + · · · + αn +
· · · + αj, notice that αi,n = αi,n, then �+ = {αi,j, αi,j | 1 ≤ i ≤ j ≤ n}.

For s = (sα)α∈�+ ∈ ��+ , we denote f s := ∏
α∈�+ f sα

α ∈ S(n−). For any d ∈ ��+ , we
denote degd(f s) := ∑

α∈�+ sαdα.

2.2. The classical degree cone. We start with the classical degree cone.

DEFINITION 2.1. The classical degree cone D is defined by

D := {d ∈ �
�+
≥0 | for any α, β, γ ∈ �+ such that α + β = γ , dα + dβ > dγ }.

EXAMPLE 2.2. The element e defined by eα = 1 for all α is in D for any simple Lie
algebra.

By definition, D is an open polyhedral cone. We let S(D) := D ∩ ��+ denote the
set of lattice points in D. For any d = (dβ)β∈�+ ∈ S(D), we define a filtration F d on
U(n−) by

F d
s U(n−) := span{fγ1 fγ2 . . . fγk | γ1, . . . , γk ∈ �+ such that dγ1 + dγ2 + · · · + dγk ≤ s}.

By the cyclicity, every irreducible representation V (λ) admits a filtration arising from
F d:

F d
s V (λ) := F d

s U(n−) · vλ.

Note that for d = e, this is the PBW filtration, which has been subject to a lot of
researches in the past 10 years.

LEMMA 2.3. For any d ∈ S(D), we have the following:

(1) F d := (F d
0 ⊂ F d

1 ⊂ . . . ⊂ F d
n ⊂ . . .) defines a filtration on U(n−) whose associated

graded algebra is isomorphic to S(n−).
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(2) Let Vd(λ) be the graded module associated to the induced filtration. Then, Vd(λ) is
a cyclic S(n−)-module.

Proof. The universal enveloping algebra U(n−) is a quotient of the tensor algebra
T(n−) by the ideal generated by x ⊗ y − y ⊗ x − [x, y] for all x, y ∈ n−. In n−, for
α, β, γ ∈ �+ with α + β = γ , [fα, fβ ] is a multiple of fγ ; if d ∈ D, we have dα + dβ > dγ ,
which proves the first part of the lemma. The second part is clear. �

Let vd
λ be a cyclic vector in Vd(λ). By (2) of the lemma, the S(n−)-module map

ϕ : S(n−) → Vd(λ), x 
→ x · vd
λ

is surjective. We denote Id(λ) := ker ϕ and call it the defining ideal of Vd(λ).

2.3. The local and global monomial set. We are interested in some particular
degrees such that the associated graded module admits “good” bases.

DEFINITION 2.4. The local monomial set Slm is defined by

Slm := {d = (dβ)β∈�+ ∈ S(D) | for any i = 1, 2, . . . , n, Id(�i) is a monomial ideal}.

REMARK 2.5. For any simple Lie algebra g, the local monomial set Slm is non-
empty. For example, one possibility is to linearly order a monomial basis of any fixed
regular representation. The induced order will be in the local monomial set.

DEFINITION 2.6. The global monomial set Sgm is defined by

Sgm := {d = (dβ)β∈�+ ∈ S(D) | for any λ ∈ P+, Id(λ) is a monomial ideal}.

It is clear that Sgm ⊂ Slm.
The main goal of this paper is to study the following questions:

(1) Whether the global monomial set Sgm is non-empty? That is to say, does there
exist a filtration on U(n−) arising from d ∈ D such that for any finite-dimensional
irreducible representation, the defining ideal of the associated graded module is
monomial?

(2) If the answer to the above question is affirmative, for any λ ∈ P+, we obtain a
unique monomial basis for Vd(λ) parameterized by S(λ) := {s ∈ ��+ | f s · vd

λ �= 0}.
Whether there exists a lattice polytope P(λ) such that S(λ) is exactly the lattice
points in P(λ)?

2.4. Criteria for the local monomial set. We first give a criterion to decide whether
d ∈ D is contained in Slm, which is useful in the rest of the paper.

We fix λ ∈ P+. For μ ∈ P such that rμ := dim V (λ)μ �= 0, we denote

Sμ :=
⎧⎨
⎩s ∈ ��+ | f s · vλ �= 0 ∈ V (λ) and

∑
α∈�+

sαα = λ − μ

⎫⎬
⎭ :
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this is a finite set. Suppose that Sμ = {s1, s2, . . . , smμ
} with

degd(f s1 ) ≤ degd(f s2 ) ≤ . . . ≤ degd(f smμ ).

Let Tμ = {sk | f sk · vλ /∈ span{f s1 · vλ, . . . , f sk−1 · vλ}}. Then by construction, the set
{f s.vλ | s ∈ Tμ} is a basis.

LEMMA 2.7. Let μ ∈ P . Suppose

sk /∈ Tμ ⇒ deg(f sk ) > deg(f sl ) for all sl ∈ Tμ with l < k,

then the defining ideal Id(λ) is monomial.

Proof. It suffices to show that if sk /∈ Tμ, then f sk ∈ Id(λ)μ. Indeed, by definition,
sk /∈ Tμ implies that f sk · vλ is a linear combination of f si1 · vλ, . . ., f sip · vλ with
siq ∈ Tμ. By assumption, deg(f sk ) > deg(f siq ), hence in the graded module, we have
f sk ∈ Id(λ)μ. �

The following corollary is a special case of the lemma; it will be used repeatedly
when dealing with the examples.

COROLLARY 2.8. The defining ideal Id(λ) is monomial, if for any μ ∈ P with rμ �= 0:

(1) if rμ = 1, degd(f s1 ) < degd(f s2 );
(2) if rμ > 1, #{degd(f sk ) | 1 ≤ k ≤ mμ} = mμ.

2.5. How local and global monomial sets are related. We give a sufficient condition
for an element in Slm being contained in Sgm. Let d ∈ Slm and for 1 ≤ i ≤ n,
Sd(�i) = {a ∈ ��+ | f a · vd

�i
�= 0}. For an integer m ≥ 1, let Sd(�i)+m denote the m-

fold Minkowski sum of Sd(�i). We will write S(�i) to instead Sd(�i) when the context
is clear.

THEOREM 2.9. For any λ = m1�1 + m2�2 + · · · + mn�n ∈ P+, if #(S(�1)+m1 +
S(�2)+m2 + · · · + S(�n)+mn ) = dim V (λ), then d ∈ Sgm.

The rest of this paragraph is devoted to the proof of this statement. This is based
on the proof of [7, Theorem 3], which handles type A. For any τ = ∑n

i=1 ri�i ∈ P+,
we define

S(τ ) := S(�1)+r1 + S(�2)+r2 + · · · + S(�n)+rn .

We want to show simultaneously that for λ,μ ∈ P+,

(1) {f s · vd
λ+μ | s ∈ S(λ + μ)} is a basis of Vd(λ + μ);

(2) the defining ideal Id(λ + μ) is monomial.
The statements will be proved by induction on the height of λ + μ. The height 1

case is the assumption d ∈ Slm. The induction step will be divided into several parts.
Let < be a total order on {fβ | β ∈ �+} refining the partial order defined by

d = (dβ)β∈�+ and consider the induced lexicographical order on the monomials in
U(n−). The following proposition is proved essentially in [10, Proposition 2.11]; in [7,
Proposition 4], it is proved in detail for a particular degree function for type An, but
the proof used there is valid for a general d. Both of the following two propositions are
independent of the assumptions in Theorem 2.9.
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PROPOSITION 2.10. For any λ,μ ∈ P+ the set {f s · (vd
λ ⊗ vd

μ) | s ∈ S(λ + μ)} is linear
independent in Vd(λ) ⊗ Vd(μ).

This set lies in the Cartan component of Vd(λ) ⊗ Vd(μ) and since |S(λ + μ)| =
dim V (λ + μ) this set is a basis of the Cartan component of V (λ) ⊗ V (μ) and of
V (λ + μ), respectively.

PROPOSITION 2.11. If s /∈ S(λ + μ), then f s · vd
λ+μ = 0 in Vd(λ + μ).

Proof. We fix s /∈ S(λ + μ) and write

f s · vλ+μ =
∑

t∈S(λ+μ)

ctf t · vλ+μ in V (λ + μ). (1)

Since V (λ + μ) ⊂ V (λ) ⊗ V (μ), we have an expansion of the equation (1):

f s · (vλ ⊗ vμ) =
∑

t∈S(λ+μ), a+b=t

ctca,bf a · vλ ⊗ f b · vμ in V (λ) ⊗ V (μ).

By replacing those a /∈ S(λ) (resp. b /∈ S(μ)) by a sum supported on S(λ) (resp. S(μ)), we
obtain a unique expression. By induction, the corresponding monomials have strictly
lower degrees then deg(f a) (resp. deg(f b)). This implies that we have for all t appearing
in this unique expression deg(f t) < deg(f s). �

PROPOSITION 2.12. Suppose the assumptions of Theorem 2.9 are satisfied, then the
set B = {f s · vd

λ+μ | s ∈ S(λ + μ)} is a basis of Vd(λ + μ).

Proof. By considering each filtration component, this is a direct consequence of
Proposition 2.11. �

We are left with proving (2), the monomiality of the annihilating ideal. This follows
immediately from the following proposition.

PROPOSITION 2.13. Suppose the assumptions of Theorem 2.9 are satisfied, then the
defining ideal of the Cartan component of Vd(λ) ⊗ Vd(μ) is monomial and there exists an
S(n−)-module isomorphism from the Cartan component of Vd(λ) ⊗ Vd(μ) to Vd(λ + μ).

Proof. We have for s /∈ S(λ + μ) = S(λ) + S(μ):

f s · (vλ ⊗ vμ) =
∑

t1+t2=s

f t1 · vλ ⊗ f t2 · vμ in V (λ) ⊗ V (μ)

and t1 /∈ S(λ) or t2 /∈ S(μ). Hence, by Proposition 2.11, we can conclude that either
f t1 · vd

λ = 0 in Vd(λ) or f t2 · vd
μ = 0 in Vd(μ). We obtain

f s · (vd
λ ⊗ vd

μ) = 0 in Vd(λ) ⊗ Vd(μ). (2)

Therefore, we have monomiality.
By Proposition 2.11, there is a surjective map of S(n−)-modules from the Cartan

component of Vd(λ) ⊗ Vd(μ) to Vd(λ + μ), which is an isomorphism for dimension
reasons. �

This proves the monomiality statement (2) and hence Theorem 2.9, i.e. d ∈ Sgm.
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3. Quantum groups and quantum degree cones.

3.1. Quantum groups. Let C = (cij)n×n ∈ Matn(�) be the Cartan matrix of g

and D = diag(d1, . . . , dn) ∈ Matn(�) be a diagonal matrix symmetrizing C. Thus,
A = DC = (aij)n×n ∈ Matn(�) is symmetric. Let Uq(g) be the corresponding quantum
group over �(q): As an algebra, it is generated by Ei, Fi and K±1

i for i = 1, . . . , n,
subject to the following relations: For i, j = 1, . . . , n,

KiK−1
i = K−1

i Ki = 1, KiEjK−1
i = qcij

i Ej, KiFjK−1
i = q−cij

i Fj,

EiFj − FjEi = δij
Ki − K−1

i

qi − q−1
i

,

and for i �= j,

1−cij∑
r=0

(−1)rE(1−cij−r)
i EjE(r)

i = 0,

1−cij∑
r=0

(−1)rF (1−cij−r)
i FjF (r)

i = 0,

where

qi = qdi , [n]q! =
n∏

i=1

qn − q−n

q − q−1
, E(n)

i = En
i

[n]qi !
and F (n)

i = Fn
i

[n]qi !
.

Let Uq(n−) be the sub-algebra of Uq(g) generated by Fi for i = 1, . . . , n. For λ ∈ P+,
we denote by Vq(λ) the finite-dimensional irreducible representation of Uq(g) of highest
weight λ and type 1 with highest weight vector vλ.

When q is specialized to 1, the quantum group Uq(g) admits U(g) as its classical
limit. In this limit, the representation Vq(λ) is specialized to V (λ).

3.2. PBW root vectors and commutation relations. Let Ti = T ′′
i,1, i = 1, . . . , n be

Lusztig’s automorphisms:

Ti(Ei) = −FiKi, Ti(Fi) = −K−1
i Ei, Ti(Kj) = KjK

−cij
i ,

for i = 1, . . . , n, and j �= i,

Ti(Ej) =
∑

r+s=−cij

(−1)rq−r
i E(s)

i EjE(r)
i , Ti(Fj) =

∑
r+s=−cij

(−1)rqr
i F

(r)
i FjF (s)

i .

For details, see Chapter 37 in [19]. We fix a reduced decomposition w0 = si1 . . . siN ∈
R(w0) and let positive roots β1, β2, . . . , βN be defined as in Section 2.1. The quantum
PBW root vector Fβt associated to a positive root βt is defined by

Fβt = Ti1 Ti2 . . . Tit−1 (Fit ) ∈ Uq(n−).

The PBW theorem of quantum groups affirms that the set

{F s := Fs1
β1

Fs2
β2

. . . FsN
βN

| s = (s1, . . . , sN) ∈ �N}
forms a �(q)-basis of Uq(n−) ([19], Corollary 40.2.2).
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The commutation relations between these quantum PBW root vectors are given
by the following L–S formula: For any i < j,

Fβj Fβi − q−(βi,βj)Fβi Fβj =
∑

ni+1,...,nj−1≥0

c(ni+1, . . . , nj−1)Fni+1
βi+1

. . . Fnj−1

βj−1
, (3)

where c(ni+1, . . . , nj−1) ∈ �[q±1]. We denote

Mi,j = {Fni+1
βi+1

Fni+2
βi+2

. . . Fnj−1

βj−1
| ni+1βi+1 + ni+2β2 + · · · + nj−1βj−1 = βi + βj},

then for weight reasons, the sum in the right-hand side of (3) is supported inside Mi,j.
Denote by Mq

i,j ⊂ Mi,j, the set of monomials which actually appear with a non-zero
coefficient in the right-hand side of (3). It should be pointed out that the right-hand
side of (3) largely depends on the chosen reduced decomposition. In general, it is hard
to know which monomials appear in Mq

i,j.
Let us have a closer look on how these formulas depend on the reduced

decomposition. Let w0, w′
0 ∈ R(w0) be two reduced decompositions such that they

are of form:

w0 = wLspsqwR, w′
0 = wLsqspwR

with 1 ≤ p �= q ≤ n and spsq = sqsp. We define l = �(wL).
Let the convex total order on �+ induced by w0 (resp. w′

0) be

β1 < β2 < . . . < βN (resp. β ′
1 < β ′

2 < . . . < β ′
N).

For s ≤ l, the L–S formula (3) reads

Fβs Fβl+2 − q(βs,βl+2)Fβl+2 Fβs =
∑

ns+1,...,nl+1≥0

c(ns+1, . . . , nl+1)Fns+1
βs+1

. . . Fnl+1
βl+1

. (4)

For t ≥ l + 3, the L–S formula (3) reads

Fβt Fβl+1 − q−(βt,βl+1)Fβl+1 Fβt =
∑

nl+2,...,nt−1≥0

c(nl+2, . . . , nt−1)Fnl+2
βl+2

. . . Fnt−1
βt−1

. (5)

LEMMA 3.1. In the formula (4), nl+1 = 0; in the formula (5), nl+2 = 0.

Proof. We prove for example the first statement, the second one can be shown
similarly.

First, notice that for any i �= l + 1, l + 2, βi = β ′
i , βl+1 = β ′

l+2, βl+2 = β ′
l+1. The

same argument can be applied to quantum PBW root vectors: Let Fβ1 , Fβ2 , . . . , FβN

(resp. F ′
β1

, F ′
β2

, . . . , F ′
βN

) be the quantum PBW root vectors obtained from w0 (resp.
w′

0). Then, for any i �= l + 1, l + 2, Fβi = F ′
βi

, Fβl+1 = F ′
βl+2

, Fβl+2 = F ′
βl+1

. For s ≤ l, we
apply the L–S formula to F ′

βs
and F ′

βl+1
, it gives

F ′
βs

F ′
βl+1

− q(β ′
s,β

′
l+1)F ′

βl+1
F ′

βs
=

∑
ms+1,...,ml≥0

d(ms+1, . . . , ml)F
′ms+1
βs+1

. . . F ′ml
βl

.

Comparing it to (4) gives nl+1 = 0. �
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3.3. Quantum degree cones. We fix in this paragraph a reduced decomposition
w0 ∈ R(w0) and positive roots β1, . . . , βN obtained from w0 as explained in
Section 2.1.

DEFINITION 3.2. The quantum degree cone associated to w0 is defined by

Dq
w0

:=
{

(dβ)β∈�+ ∈ �
�+
≥0 | ∀i < j, dβi + dβj >

j−1∑
k=i+1

nkdβk if c(ni+1, . . . , nj−1) �= 0 in (3)

}
.

We denote the set

Dq :=
⋃

w0∈R(w0)

Dq
w0

⊂ �
�+
≥0 .

Let D ⊂ �
�+
≥0 be the classical degree cone. Specializing the quantum parameter q

to 1 proves the following lemma:

LEMMA 3.3. We have Dq ⊂ D.

REMARK 3.4. Except for small rank cases g = sl2, sl3 (see Example 4.1), the
inclusion in Lemma 3.3 is strict. For example, the constant function 1 taking value
1 on each positive root is in the classical degree cone D, but for g �= sl2, sl3, there is
no reduced decomposition w0 such that 1 /∈ Dq

w0
. See for example [7, Section 2.4] and

Example 4.2 for type C2, Section 4.3 for type G2.

Let d = (dβ)β∈�+ ∈ S(Dq
w0

) =: Dq
w0

∩ ��+ . For a monomial F t where t =
(t1, . . . , tN), we define its d-degree degd by

degd(F t) := t1dβ1 + t2dβ2 + · · · + tNdβN .

THEOREM 3.5. The set Dq
w0

is a non-empty open polyhedral cone.

Proof. By definition, Dq
w0

is an open polyhedral cone. We describe an inductive
procedure to construct an element d = (dβ1 , . . . , dβN ) ∈ Dq

w0
.

We set dβ1 = 1. Suppose that dβ1 , . . . , dβk are chosen such that they satisfy the
inequalities in the definition of Dq

w0
.

Let Mq
k+1 := ⋃k

s=1 Mq
s,k+1. Since Mq

k+1 is a finite set, we set

dβk+1 = 1 + max
F t∈Mq

k+1

(degd(F t)).

Since F t ∈ Mq
k+1 is a monomial on {Fβ1, . . . , Fβk}, the degree is well-defined. By

definition, for any 1 ≤ s ≤ k and any F t ∈ Mq
s,k+1, dβs + dβk+1 > degd(F t). This

terminates the proof. �

For d ∈ S(Dq
w0

), we define a filtrationFd
• = (Fd

0 ⊂ Fd
1 ⊂ . . . ⊂ Fd

n ⊂ . . .) on Uq(n−)
by

Fd
k Uq(n−) := span{F t | degd(F t) ≤ k}.
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Let Sq(n−) be the algebra generated by x1, x2, . . . , xN , subjects to the following
relations: For 1 ≤ i < j ≤ N,

xixj = q(βi,βj)xjxi.

The following proposition is clear from the L–S formula (3).

PROPOSITION 3.6.

(1) The filtration F• endows Uq(n−) with a filtered algebra structure.
(2) The associated graded algebra grFUq(n−) is isomorphic to Sq(n−).

For λ ∈ P+, the above filtration on Uq(n−) induces a filtration on Vq(λ) by letting

Fd
k Vq(λ) := Fd

k Uq(n−) · vλ.

We let Vd
q (λ) denote the associated graded vector space: It is a cyclic Sq(n−)-module.

Let vd
λ be the cyclic vector corresponding to vλ.

4. Examples of rank 2 and properties of quantum degree cones.

4.1. Examples of rank 2. Before studying properties of these cones, we examine
some small rank examples.

EXAMPLE 4.1. Let g = sl3 be the Lie algebra of type A2. For d ∈ D, let di,j = d(αi,j).
We fix a sequence of positive roots (α1,1, α1,2, α2,2). The classical degree cone D is

given by

D = {(d1,1, d1,2, d2,2) ∈ �
�+
≥0 | d1,1 + d2,2 > d1,2}.

We consider the quantum degree cones: R(w0) = {s1s2s1, s2s1s2}. For the reduced
decomposition w0 = s1s2s1, let F1,1, F1,2, F2,2 be the corresponding quantum PBW
root vectors. The formula (3) reads

F1,1F2,2 = q−1F2,2F1,1 − q−1F1,2,

implying Dq
w0

= D. For w′
0 = s2s1s2, the same computation shows that Dq

w′
0
= D.

EXAMPLE 4.2. Let g = sp4 be the Lie algebra of type C2.
For d ∈ D, let di,j := d(αi,j) and di,j := d(αi,j). The classical degree cone D is given

by the following inequalities in �
�+
≥0 :

d1,1 + d2,2 > d1,2, d1,1 + d1,2 > d1,1.

Fix a reduced decomposition w0 = s1s2s1s2 of the longest element w0 in the Weyl
group of g. Let

F1,1, F1,1, F1,2, F2,2

be the corresponding quantum PBW root vectors, their commutation relations are

F1,1F1,1 = q2F1,1F1,1, F1,1F1,2 = F1,2F1,1 − (q + q−1)F1,1,

F1,1F2,2 = q−2F2,2F1,1 − q−2F1,2,
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F1,1F1,2 = q2F1,2F1,1, F1,1F2,2 = F2,2F1,1 + (1 − q−2)F (2)
1,2, F1,2F2,2 = q2F2,2F1,2.

The quantum degree cone Dq
w0

⊂ D is given by

d1,1 + d2,2 > d1,2, d1,1 + d1,2 > d1,1, d2,2 + d1,1 > 2d1,2. (6)

The same construction with the reduced decomposition w′
0 = s2s1s2s1 shows that

Dq
w0

= Dq
w′

0
.

EXAMPLE 4.3. Let g be the Lie algebra of type G2 with positive roots

�+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}.
For d ∈ �

�+
≥0 , we write d1 = d(α1), d2 = d(α2), d12 = d(α1 + α2), d112 = d(2α1 + α2),

d1112 = d(3α1 + α2) and d11122 = d(3α1 + 2α2). The classical degree cone D ⊂ �
�+
≥0 is

determined by the following inequalities:

d1 + d2 > d12, d1 + d12 > d112, d1 + d112 > d1112,

d2 + d1112 > d11122, d112 + d12 > d11122.

For example, (d1, d1112, d112, d11122, d12, d2) = (2, 1, 3, 1, 3, 2) ∈ D.
We fix a reduced decomposition w0 = s1s2s1s2s1s2 ∈ R(w0). Let

F1, F1112, F112, F11122, F12, F2

be the corresponding quantum PBW root vectors. The quantum degree cone Dq
w0

in D
is given by the following inequalities:

d1 + d11122 > 2d112, d1112 + d11122 > 3d112, d1112 + d12 > 2d112,

d1112 + d2 > d112 + d12, d112 + d2 > 2d12, d11122 + d2 > 3d12.
(7)

These inequalities are the same for the other reduced decomposition w′
0 =

s2s1s2s1s2s1 ∈ R(w0). It is clear that d /∈ Dq
w0

for any w0 ∈ R(w0), we see once again
that the quantum degree cone is different from the classical degree cone.

In the rank 2 case, the quantum degree cone does not depend on the reduced
decomposition.

PROPOSITION 4.4. Let g be a simple Lie algebra of rank no more than 2. For any
w0 ∈ R(w0), we have Dq = Dq

w0
.

Proof. The proof follows from the preceeding examples. �

4.2. Properties of quantum degree cones. The first property of the quantum degree
cones we will prove is the following:

THEOREM 4.5. Let g be a simple Lie algebra of rank n ≥ 3, then⋂
w0∈R(w0)

Dq
w0

= ∅.
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Proof. We show that there exist two reduced decompositions w1
0, w

2
0 ∈ R(w0) such

thatDq
w1

0
∩ Dq

w2
0
= ∅. When g is a simple Lie algebra g of rank 3, this is proved in Section

6.1–6.3 by explicit constructions.
Let g be a simple Lie algebra of rank > 3. There exists a Lie sub-algebra g′ ⊂ g of

rank 3 such that g′ is a simple Lie algebra, we denote it by X3. The set of positive roots
of X3 is denoted by �′

+. We take wL and w′
L as in the example of X3 in Section 6.1–6.3,

such that Dq
wL

∩ Dq
w′

L
= ∅. Let w1

0 = wLwR and w2
0 = w′

Lw′
R ∈ R(w0). We claim that

Dq
w1

0
∩ Dq

w2
0
= ∅. Let p : Dq

w1
0
→ �

�′
+

≥0 be the restriction of functions. Then by definition,

p(Dq
w1

0
) = Dq

wL
, p(Dq

w2
0
) = Dq

w′
L
.

This terminates the proof. �
This theorem implies that there is no degree function working for all reduced

decompositions. In general, to study the relations between the cones associated to w0
and w′

0 ∈ R(w0) is a difficult task. But in some cases, the cone remain the same.
Two reflections sp and sq in W with p �= q are said to be orthogonal if spsq = sqsp.

Two reduced decompositions w0, w′
0 ∈ R(w0) are said to be related by orthogonal

reflections if one can be obtained from the other by using only orthogonal reflections.

PROPOSITION 4.6. Let w0, w′
0 ∈ R(w0) such that they are related by orthogonal

reflections. Then, Dq
w0

= Dq
w′

0
.

Proof. By definition, it suffices to consider the case where

w0 = wLspsqwR, w′
0 = wLsqspwR

with 1 ≤ p, q ≤ n such that spsq = sqsp. In this case, Lemma 3.1 can be applied to finish
the proof. �

5. Local and global monomial sets.

5.1. Local monomial set for type An. Let g = sln+1 be the Lie algebra of type An.
The following lemma gives an easy criterion to determine whether a degree is in

the local monomial set.

PROPOSITION 5.1. Let d ∈ S(D). The following statements are equivalent:

(1) For any four different positive roots α, β, γ , δ satisfying α + β = γ + δ, dα + dβ �=
dγ + dδ;

(2) d ∈ Slm.

Proof. (1)⇒(2): Since in the An case, all fundamental representations are minuscule.
The proof of [7, Proposition 2] can be applied to show the validity of the hypothesis of
Corollary 2.8.
(2)⇒(1): Since g = sln+1, we can suppose that α = αi,j, β = αk,l, γ = αi,l and δ = αj,k

with i ≤ k ≤ j ≤ l. We consider the fundamental representation V (�l): In I(�l), there
is a relation fi,jfk,lv�l ± fi,l fk,jv�l = 0. Since Id(�l) is monomial, either fi,jfk,l or fi,l fk,j

is in Id(�l), which forbids the case dαi,j + dαk,l = dαi,l + dαk,j . �
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EXAMPLE 5.2. In general, the inclusions Dq
w0

⊂ Slm and Slm ⊂ Dq do not hold.
Let g be of type A3. The reduced decomposition w0 = s1s2s3s2s1s2 ∈ R(w0) induces the
convex order on �+:

α1,1 < α1,2 < α1,3 < α3,3 < α2,3 < α2,2.

We fix this sequence and identify ��+ with �6. Let d = (1, 1, 1, 1, 1, 1), d′ =
(2, 2, 1, 1, 1, 1) and d′′ = (1, 1, 1, 1, 1, 2). By Proposition 5.1, d /∈ Slm, d′, d′′ ∈ Slm, but
d, d′ ∈ Dq

w0
, d′′ /∈ Dq.

We show in the following example that Sgm is in general a proper subset of Slm.

EXAMPLE 5.3. Let g be of type An and let d be defined by dαi,j = 2(n−1)−(j−i). It is
clear that d ∈ D. If αi,j, αk,l, αi,l, αk,j are four different positive roots in �+ such that
αi,j + αk,l = αi,l + αk,j, the indices must satisfy 1 ≤ i < k ≤ l < j ≤ n. In this case, we
have dαi,j + dαk,l > dαi,l + dαk,j . Hence, by Proposition 5.1, we have d ∈ Slm.

For arbitrary 1 ≤ i ≤ n, let P(�i) be the polytope obtained in [1], such that its
lattice points S(�i) := P(�i) ∩ ��+ parameterizes a basis of V (�i). Furthermore, by
the choice of d, we have

S(�i) = {s ∈ ��+ | f s · vd
�i

�= 0 in Vd(�i)}.

But in general, for λ = m1�1 + · · · + mn�n ∈ P+, the Minkowski sum of lattice points
S(�1)+m1 + · · · + S(�n)+mn may not parameterize a basis of V (λ). For instance, let
g be of type A4, we have [loc.cit]: #(S(�1) + S(�2) + S(�3) + S(�4)) = 1023 but
dim V (�1 + �2 + �3 + �4) = 1024. Hence, in general, d /∈ Sgm.

5.2. FFLV polytopes. We start with recalling the Dyck paths and FFLV polytopes
[8], [9].

A sequence b = (δ1, . . . , δr) of positive roots is called a Dyck path of type An if
δ1 = αi,i and δr = αj,j for i ≤ j are simple roots, and if δm = αp,q, then δm+1 = αp+1,q or
δm+1 = αp,q+1.

Let A = {1, 2, . . . , n, n − 1, . . . , 1} be the totally ordered index set 1 < 2 < . . . <

n < n − 1 < . . . < 1. A symplectic Dyck path is a sequence b = (δ1, . . . , δr) of positive
roots (of sp2n) such that the first root is a simple root, β1 = αi,i; the last root is either
a simple root βr = αj,j or βr = αj,j (i ≤ j ≤ n); if βm = αr,q with r, q ∈ A, then βm+1 is
either αr,q+1 or αr+1,q, where x + 1 denotes the smallest element in A which is bigger
than x.

For a dominant integral weight λ = λ1�1 + λ2�2 + · · · + λn�n in the
corresponding weight lattice, the FFLV polytopes PAn(λ) and PCn (λ) are defined by

PAn (λ) =
{

m ∈ �
�+
≥0 | for any i = 1, . . . , n and any Dyck paths b = (δ1, . . . , δr)

starting in αi,i, ending in αj,j :
∑r

�=1 mδ�
≤ λi + · · · + λj

}
;

PCn(λ) =

⎧⎪⎨
⎪⎩m ∈ �

�+
≥0 |

for any i = 1, . . . , n and any symplectic Dyck paths b = (δ1, . . . , δr)
starting in αi,i, ending in αj,j :

∑r
�=1 mδ�

≤ λi + · · · + λj;
for any i = 1, . . . , n and any symplectic Dyck paths b = (δ1, . . . , δr)

starting in αi,i, ending in αj,j :
∑r

�=1 mδ�
≤ λi + · · · + λn

⎫⎪⎬
⎪⎭.
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Let SAn(λ) and SCn(λ) denote the set of lattice points in the corresponding polytopes.
It has been shown in [8] and [9] that the polytopes satisfy for all λ = λ1 + λ2:

SAn(λ) = SAn(λ1) + SAn(λ2) and SCn(λ) = SCn(λ1) + SCn(λ2). (8)

5.3. Global monomial sets: An. For An, consider d ∈ D defined by dαi,j = (j − i +
1)(n − j + 1), then the following theorem has been proved in [7]:

THEOREM 5.4.

(1) We have d ∈ Sgm. Moreover, let w0 = (sn . . . s1)(sn . . . s2) . . . (snsn−1)sn, then d ∈ Dq
w0

.
(2) The set {f a · vd

λ | a ∈ SAn(λ)} forms a monomial basis of Vd(λ).

5.4. Global monomial sets: Cn. Let us consider the Cn case and d ∈ D defined by

di,j := dαi,j := (2n − j)(j − i + 1), di,j := dαi,j
:= j(2n − i − j + 1).

This degree arises from an embedding of g into a Lie algebra of type A2n−1. We will show
that d ∈ Sgm and moreover, the monomial basis of Vd(λ) is parameterized by SCn(λ).
For this, we need an explicit description of the monomials associated to SCn(�k) from
[9]:

{fi1,j�−1 · · · fi�,j1−1 | 1 < i1 < . . . < i� ≤ k ≤ j1 < . . . < j�}.

LEMMA 5.5. The degree function d ∈ Slm and for any fundamental weight �k,

{f a · vd
�k

| a ∈ SCn(�k)} is a basis of Vd(�k).

Proof. We need to show that the annihilating ideal of Vd(�k) is monomial for all
�k. We start with the natural representation, namely the vector space �2n with basis
{e1, . . . , en, en, . . . , e1} and operation fi,je� = δi,�ci,jej+1 for some ci,j ∈ �∗ (when j = p,
we set j + 1 := p − 1). We will further use that we can identify V (�k) uniquely with a
submodule in

∧k
�2n.

First of all, since d ∈ D, we see that we can restrict ourselves to the nilpotent
radical of the fundamental weight �k (since all other root vectors are acting by 0 on
v�k ∈ V (�k) and hence on Vd(�k)), e.g. we have to consider monomials in Mk := {fi,j |
i ≤ k ≤ j} only. We will prove the lemma in two steps:

(1) For any i ≤ k < j, there exists a unique monomial m in the variables from Mk with
minimal degree such that m · ei = ej.

(2) For any j1 < j2 < . . . < jk with ej1 ∧ . . . ∧ ejk ∈ V (�k), there exists a unique
monomial m in the variables from Mk with minimal degree such that m · e1 ∧
e2 ∧ . . . ∧ ek = ej1 ∧ ej2 ∧ . . . ∧ ejk .

Then, the second step implies the Lemma.
We start with proving (1). Suppose i ≤ k ≤ j ≤ k, for weight reasons, there exists a

unique monomial m in the variables from Mk such that m · ei = ej, namely m = fαi,j−1.
Suppose i ≤ k ≤ n < k ≤ p, and for simplicity, we assume that i ≤ p (the p ≤ i case is
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similar). Let m be a monic monomial in the variables from Mk such that m · ei = ep−1,
then for weight reasons m is in one of the following sets:

{fi,q−1fp,q , fi,qfp,q−1 | q = k + 1, . . . , n} ∪ {fi,nfp,n} ∪ {fi,p}. (9)

We will see that among these monomials, fi,p is the unique monomial of minimal degree,
namely of degree p(2n − i − p + 1).

Let i ≤ q ≤ n and denote

for p < q, Y (q) := q(2n − i − q + 1) + (2n − (q − 1))(q − p);
for p ≥ q, Y (q) := q(2n − i − q + 1) + (2n − p)(p − q + 2);
for any p, X(q) := (2n − (q − 1))((q − 1) − i + 1) + q(2n − p − q + 1).

We have

if p ≤ q, then degd(fi,q−1fp,q) = X(q);
if p > q, then degd(fi,q−1fq,p) = X(q);
if p < q, then degd(fi,qfp,q−1) = Y (q);
if p ≥ q, then degd(fi,qfq−1,p) = Y (q).

Now, it is straightforward to see that for q > i:

X(q) > X(q − 1) and moreover X(i) > p(2n − i − p + 1),

as well as

Y (q) > Y (q + 1) and Y (n) = X(n).

Combining both gives

Y (i) > . . . > Y (n) = X(n) > . . . > X(i) > p(2n − i − p + 1) = degd fi,p.

Moreover,

degd(fi,nfp,n) = n(2n − i − p + 2) > p(2n − i − p + 1) = p(2n − i − p + 1) = degd fi,p.

This implies, that fi,p is the unique monomial of minimal degree among all monomials
in (9) and the first step is done.

We are left with step (2). Let ei1 ∧ . . . ∧ eik ∈ V (�k) ⊂ ∧k
�2n, with i1 < . . . < ik

and ij ∈ {1, . . . , 1}. Let m be a monomial of minimal degree in the variables from Mk

such that

m · e1 ∧ . . . ∧ ek = ei1 ∧ . . . ∧ eik + rest.

Due to the operation on the tensor product, there exists a factorization m = ∏k
�=1 m�

and a permutation σ ∈ Sk, such that m� · e� = eiσ (�) . Since m is in the variables from
Mk only, we see that if � ∈ {i1, . . . , ik} ∩ {1, . . . , k}, then m� = 1 and hence iσ (�) = �.
So without loss of generality, we may assume that k < i1 < i2 < . . . < ik.

Suppose now there exist � < j with σ (�) < σ (j). We have

m�mj · e� ∧ ej = eiσ (�) ∧ eiσ (j) + rest .
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From step (1), we deduce that if m is of minimal degree, then

m� = f�,iσ (�)−1 , mj = fj,iσ (j)−1.

Similarly to the An considerations (recall that the Cn-degree is a obtain from an A2n−1-
degree), we see that

degd(f�,iσ (j)−1fj,iσ (�)−1) < degd(f�,iσ (�)−1 fj,iσ (j)−1).

We denote m′ := f�,iσ (j)−1fj,iσ (�)−1

(∏
i �=j,� mi

)
, then

degd m > degd m′.

But by construction,

m′ · e1 ∧ . . . ∧ ek = ei1 ∧ . . . ∧ eik + rest,

we have a contradiction to the minimality of the degree of m and hence σ (�) > σ (j) for
all � < j.

Let {i1 . . . , ik} = {p1 < . . . < ps} ∪ {�1 < . . . < �k−s}, where �k−s ≤ k < p1 and
{q1 < . . . < qs} be the complement of {�1 < . . . < �k−s} in {1, . . . , k}, then the
monomial of minimal degree to obtain ei1 ∧ . . . ∧ eik is

fq1,ps−1 · · · fqs,p1−1.

This proves that d ∈ Slm and moreover these are precisely the monomials associated to
SCn(�k). �

From here, we can deduce by using (8) and Theorem 2.9:

THEOREM 5.6.

(1) For the degree function, d ∈ Sgm.
(2) The set {f a · vd

λ | a ∈ SCn(λ)} forms a monomial basis of Vd(λ).
(3) If d ∈ Sgm and the corresponding monomial basis is associated to SCn(λ), then d /∈ Dq.

Proof. Part (1) and (2) are deduced from the lemma, by using (8) and Theorem 2.9.
It is left to prove the part (3), i.e. we assume that d ∈ D satisfies (1) and (2) and we want
to show d /∈ Dq. We consider the simple Lie subalgebra g2 of type C2 in g with positive
roots αn−1,n−1, αn−1,n−1, αn−1,n and αn,n. In the subalgebra Uq(g2) ⊂ Uq(g), we have the
following relation, independent of the chosen reduced expression (see Example 4.2),

Fn−1,n−1Fn,n = Fn,nFn−1,n−1 + (1 − q−2)F (2)
n−1,n,

implying that every d′ ∈ Dq satisfies d′
n−1,n−1

+ d′
n,n > 2d′

n−1,n.

Since d satisfies (1) and (2), in Vd(�n), we have fn−1,nfn,n · vd
�n

�= 0 and f 2
n−1,n · vd

�n
=

0 which implies dn−1,n−1 + dn,n < 2dn−1,n. Hence, d /∈ Dq. �
REMARK 5.7. If Sgm �= ∅, then there exists an �-filtration arising from d ∈ Sgm

such that for any λ ∈ P+, Vd(λ) has a unique monomial basis.
If d ∈ Dq

w0
∩ Sgm, then, by the argument in [7, Theorem 5], there exists an �-

filtration on Uq(n−) arising from d such that for any λ ∈ P+, Vd
q (λ) has a unique

monomial basis in Sq(n−).
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5.5. Global monomial set: C2. Consider the quantum degree cone Dq
w0

defined in
(6). We pick a solution such that the sum a1 + a2 + a3 + a4 takes its minimal value:

d = (d1,1, d1,1, d1,2, d2,2) = (1, 1, 1, 2).

Since d ∈ D, we consider the induced degree on the enveloping algebra with PBW root
vectors f1,1, f1,1, f1,2 and f2,2.

We turn to study whether d is in the global monomial set Sgm.
Let SP4(m1, m2) ⊂ �4 be the polytope defined by the following inequalities:

x1, x2, x3, x4 ≥ 0, x1 ≤ m1, x4 ≤ m2,

2x1 + x2 + 2x3 + 2x4 ≤ 2(m1 + m2), x1 + x2 + x3 + 2x4 ≤ m1 + 2m2.

Let S(m1, m2) denote the lattice points in SP4(m1, m2).

THEOREM 5.8. For any λ = m1�1 + m2�2 ∈ P+, the following statements hold:

(1) The set {f pvd
λ | p ∈ S(m1, m2)} forms a basis of Vd(λ), hence a basis of V (λ).

(2) We have d ∈ Sgm, i.e. the defining ideal Id(λ) is monomial.

The proof that d ∈ Slm, can be deduced with the help of Corollary 2.8 (1). The rest
of this paragraph will be devoted to prove this theorem.

PROPOSITION 5.9. For any m1, m2, m′
1, m′

2 ∈ �,

S(m1, m2) + S(m′
1, m′

2) = S(m1 + m′
1, m2 + m′

2).

Proof. It suffices to prove that for m1 > 0 and m2 ≥ 0,

S(m1 − 1, m2) + S(1, 0) = S(m1, m2) and S(0, m2 − 1) + S(0, 1) = S(0, m2).

First, suppose that m1 �= 0 and pick s = (a1, a2, a3, a4) ∈ S(m1, m2).

(1) If a1 �= 0, we set t1 = (a1 − 1, a2, a3, a4) and t2 = (1, 0, 0, 0); then t2 ∈ S(1, 0). Since
s ∈ S(m1, m2), 2a1 + a2 + 2a3 + 2a4 ≤ 2(m1 + m2) implies that 2(a1 − 1) + a2 +
2a3 + 2a4 ≤ 2(m1 − 1 + m2); a1 + a2 + a3 + 2a4 ≤ m1 + 2m2 implies that a1 − 1 +
a2 + a3 + 2a4 ≤ (m1 − 1) + 2m2. Combining them together, we get t1 ∈ S(m1 −
1, m2).

(2) If a1 = 0 and a3 �= 0, the very similar argument with t2 = (0, 0, 1, 0) implies again
t1 = s − t2 ∈ S(m1 − 1, m2).

(3) Suppose that a1 = 0, a3 = 0 but a2 �= 0. The inequalities for s ∈ S(m1, m2) are
reduced to a2 + 2a4 ≤ m1 + 2m2. We see that s = (0, a2 − 1, 0, a4) + (0, 1, 0, 0)
gives a decomposition in S(m1 − 1, m2) + S(1, 0).

(4) When a1 = a2 = a3 = 0 but a4 �= 0, the decomposition is obvious.
Suppose now m1 = 0 and pick s = (a1, a2, a3, a4) ∈ S(0, m2). Then, a1 = 0 and the
inequality a2 + a3 + 2a4 ≤ 2m2 is redundant.

(1) Suppose a3 �= 0, then we decompose s = (0, a2 − 1, a3, a4) + (0, 1, 0, 0): It is clear
(0, 1, 0, 0) ∈ S(0, 1); since a2 + 2a3 + 2a4 ≤ 2m2, we get a2 + 2(a3 − 1) + 2a4 ≤
2(m2 − 1), it implies (0, a2 − 1, a3, a4) ∈ S(0, m2 − 1).

(2) The case a1 = a3 = 0 but a4 �= 0 can be dealt in a similar way.
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(3) We are left with the case where 0 �= a2 ≤ 2m2. If a2 ≤ 2, there is nothing to be
shown; if a2 > 2, we decompose it as (0, a2 − 2, 0, 0) + (0, 2, 0, 0).

Repeating this procedure shows that any element in S(m1, m2) can be decomposed as
the sum of elements in S(m1 − k, m2 − �) and in S(k, �). �

To apply Theorem 2.9 to terminate the proof of Theorem 5.8, it suffices to count
the number of lattice points in SP4(m1, m2).

For any integers a, b ∈ �, we define a polytope P(a, b) ⊂ �2 by the following
inequalities:

x ≥ 0, y ≥ 0, x + 2y ≤ a, x + y ≤ b.

Let N(a, b) denote the number of lattice points in P(a, b).

LEMMA 5.10. The number of lattice points N(a, b) has the following expression:

(1) N(a, a) =
{

l(l + 1) if a = 2l − 1;
(l + 1)2 if a = 2l.

(2) N(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

N(a, a), if b ≥ a;
1
2 (b + 1)(b + 2), if a ≥ 2b;

−l2 + 2lb − 1
2 b2 + 1

2 b + l + 1, if 2b > a > b and a = 2l;
−l2 + 2lb − 1

2 b2 + 3
2 b + 1, if 2b > a > b and a = 2l + 1.

Proof. It amounts to count the integral points in the closed region cutting by the
lines x + 2y = a, x + y = b and the two axes in �2 which depends on the position of
the intersection of these two lines. �

PROPOSITION 5.11. The number of lattice points in SP4(m1, m2) is

1
6

(m1 + 1)(m2 + 1)(m1 + m2 + 2)(m1 + 2m2 + 3).

Proof. Let H be the intersection of hyperplanes x1 = α and x4 = β in �4 with
coordinates (x1, x2, x3, x4) where α, β ≥ 0. By definition,

H ∩ SP4(m1, m2) = P(2m1 + 2m2 − 2α − 2β, m1 + 2m2 − α − 2β).

Therefore, by Lemma 5.10, the number of integral points in SP4(m1, m2) equals

m1∑
α=0

m2∑
β=0

N(2m1 + 2m2 − 2α − 2β, m1 + 2m2 − α − 2β). (10)

Since α ≤ m1 and β ≤ m2, it falls into the third case in Lemma 5.10 (2) and (10) reads
(where l = m1 + m2 − α − β and b = m1 + 2m2 − α − 2β):

m1∑
α=0

m2∑
β=0

1
2
α2 + 2αβ + β2 −

(
m1 + 2m2 + 3

2

)
α − 2(m1 + m2 + 1)β

+
(

1
2

m2
1 + 2m1m2 + m2

2 + 3
2

m1 + 2m2 + 1
)

.

An easy summation provides the number in the statement. �
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By Weyl character formula, for λ = m1�1 + m2�2 ∈ P+, dim V (λ) coincides with
the number of lattice points in SP4(m1, m2). This terminates the proof of Theorem 5.8.

REMARK 5.12. By permuting the second and the third coordinates, the polytope
SP4(m1, m2) coincides with the one in Proposition 4.1 of [15] (see also [16]), which
is unimodularly equivalent to the Newton–Okounkov body of some valuation arising
from inclusions of (translated) Schubert varieties.

There are several other known polytopes parameterizing bases of a finite-
dimensional irreducible representation V (λ) of sp4. For example, the Gelfand–Tstelin
polytope P1(λ) [3]; the FFLV polytope P2(λ) [9]; the string polytope P3(λ) associated
to the reduced decomposition w0 = s1s2s1s2 [17]; the string polytope P4(λ) associated
to the reduced decomposition w0 = s2s1s2s1 [loc.cit.]; when λ = m1�1 + m2�2, the
polytope SP4(m1, m2).

With the help of Polymake [11], one can verify that the polytopes P1(λ), P2(λ)
and P4(λ) are unimodular equivalent; but the polytope P3(λ) and SP4(m1, m2) are not
unimodular equivalent to any other polytopes.

REMARK 5.13. Using the polyhedral cones associated to these polytopes, the
construction in [6] can be applied to produce three non-isomorphic toric degenerations
of the spherical varieties associated to the symplectic group Sp4, see for example [6,
Sections 10, 12, 13].

5.6. Global monomial set: D4. We prove that the global monomial set for D4 is
non-empty. We refer to Section 6.4 for details on the cones and the enumeration of
positive roots. Let d = (5, 5, 1, 2, 4, 1, 1, 2, 6, 10, 12, 20). It is shown in Section 6.4 that
there exists a w0 ∈ R(w0) such that d ∈ Dq

w0
. We will freely use the notations in Section

6.4.
Let PD4 (λ) be the polytope defined in [13, Section 3] and SD4(λ) be the set of lattice

points in PD4 (λ).

THEOREM 5.14.

(1) We have d ∈ Sgm.
(2) The set {f s · vd

λ | s ∈ SD4(λ)} forms a monomial basis of Vd(λ).
(3) Let w0 = s2s1s2s3s2s4s2s1s2s3s2s4 ∈ R(w0), then d ∈ Dq

w0
.

Proof. The part of the proof that gives d ∈ Slm is straightforward with Corollary 2.8.
By a straightforward comparation, we obtain

SD4(�i) = {s ∈ ��+ | f s · vd
�i

�= 0 in Vd(�i)}, i = 1, 2, 3, 4.

It is shown in [loc.cit.] that for any λ,μ ∈ P+, we have

PD4 (λ) + PD4(μ) = PD4 (λ + μ) and SD4(λ) + SD4(μ) = SD4(λ + μ)

and dim V (λ) = #SD4(λ).
The statements (1) and (2) follow from Theorem 2.9. The part (3) is shown in

Section 6.4. �

5.7. Global monomial set: B3. Let g be of type B3. For λ ∈ P+, let PB3 (λ) denote
the polytope defined in [2, Section 5] and SB3(λ) be the set of lattice points in PB3(λ).
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Let fi,j and fi,j be the PBW root vectors associated to the positive roots αi,j and

αi,j, respectively. For d ∈ �
�+
≥0 , we write di,j = d(αi,j) and di,j = d(αi,j). We consider the

element d ∈ �
�+
≥0 defined by

d1,1 = 4, d1,2 = 3, d2,2 = 3, d1,3 = 3, d1,2 = 1, d1,3 = 1, d2,3 = 4, d2,3 = 3, d3,3 = 2.

We will show in Section 6.2 that d ∈ D.

THEOREM 5.15.

(1) We have d ∈ Sgm, and the set {f s · vd
λ | s ∈ SB3(λ)} forms a monomial basis of Vd(λ).

(2) For any e ∈ D satisfying (1), we have e /∈ Dq.

Proof.

(1) As before by computing each weight space in Vd(�i), i = 1, 2, 3, we obtain d ∈ Slm.
By comparing the basis arising from the monomiality of the defining ideals Id(�i)
with the basis obtain in [loc.cit.], we get for i = 1, 2, 3:

SB3(�i) = {s ∈ ��+ | f s · vd
�i

�= 0 in Vd(�i)}.
For any λ,μ ∈ P+, we have

PB3 (λ) + PB3 (μ) = PB3 (λ + μ), SB3(λ) + SB3(μ) = SB3(λ + μ)

and dim V (λ) = #SB3(λ). By Theorem 2.9, d ∈ Sgm.
(2) Let e ∈ Sgm. From reading the lattice points in PB3 (�2), we get f1,2f1,3 · ve

�2
�= 0 in

V e(�2). Since the corresponding weight space is one-dimensional and f 2
1,3 has the

same weight, f 2
1,3 · ve

�2
= 0.

Assume w0 ∈ R(w0) such that e ∈ Dq
w0

. Let < be the induced convex order on �+.
Without loss of generality, we suppose that α1,2 < α1,3.
CASE 1. Assume α1,2 < α1,3 < α1,3, for the quantum degree cone Dq

w0
, by

computing the L–S formula explicitly, this would imply the following
inequality: d1,2 + d1,3 > 2d1,3. This implies, turning to the classical case,
f 2
1,3 · ve

�2
�= 0, which is a contradiction.

CASE 2. Assume α1,3 < α1,2 < α1,3. Consider the root α3,3: By the convexity, it
must be simultaneously larger than α1,3 and smaller than α1,2. This is a
contradiction.

CASE 3. Assume α1,2 < α1,3 < α1,3, with similar arguments as in Case 2 we get a
contradiction.

As a conclusion, for any w0 ∈ R(w0), e /∈ Dq
w0

.
�

5.8. Global monomial set: G2. Let g be of type G2. We use the notations in Section
4.3. Consider the following d ∈ D:

d1 = 2, d1112 = 1, d112 = 3, d11122 = 1, d12 = 3, d2 = 2.

It is clear that d ∈ D.
Let PG2 (λ) be the polytope defined in [12, Section 1], the set of its lattice points

will be denoted by SG2(λ). With similar arguments and calculations as before, we
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obtain the first statement of the following theorem. The second statement follows from
Section 4.3, there we show, for each e ∈ Dq, there exist a unique monomial basis of
V e(�i), i = 1, 2, i.e. e ∈ Slm, which does not coincide with the basis of the following
theorem.

THEOREM 5.16. We have d ∈ Sgm, and the set {f s · vd
λ | s ∈ SG2(λ)} forms a monomial

basis of Vd(λ).

REMARK 5.17. There is no d ∈ Dq, such that {f s · vd
λ | s ∈ SG2(λ)} is a basis of Vd(λ).

5.9. Local monomial sets:G2. Let g be of typeG2. By Proposition 4.4, the quantum
degree cone Dq

w0
does not depend on the choice of w0 ∈ R(w0). Let

d = (d1, d1112, d112, d11122, d12, d2) = (2, 2, 1, 2, 2, 5).

We will show in Section 4.3 that d ∈ Dq
w0

. Let f1, f1112, f112, f11122, f12, f2 be the PBW
root vectors in n−.

PROPOSITION 5.18. We have d ∈ Slm, i.e. the defining ideals Id(�1) and Id(�2) are
monomial.

We omit the proof as before.
We want to examine that this degree function is quite interesting, due to the fact

that the induced semigroup is not saturated as we will explain.
Let S(�2) = {s ∈ ��+ | f s · vd

�2
�= 0}. We have by construction #S(�2) =

dim V (�2) = 14, but there are 16 lattice points in the convex hull P = conv(S(�2)).
We fix the sequence of positive roots (α1, α1112, α112, α11122, α12, α2) to identify ��+

and �6. Let G�1
2 (m1) ⊂ �6 be the polytope defined by the inequalities:

x1, x2, x3, x4, x5, x6 ≥ 0, x1 ≤ m1, x6 ≤ 0, 2x1 + 2x2 + x3 + 2x4 + 2x5 ≤ 2m1.

Let G�2
2 (m2) ⊂ �6 be the polytope defined by the inequalities:

x1, x2, x3, x4, x5, x6 ≥ 0, x1 ≤ 0, 2x2 + x3 + x4 + x5 + 2x6 ≤ 2m2.

Let {e1, e2, . . . , e6} be the standard basis of �6.
Let λ = m1�1 + m2�2 ∈ P+. We conjecture that the number of lattice points in

the Minkowski sum

m1G�1
2 (1) + m2

(
G�2

2 (1) ∪ {3e3, 3e5}
)

coincides with dim V (m1�1 + m2�2).

REMARK 5.19. Note that the proof of Lemma 5.18 does not depend on the choice
of d ∈ Dq

w0
. Further we have Dq = Dq

w0
(see Proposition 4.4). This implies the inclusion

Dq ⊂ Slm.

REMARK 5.20. Let G be the complex algebraic group of type G2 and U (resp. U−)
be the maximal unipotent subgroup of G having n+ (resp. n−) as Lie algebra.

Let S = (α1, α1112, α112, α11122, α12, α2) be a birational sequence for U− (see [6,
Section 3] for definition). Using S, we identify ��+ and �6. We fix the integral weight
function � : �+ → � by � = d and the lexicographic order on �6. Let > be the
total order on �6 defined in [6, Section 5] by combining � and the lexicographic
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order. In [loc.cit], a monoid � = �(S,>) ⊂ P� × �6 is attached to G//U to study its
toric degenerations. Let π1 : P� × �6 → P� and π2 : P� × �6 → �6 be the canonical
projections.

We claim that � is not saturated: First notice that π2 ◦ π−1
1 (�2) = S(�2).

Pick a lattice point q ∈ P which is not in S(�2). Since q ∈ conv(S(�2)), there
exists s1, . . . , sm ∈ � and p1, . . . , pm ∈ S(�2) such that s1 + · · · + sm = 1 and q =
s1p1 + · · · + smpm. Multiplying both sides by the least common multiple M of the
denominators of s1, . . . , sm, we know that (M�2, Mq) ∈ � as � is a monoid. If �

were saturated, (M�2, Mq) ∈ � will imply (�2, q) ∈ �, contradicts to π2 ◦ π−1
1 (�2) =

S(�2).
This example explains that the saturated assumption in [6] is necessary. We thank

Peter Littelmann for pointing out this application.

6. Higher rank examples of quantum degree cones.

6.1. Lie algebra A3. Let g be of type A3. For d ∈ �
�+
≥0 , we write di,j = d(αi,j). The

classical degree cone D ⊂ �
�+
≥0 is defined by the following inequalities:

d1,1 + d2,2 > d1,2, d2,2 + d3,3 > d2,3, d1,1 + d2,3 > d1,3, d1,2 + d3,3 > d1,3,

Let w1
0 = s1s2s1s3s2s1 and w2

0 = s1s3s2s3s1s2 ∈ R(w0). We claim that the
corresponding quantum degree cones satisfy Dq

w1
0
∩ Dq

w2
0
= ∅.

Let Fi,j (resp. F ′
i,j) denote the quantum PBW root vector associated to w1

0 (resp.
w2

0) and root αi,j. We have the following commutation relations between the quantum
PBW root vectors:

F1,2F2,3 = F2,3F1,2 + (q − q−1)F2,2F1,3, F ′
1,3F ′

2,2 = F ′
2,2F ′

1,3 + (q − q−1)F ′
1,2F ′

2,3,

giving two contradicting inequalities in the corresponding quantum degree cones:

d1,2 + d2,3 > d2,2 + d1,3, d1,3 + d2,2 > d1,2 + d2,3.

Projecting to the corresponding coordinates proves the claim.

6.2. Lie algebra B3. Let g be of type B3. The set of positive roots

�+ = {α1,1, α1,2, α1,3, α2,2, α2,3, α3,3, α1,3, α2,3, α1,2}.

For d ∈ �
�+
≥0 , we write di,j = d(αi,j) and di,j = d(αi,j). The classical degree cone D is

determined by

d1,1 + d2,2 > d1,2, d1,1 + d2,3 > d1,3, d1,1 + d2,3 > d1,3, d1,2 + d3,3 > d1,3,

d1,2 + d2,3 > d1,2, d2,2 + d3,3 > d2,3, d2,2 + d1,3 > d1,2,

d1,3 + d2,3 > d1,2, d1,3 + d3,3 > d1,3, d2,3 + d3,3 > d2,3.

For example, d = (4, 3, 3, 3, 1, 1, 4, 3, 2) ∈ D.
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We consider

w1
0 = s1s2s1s3s2s1s3s2s3 and w2

0 = s1s3s2s3s2s1s2s3s2 ∈ R(w0).

The quantum degree cone Dq
w1

0
in D is defined by the following inequalities:

d1,1 + d1,2 > 2d1,3, d1,2 + d1,2 > d2,2 + 2d1,3, d1,2 + d1,3 > 2d1,3, d1,2 + d2,3

> d2,2 + d1,3,

d1,2 + d2,3 > d1,3 + d1,2, d2,2 + d2,3 > 2d2,3, d1,3 + d2,3 > d1,3 + d2,3,

d1,2 + d2,3 > d1,3 + 2d2,3, d1,2 + d3,3 > d1,3 + d2,3, d1,2 + d2,3 > d1,3 + d2,2.

The quantum degree cone Dq
w2

0
in D is defined by the following inequalities:

d1,1 + d1,2 > 2d1,3, d1,1 + d1,2 > d1,2 + d1,3, d1,2 + d1,3 > 2d1,3, d1,3 + d2,3

> d1,3 + d2,3,

d1,3 + d2,2 > d1,3 + d2,3, d1,3 + d2,2 > d1,2 + d2,3, d1,3 + d2,3 > d1,2 + d2,3,

d2,3 + d2,2 > 2d2,3, d1,3 + d2,2 > d1,2 + d2,3.

By the contradiction of the last inequalities, we obtain Dq
w1

0
∩ Dq

w2
0
= ∅.

6.3. Lie algebra C3. Let g be of type C3. For d ∈ �
�+
≥0 , we write d1 = d(α1,1), d2 =

d(α1,2), d3 = d(α1,1), d4 = d(α1,3), d5 = d(α1,2), d6 = d(α2,2), d7 = d(α2,2), d8 = d(α2,3)

and d9 = d(α3,3). The classical degree cone D ⊂ �
�+
≥0 is determined by

d1 + d5 > d3, d1 + d6 > d2, d1 + d7 > d5, d1 + d8 > d4, d2 + d4 > d3,

d2 + d8 > d5, d2 + d9 > d4, d4 + d6 > d5, d6 + d8 > d7, d6 + d9 > d8.

We consider the reduced decompositions

w1
0 = s1s2s3s2s1s2s3s2s3 and w2

0 = s1s3s2s3s2s1s2s3s2.

Moreover, the inequalities determining the cone Dq
w1

0
in D are

d1 + d5 > d2 + d4, d3 + d9 > 2d4, d7 + d9 > 2d8, d3 + d7 > 2d5,

d1 + d7 > d4 + d6, d2 + d7 > d5 + d6, d2 + d7 > d4 + 2d6, d3 + d7 > d4 + d5 + d6,

d3 + d7 > 2d4 + 2d6, d3 + d8 > d4 + d5, d3 + d8 > 2d4 + d6, d2 + d8 > d4 + d6.

The inequalities determining the cone Dq
w2

0
in D are

d1 + d5 > d2 + d4, d3 + d9 > 2d4, d7 + d9 > 2d8, d3 + d7 > 2d5,

d1 + d7 > d2 + d8, d4 + d7 > d5 + d8, d3 + d7 > d2 + d5 + d8, d3 + d7 > 2d2 + 2d8, ,

d3 + d6 > d2 + d5, d3 + d6 > 2d2 + d8, d4 + d7 > d2 + d8, d4 + d6 > d2 + d8.

Notice that there is a contradiction in the last inequalities, implying thatDq
w1

0
∩ Dq

w2
0
= ∅.
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There are four elements in Dq
w1

0
, which are minimal regarding the sum over all

entries:

d1 = (2, 1, 1, 1, 1, 1, 4, 4, 5), d2 = (3, 2, 2, 1, 1, 1, 3, 3, 4),

d3 = (5, 4, 4, 1, 1, 1, 1, 1, 2), d4 = (4, 3, 3, 1, 1, 1, 2, 2, 3).

Since d1, d2, d3, d4 ∈ D, we go back to the classical case. We consider the fundamental
module V (�2) and the weight τ = 2α1 + 3α2 + α3 whose weight space V (�2)�2−τ is
of dimension 1. We have to choose an element with minimal degree from the following
set, where we neglect the elements which have obviously a higher degree:

{f1,2f1,2, f1,1f2,2}.

For each of the above elements in Dq
w0

, both monomials have the same degree, so we
do not obtain a monomial ideal Idi , 1 ≤ i ≤ 4.

By taking larger degrees d ∈ Dq
w0

, it is possible to obtain a unique monomial basis
of Vd(�2), where it is possible to obtain a basis with either of both monomials applied
to vd

�2
. We conclude Dq

w0
� Slm, but Dq

w0
∩ Slm �= ∅. We also see, different elements

in Dq
w0

can produce different monomial bases. This observation still holds, even if we
consider elements where the sum over the entries is the same.

6.4. Lie algebra D4. Let g be of type D4. In the Dynkin diagram, we let 2 be the
central node. We consider the following reduced decomposition

w0 = s2s1s2s3s2s4s2s1s2s3s2s4 ∈ R(w0).

For a positive root aα1 + bα2 + cα3 + dα4 ∈ �+, we let fabcd denote the corresponding
quantum PBW root vector. In the convex order on positive roots given by w0, they are

f0100, f1100, f1000, f1110, f0110, f1211, f1101, f1111, f0010, f0111, f0101, f0001.

For d ∈ �
�+
≥0 , let di be the value of d at the positive root corresponding to the ith

quantum PBW root vector above. The quantum degree cone Dq
w0

⊂ �
�+
≥0 is defined by

d1 + d3 > d2, d1 + d8 > d5 + d7, d1 + d8 > d6, d1 + d9 > d5, d1 + d12 > d11

d2 + d8 > d3 + d5 + d7, d2 + d8 > d3 + d6, d2 + d8 > d4 + d7, d2 + d9 > d3 + d5,

d2 + d9 > d4, d2 + d10 > d6, d2 + d12 > d3 + d11, d2 + d12 > d7

d3 + d5 > d4, d3 + d10 > d7 + d9, d3 + d10 > d8, d3 + d11 > d7

d4 + d10 > d5 + d7 + d9, d4 + d10 > d5 + d8, d4 + d10 > d6 + d9

d4 + d11 > d5 + d7, d4 + d11 > d6, d4 + d12 > d8, d5 + d7 > d6,

d5 + d12 > d9 + d11, d5 + d12 > d10, d6 + d12 > d7 + d9 + d11, d6 + d12 > d7 + d10

d6 + d12 > d8 + d11, d7 + d9 > d8, d9 + d11 > d10.

For example, d = (5, 5, 1, 2, 4, 1, 1, 2, 6, 10, 12, 20) ∈ Dq
w0

.
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