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STABILITY ANALYSIS OF
A Jfc-OUT-OF-iV:G REPARABLE SYSTEM

HOUBAOXU1

(Received 2 March, 2006; revised 7 August, 2006)

Abstract

A k-out-of-N:G reparable system with an arbitrarily distributed repair time is studied in
this paper. We translate the system into an Abstract Cauchy Problem (ACP). Analysing the
spectrum of the system operator helps us to prove the well-posedness and the asymptotic
stability of the system.
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1. Introduction

The k-out-of-N:G system works well when at least k of the components work. Several
different aspects of related problems have been investigated, such as in [3-5,9]. Ref-
erence [5] formulated a mathematical model of the h-oul-of-N system with common-
cause shock (CCS) failure and studied the system with the assumption that the repair
time of the failed system was arbitrarily distributed.

To the best of our knowledge, most of the research on the ifc-out-of n :G system only
considers system availability and other reliable indexes. Thus far, researchers have
not considered whether the availability of the system exists; or, if it does, whether the
availability is asymptotically stable. Obviously, it is true when the repair time of the
system is exponentially distributed. However, is it still true or not if the repair time
of the system is arbitrarily distributed? This is still an open question, and completing
the proof of this question is meaningful both in theory and in practice.

In this paper, using C0-semigroup theory and spectral theory, we prove that the
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k-out-of-N:G reparable system with arbitrarily distributed repair time is asymptoti-
cally stable.

The Hille-Yosida theorem in reference [1] and the stability theorem (Theorem 14)
in reference [6] will be used in proving the well-posedness and asymptotic stability of
the system. To be self-contained, let us recall briefly the statement of these results.

THEOREM 1.1. Let A be an operator on a Banach space X. Then A is the generator
of a Co semigroup T(t) if and only if:

(1) A is closed and D(A) is dense in X;
(2) (0, +oo) c p(A) and for all X > 0, \\R(X; A)\\ < l/k.

THEOREM 1.2. Let Xbe a Banach space and T(t) be a uniformly bounded Co-semi-
group. Suppose thatap{A) n ilR = ap(A*) n iR = {0}, and {y e C \ Key > 0, or
y = ia, a ^ 0, a € K} belongs to the resolvent set of A. If the algebraic multiplicity
of 0 in X* is one, then the time-dependent solution of the system strongly converges
to its static solution as t —> oo.

This paper is organised as follows: Section 2 describes the system. Well-posedness
and the asymptotic stability of the system are proved in Sections 3 and 4 respectively.
Section 5 concludes the paper.

2. System description

2.1. The model of a it-out-of-A^:G redundant system The A:-out-of-iV:G reparable
system presented in this paper consists of N > 1 identical units, r > 1 repair facilities
and it requires k, N > k > 1, units to make the system operational. The following
assumptions are associated with the model:

(1) The units in the system can fail individually or due to CCS failures;
(2) The repair rate of a unit when the system is in operation is constant;
(3) The failure rate when i units have failed is denoted by a, and the chance of the

occurrence of such failures is c0;
(4) The failure rate of CCS from state i to state CCS is denoted by d, and the chance

of the occurrence of such failure is C\ with c0 + C\ = 1;
(5) All failures are statistically independent;
(6) The repair time of the system is arbitrarily distributed;
(7) The repaired unit is as good as new.

2.2. Notation We denote by i the number of failed units, where i = 0, 1 , . . . , N — k
and by j the failed state of the system, where j = N — k + 1 means failure of the
system and j = N — k + 2 means failure of the system due to CCS failure. We denote
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by Pi(t) the probability that the system is in state i, i = 0, I, ..., N — k, at time /
and by fXj(x) the repair rate of the repair time when the system is in state j and has
elapsed repair time of x. We denote by p,(x, t) the probability that the failed system
is in state j and has an elapsed repaired time of x. Here Xj are random variables
representing the repair time when the system is in state j , Gj(-) is the distribution
function of Xj, gj(-) is the probability density function of Xj, and Ej(x) is the mean
repair time when the system is in state j and has an elapsed repaired time x. Also a,
is the failure rate of / units failed where the chance of occurrence of such failures is
c0; b is the constant repair rate of a unit; &, is the min(i, r)b and d, is the number of
constant CCS failures from state / to state N — k + 2 where the chance of occurrence
of such failures is ci.

Throughout this paper, we denote

W = max { sup \ij (x) \ < oo,
j [xeR+ J

where f* HJ{T) dx < oo for any x < oo, /0°° /Xj(x) dx = oo.
The transition diagram of the k-out-of-N:G redundant system with r repair facilities

and the presence of chance CCS failures is depicted in Figure 1 below.

FIGURE 1. Transition diagram of the system.

2.3. System formulation The mathematical model associated with Figure 1 can be
expressed as follows:

dpo(t)
dt

N-k+2
f°°
/ Pj(x,t)iXj(x)dx,

j=N-t+\ Jo

(2.1)
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dpi (t)
——— = Cofli_i/J|_i(f) — h,pj(t) + b,+\Pi+i{t),

dpN-k(t)
= CoaN-k^iPN-k-l(t) — tlN-kPN-k(t)!

dt
dPj(x,t) | dPj(x,t) ^

dt dx

where h0 = coao + cxd0 and hn = coan +bn+ cxdn, n = 1, ...N -k.
The boundary conditions are given by

pjv_t+i(O, 0 = coaN-kpN_k(t) and
N-k

[4]

(2.2)

(2.3)

(2.4)

i=0

and the initial values are given by

Po(0) = 1, Pi(0) = 0, Pj(x, 0) = 0,

(2.5)

(2.6)

(2.7)

where i = I,..., N — k and y = N — k+l, N — k + 2. We formulate this model as
;an Abstract Cauchy Problem (ACP) in Banach space. For simplicity, we introduce

A = diag ( ~h0, —hu ..., -hN-k,
\ dx dx

and

))
)

E =

/ 0
co«o

0
0
0

V o
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0
0
0
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0
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0
0
0

0
0

0
0

0
coaN^k_i

0
0

0
0

bN-k
0
0
0

eN-k+l
0

0
0
0
0

0

0
0
0
0 )

w h e r e e , s t a n d s f o r / 0 ° ° -IXJ{X) d x , j = N — k + \ , N — k + 2 . W e t a k e t h e s t a t e
s p a c e X a s f o l l o w s :

X = lye Rw-*+1xL1[0,oo)xL1[0,oo)
N-k N-k+2

H [o,oo)

1=0 j=N-k+l

It is obvious that (X, || • ||) is a Banach space. The domain of the operator A
is D(A) = {p e X | dpj(x)/dx + iXj(x)pj(x) <= Ll[0, oo), pj(x) are absolutely
continuous functions, j — N — k + l, N-k+2, and satisfy pN-k+l(0) = coaN-.kpN-k,
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Then Equations (2.1)-(2.6) can be written as an ACP in the Banach space X as

= (A + E)p(t), t > 0,

= ( l 0 0) ( 2 ' 8 )

P(t) = (po(0, pi(t),..., pN-k(t), pN_k+l(x, t), pN-k+2(x, t)).

3. Well-posedness of the system

In Section 2, we formulated the system as an ACP (see Equation (2.8)). Obviously,
if we can prove that the system operator (A + E) generates a C0-semigroup, we can
deduce that the ACP has a unique solution [2]. We begin with proving the following
propositions.

THEOREM 3.1. The operator A + E generates a Co-semigroup T(t).

PROOF. It can be checked that the operator E is bounded. By perturbation the-
ory [2], we know that if the operator A generates a C0-semigroup, then A + E will
generate a Co-semigroup. Thus, by Theorem 1.1, we only need to prove: ( l ) y G p(A)
and ||(yl - A)~l\\ < 1/y when y > 0, and (2) D(A) is dense in X.

( l ) y G p ( A ) a n d | | ( y / - A ) - 1 | | < l /y when y > 0.
For any y = (y0, ..., yN^k, yN_k+l(x), yN_k+2(x)) 6 X, consider the equation

{yl — A)p = y, that is,

(y + h,)Pi = y,, (3.1)

d-Ej^- = -(Y + Hj(x))Pj(x) + yj(x), (3.2)

N-k

pN-k+l(0) = coaN_kpN-k, pN-k+2(0) = ^Ctdip,, (3.3)
i=0

where i = 0, 1 , . . . , N - k and j = N - k + 1, ,/V - k + 2. Solving (3.1)-(3.2) with
the help of (3.3), we can obtain that

_

where i =0,1, ..., N — k and j = N — k + 1, N — k + 2. By the Fubini theorem,
we have

N-k N-k+2

1=0 j=N-k+\
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N-k N-k+2

,=0

N-k+2 , -oo go -oo ,

Z l^(°)l / e'^dx+ \yj(r)\dr e~^^dx\
j=N-k+l I Jo J° J* >

<-\\y\\- (3-4)
Y

Equation (3.4) shows that (y I - A)"1 : X ->• X exists and \\(yl - A)~l \\ < l/y when
y > 0.

(2) The domain D(A) is dense in X.
If we set L = {(p0, ..., pN-k, pN-k+i(x), pN_k+2(x)) | pj(x) 6 C£°[0, oo), and

there exist numbers c, such that py(x) = 0, JC € [0, c,], j = N — k + I, N — k + 2},
it is obvious that L is dense in X. So it suffices to prove that D{A) is dense in L.

Take p e L. Then there are c, > 0, such that Pj(x) = 0, x e [0, c,], 7 =
Af-fc + 1, N-k + 2. It follows that p;(*) = O,JC € [0, 2s], where 0 < 2s < min{c;}.
Set

( ^
= I Po, Pi, • • •» PN-k, coaN-kpN-k, 2_^

\ i=0

fS(x) = (po, Pi, . . . , PAT-J, /^_i+1(jc), /£_ t +

— x/s)2, x e [0, s

— s)2(x — 2s)2, x e [s, 2

where j = N-k +I, N-k + 2 and

f](0)f°H,(x)(l-x/s)2dx

• s)2(x — 2s)2 dx

Then it is easy to verify that fs(x) e D(A), moreover

N-.

IIP " / '

. 2 ,

/ \PjM-fj(x)\dx
J=N-k+l J°

N-k+2
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This shows that D(A) is dense in L. In other words, D(A) is dense in X.
So, the operator A generates a C0-semigroup. And it is easy to check that

E:X-*X, \\E\\<max[coao,coat+b,,bN-k,W}, i = 1 , . . . AT-* - 1

is a bounded linear operator (here, W = sup^,^ /Aj(x), j = N — k + I, N — k + 2).
Thus A + E generates a C0-semigroup T(t). •

Further, in order to reflect the physical meaning of the solution of the ACP, we
introduce the following theorem.

THEOREM 3.2. T(t) is a positive Co-semigroup of contraction.

PROOF. (1) T(t) is a positive Co-semigroup.
By the solution of Equations (3.1)—(3.3), we know that p is a nonnegative vector

if y is a nonnegative vector. In other words, (yl — A)"1 is a positive operator. It is
simple to show that £ is a positive operator. Note that

(yl-A- £)"' = [/ - (yl - A)-lE]-l(yI - A)"1. (3.5)

When y > max{coao, coa, + bt, bN_k, W], it follows from Equation (3.4) that
\\(yl - A)~lE\\ < 1. So, [/ - (yl - A)-1^]-1 exists and is bounded and

- A)-'£]*. (3.6)

Therefore [I — (y I — A)~l £ ] " ' is a positive operator. By Equations (3.5) and (3.6) we
get that (y I — A — E)~l is a positive operator. By [2], we know that A + E generates
a positive C0-semigroup.

(2) T(t) is a positive C0-semigroup of contraction.
For any p e D(A), we take

= ([I^L [El£ [pN~k]+ [/?"-*+• (*)]+ lPn-k+i(x)]
V PO Pi PN-k pN-k+l(x) pN-k+2(x)

Here

1+ = \Pi' Pi>°' =0 1
"10, P0<0,

r j = N-k + l,N-k
0, Pj(x)<0,
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For any p e D(A) and Qp, we have

I N-k+2

-

N-k-\ f 1 +

{coa,-iA-i - hi pi +bl+1pi+l}—L—
P

-t-
PN-k

Af—Jt—1

N-k

— yjcirf,-[p/]+ = 0. (3.7)
i=O

From the definition of a dissipative operator and (3.7), we know that (A + E) is a
dissipative operator. By Philips theory [2], we derive that (A + E) generates a positive
Co-semigroup of contraction. Because a C0-semigroup is unique [8], we know this
positive contraction C0-semigroup is just T(t). •

THEOREM 3.3. The system (2.1)-(2.7) has a unique nonnegative time-dependent
solution p(x, t), which satisfies ||p(-, t)\\ = \, t e [0, oo).

PROOF. From Theorem 3.2 and reference [8], we know that the system (2.1)-(2.7)
has a unique nonnegative solution p(x,t) and it can be expressed as

p(jc,O = 7(0(1, 0 . . . . . 0 ) . (3.8)

By Theorem 3.2 and Equation (3.8) we obtain that

||p(-, Oil = 117(0(1, 0 , . . . . 0)11 < 11(1,0,.... 0)|| = 1, te [0, oo).

On the other hand, since (1, 0 , . . . , 0) e X, so p(x, t) e D(A + E), and pj(x, t),
j = N — k + 1, N — & + 2 i s a mild solution of the system and satisfies system
(2.1M2.7). Then we have

J N~k J f*\ N-k+2
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Hence || p ( , f)ll = ll/>(0)ll = 1. Thisjust reflects the physical meaning of p{x, t). •

4. Stability analysis of the system

In this section, we systematically study the stability of the k-out-of-N:G reparable
system. We will prove that there exists a nonnegative steady solution of the system,
and the time-dependent solution converges to this solution when time t tends to infinity.
Therefore the system is asymptotically stable. We begin with proving the following
lemmas.

/»OO /»0O

L E M M A 4 . 1 . / e~ % *>ws dx = I xgj(x)dx,for j = N - k+l,N -k + 2.
Jo Jo

PROOF. By [7], we know that

/

OO /»OO

g-̂ MfW* dx= [1 - Gj(x)] dx, (G(0) = 0),
Jo

xgj(x)dx = [°°[1 - Gj(x)]dx, (G(oo) = 1).
Jo

So /0°° e~ fo *>«) d$ dx = /0°° xgj (x)dx, and we complete the proof of Lemma 4.1. D

LEMMA 4.2. There exist K e R, such that /0°° e-£M«d* dx < K.

PROOF. Because the device is reparable when it fails, so the mean of the random
variables Xj, j = N — k + 1, N — k + 2, exists and satisfies

xgj (x)dx= e~ fo ^tt)d| dx.
Jo

So there exist Kj € K, such that E(Xj) < Kj. Let K = ma.xJ=N_k+liN_k+2{Kj}, so
E(Xj) < K, that is, /0°° e~fi ^ W ) ^ dx < K. D

LEMMA 4.3. For any t > 0, /(°° g-XV/«)^ ^ < A"'.

Let G){x) = p{Xj - t < x\Xj >t} = (Gj(x +1) - G,(r))/(1 - Gy(r)), x > 0.
So 1 - G){x) = (1 - G;(JC + r))/(l - Gj(t)), then

xdG'J(x) = J

[°° l-Gj(x + t) [°° 1 - Gj(x)
= J0 1-Gjit) dX =
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dx

/

OO /»0O

e-Kmmus. g/>,®« dx = / e-!;
Here, £ ; (t) means the expected time of the system to be repaired with elapsed repair
time t. The system is reparable however long the elapsed repair time may be. That is,
there exist K'j e R, K'. < oo, such that Ej(t) < K'}. Let

K1 = max {«•;.},
j=N-k+l... ,N-k+\+M J

then for any t, Ej(t) < K', that is, /(°° e - / ' ^ « ' ^ dx < K'.
It is obvious that Lemma 4.2 is a special case of Lemma 4.3.

THEOREM 4.4. 0 is the simple eigenvalue ofA + E.

PROOF. Consider (A + E)p = 0 in terms of the following equations:

N-k+2 oo

/ (4.1)/ iXj(x)pj

l J°

y = O, i = l , . . . , N — k - l , (4.2)

-t-! - hN_kpN_k = 0, (4.3)

j = N-k + l,N-k + 2, (4.4)
dx

N-k
/rv\ „ /f\\ ^ ^ A (A ^\

PN-.k+\\\J) — CoUN—kPN—ki PN—k+2\^) — / C\(*iPi- \*-J)
1=0

Solving (4.1)-(4.4) with the help of (4.5), we obtain that

Pj(x) = pjWe-f^'WS, j = N _k + itN -k + 2. (4.6)

Substitution of (4.6) into (4.1) with the help of (4.2M4.5) yields that

N-k-l

(—ho + C\d(S)Po + (b\ + C\d\)P\ + y CydiPi + (fl/v-* + cl^N-k)PN-k = 0,
1=2

Cofli_iP/-i — h,p, + bj+ipl+\ ^ 0 , J = 1 , . . . , Â  — k — 1,

»-* = 0.

It is easy to check that the determinant coefficient matrix of the above equations
equals 0, and, if p0 > 0, then p, > 0, (i = 1, . . . , N — k). And

Pj(x) = pjOe~f°^dS > 0, j = N -k + l,N-k
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Using Lemma 4.2, we can deduce that pj(x) € L'[0, +co). So the vector

P = (Po, Pi,.-, PN-k, PN-k+iM, pN-k+2(x)) (4.7)

is the eigenvector corresponding to 0 for the system operator (A + E). Taking
Q = (1, 1 , . . . , 1), we have

N-k N-k+2

i=0 j=N-k+]

And for any p e D(A + E), ((A + E)p, Q) = 0. So 0 is the simple eigenvalue of
the system operator (A + E). O

THEOREM 4.5. The set y = {r € C I Rer > 0, or r = ia, a 6 R, a ^ 0}
belongs to the resolvent set of operator A + E.

PROOF. For any r 6 y , solve (A + E)p = y in terms of the following equations:

(r + h0)po — b\P\ — 2_. I lJLji.x)Pji.x)dx — yo, (4.8)

j=N-k+l J°

-c0ai_ipi.i + (r + hl)pl-bi+lp,+i=yi, i = I,..., N - k - I, (4.9)

(r + hN_k)pN-k = yN_k, (4.10)

pN-k+l(0) = coaN_kpN_k, pN_k+2(Q) = YjCxdtPi. (4.12)
i=0

Solving Equations (4.8)-(4.11), with the help of Equations (4.12), we can obtain that

Pj(x) = pj(0)e-£(r+'"«»<'* + [' e-K<r+li><S»dtyj(T)dT.
Jo

For yj(x) € L'[0, oo), combining with Lemma 4.3, we can derive that

dx< r dx
J

\[
o \Jo

<
Jo

= f \yj(r)\d(T) (°°e-i
Jo A
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So, pj(x) e L'[0, oo), j = N - k+l,N - k + 2. Substitution into Equation (4.8)
with the help of Equatons (4.9)-(4.10), yields that

N-k-\

i=2

N-k+2

— (coaN_kgN_k+l + cidN^kgN_k+2)pN_k = y0 + ^ G,, (4.13)
]=N-k+\

-coai-ipi-i + (r+hi)pi-bi+ip,+i = yi, i = 1, . . . , N - k - 1, (4.14)

where /»OO

= / M;(x)e-^
Jo

= f ixj(x)dx f e-f'
Jo Jo

When Rer > 0, or r = ia, a € R, a ^ 0, we have \gj\ > 1. It then follows that the
coefficient matrix of Equations (4.13)—(4.15) is a strictly diagonally dominant matrix.
So Equations (4.13)-(4.15) have a unique solution. Assuming that [p0, p\,..., pN-k}
is the unique solution of (4.13)-(4.15), then {p0, p\,..., pN-k\ and

(4.16)pj(x) = pj(0)e-£lr+llWt+ f

j = N - k + 1, TV - k + 2, is the unique solution of Equations (4.8)-(4.12). So
R(rl — A — E) = X. And because (rl — A — E) is a closed operator, we can deduce
that (rl — A — E)~i exists and is bounded. In other words, S? belongs to the resolvent
set of the system operator A + E. This completes the proof of Theorem 4.5. •

COROLLARY 4.6. System (2.1)-(2.6) has a nonnegative stable solution.

In Theorem 4.5, we proved that all the spectrum of A + E lies in the left half-plane
and there is no spectrum on the imaginary axis except 0. We observe that p in (4.7)
is the eigenvector corresponding to 0 of A + E. It is obvious that p is nonnegative.
Hence p is the nonnegative steady solution of the system.

In the same manner as that used above, we can easily prove that ap ((A+£)*)n/ K =
{0} and the algebraic multiplicity of 0 in X* is one. Due to space limitations, we do
not give the proofs.
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THEOREM 4.7. Let p be the nonnegative eigenvector corresponding to 0 which
satisfies \\p\\ = 1. Let Q = ( 1 , . . . , 1), then the time-dependent solution p(-, t) of the
system tends to the steady solution p:

\imp(-,t) = (po, Q)p = p,
r->oo

where po is the initial value of the system.

By Theorem 1.2, we know that Theorem 4.7 holds. Thus we proved that p, the
eigenvector corresponding to 0 of the system operator A+E, is the unique nonnegative
steady solution of this k — out — of — N:G system, and lim,.^ p(-, t) = p.

5. Concluding remarks

This paper introduced and analysed the well-posedness and the asymptotic stability
of a k-out-of-N:G reparable system with CCS failure. We used a C0-semigroup to
prove the main results. This paper provides a strict mathematic proof for reliability of
a &-out-of-yV:G reparable system.

In this paper, we also point out that the system has a unique non-negative stable
solution, which is just the eigenvector corresponding to 0 of the system operator
(A + E). Furthermore, the normalisation of this eigenvector is just the steady-state
availability of the system.
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