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We study the mixing of passive scalars in a velocity field generated by selected-eddy
simulations (SES), an approach where only a randomly selected subset of spectrally
distributed modes obey Navier—Stokes dynamics. The Taylor Reynolds number varies
from 140 to 400 and the Schmidt number (Sc) varies from 0.25 to 1. By comparing the
results with direct numerical simulations (DNS), we show that most statistics are captured
with as low as 0.5 % of Navier—Stokes modes in the velocity field. This includes scalar
gradients, spectra, structure functions and their departures from classical scaling due to
intermittency. The results suggest that all modes need not be resolved to accurately capture
turbulent mixing for Sc < 1 scalars.
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1. Introduction

A distinguishing feature of turbulent flows is its ability to mix efficiently, which plays an
important role in combustion systems, mixing of nutrients in the ocean and the dispersion
of pollutants, among others. In many of these systems, the species being mixed can
bemodelled as passive scalars which do not affect the advecting velocity field. Their
dynamics is governed by the advection—diffusion equation with a stirring velocity field
that satisfies the Navier—Stokes (NS) equations. The relevant non-dimensional parameter
characterising the scalar is the Schmidt number, which is the ratio of momentum to scalar
diffusivity (Sc=v/D where v is the viscosity and D the diffusivity coefficient of the
scalar), and it can vary from 10~® in astrophysical flows (strongly diffusive scalars) to
103 (weakly diffusive scalars) for laboratory experiments. As the stirring mechanism for
scalars is driven by the turbulent velocity field, one would expect that the characteristics
of mixing would depend on the properties of the velocity field. Classical phenomenology,
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however, suggests universal behaviour regardless of the details of the stirring mechanism
of both velocity and scalar fields. These opposing viewpoints have been illustrated by
Kraichnan (1968) who showed that the scalar spectrum retains the k! scaling (k is the
wavenumber) of Batchelor, Howells & Townsend (1959) in the viscous-convective range
even if the constant rate of strain assumed in Batchelor’s model is replaced by a highly
intermittent white-in-time model which does not satisfy the NS equations. At the same
time, he showed that high wavenumbers (in the viscous-diffusive range) exhibit sensitivity
to the properties of the straining by the stirring velocity field.

In this work, we examine the question of how much NS dynamics is needed to capture
the essential physics in turbulent mixing. This question is framed in the context of recent
work which shows that the number of degrees of freedom (or modes) needed to accurately
capture the velocity field at all scales may be only a fraction of what is typically assumed
as long as the resolved modes are distributed across the entire range of scales (Donzis &
Sajeev 2024). The importance of this inquiry is twofold. From a fundamental perspective
it sheds light on the number of degrees of freedom (and which scales) need to obey strict
NS dynamics to capture the essential features of turbulence mixing. In other words, it can
inform on the nature of the attractor over which the essential dynamics of mixing is con-
tained (Constantin et al. 1985). From a practical perspective, it can provide a path towards
simulations that, at a fraction of the cost, can capture accurate mixing physics at all scales.
This is critical given that even on the most powerful supercomputers available, realistic
conditions are unattainable due to the sheer number of grid points required for direct nu-
merical simulations (DNS) of the velocity and scalar fields. For phenomena which depends
intrinsically on small-scale behaviour, such as reacting turbulent flows, this could prove
highly advantageous over approaches which rely on averaging (filtering) the small scales.

Here, we study passive scalar mixing in homogeneous isotropic turbulence at Taylor
Reynolds numbers (R;) from 140 to 400 and Sc =0.25—1.0, by comparing DNS with
the recently proposed selected-eddy simulations (SES). As described later, SES evolves
only a subset of scales (distributed across the entire spectrum) according to NS and
models the remaining scales with simple dynamics. This has been shown to yield accurate
detailed statistics of the velocity field (Donzis & Sajeev 2024). The main question here
is whether this velocity field also contains the basic dynamics needed for accurate
representation of mixing processes. Since the biggest contributor to computational cost
for mixing simulations is evolving the velocity field according to NS (the scalar is linear
and represents a smaller fraction of the cost), SES could prove to be a computationally
accessible alternative.

2. Numerical details

In a periodic domain, the velocity u(x) can be written as a Fourier series and the NS
equation can then be formulated in Fourier space as

ditj (K, 1)/dt = ik Popy (k) Y it (', ity (k — K, 1) —vk?i; (k. 0+ fi . (2)
k/

where u; (k, t) is the Fourier coefficient of the ith component of the velocity field at
wavenumber k, P;;, (k) = 8im — (kikn/ |k|?) with §; ; being the Kronecker delta, v is the

viscosity and f, the ith component of the forcing term. The governing equation for a
passive scalar () with a mean gradient g can be written as

30/0t +u-V0=DV?0 —g-u, (2.2)
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where D is the coefficient of diffusivity. Given that the turbulence is isotropic we
choose, without loss of generality, the mean gradient to be in the first direction, that is
g=(1,0,0). The scalar fluctuations, sustained by the spatially uniform mean gradient,
remain homogeneous. This configuration is common in experiments (Mydlarski &
Warhaft 1998) and numerical simulations (Iyer & Yeung 2014) as an idealised model of a
scalar mixing layer. In a standard DNS, (2.1) and (2.2) are solved simultaneously in Fourier
space with the highest wavenumber being selected to resolve the smallest dynamically
relevant scale, that is, the Kolmogorov scale of the velocity field, or the Batchelor scale
for high-Sc scalars.
In SES, the velocity is split into resolved (#&,) and unresolved (&, ) Fourier modes:

ux,t)= Z ik, 1)e'** = Z i, (k, 1)e’** 4 Z i, (k, 0)e** =u,(x, 1) +u,(x, 1)
k kek, kek,

(2.3)
where Kk, and k,, are the subset of resolved and unresolved wavenumbers, respectively such
that n(k,) + n(k,) = n(k) where n(k) is the cardinality of k and k, Nk, ={J. At a given
time step, the resolved modes are evolved via the NS equations; the unresolved modes are
simply extrapolated in time (Donzis & Sajeev 2024).

The subsets of resolved and unresolved modes are selected stochastically as follows.
For every Fourier mode a random variable is drawn from a uniform distribution. If the
random variable is less than the value of a function p(k) (where k = |k|), then that mode
is resolved according to NS dynamics for that time step; else, the mode is kept constant
(i.e. zeroth-order extrapolation in time). This procedure is repeated at every step. The
function p(k), thus, determines how many modes are evolved according to NS dynamics
on a shell of radius k. The total average percentage of resolved modes at each step,

P, is then P, = (3/k3mx) fo max p(k)kzdk where k;,, is the magnitude of the largest
resolved wavenumber. Clearly, DNS corresponds to P, = 1. The velocity field so obtained
drives the scalar fluctuations via (2.2), which is solved in Fourier space for all scalar
modes.

In this paper, we use two probability distributions: uniform (U) and variable (V). For a
U distribution, p(k) = P, is constant in k. Since the number of modes per shell grows as
k2, this results in more modes being resolved at high wavenumbers. For the V distribution,
we use p(k) = e~k where c¢ is a constant that determines P,. Because the number of
modes in a shell increases as k2, this distribution results in a greater percentage of resolved
modes in the larger scales than U. These distributions, thus, allow us to study the effect
of adding relatively more NS dynamics at small (U) and large (V) scales. In this study,
we systematically decrease P, from 1 (DNS) to the lowest value at which either numerics
or accuracy degrades significantly to explore the limits of such a simulation method. As
shown later, U distributions performs well for P, as low as 10 %, while V distributions
perform well with P, as low as a fraction of a per cent point. All simulations have a
resolution of k;,,,n = 1.5 (n is the Kolmogorov length scale) and were run for at least 10
eddy turnover times (7g) for statistical convergence. A Courant-Friedrichs-Lewy (CFL)
criterion was used to determine At for time integration. For numerical stability reasons
the CFL number was reduced slightly from 0.5 to 0.35 for the highest Reynolds number
(R ~400). The ratio of the integral length scales for scalar and velocity fields is relatively
constant with values in the range 0.6—0.8, consistent with previous studies (Donzis,
Sreenivasan & Yeung 2005), indicating the scalar is being forced at approximately the
same scale as the velocity. Additional details on the numerical method can be found
in Donzis & Sajeev (2024). Conditions for the present simulations are summarised in
table 1.
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Sc P (R)) Distribution
0.25,0.5,0.75, 1.0 0.1 (186), 0.3 (145), 0.5 (133), 0.9 (136), 1.0 (141) U
0.005(135), 0.1 (118), 0.3 (133), 0.5 (132), 0.9 (136), 1.0 (141) \'%
0.25,0.5,0.75, 1.0 0.1 (239), 0.3 (207), 0.5 (212), 0.9 (221), 1.0 (231) U
0.005(186), 0.1 (192), 0.3 (199), 0.5 (213), 0.9 (228), 1.0 (231) \'%
0.25,0.5,0.75, 1.0 0.1 (272), 0.3 (326), 0.5 (331), 0.9 (367), 1.0 (374) U
0.005(314), 0.1 (302), 0.3 (331), 0.5 (340), 0.9 (374), 1.0 (374) v

Table 1. Simulation conditions.
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Figure 1. Compensated scalar spectrum for (a) Sc¢ = 0.25, (b) Sc = 1.0. Spectra corresponding to P, =0.1
and P, = 0.3 are displaced by a factor of 10 and 100, respectively, for ease of visualisation.

3. Results

To assess the effect of velocity fields obeying NS only for a fraction of modes, we compare
single- and two-point statistics from SES (P, < 1) and DNS (P = 1).

3.1. Scalar spectrum

The scalar spectrum is defined such that, fooo Eg(k)dk = (02). In the inertial-
convective range (roughly between the integral length scale for the scalar Ly and the
Obukhov—Corrsin length scale noc, that is, 1/Lg <k < 1/noc in wavenumber space),
dimensional arguments yield Eg (k) = Coc(x)(e)~13k=3/3 Here (x) =2D(|VO|?) is the
mean scalar dissipation rate, (€) = v(|Vu|?) the mean energy dissipation rate, and Coc
is the Obukhov—Corrsin constant with a value of approximately 0.67 (Gotoh & Watanabe
2012). The overall shape of the compensated scalar spectrum from SES is consistent with
DNS as seen in figure 1. As expected, higher values of P, result in closer agreement
between SES and DNS results. The V distribution, which resolves more velocity modes at
the large scales shows better agreement with DNS compared with the U distribution, which
resolves more small-scale activity. There is no observable Sc effect on these results. As
shown later, the differences between U and V distributions (such as the value of Cp¢) can
be ascribed to differences in the driving mechanism for the scalar.
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Figure 2. Mixed-structure functions for Sc =1, P, =0.3 (a) Sc=1, P, =0.1 (b) and Sc=1, P, =0.005
(c), and Sc =0.25, P, =0.005 (f). The horizontal line corresponds to 2/3. Forcing term [ in (3.1) for Sc =1
and P, =0.3 (d) and P, =0.1 (e).

3.2. Structure functions

A particularly important result for scalar mixing can be obtained from the Kirman—
Howarth equation at high Péclet and Reynolds numbers in the inertial-convective range
where dissipation, forcing and non-stationary effects can be neglected. This, known as
the Yaglom’s relation (Yaglom 1949), can be written as (Aru(A0)%) = —2(x)r/3 where
A0 =0(x+r)—0(x) and A,u =u(x +r)—u(x) where r is the separation along the
direction of u. This is the analogue to the four-fifth law for the velocity field (Kolmogorov
1991). The mixed longitudinal structure function, normalised with (x)r is plotted in
figure 2 (a,b,c) for P, =0.3,0.1,0.005 for Sc =1 and figure 2(f) for P, =0.005 and
Sc =0.25.We see that small and large scales, especially for the V distribution, are closer
to DNS than intermediate scales. This may not be surprising given that at small scales, the
structure function is constrained by its analytical expansion for small separation distances,
and forced scales are not affected by SES in our simulations. As expected, better agreement
between SES and DNS is observed for higher P, for the U distribution. The V distribution,
on the other hand, remains very close to DNS and virtually unaffected by changes in P,
for the range considered here. An increase in R, (and Sc, though to a lesser degree) brings
the SES normalised mixed-structure function closer to 2/3, the theoretical value predicted
by Yaglom’s relation (horizontal line). To understand the origin of the difference between
DNS and SES, we examine the transport equation that leads to the Yaglom relation, and
contains the diffusive and forcing terms (Gotoh & Yeung 2012):

(Aru(A0)2) = —2(x)r/3 + 2D ((A,0)%) /or +T. 3.1)

where 7 represents the effect of forcing and unsteadiness. When divided by (x)r, (3.1)
can be written succinctly as 2/3=—A+ B+ 1 where A is the normalised mixed-
structure function, B is the diffusion term, and / is the non-dimensional Z. For long
time averages in the inertial-convective range, the non-stationary and diffusion terms are
small, making forcing the only other dominant effect (Iyer & Yeung 2014). When forcing is
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negligible in the inertial-convective range, too, we recover Yaglom’s relation, A = —2/3.
In figure 2(d,e) we show this term for SES and DNS, for Sc=1 and P, =0.3,0.1.
We can see that / for SES is different from DNS in the inertial-convective range. Its
higher value for the U distribution and the balance equation (3.1) with D =~ 0 explains
the smaller magnitude of A seen in the other panels of figure 2. On the other hand, / for
the V distribution is almost identical to DNS, resulting in the same magnitude of A in
the other panels of figure 2. The value of this forcing-like effect due to the approximate
nature of unresolved modes naturally increases with the number of these modes. For small
r, a Taylor expansion yields (A,u(A,Q)Z)/((X)r) ~ Sug(r/noc)z/(6«/ﬁx/§) (Yeung,
Xu & Sreenivasan 2002), where the mixed gradient skewness S,¢ represents the rate
of production of x due to the stretching of the scalar field by the turbulent strain field
(Wyngaard 1971). It is negative and expected to approach an asymptotic value at high R,,
though the approach depends on flow details (Tang et al. 2016). In figure 2, both DNS and
SES exhibit the predicted small-scale asymptote (dashed line), though with a vertical shift,
indicating differences in the prefactor to the scaling law.

For scalar structure functions, Kolmogorov—Obukhov—Corrsin (KOC) phenomenology
predicts ((A,0)") ocr™/3 in the inertial-convective range. In particular, for n =2, the
expression becomes ((A,0)%) = C(x)r?/3(e)~'3corresponding to a k—>/3 scaling in
Fourier space. The constant C has a value ~ 1.6 and is proportional to the Obukhov—
Corrsin constant (Coc) from the passive scalar spectrum (Iyer & Yeung 2014). The
compensated second-order structure function is shown in figures 3 (a,d,g.j). The excellent
agreement at small scales for all values of P, is unsurprising given the constraint imposed
by Taylor expansion at the origin, yielding((A,0)%)/((x)r*3(e)™13) =~ (r/noc)*/3 /6.
The effect of P, can be seen at larger », with increasing accuracy on increasing P,. For
both Schmidt numbers, the overall shape of the structure function is consistent with DNS
though some differences are seen in its normalised value in the inertial-convective range,
which is larger for SES, especially for the U distribution. This, and the other observations
in this section, can be explained as resulting from a distributed forcing originating from
the SES modes. This force, (through Z) stirs the scalar and also explains differences in the
velocity field (Donzis & Sajeev 2024).

Anisotropy and intermittency cause deviations from KOC predictions and are
usually assessed via normalised high-order moments of increments: (1) = ((A,0)")/
((A,6)%)"/2. Non-universal and anisotropic signatures can be intuitively predicted for
scalars forced with a mean gradient g for which one can obtain, using dimensional
arguments, a relation between odd and even moments: ((Are)Z"“) x(g- r)((ArG)Z”) X
r2"/3+1 in the inertial-convective range (Celani ef al. 2001). In homogeneous flows, odd-
order structure functions (and thus g (r)) vanish at large r. For small r, jj(r) tends to the
normalised moments of scalar gradients (more later).The skewness of scalar increments,
u3 (r), is shown in figure 3 (b,e,h.k). The DNS and SES curves approach a non-zero
asymptote at small », indicating a persistent anisotropy, expected for anisotropic forcing
(Warhaft 2000). While SES values are lower than DNS for the U distribution, results for
the V distribution show much smaller deviations from DNS as seen in figure 3(b,e). As
expected, increasing P, reduces these deviations. At intermediate r, we see differences in
the shape of Mg (r) for different cases which is unsurprising given the differences in the
stirring mechanism for each case (Donzis & Sajeev 2024). At large scales, as expected,
ug (r) tends to zero. In general, V cases are closer to the DNS than U cases since the
stirring mechanism itself (Z in (3.1)) is closer to DNS given the relatively larger fraction
of low wavenumber modes that are evolved according to NS dynamics for V distributions.

Removing even a small fraction of modes from the dynamics of turbulence (as in
decimation approaches (Lanotte et al. 2015)) has been shown to drastically quench
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Figure 3. Structure functions. (a—) Sc =1, P, =0.3, (d-f) Sc=1, P, =0.1, (g-i) Sc =1, P. =0.005, (j-I)
Sc=0.25, P =0.005. The green horizontal line in flatness plots correspond to 3.

intermittency. The SES velocity fields, on the other hand, remain intermittent even with
just 10 % of NS modes (Donzis & Sajeev 2024). The effect on intermittency can be
assessed from high-order structure functions, with order four shown in figure 3(c.f,i./).
For small r, ,ug (r) tends to the scalar gradient flatness and is seen to be greater than 3,
indicating non-Gaussian intermittent behaviour. As the separation increases, ug (r) falls
to three as large scales become Gaussian. SES is able to retain this at small and large r.
There is remarkable agreement for U and V distributions for as low as 10 % and 0.5 %
of modes, respectively, indicating that intermittency characteristics for scalars are not lost
even when very few velocity modes obey strict NS dynamics. Scalar gradient flatness is
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Figure 4. Moments of parallel scalar gradient, normalised by RYHS)/ 2, for nth order moment. Panels (a,c)

correspond to odd-order moments n = 3, 5 and (d,e) correspond to even-order moment n = 4.

known to depend on R, but is independent of Schmidt number for large Sc (Buaria et al.
2021). Since R, varies between simulations and the deviations could be an R, effect, we
compare moments appropriately normalised with R, in the next section. On comparing
normalised odd and even structure functions for the same P,, R and Sc, we see that the
even moments show better agreement with DNS. Since the stirring mechanism is different,
this is not surprising, as some degree of universality has been observed in normalised even-
order moments irrespective of the forcing technique (Gotoh & Watanabe 2015). Odd-order
moments, on the other hand, have a stronger dependence on forcing.

In summary, we see that, overall, to capture two-point statistics over the entire range of
scales only a fraction of NS modes in the advecting velocity field appear to be necessary.
Differences with DNS are explained by an additional distributed forcing due to SES
modes.

3.3. Scalar gradient moments

Universality posits that small-scale properties such as gradients be statistically isotropic,
regardless of the large scales. However, anisotropically forced passive scalar fields, such
as those here with a mean scalar gradient g, remain anisotropic even at small scales.
This anomalous behaviour is due to the presence of ‘ramp—cliff” structures (Sreenivasan
2019) which only form along the gradient. It is therefore common to study statistics of
the scalar derivative along g (typically termed the parallel scalar gradient, V0) separate
from the other directions. Small-scale anisotropy is typically observed by non-zero values
of odd-order moments of V0. Experimental and numerical data have shown that the
skewness of V6 remains O(1) at high Reynolds numbers (Shete et al. 2022). This was
observed even for Gaussian velocity fields, indicating scalar anisotropy does not originate
from characteristics of the velocity field (Holzer & Siggia 1994). Standardised odd-order
moments of parallel scalar gradients, o, = ((V6)")/ ((V||9)2)”/ 2. have been found to
scale with Ry and Sc as a power law for Sc > 1, with values decreasing with Sc for
a fixed R,. Since Sc <1 here, a power law in Sc may not be discerned. As shown by
Sreenivasan (2019); Buaria et al. (2021), these moments present more universal behaviour
when normalised by R,"~¥/2. Odd-order moments are shown in figure 4 for SES and
DNS for different P, and distributions. A slight but systematic trend with P, can be seen
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Figure 5. The PDF of normalised parallel scalar gradient Z = V0 (a,b) and normalised scalar fluctuations
(c,d). Colour lines correspond to SES U (= = =), SES V (-.-.) and DNS ( ). A Gaussian (dashed black line)
is also included for reference.

for the U distribution (blue and red symbols in figure 4a,c). In particular we see a reduction
in the magnitude of odd-order moments when P, decreases, indicating a reduction in
anisotropy for fixed Sc. The V distribution, on the other hand, is very close to DNS even
with as low as 0.5 % resolved modes. The SES results seem to be independent of Sc for
the range considered here.

A flatness factor (04) greater than 3, is indicative of non-Gaussianity and intermittency.
From figure 4, we can see that SES moments are consistent with DNS again even with
P, =0.005. Since intermittency is stronger for parallel gradients, they provide a more
stringent challenge for SES. We have indeed verified with our data that transverse gradients
are better resolved and, therefore, not shown here.

3.4. Probability density functions (PDFs)

From normalised moments, we just concluded that the parallel scalar gradient is both
anisotropic and intermittent. A more complete picture of the statistical behaviour of
gradients can be obtained from their PDF. In figure 5(a,b) we show this PDF for R ~ 400
and Sc=0.25,1 for SES and DNS along with a Gaussian for comparison. Both the
asymmetry and fat tails of the PDF are captured by SES, with just 0.5 % of NS modes. The
SES tails for U distributions (dashed lines) are slightly less asymmetric than that of DNS
(solid line). The V distribution (dashed—dotted lines) performs much better capturing the
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reference the mean scalar gradient g is indicated in (a).

entire PDFs for extremely low P, which suggests that accurate NS dynamics at the large-
velocity scales is necessary to capture mixing at the finest scales. Overall, we see that SES
captures broadly both anisotropy and intermittency with as low as 0.5 % of resolved modes
for low Sc. Two small departures seen in the SES tails (especially for the U distribution)
beyond 10 standard deviations are likely related to statistical convergence, given the
non-systematic trend with P.. Similar behaviour is seen for the PDF of perpendicular
scalar gradients (not included here since, as noted before, are better resolved than parallel
gradients), which are known to be symmetric but less intermittent (Yeung et al. 2002).
The PDF of the scalar fluctuation itself (6) is shown in figure 5(c,d) for DNS and SES
at Ry =400 and Sc =0.25, 1 for different P,.. Since the flow becomes more intermittent
at higher Reynolds number, we only present the PDF at the highest Reynolds number,
R, =400, in our case. The PDFs at lower Reynolds number have similar behaviour and
are hence not shown here.

In the presence of a mean scalar gradient, the PDF of the scalar itself is known
to be approximately Gaussian with subGaussian tails (Gotoh & Watanabe 2012). From
figure 5(c,d), it can be seen that both SES and DNS are close to Gaussian for fluctuations
within two or three standard deviations. The SES tails tends to be wider than DNS but
there is no systematic trend with P,.. The V results have narrower tails which are closer to
DNS and perform slightly better than U results. Because of the well-known sensitivity of
the tails to averaging windows (Watanabe & Gotoh 2004) and the lack of a trend with P,
the differences seen in the far tails appear to be, in part, statistical.

Finally, in figure 6 we show some instantaneous contours of scalar fluctuations in an
x—y plane for DNS, and SES with P, =0.005 for V and P, =0.1 for U. Consistent with
the quantitative assessments presented earlier, the general structure of the scalar field, from
large-scale structures to sharp contrasts over short distances especially in the x direction
(‘ramp-cliffs’), is very well captured in the V simulation (figure 6b) with only 0.5 % of
NS modes. The U field (figure 6¢), on the other hand, presents some visually qualitative
differences especially at the small scales where flow looks smoother than that from DNS.
This is consistent with the smaller flatness factors for scalar gradients observed in figure 4.

4. Discussion

A basic feature of turbulent flows is their wide range of scales, all of which have
traditionally been thought to require obeying strict NS dynamics in order to describe the
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most important features of these flows. If one simply removes scales (typically represented
by Fourier modes) from NS dynamics, a number of high-Reynolds-number features
such as intermittency, disappear. It was recently shown, however, that these features are
conserved when just 10 % of the modes obey NS dynamics while the others evolve
according to trivial dynamics (Donzis & Sajeev 2024) in the so-called SES approach. Here
we show that turbulent mixing also depends on a smaller set of velocity modes stirring a
passive scalar. This was done by detailed comparisons between DNS and SES results for
spectra, structure functions, and statistics of scalar and scalar gradients. For Sc < 1 scalars,
we found that just 0.5 % of appropriately distributed NS modes are sufficient to capture
statistics of scalars and their gradients accurately. This is an interesting result given that
while some universal features for scalars are expected based on classical phenomenology,
theoretical analyses suggest that some features would depend on characteristics of the
advecting velocity field (Kraichnan 1968).

Comparing results from the uniform (U) and variable (V) distributions shed light on
the relative importance of different velocity scales to turbulent mixing and can, thus,
inform modelling approaches. Our results show that V distributions not only yield results
closer to DNS than U distributions for the same P, but can also capture scalar statistics
at much lower values of P.. This includes the energy spectra, structure functions and
scalar gradient PDFs. Differences between the distributions are clear in the PDFs of scalar
gradients where V distribution tails are indistinguishable from DNS. This may appear
counterintuitive at first given that most of the contributions to scalar gradient moments
are from small scalar scales and V distributions resolve more large and intermediate
scales of the velocity field. This highlights the dynamic coupling between large velocity
scales and small scalar scales. A phenomenological explanation of this coupling can be
put forth by considering large velocity scales bringing together scalars of very different
values. If this process happens at a time scale much shorter than diffusive processes, large
scalar gradients are expected to form (Donzis & Yeung 2010), leading to the observed
intermittency for scalar gradients. The V distributions, with greater resolution at the large
advecting scales, are therefore better able to capture the large-scale motions responsible for
such events. Consistent with this view is the finding that the most intense scalar dissipation
events (proportional to the square of scalar gradients) seem to be only weakly related to the
smallest velocity scales where velocity gradients are strong (Schumacher, Sreenivasan &
Yeung 2005).

In Donzis & Sajeev (2024) we have shown SES velocity fields obey NS dynamics as
in DNS but with an additional broadband forcing term (Fggs). That is, Upi =0, +
AtL(@t) + Fggs or Upy1 =Uyf pi1+ F gig where i, f n+1 s the velocity field without the
additional broadband forcing and £ (&) represents the right-hand side of the NS equations.
The distributed forcing F g for the velocity field also appears in the scalar equation and
compounds with the mean gradient term (g) to form —g - (@, + F SES) — F SES * ikd.
Many of the observed differences with DNS can be explained by considering the difference
in forcing. These include different values of Coc, and the different trend towards the
asymptotic Yaglom’s relation. It can also explain the observed decrease in anisotropy.
The forcing term due to the mean scalar gradient is stronger at large scales, which is better
resolved by the V distribution. As a result, the V distribution captures the anisotropy due
to the forcing with greater accuracy. The U distribution, on the other hand, resolves less
of the large scales, and thus the force, resulting in a reduction in the differences between
directional statistics. This effect is further supported by the fact that reducing P, which
increases the effect of the additional forcing term, led to a reduction in anisotropy for the
U distribution.
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Finally, this work opens up many avenues for further studies. Given the success of SES
in reproducing highly and moderately diffusive scalars (Sc < 1), it is natural to inquire
about SES for weakly diffusive scalars (Sc > 1) for which important processes happen
at subKolmogorov scales. The required distribution and percentage of NS modes in this
regime can provide valuable insights into the dominant velocity scales. Additionally, one
can investigate if the scalar field itself can be evolved using SES. This can especially be
useful for high-Sc scalars whose resolution requirements are even more demanding than
at moderate Sc. Lastly, many practical engineering applications involve scalar mixing in
strained, anisotropic velocity fields where large and intermediate scales play an important
role. A further study could assess the ability of SES to reproduce mixing statistics in such
conditions.
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