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On Hodge Theory of Singular Plane Curves

Nancy Abdallah

Abstract. _e dimensions of the graded quotients of the cohomology of a plane curve complement
U = P2 ∖ C with respect to the Hodge ûltration are described in terms of simple geometrical in-
variants. _e case of curves with ordinary singularities is discussed in detail. We also give a precise
numerical estimate for the diòerence between the Hodge ûltration and the pole order ûltration on
H2(U ,C).

1 Introduction

_e Hodge theory of the complement of projective hypersurfaces has receivedmuch
attention; see, for instance,Griõths [10] in the smooth case, andDimca–Saito [5] and
Sernesi [13] in the singular case. In this paper we consider the case of plane curves
and continue the study initiated by Dimca–Sticlaru [7] in the nodal case and by the
author [1] in the case of plane curves with ordinary singularities ofmultiplicity up to
3.

In the second sectionwe compute theHodge–Deligne polynomial of a plane curve
C, the irreducible case in Proposition 2.1 and the reducible case in Proposition 2.2.
Using this we determine the Hodge–Deligne polynomial of U = P2 ∖ C and then
deduce in_eorem 2.7 the dimensions of the graded quotients ofH2(U)with respect
to theHodge ûltration.

In Section 3we consider the case of arrangements of curves having ordinary singu-
larities and intersecting transversely at smooth points. We obtain a formula in _e-
orem 3.1 generalizing the formulas obtained in [7] and in [1] (for these curves). In
fact, the results in [1] show that this formula holds in the more general case of plane
curveswith ordinary singularities ofmultiplicity up to 3 (without assuming transverse
intersection).

In the fourth section we show that the case of plane curves with ordinary singu-
larities ofmultiplicity up to 4 (without assuming transverse intersection) is deûnitely
more complicated, and the formula in _eorem 3.1 has to be replaced by the formula
in _eorem 4.1 containing a correction term coming from triple points on one com-
ponent through which another component of C passes.

In the ûnal section we state and prove our main result, _eorem 5.1, which ex-
presses the diòerence between the Hodge ûltration and the pole order ûltration on
H2(U ,C) in terms of numerical invariants easy to compute in given situations. An
example involving a free divisor concludes this note.
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2 Hodge Theory of Plane Curve Complements

For the general theory of mixed Hodge structures we refer to [2, 15]. Recall the deû-
nition of theHodge–Deligne polynomial of a quasi-projective complex variety X:

P(X)(u, v) =∑
p,q
E p,q

(X)upvq ,

where E p,q(X) = ∑s(−1)shp,q(Hs
c(X)), with

hp,q(Hs
c(X)) = dimGrp

FGrWp+qH
s
c(X ,C),

themixedHodge numbers of Hs
c(X).

_is polynomial is additive with respect to constructible partitions, i.e., P(X) =

P(X ∖ Y) + P(Y) for a closed subvariety Y of X. In this section we determine P(C)
for a (reduced) plane curve C.

Suppose ûrst that the curveC is irreducible, of degreeN . Denote by ak , k = 1, . . . , p
the singular points of C, and let r(C , ak) be the number of irreducible branches of the
germ (C , ak). Let ν∶ C̃ → C be the normalization mapping. Using the normalization
map ν and the additivity of theHodge–Deligne polynomial, it follows that

P(C)(u, v) = P(C/(C)sing) + P((C)sing) = P( C̃/(∪kν−1
(ak)) + p

= P(C̃) −∑
k

P(ν−1
(ak)) + p = uv − gu − gv + 1 −∑

k
( r(C , ak) − 1) .

Indeed, it is known that for the smooth curve C̃, the genus g = g(C̃) is exactly the
Hodge number h1,0(C̃) = h0,1(C̃). Moreover, it is known that one has the formula

(2.1) g =
(N − 1)(N − 2)

2
−∑

k
δ(C , ak),

relating the genus, the degree and the local singularities of C, and the δ-invariants can
be computed using the formula

(2.2) 2δ(C , ak) = µ(C , ak) + r(C , ak) − 1,

where µ(C , ak) is the Milnor number of the singularity (C , ak). For both formulas
above, see [11, p. 85]. _is proves the following result.

Proposition 2.1 With the above notation and assumptions, we have the following for
an irreducible plane curve C ⊂ P2.
(i) _e Hodge–Deligne polynomial of C is given by

P(C)(u, v) = uv − gu − gv + 1 −∑
k
( r(C , ak) − 1) ,

with g given by the formula (2.1).
(ii) H0(C) = C is pure of type (0, 0).
(iii) H2(C) = C is pure of type (1, 1).
(iv) _emixed Hodge numbers of theMHS on H1(C) are given by

h0,0(H1
(C)) =∑

k
( r(C , ak) − 1) , h1,0(H1

(C)) = h0,1(H1
(C)) = g .
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In particular, one has the following formulas for the ûrst Betti number of C:

b1(C) =∑
k
( r(C , ak) − 1) + 2g = (N − 1)(N − 2) −∑

k
µ(C , ak).

Now we consider the case of a curve C having several irreducible components.
More precisely, let C = ⋃

r
j=1 C j be the decomposition of C as a union of irreducible

components C j , let ν j ∶ C̃ j → C j be the normalization mappings, and set g j = g(C̃ j).
Suppose that the curve C j has degree N j , denote by a j

k for k = 1, . . . , p j the singular
points of C j , and let r(C j , a j

k) be the number of branches of the germ (C j , a j
k). _en

the formulas (2.1) and (2.2) can be applied to each irreducible curve C j as well as
Proposition 2.1.

Let A be the union of the singular sets of the curves C j . Let B be the set of points
in C sitting on at least two distinct components C i and C j . For b ∈ B, let n(b) be the
number of irreducible components C j passing through b. By deûnition, n(b) ≥ 2.
Moreover, note that the sets A and B are not disjoint in general, and their union is
precisely the singular set of C.

Using the additivity ofHodge–Deligne polynomials we get

P(C) = P(C1 ∪ ⋅ ⋅ ⋅ ∪ Cr) =
r

∑
j=1

P(C j) + ∑
0≤i1<⋅⋅⋅<i l≤r

(−1)l−1P(C i1 ∩ ⋅ ⋅ ⋅ ∩ C i l ).

_e ûrst sum is easy to determine using Proposition 2.1:
r

∑
j=1

P(C j)(u, v) = ruv − (
r

∑
j=1

g j)u − (
r

∑
j=1

g j)v + r −∑
j,k

((r(C j , a j
k) − 1) .

Consider now the alternating sum, where l ≥ 2. _e only points of C that give a
contribution to this sum are the points in B. Now, for a point b ∈ B, its contribution
to the alternating sum is clearly given by

c(b) = −(
n(b)

2
) + (

n(b)
3

) − ⋅ ⋅ ⋅ + (−1)n(b)−1
(
n(b)
n(b)

) = −n(b) + 1.

Proposition 2.2 With the above notation and assumptions, we have the following for
a reducible plane curve C = ⋃

r
j=1 C j .

(i) _e Hodge-Deligne polynomial of C is given by

P(C)(u, v) = ruv − (
r

∑
j=1

g j)u − (
r

∑
j=1

g j)v + r −∑
j,k

((r(C j , a j
k) − 1) −∑

b∈B
(n(b) − 1) .

with g j given by the formula (2.1).
(ii) H0(C) = C is pure of type (0, 0).
(iii) H2(C) = Cr is pure of type (1, 1).
(iv) _emixed Hodge numbers of theMHS on H1(C) are given by

h0,0
(H1

(C)) =∑
j,k

((r(C j , a j
k) − 1) +∑

b∈B
(n(b) − 1) − r + 1,

h1,0
(H1

(C)) = h0,1
(H1

(C)) =
r

∑
j=1

g j .
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In particular, one has the following formula for the ûrst Betti number of C:

b1(C) =∑
j,k

((r(C j , a j
k) − 1) +∑

b∈B
(n(b) − 1) − r + 1 + 2

r

∑
j=1

g j .

Note that a point in the intersection A ∩ B will give a contribution to the last two
sums in the above formula for P(C).

Example 2.3 Suppose C is a nodal curve. _en for each singularity a j
k ∈ A one has

a j
k ∉ B (otherwise we get worse singularities than nodes) and r(a j

k) = 2. Moreover,
each point b ∈ B satisûes n(b) = 2. It follows that in this case we get

P(C)(u, v) = ruv − (
r

∑
j=1

g j)u − (
r

∑
j=1

g j)v + r − n2 ,

with n2 the number of nodes of C. More precisely, in this case we have n2 = n′2 + n′′2 ,
where n′2 (resp. n′′2 ) is the number of nodes of C in A (resp. in B), and one clearly has

n′2 = S1 ∶=∑
j,k

((r(C j , a j
k) − 1) , n′′2 = S2 ∶= ∑

b∈B
(n(b) − 1).

Example 2.4 Suppose C has only nodes and ordinary triple points as singularities.
_en let n3 be the number of triple points and note that we can write, as above, n3 =

n′3 + n′′3 , where n′3 (resp. n′′3 ) is the number of triple points of C in A0 = A∖ B (resp.
in B). For a point a ∈ A0, the contribution to the sum S1 is 2, while the contribution
to the sum S2 is 0.
A point b ∈ B can be of two types. _e ûrst type, corresponding to the partition

3 = 1+ 1+ 1, iswhen b is the intersection of three components C j , all smooth at b. _e
contribution of such a point b is 0 to the sum S1 and 2 to the sum S2.

_e second type, corresponding to the partition 3 = 2+ 1, iswhen b is the intersec-
tion of two components, say C i and C j , such that C i has a node at b, and C j is smooth
at b. _e contribution of such a point b is 1 to the sum S1 and 1 to the sum S2.

It follows that the contribution of any triple point to the sum S1 + S2 is equal to 2.
Since the double points in C can be treated exactly as in Example 2.3, this yields the
following:

P(C)(u, v) = ruv − (
r

∑
j=1

g j)u − (
r

∑
j=1

g j)v + r − n2 − 2n3 .

When there are only triple points in B of the ûrst type,we obviously have the following
additional relations

S1 = n′2 + 2n′3 , S2 = n′′2 + 2n′′3 .

Example 2.5 Suppose C has only ordinary points of multiplicity 2, 3, and 4 as
singularities. _en let n4 be the number of points of multiplicity 4 and note that
we can write, as above, n4 = n′4 + n′′4 , where n′4 (resp. n′′4 ) is the number of points of
multiplicity 4 of C in A0 = A∖ B (resp. in B). For a point a ∈ A0 ofmultiplicity 4, the
contribution to the sum S1 is 3, while the contribution to the sum S2 is 0.
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A point b ∈ B can be of 4 types. _e ûrst type, corresponding to the partition
4 = 1+ 1+ 1+ 1, is when b is the intersection of 4 components C j , all smooth at b. _e
contribution of such a point b is 0 to the sum S1 and 3 to the sum S2.

_e second type, corresponding to the partition 4 = 2 + 1 + 1, is when b is the
intersection of 3 components, say C i , C j , and Ck , such that C i has a node at b, and C j
and Ck are smooth at b. _e contribution of such a point b is 1 to the sum S1 and 2 to
the sum S2.

_e third type, corresponding to the partition 4 = 2 + 2, is when b is the inter-
section of 2 components, say C i and Ck , such that C i and Ck have a node at b. _e
contribution of such a point b is 2 to the sum S1 and 1 to the sum S2.

_e fourth type, corresponding to the partition 4 = 3+ 1, is when b is the intersec-
tion of 2 components, say C i and Ck , such that C i has a triple point at b, and Ck is
smooth at b. _e contribution of such a point b is 2 to the sum S1 and 1 to the sum S2.

It follows that the contribution of any point of multiplicity 4 to the sum S1 + S2
is equal to 3. Since the double and triple points in C can be treated exactly as in
Example 2.4, this yields the following:

P(C)(u, v) = ruv − (
r

∑
j=1

g j)u − (
r

∑
j=1

g j)v + r − n2 − 2n3 − 3n4 .

When there are only points ofmultiplicity 4 in B of the ûrst type, then we obviously
have the following additional relations

S1 = n′2 + 2n′3 + 3n′′4 , S2 = n′′2 + 2n′′3 + 3n′′4 .

Let us look now at the cohomology of the smooth surface U = P2 ∖ C. By the
additivity we get P(U) = P(P2)− P(C), where P(P2) = u2v2 +uv + 1. _is yields the
following consequence.

Corollary 2.6

P(U)(u, v) = u2v2
− (r − 1)uv + (

r

∑
j=1

g j)u + (
r

∑
j=1

g j)v − (r − 1)

+∑
j,k

((r(C j , a j
k) − 1) +∑

b∈B
(n(b) − 1).

_e contribution of H4
c (U ,C) to P(U) is the term u2v2, and that of H3

c(U ,C) is
the term −(r − 1)uv. Moreover, the dimension dimGr1FH

2(U ,C) is the number of
independent classes of type (1,2),which correspond to classes of type (1, 0) in H2

c(U),
and hence to the terms in u in P(U). For both statements see the proof of [1,_eorem
2.1]. _is proves the following result.

_eorem 2.7

dimGr1FH
2
(U ,C) =

r

∑
j=1

g j
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and

dimGr2FH
2
(U ,C) =

r

∑
j=1

g j +∑
j,k

((r(C j , a j
k) − 1) +∑

b∈B
(n(b) − 1) − r + 1.

In particular, all the components C j of the curve C are rational if and only if H2(U) is
pure of type (2, 2).

Example 2.8 Suppose C has only ordinary points of multiplicity 2, 3, and 4 as
singularities. Let nk be the number of points of multiplicity k, for k = 2, 3, 4; then
using Example 2.5, we get the formula

dimGr2FH
2
(U ,C) =

r

∑
j=1

g j − r + 1 + n2 + 2n3 + 3n4 .

3 Arrangements of Transversely Intersecting Curves

Recall that C = ⋃
r
j=1 C j is the decomposition of C as a union of irreducible compo-

nents C j , and the curve C j has degree N j . In this section we assume that any curve
C j has only ordinarymultiple points as singularities and let nk(C j) be the number of
ordinary points on C j of multiplicity k. We also assume that the intersection of any
two distinct components C i and C j is transverse, i.e., the points in C i ∩ C j are nodes
of the curve C i ∪C j . _is implies in particular that A∩B = ∅. _e formulas (2.1) and
(2.2) yield the equality.

g j =
(N j − 1)(N j − 2)

2
−

1
2∑k

( µ(C j , a j
k) + r(C , a j

k) − 1) .

Using this,_eorem 2.7 gives the formula

dimGr2FH
2
(U ,C) =

r

∑
j=1

(N j − 1)(N j − 2)
2

−
1
2∑j,k

( µ(C j , a j
k) − r(C , a j

k) + 1)

+∑
b∈B

(n(b) − 1) − r + 1.

If a j
k is an ordinary m-multiple point on the curve C j , one has µ(C j , a j

k) = (m − 1)2,
and hence

µ(C j , a j
k) − r(C , a j

k) + 1 = (m − 1)(m − 2).
If we denote by n′m (resp. n′′m) the number of m-multiple points of C coming from
just one component C j (resp. from the intersection of several components C j),we see
that we have

∑
j,k

( µ(C j , a j
k) − r(C , a j

k) + 1) =∑
m
(m − 1)(m − 2)n′m .

_is equality explains the contribution of the points in A. Now let b ∈ B such that
n(b) = m. _e number of such points is precisely n′′m . It follows that

∑
b∈B

(n(b) − 1) =∑
m
(m − 1)n′′m .
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Let 1 ≤ i < j ≤ r and consider the intersection C i ∩ C j . It contains exactly N iN j
points, since C i and C j intersects transversely. _e sum S = ∑1≤i< j≤r N iN j represents
the number of all such intersection points. Note that a point b ∈ B is counted in this
sum exactly (

n(b)
2 ) times. _is yields the formula

2S =∑
m

m(m − 1)n′′m .

_ese formulas give the following result.

_eorem 3.1 With the above assumptions and notation, one has

dimGr2FH
2
(U ,C) =

(N − 1)(N − 2)
2

−∑
m

(
m − 1

2
)nm ,

with nm = n′m + n′′m the number of ordinary m-tuple points of C.

_e following consequence of _eorems 2.7 and 3.1 applies in particular to any
projective line arrangement.

Corollary 3.2 Assume that C = ⋃
r
j=1 C j is the decomposition of C as a union of ir-

reducible components C j , with any curve C j having only ordinary multiple points as
singularities and being rational, i.e., g j = 0. If the intersection of any two distinct com-
ponents C i and C j is transverse, i.e., the points in C i ∩C j are nodes of the curve C i ∪C j ,
then one has

dimH2
(U ,C) =

(N − 1)(N − 2)
2

−∑
m

(
m − 1

2
)nm ,

with nm the number of ordinary m-tuple points of C.

4 Curves with Ordinary Singularities of Multiplicity ≤ 4

Let C ⊂ P2 be a curve of degree N having only ordinary singular points ofmultiplicity
atmost 4. SetU = P2∖C, and let C = ∪r

j=1C j be the decomposition of C in irreducible
components. _en

P(C) =
r

∑
j=1

P(C j) − ∑
0≤i< j≤r

P(C i ∩ C j) + ∑
0≤i< j<k≤r

P(C i ∩ C j ∩ Ck)

− ∑
0≤i< j<k<l≤r

P(C i ∩ C j ∩ Ck ∩ C l).

Let a j
m denote the number of singular points ofmultiplicitym that belong to the com-

ponentC j (note that a point can be singular on two components, being a node on each
of them).
Denote by bk

3 (resp. bk
4 ) the number of triple points (resp. points ofmultiplicity 4)

of C that are intersection of exactly k components, for k = 2, 3 (respectively k = 3, 4).
Let b2

4 (resp. b̃2
4) be the number of singular points p ofmultiplicity 4 in C representing

the intersection of exactly 2 components, such that one of which has a triple point at
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p (resp. each one has a node at p). _en one has

∑
0≤i< j≤r

P(C i ∩ C j) = ∑
0≤i< j≤r

N iN j − b2
3 − 3b̃2

4 − 2b2
4 − 2b3

4 .

Indeed, a point of type b2
3 (resp. b2

4, resp. b̃2
4) occurs only in one intersection C i ∩ C j

and has the multiplicity 2 (resp. 3, resp. 4) in this intersection. A point of type b3
4

occurs in 3 intersections C i ∩ C j with multiplicities 1, 2, 2, and this accounts for the
correction term −2b3

4. _en one has

∑
0≤i< j<k≤r

P(C i ∩ C j ∩ Ck) = b3
3 + b

3
4 + (

4
3
)b4

4

and
∑

0≤i< j<k<l≤r
P(C i ∩ C j ∩ Ck ∩ C l) = b4

4 .

Hence, by Proposition 2.1, we get the following:

P(C)(u, v) = ruv − (
r

∑
j=1

g j)u − (
r

∑
j=1

g j)v −
r

∑
j=1

(a j
2 + 2a j

3 + 3a j
4) −∑N iN j

+ b2
3 + 3b̃2

4 + 2b2
4 + 3b3

4 + b
3
3 + 3b4

4 .

_erefore, as above, we obtain

P(U)(u, v) = u2v2
− (r − 1)uv + 1− r + (

r

∑
j=1

g j)u + (
r

∑
j=1

g j)v +
r

∑
j=1

(a j
2 + 3a j

3 + 6a j
4)

−
r

∑
j=1

(a j
3 + 3a j

4) +∑N iN j − b2
3 − 3b̃2

4 − 2b2
4 − 3b3

4 − b
3
3 − 3b4

4 .

Finally, we get

dimGr2FH
2
(U) =

r

∑
j=1

(g j + a
j
2 + 3a j

3 + 6a j
4 − 1) +∑N iN j + 1 − (

r

∑
j=1
a j
3 + b

2
3 + b

3
3)

− 3(
r

∑
j=1
a j
4 + b̃2

4 + b
2
4 + b

3
4 + b

4
4) + b

2
4

=
(N − 1)(N − 2)

2
− n3 − 3n4 + b2

4 ,

with nm the number of ordinary m-tuple points of C.

_eorem 4.1 Let C ⊂ P2 be a curve of degree N having only ordinary singular points
ofmultiplicity at most 4. If U = P2 ∖ C, then one has

dimGr2FH
2
(U ,C) =

(N − 1)(N − 2)
2

−
4

∑
m=3

(
m − 1

2
)nm + b2

4 ,

with nm the number of ordinary m-tuple points of C and b2
4 the number of singular

points p of C that are smooth on one component C i of C and havemultiplicity 3 on the
other component C j of C passing through p.
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5 Pole Order Filtration Versus Hodge Filtration for Plane Curve
Complements

For any hypersurface V in a projective space Pn , the cohomology groups H∗(U ,C)

of the complement U = Pn ∖ V have a pole order ûltration Pk ; see, for instance, [8].
By the work of Deligne, Dimca [3] andM. Saito [12], one has

FkHm
(U ,C) ⊂ PkHm

(U ,C)

for any k and any m. For m = 0 and m = 1, the above inclusions are in fact equalities
(the casem = 0 is obvious and the casem = 1 follows from the equality F 1H1(U ,C) =

H1(U ,C)). For m = 2,we have again that FkH2(U ,C) = PkH2(U ,C) for k = 0, 1 for
obvious reasons, but one can get strict inclusions

F2H2
(U ,C) /= P2H2

(U ,C)

already in the casewhen V = C is a plane curve; see [5], Remark 2.5, or [4]. However,
to give such examples of plane curves was until now rather complicated. We give
below anumerical condition that tells us exactlywhen the above strict inclusion holds.

We ûrst need to recall some basic deûnitions. Let S = ⊕rSr = C[x , y, z] be the
graded ring of polynomials with complex coeõcients, where Sr is the vector space
of homogeneous polynomials of S of degree r. For a homogeneous polynomial f of
degree N , deûne the Jacobian ideal of f to be the ideal J f generated in S by the partial
derivatives fx , fy , fz of f with respect to x, y, and z. _e gradedMilnor algebra of f
is given by

M( f ) =⊕
r

M( f )r = S/J f .

Note that the dimensionsdimM( f )r canbe easily computed in a given situationusing
some computer so�ware e.g., Singular.

Let C ⊂ P2 be the curve deûned by f = 0, and suppose that P is a singular point of
C with local equation g = 0. Deûne the Tjurina number τ(C , P) of C at the point P
by

τ(C , P) = dimC
OP

(g , Jg)
,

where Op is the local ring of germs of regular functions at P and (g , Jg) is the ideal
generated by g and its Jacobian Jg . _e Tjurina number τ(C) of a curve C is given
by the sum of the Tjurina numbers of all the singularities of C. Now we can state the
main result of this section.

_eorem 5.1 Let C ∶ f = 0 be a reduced curve of degree N in P2 having only weighted
homogeneous singularities and let C i for i = 1, . . . , r be the irreducible components of C.
If U = P2 ∖ C, then

dim P2H2
(U ,C) − dim F2H2

(U ,C) = τ(C) +
r

∑
i=1

g i − dimM( f )2N−3 ,

where τ(C) is the global Tjurina number of C and g i is the genus of the normalization
of C i for i = 1, . . . , r.
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In particular we get the following result, which yields a new proof for [7,_eorem
1.3].

Corollary 5.2 If a reduced plane curve has only nodes as singularities, then one has

dimM( f )2N−3 = τ(C) +
r

∑
i=1

g i .

Proof Indeed, it is known that for a nodal curve one has the equality F2H2(U ,C) =

P2H2(U ,C); see [2] or [12].

Note that we have the following obvious consequence of_eorem 2.7.

Corollary 5.3 For a reduced plane curve C, one has

dim P2H2
(U ,C) − dim F2H2

(U ,C) ≤
r

∑
i=1

g i .

Proof Indeed,_eorem 2.7 can be restated as

dimH2
(U ,C) − dim F2H2

(U ,C) =
r

∑
i=1

g i

in view of the equality F 1H2(U ,C) = H2(U ,C); see proof of [4, Cor. 1.32, p. 185].

Remark 5.4 If a reduced plane curve C has only rational irreducible components,
i.e., g i = 0 for all i, then the above inequality implies F2H2(U ,C) = P2H2(U ,C).
_is result can be regarded as an improvement of a part of [5, Remark 2.5], where the
result is claimed only for curves with nodes and cusps as singularities.

_e above discussion also implies the following result, which can be regarded as a
generalization of [1,_eorem 4.1 (A)].

Corollary 5.5 If a reduced plane curve C ∶ f = 0 has only weighted homogeneous
singularities, then one has

0 ≤ dimM( f )2N−3 − τ(C) ≤
r

∑
i=1

g i .

In particular, if in addition the curve C has only rational irreducible components, then
one has dimM( f )2N−3 = τ(C).

Now we give the proof of_eorem 5.1. Corollary 1.3 in [8] implies that

dim P2H2
(U ,C) = dimH2

(U ,C) + τ(C) − dimM( f )2N−3 .

On the other hand,_eorem 2.7 and the fact dim F 1H2(U ,C) = H2(U ,C) yield

dim F2H2
(U ,C) = dimH2

(U ,C) −
r

∑
i=1

g i ,

which clearly completes the proof of_eorem 5.1.
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Example 5.6 In this example we present a free divisor C ∶ f = 0, whose irreducible
components consist of 12 lines and one elliptic curve and where

F2H2
(U ,C) /= P2H2

(U ,C).

Let f = xyz(x3 + y3 + z3)[(x3 + y3 + z3)3 − 27x3 y3z3]. If we consider the pencil of
cubic curves (x3 + y3 + z3 , xyz), then the curve C contains all the singular ûbers of
this pencil, and this accounts for the 12 lines given by

xyz[(x3
+ y3

+ z3
)
3
− 27x3 y3z3] = 0

and the elliptic curve (hence of genus 1) given by x3 + y3 + z3 = 0. _en C is a free
divisor (see [14]) or by a direct computation using Singular, which shows that I = J f ,
where I is the saturation of the Jacobian ideal J f ; see [6, Remark 4.7]. _e direct
computation by Singular also yields τ(C) = 156 and dimM( f )2N−3 = dimM( f )27 =

156. Moreover, applying [9, Corollary 1.5], we see via a Singular computation that
all singularities of the curve C are weighted homogeneous. Alternatively, there are
12 nodes, 3 in each of the 4 singular ûbers of the pencils (which are triangles), and
the 9 base points of the pencil, each an ordinary point of multiplicity 5. Each of the
12 lines contains exactly 3 of these base points, and they are exactly the intersection
of the elliptic curve with the line. _is description implies that there are no other
singularities in accord with 12+ 9× 16 = 156 = τ(C). It follows from _eorem 5.1 that
dim P2H2(U ,C) − dim F2H2(U ,C) = 1. Hence, the presence of a single irrational
component of C leads to F2H2(U ,C) /= P2H2(U ,C).
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