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Some stellarators tend to benefit from favourable average magnetic curvature for trapped
particles when the plasma pressure is sufficiently high. This so-called maximum-J
property has several positive implications, such as good fast-particle confinement,
magnetohydrodynamic stability and suppression of certain trapped-particle instabilities.
This property cannot be attained in quasisymmetric stellarators, in which deeply trapped
particles experience average bad curvature and therefore precess in the diamagnetic
direction close to the magnetic axis. However, quasi-isodynamic stellarators offer greater
flexibility and allow the average curvature to be favourable and the precession to be
reversed. We find that it is possible to design such stellarators so that the maximum-J
condition is satisfied for the great majority of all particles, even when the plasma pressure
vanishes. The qualitative properties of such a stellarator field can be derived analytically
by examining the most deeply and the most shallowly trapped particles, although some
small fraction of the latter will inevitably not behave as desired. However, through
numerical optimisation, we construct a vacuum field in which 99.6 % of all trapped
particles satisfy the maximum-J condition.

Keywords: fusion plasma

1. Introduction

A basic requirement for magnetic fusion devices is the ability to confine collisionless
particle orbits, a property which not all stellarators possess. Although the existence of
nested magnetic surface is sufficient to confine circulating (untrapped) particle orbits to
lowest order in the smallness of the gyroradius (Helander 2014), particles that are trapped
in local minima along the magnetic field tend to drift out of the plasma unless the field is
carefully tailored to avoid this phenomenon.

If we write the magnetic field in Clebsch form (D’haeseleer et al. 2012), B= Vi{ x Va,
then the coordinates (1, ) are constant along B and can thus be used to label field lines. In
a field tracing out toroidal magnetic surfaces, we take i to be the magnetic flux enclosed
by such a surface divided by 27, and « € [0, 2] thus labels the different field lines on
each surface. In Boozer coordinates @ = 6 — 1@, where 6 denotes the poloidal angle, ¢ the
toroidal angle, and ¢(1/) the rotational transform (Boozer 1981).
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As a trapped particle drifts across the field, the second adiabatic invariant (Hastie, Taylor
& Haas 1967)

LR
‘7“ Z/ mu ds (11)
193
is conserved to high accuracy if the gyroradius is small. Here, m denotes the mass of the
particle in question, vy = v+/1 — AB its speed along the magnetic-field line (if the electric
field is sufficiently small) and £ the arc length in this direction. The ratio of the magnetic
moment to the kinetic energy is denoted by A = v /(v?B), where B is the field strength,
and the integration is carried out between two consecutive bounce points (£, and £z) where

v vanishes.! Thus 7| is a function of the variables (¢, o, v, ).

The net cross-field magnetic drift of a magnetically trapped particle of charge ¢
travelling between two consecutive bounce points is given by the Hamiltonian equations
(Kadomtsev & Pogutse 1967; Helander 2014)

Ay = la—j” (1.2a)
q o

Aa = —18—‘7” (1.2b)
q oy

In particular, the particle remains in the vicinity of one flux surface if 9.7,/da = 0.
Magnetic fields in which this property holds for all orbits are called omnigenous (Hall
& McNamara 1975; Cary & Shasharina 1997). The direction and magnitude with which
particles precess within the surface is governed by 9.7,/9v . It is convenient to define a
precession frequency w,

Aa
y = —, 1.3
o, AL (1.3)
where the bounce time is
Lr
At = / dé/vy. (1L.4)
(%

Fields in which the precession frequency is negative for electrons (that is,
qw, > 0) and thus opposed to the diamagnetic drift (qw, = p'(¥)/n < 0), so-called
maximum-J-configurations, have long been known to possess favourable stability
properties for trapped-particle modes (Rosenbluth 1968; Proll et al. 2012; Helander, Proll
& Plunk 2013).

The maximum-J property is additionally correlated with, but not identical to (Helander
2014), the existence of a magnetic well (Greene 1997), which is beneficial for
magnetohydrodynamic (MHD) stability. This circumstance has to do with its relation to
magnetic curvature. If the magnetic curvature vector is decomposed into components in
the direction of V¢ and Vi

k=b-Vb=KyVV¥ +«,Va, (1.5)

then a positive value of «y is referred to as favourable (or ‘good’) curvature. Since the
guiding-centre curvature drift is in the direction b x k and

bxk)-V
oy = (X"%, (1.6)

't is also common to see J| defined with an additional factor of two in the literature, that is, including the whole
back and forth bounce trajectory. This difference has no physical consequence.

https://doi.org/10.1017/50022377824000345 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000345

The maximum-J property in quasi-isodynamic stellarators 3

good curvature is clearly correlated with the maximum-J property. Indeed, the latter can
be interpreted as the condition that a certain average of the normal curvature should be
favourable for all trapped-particle orbits.?

The trapped particles in an omnigenous stellarator can precess in the poloidal, toroidal
or helical directions, and if the precession is poloidal, the field is called quasi-isodynamic
(QI) (Helander & Niihrenberg 2009; Niihrenberg 2010). This feature is determined by
the topology of the contours of constant |B|. The aim of the present paper is to explore
conditions under which a QI field may possess the maximum-J-property. It has long been
known that this can be the case at finite plasma 8 (thermal pressure divided by magnetic
pressure), very recently achieved at low values (Sdnchez et al. 2023; Goodman et al. 2024)
and, as we shall see, it is also possible (to a very good approximation) when 8 vanishes.
This is in stark contrast to quasisymmetric magnetic fields (including tokamaks), where
the maximum-J/-property is unattainable, at least in a region near the magnetic axis. If the
maximum-J condition is satisfied for some, but not all, particle orbits, then 9.7,/0y must
vanish for certain orbits, meaning they will not precess poloidally but drift in the radial
direction, resulting in super-banana (Velasco et al. 2021) or banana-drift convective (Paul
et al. 2022) losses. It is clearly preferable that all orbits satisfy the maximum-J condition.

Quasi-isodynamic stellarators are sometimes referred to as a system of linked mirrors
(Boozer 1998). Following this analogy, the maximum-J/-condition can be seen to be
closely related to the so-called minimum-B property in magnetic mirrors, which was
proposed in the early 1960s (Taylor 1963). To see why, consider particles trapped in the
vicinity of a local minimum, B,;, (). Since

0T mu [ (83) Ade n
w2 ), \ov /), VT—aB '
it follows that the maximum-J-property requires
oB
(—) >0, (1.8)
81//' a,l

at the field minimum. In other words, By, increases with radius and the magnetic field
strength assumes a global minimum on the magnetic axis of a maximum-J stellarator
(Helander 2014). In the vicinity of this minimum, the surfaces of constant field strength
are ellipsoids aligned with the magnetic field.

In the following sections, we explore these ideas further and derive conditions for
attaining the maximum-J/-condition, focusing particularly on deeply trapped particles
close to the magnetic axis.

2. Trapped-particle precession

A derivation of the general expression for the precession frequency of trapped particles
in an arbitrary stellarator is presented in Appendix A. The result is expressed as an integral
along the magnetic field between two consecutive bounce points (¢, and ¢g), which in
Boozer coordinates becomes

L (E) 1= AB/2 | oy () VT=IB] | / /«’R dg
‘" q J, |[\ov),,B2yT=aB (B B /), BJi—aB
2.1)

ZMore explicitly, Aa = (m/q) jfLR ey (vff +v1/2) = (v1/2)(¢' (¥)/BH)](de/v)).
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For simplicity, we have assumed that the net toroidal plasma current enclosed by the
magnetic surface under consideration vanishes, /() = 0.

In (2.1) there are two separate terms contributing to the precession: the radial derivative
of B = |B| and the pressure gradient p’, which is negative for typical pressure profiles.?
However, it would be wrong to conclude that a non-zero pressure gradient only affects the
precession frequency through the explicit pressure term in (2.1). This naive interpretation
would imply that a negative pressure gradient tends to make gw, more negative and thus
oppose the maximum-J condition. However, the radial derivative of |B| depends on the
pressure profile in an equilibrium field, as the magnetic pressure responds to the change in
thermal pressure. If the central plasma g is increased, the magnetic-field strength usually
drops in the centre of the plasma to hold the plasma in place, and 9, B thus grows. The
net result turns out, in practice, to make the maximum-J condition much easier to attain at
high plasma beta compared with the case of a vacuum field. It is thus important to address
the question of how 9, B depends on the pressure, which we shall consider later.

In general, w, is a function, for each trapping well, of the pitch-angle parameter A, the
flux-surface label ¢ and the field-line label «. The dependence on « is present only when
the field is not omnigeneous. Then the second adiabatic invariant depends on «, and, as
a result, the precession frequency of trapped particles varies as they drift from field line
to field line. Numerical examples are shown in figure 1, where the normalised precession
frequency

4

5 = qwa;oa ’ 2.2)

mv

is displayed for three different numerically optimised QI fields (Goodman et al. 2023).

Here, v, denotes the value of i at the plasma boundary and @, has been plotted as a
function of the trapping parameter (Roach, Connor & Janjua 1995)

k2 — B 1:11]n —A

Bl — Bl

min max

(2.3)

As discussed below, the magnitude of @, can be interpreted as the precession frequency
(for thermal particles) divided by the diamagnetic frequency (within a factor of order
unity). The grey lines correspond to field lines on the same flux surface with different
values of «. The fact that these lines are different from each other is an indication of
departure from exact omnigeneity. For most of the discussion to follow, we shall assume,
unless otherwise stated, that the field is omnigeneous. We may then choose any field line
to compute the bounce average (1.7) of 9, B, or alternatively its Boozer form in (2.1). In
a vacuum field with p’(y) = 0, these integrals are weighted averages of 0, B, where the
weight is positive for all trapped particles (i.e. all 1). It thus follows that the so-called
minimum-B condition, d,B > 0, is a sufficient condition for maximum-J behaviour.

2.1. Necessary conditions: special points

It is, however, not necessary to make dy,B > 0 everywhere in order to attain the
maximum-J condition. Even if d,B < 0 at certain positions along the field line, the
average precession can still be favourable. The condition 9,5 > 0 must nevertheless be
satisfied at all local minima and maxima of |B| along the field line. At these points, deeply
and barely trapped particles spend nearly all their time, other points along the orbit not

3In the vacuum limit, the curvature drift and the grad-B drift are equal, and thus only the gradient of B appears in the
expression for wgy, but if B > 0 this is generally not the case. The difference between the two drifts is then proportional
to the pressure gradient, which is responsible for the additional pressure term in (2.1).
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FIGURE 1. Example of precession in highly QI fields. Normalised precession frequency @y,
(2.2), as a function of the trapping parameter k>, (2.3), for three recently optimised QI
configurations with different number of field periods N (Goodman et al. 2023), in which
omnigeneity is attained to a high degree. For each configuration, @, is displayed at two values of
the normalised radial flux coordinate ¢ on a number of different field lines (grey curves), with the
black curve representing &« = 0. A positive value of @, corresponds to the maximum-J-property.
Note that deeply trapped particles (k> — 0) tend to behave worse than barely trapped ones, and
the intermediate population can exhibit non-monotonic dependence on k>.

contributing much to the average. It is therefore necessary, both at the bottom and top of
every magnetic well, that 9, B|, , > 0, even if p’ # 0.

This result may be formally derived as the appropriate limits of (2.1), but a simpler
argument has already been given in § 1: since the time required for a trapped particle to
move from one bounce point to the next is equal to

At—/lkdl = - d 2.4)
N o Y N 0 v\/l—/lB’ ’

the precession frequency for deeply trapped particles, for which 1 — AB < 1, becomes

Ao mv? [ OB
L (L 2.5)
At 2q8\ay ),

Since 0B/d¢ =0 at the point of minimum field strength, the derivative dB/dys can
equally well be computed at constant Boozer angles (6, ¢) for an omnigeneous stellarator.
A similar argument holds for barely trapped particles. A more detailed discussion can be
found in Appendix A, including a proof that the explicit pressure term does not contribute,
(A10).

Thus, if the minimum-B-condition is satisfied at all local maxima and minima of B along
the field line, i.e. if

B, (¥)>0 and B, (%) >0, (2.6.,b)

min
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then deeply and barely trapped particles are guaranteed to precess in the desired direction
(qw, > 0). The recently proposed ‘flat-mirror’ criterion (Velasco et al. 2023) can be
re-interpreted as a condition like that in (2.6a,b). It would, however, be wrong to infer that
all particles trapped at intermediate depths in the magnetic wells then precess in the same
direction. Such a conclusion cannot be drawn by solely considering the radial gradient of
B at its extrema along the field. The conditions in (2.6a,b) are necessary for maximum-J,
but not sufficient. Enforcing them as part of an optimisation effort may be helpful, but
does not guarantee the maximum-J behaviour everywhere.

This inference is, however, possible under additional assumptions about |B|. Obviously,
if 3, B were bounded from below by either of the local | B| gradients, then (2.6a,b) would
become a necessary and sufficient criterion. One scenario in which this holds true is
when the shape of the magnetic well along field lines behaves ‘rigidly.” That is, in going
from one surface to another, |B| = By(¥) + n(¥)f(€) along field lines. A particularly
enlightening example is that of a sinusoidal variation along one field line, |B| = By +
By cos ¢, treated in Velasco e al. (2023). In general, however, the behaviour of 9, B,
and thus w,, can be rather complicated. Figure 1 shows a recently published example
of omnigeneity-optimised QI stellarators, where the behaviour at k = (0, 1) (deeply and
barely trapped particles respectively) are not always good indicators for intermediate
particles. Nevertheless, given the simplicity and necessary nature of the condition in
(2.6a,b), we shall use it as a representative feature of the maximum-J/-condition, and
extend it to more global considerations.

2.2. Quasi-isodynamic fields

The treatment so far has considered little information about the magnetic field other
than properties that follow directly from the requirements of the MHD equilibrium
and omnigeneity. In the interest of describing the particulars of QI fields, however, we
introduce to the discussion features unique to this class of stellarators. To do so, and to
further simplify the discussion, we focus our attention to the vicinity of the magnetic axis.

By expansion in the minor-radius coordinate r = /21/B, where B is some reference
magnetic-field strength, which we choose to be equal to that at the minimum, to second
order the magnetic-field magnitude may be written in the following form:

B = By(9) + rBi(«, ¢) + r’Bay(a, ¢), 2.7)

where, as shown in Appendix A, the coefficients satisfy the following relation in an exactly
QI stellarator-symmetric field (Rodriguez & Plunk 2023):

Bi(a, 9) = —d(¢) sinc, (2.8a)
. d (Bid

By (o, 9) = By (p) — Bas(¢) sin 200 — — cos 2a. (2.8D)
dp \ 4B,

Here, By(¢) and B,y(¢) are even in ¢ whereas d(¢) and B,,(¢) are odd, if we choose the
angle ¢ to vanish at the point where By(¢) attains its minimum. As a result, the first-order
term B; vanishes at the minimum, and the precession frequency (2.5) for the most deeply
trapped particles, being proportional to dB/dv, is determined by the second-order term

B,. It becomes
mv2 B B%dz ' + non-QI (2 9)
Wy = — — w , .
qB2 |7\ 4B, “

where everything is evaluated at the minimum, ¢ = 0, the primes denote a derivative with
respect to the toroidal angle ¢, and @™ represents the contribution from deviations

o
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from omnigeneity, which will be discussed later. To achieve gw, > 0, the magnetic field
must be carefully tailored in such a way that for deeply trapped particles the quantity in the
square brackets of (2.9) is positive. As we shall see, this is eminently possible but requires
careful consideration of the terms within the square brackets.

As shown explicitly in Appendix B, (A25), departures from the condition of
omnigeneity lead to additional terms in the expression for precession, here denoted by
™ These contributions may be interpreted as non-intrinsic contributions due to
departures from QI. Breaking omnigeneity at first order in » leads to a contribution that
scales as wi' oc cos/r, (A24), while deviations at second order lead to @y oc
cos 2a, (A25). Because of the dependence on «, there always exists a field line on which
the non-omnigeneous contribution is gw™™?' < 0, i.e. detrimental to the maximum-J
condition. The deviations that arise at first order are particularly worrying near the
magnetic axis due to the 1/r scaling. We explain the origin of this behaviour in
the following subsection. From the forms above we may nevertheless conclude that
omnigeneity is necessary for the maximum-J property.

2.3. Comparison with quasisymmetric fields

Trapped-particle precession in a QI field is markedly different from that in quasisymmetric
(QS) configurations, the other important class of optimised stellarators. Particle orbits
in the latter are similar to those in tokamaks, and the maximum-J property cannot be
satisfied throughout the volume for all particle classes. In fact, close to the magnetic axis,
the magnetic-field strength in any QS field (characterised by the helicity of the symmetry
N) is (Garren & Boozer 1991a; Landreman & Sengupta 2019)

B(r,x =60 —Ng) = By(1 — rncos x), (2.10)

and the precession frequency of trapped particles becomes (Kadomtsev & Pogutse 1967;
Helander & Sigmar 2005; Rodriguez & Mackenbach 2023)

2
W~ M1 (HE® @.11)
¢ 2g rBy \ K(k)

where E and K denote elliptic integrals of the first and second kinds (Olver et al. 2020,
§ 19). Their argument is defined by k = sin(x,/2), where ¥, is the bounce point in the well,
so that k = 0 refers to deeply trapped particles and k = 1 to the trapped—passing boundary.
This definition matches (2.3) to leading order. We present a plot of the behaviour in QS
configurations in figure 2.

To make the comparison with the QI case more explicit, we turn to the general
expression for the precession frequency close to the magnetic axis given in (A20) and
consider the limit in which the magnetic-field strength only varies slightly along the
magnetic axis. Then trapped particles have 1 — AB < 1 and (A20) reduces to

va / “ flp)de / / do 212)
VI=2aBy/[ J, VT—2By '
where
_ Byl 1 d B%dz)
flp) = B, By dg (436 . (2.13)

The precession frequency is thus proportional to a bounce average of the function f(¢p)
between the two turning points. This expression reveals several important differences
between the precession frequency in QI and QS stellarators (including tokamaks):
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FIGURE 2. Precession in zero-8 tokamaks and QS stellarators. Panel (a) shows the predicted
dependence of the leading-order precession frequency in a tokamak or QS stellarator as a
function of the trapping parameter, k, (2.11). Panels (b,c) show the precession frequency on the
boundary of actual QS vacuum configurations (Landreman & Paul 2022), normalised as in (2.2)
(see Rodriguez & Mackenbach (2023) for more details and discussion). As in figure 1, the plots
on the right show the variation with field line label «, which is difficult to discern due to the high
degree of quasisymmetry in these configurations.

(1) In a QS field the particle precession becomes ‘infinite’ (~1/r) as the magnetic axis
is approached, whereas it remains finite in QI fields. This 1/r behaviour comes
from a finite poloidal component of the curvature drift as the axis is approached.
In a QI configuration, the curvature of the magnetic field vanishes at the minimum
on the axis, eliminating this behaviour. In the QS case, deeply trapped particles
reside in the bad-curvature region, and the normal curvature is even about the
minimum of B (see figure 2.10). This difference in behaviour follows directly from
the difference in the topology of |B| contours, and its implications on the order-r
correction to By, (2.8) and (2.10). Formally, this difference in parity explains the
leading-order cancellation of the precession in QI fields and the elimination of the
1/r contribution. The cancellation ceases to be exact, however, whenever the field
deviates from omnigeneity. In that event, there will always exist some r, such that,
for r < r,, the field ceases to satisfy the maximum-J condition (see figure 6 for
example). It is known that omnigeneity must be broken at first order near the tops of
the magnetic well (Plunk, Landreman & Helander 2019; Rodriguez & Plunk 2023),
which unavoidably leads to a small, but finite, r, below which some fraction of
trapped particles near the magnetic well tops are not maximum-J. We discuss this
issue further in Appendix A.4, but shall otherwise make the assumption of exact
omnigeneity, so that this term may be neglected.

(i) In QS stellarators, the fraction of trapped particles decreases as one approaches
the magnetic axis, as it is the first-order poloidal variation of the field strength
that defines the trapping well. In QI stellarators, this is not the case and there
remains a finite trapped population on axis. This difference is important close to
the axis, where there is a region with so-called potato orbits (Helander & Sigmar
2005; Rodriguez & Mackenbach 2023) in QS stellarators where the thin-orbit
approximation to J; breaks down.
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FIGURE 3. Curvature about the minimum in a QS and QI field. The plots show a comparison
of the curvature (B X k - V&) in (a) a quasiaxisymmetric (the precise QA in Landreman &
Paul 2022) and (b) a quasi-isodynamic (the N = 2 configuration in Goodman et al. 2023)
configurations. Panels (ai,bi) show a three-dimensional rendition of the boundary of the
configurations, in which the colours display the quantity B x « - Va, with blue/red representing

magnetic field |B| and the curvature along the field line, using the cylindrical coordinate ¢
and the PEST poloidal angle ¢ as coordinates along the field line. The scatter plot indicates
the position of the minimum. These two examples illustrate the qualitative difference in the
curvature parity between a QI and a QS field.

(iii) In QS, it is always the case that there are trapped particles precessing in opposite
directions. Deeply trapped particles precess as in a minimum-J field (gw, < 0),
while barely trapped ones do so in the opposite way. This is generally not the case in
QI, where the function f, (2.13), has more freedom than in the QS case. This stems
from differences in the distribution of good and bad curvature about the minimum
of |B|.

These conclusions hold rigorously on the magnetic axis and, by continuity, also in its
vicinity. The differences in the behaviour of curvature can be seen to hold approximately
true in practice, as is shown through two examples in figure 3. In addition, in the QS case
it has been shown that the near-axis description remains instructive as a model of QS
configurations beyond its asymptotic regime (see figure 2 and Rodriguez & Mackenbach
2023).

The most important observation is that, in the context of QI configurations, maximum-J
behaviour appears possible even in a vacuum field. Within the near-axis framework,
whether this is the case depends on the sign of the bounce average of the function f(¢),
which is analysed below.

2.4. Shallowly and deeply trapped particles in QI

The special character of the bottom and top of the magnetic well provides us with a simple
way to assess the possibility of maximum-J behaviour in QI stellarators.
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Satisfying the maximum-J-condition for the most shallowly trapped particles tends to
be easy in practice. These particles spend most of their time close to the turning point
where the field strength reaches its maximum along the field line, B({/, @, ¢) = Bunax (¥),
which is independent of the field-line label « in a QI stellarator. Moreover, the maximum is
located at a constant value of the toroidal Boozer angle, ¢ = ¢, which is independent of
o (Cary & Shasharina 1997; Landreman & Catto 2012; Helander 2014). At the maximum,
the Taylor expansion of the field strength in the coordinates o and ¢ is thus of the form

BlP(ﬂ 2
B, . ¢) = Buax(¥) + =7 (0 = )™ + -+, (2.14)
since, at the toroidal angle of the maximum, the following derivatives all vanish:

0B 0B 9’B 9’B
R = — =0. (2.15)
da  d¢ Odade  da?

Therefore VB = V?Byux + B,y |V@|* + - - -, where the second term is negative at the top
of the well. Now, in a vacuum field (zero plasma pressure), the quantity B> = B: + B> + B2
is a subharmonic function since '

V’B* =V - V(B; 4+ B, + B2) = 2(|[VB,| + |VB,|’ + |VB.*) = 0, (2.16)

where we have used V2B, = 0 etc. for each Cartesian component of B (Solov’ev &
Shafranov 1970). Because of the maximum principle for subharmonic functions, the
maximum of B? over any closed, bounded domain cannot be attained in its interior
unless B? is constant (Evans 2022, Theorem 1, Chapter 6.4.1). It thus follows that the
function B« (¥) in (2.14) cannot have a local maximum at any value of 1. Therefore,
B ..(Y) >0 for all ¥ and, following (2.6a,b), then shallowly trapped particles must
satisfy the maximum-J-condition, gw, > 0, throughout the plasma.* It should be clear
that this argument holds for any omnigenous magnetic configuration, including a QS
stellarator.

The situation is very different at the opposite end of the trapped population. The most
deeply trapped particles at the bottom of the well tend to precess in the unfavourable
direction. Indeed, these particles frequently (though not always, see figure 1), have the
smallest value of gw,. The relevant question here is then whether this tendency be reversed
to make the system acquire the maximum-J property at the bottom of the trapping well.

In order to understand the maximum-J condition on deeply trapped particles, we resort
to (2.9), which provides an explicit expression for w, in terms of B,y, By and d. The
expressions at this point may be further simplified by realising that the curvature of the
magnetic axis vanishes at the point of minimum |B|, i.e. k(¢) =0 when ¢ =0. As a
result, the behaviour of |B| is significantly constrained. The field around this point thus
resembles a straight magnetic mirror, and thus we can gain some intuition about QI fields
by analysing a straight magnetic mirror, which is done in Appendix C.

With these remarks in mind, we proceed to consider the governing set of equations in
the near-axis framework. Formally, we explore the properties of a magnetic field in MHD
equilibrium that satisfies the solenoidal condition, and possess flux surfaces at ¢ = 0.
The analysis is presented in Appendix B, assuming perfect QI at first order for simplicity,
and leads to an explicit form for the average radial derivative of the magnetic pressure

40f course, B'(¥) could also vanish without B(v) acquiring a local maximum, but we do not consider such singular
cases that are not robust to arbitrarily small perturbations.
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(Byo), which is primary ingredient of (2.9), explicitly constructed in (B4) in Appendix B.
When the condition of omnigeneity at second order is also imposed (that is, the choice
of functions is made so that QI is satisfied at the bottom of the well at second order), the
function f in (2.12) can be written in the following form:

Jo = + 1oy + 1+ 12+ far, (2.17)
with
f= —Mgg 2, (2.18a)
foy = —2(;/)2 &fl i—g, (2.18b)
fo= Hﬁ&fg, (2.18¢)
fo=- lz‘fx ;—207,’0, (2.18d)
Ja = —ﬁ 7 i& (Bgzﬂ)’ (p:o’ (2.18¢)

where d = d/k and @ = d*B2/B? is directly related to the elongation (along the direction
of curvature) of the cross-section at the toroidal position ¢ = 0. There are thus five
different terms contributing to f, which we proceed to analyse individually.

2.4.1. Role of pressure

_As expected, increasing the pressure gradient supported by the field, |p,| =
(B/2)|dp/dyr|, increases fy. That is, it makes deeply trapped particles more likely to
satisfy the maximum-J condition gw, > 0. This is the well-known effect of finite 8
improving the maximum-J property of QI fields, which is precisely the opposite to the
naive interpretation of the role of the pressure from the explicit term in (2.1), which
vanishes at the extremal points. This effect of p’ is the same at both the bottom and top
of the well, thus bringing both deeply and barely trapped particles towards gw, > 0. To a
large extent, then, we would expect the rest of the trapped population to do likewise, and
although we cannot prove it, it is convenient to think of this effect as an overall upshift of
qw,. This diamagnetic behaviour turns out to be the same in the axisymmetric/QS limit
(Rosenbluth & Sloan 1971; Rodriguez & Mackenbach 2023, equation (3.6a)). The positive
role of pressure gradients is well known (Wobig 1993).

Whether a non-zero pressure gradient is needed to ensure f; > 0 depends on the relative
size of the other terms in (2.18). At a minimum, we need to overcome the detrimental
effect of being located at the minimum of the magnetic field, fz;. The plasma beta,
Bo = 21Lopo /B(z), that neutralises this term, |f,| = |fp;|, we define to be B, and provides
an estimate of the critical § that leads to maximum-J behaviour. If we consider a simple
quadratic pressure profile for a field with minor radius (defined as in the near axis) r = a,
then dp/dyr &~ —2p,y/Bya?, and thus fy > 0 when

. V@ (aY
ﬂO>IBJ=RM1+&(L_B) . (2.19)
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and Ry /Lé = 0y InBy, Ry = (Bmax — Bumin)/Bmin 18 the mirror ratio and Ly the
characteristic parallel length scale of the bottom of the well. For typical field parameters
(a moderately elongated cross-section with a ~ 1, a well of the scale of the major radius,
and Ry, ~ 0.2), we get critical plasma betas around (or below) a per cent. This suggests
that maximum-J behaviour is readily achievable at a moderate plasma .

2.4.2. Difficulties at the minimum

The special character of the bottom of the well is captured by the fp; term, which
is negative (since Bj > 0) and thus opposes maximum-J behaviour. The situation is,
however, reversed at the maximum of B, where Bj < 0 and fp; > 0, implying an ‘intrinsic’
tendency for maximum-J behaviour at this location. In fact, in a vacuum field, f; > 0, in
agreement with the general proof presented in the previous sections.

The detrimental contribution of fz; at the bottom of the well can be mitigated by
reducing By to a minimum, i.e. by flattening the bottom of the well (increasing Lg) or
reducing the mirror ratio Ry,. The elongation of the flux surfaces may also be tweaked
to reduce fp;, which is maximal for circular cross-sections (@ = 1). However, note that
the other geometric contributions to fy, (2.18) also depend on the elongation, and thus in
relative terms this shaping may not be as effective although it does reduce g,.

Flattening the bottom of the well comes with potential drawbacks in the form of
sensitivity to deviations from omnigeneity. Having an extended region of small dB,/dl
makes the configuration more susceptible to error fields, as secondary shallow trapping
wells may be created by small perturbations. Such wells can be seen in the near-axis
description of |B|, where the requirement of omnigeneity (and more particularly, that of
poloidally closed B-contours) limits the behaviour of B, depending on how flat By is. As
analysed in detail in Rodriguez & Plunk (2023), for a field near the minimum described by
B, ~ ¢’ and B ~ "', if By is too flat, u > 2v (except u = 2, v = 1), this will introduce
defects in |B| that lead to losses of deeply trapped particles. In fields where this situation
is avoided, that is, for u < 2v, the quantity fq; vanishes, (2.18¢). Only in the special case of
a first-order curvature zero (v = 1) and a quadratic well (1 = 2) is this contribution finite.
Because d”/B), vanishes at ¢ = 0 and is positive for ¢ > 0, its derivative must be greater
than or equal to zero. Hence, for < O at the bottom of the well; that is, its contribution
is detrimental. This makes the ‘standard’ first-order curvature zero and quadratic-well
field (Camacho Mata, Plunk & Jorge 2022) particularly unfavourable for maximum-J
behaviour. Conversely, making the section of the field where minimum |B| is located as
straight as possible (larger u and v) should be beneficial (see figure 4).

2.4.3. Role of local shear, twist and elongation

The contribution of the torsion of the axis to fy is always beneficial since f;2 > 0. In fact,
the larger the torsion, the larger f; and, thus, the closer the behaviour of deeply trapped
particles will be to the maximum-J requirement. The role of torsion may be surprising, but
is understandable from the perspective of a straight magnetic mirror. At the bottom of a
straight magnetic mirror, attaining maximum-J is only possible if magnetic-field lines are
locally twisted (see Appendix C and (C18a)—(C18b)), i.e. if they experience some form
of left-right asymmetry, and in this way possess non-zero local magnetic shear. In the
context of our QI stellarator, the appearance of the ¢ term is simply a statement of the
necessity of this twist about the magnetic axis, which is the geometric meaning of torsion.

The comparison with a straight magnetic mirror is also helpful for understanding
the role of flux-surface elongation, which in a mirror needs to increase away from the
bottom of the magnetic well (see figure 11). In the context of a stellarator-symmetric QI
stellarator, the elongation of the cross-section at the minimum is given by d°, as previously
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FIGURE 4. Schematic depiction of trapping wells that favour maximum-J behaviour. Certain
magnetic field features make them more prone to maximum-J behaviour than others. In
particular, wide and flat magnetic trapping wells (a) at straighter sections (b) of the stellarator
favour maximum-J. The diagram on the right is a schematic top-down view on an N =2
stellarator, with the shading denoting |B)|.

mentioned. Thus, a change in elongation would be expected to involve a term proportional
to d”.> There is no term in f, which involves d”, but this is a result of the condition
of omnigeneity at second order. In fact, upon relaxing the latter, By, at the bottom of
the well does depend on d”, (BS), and it is only through the omnigeneity condition of
(B9) that this explicit dependence can be eliminated. From the omnigeneity condition
it follows that dd”(1 + 1/&) = —(zodl')*(3 + 1/a) + ..., meaning that increasing the
torsion to favour fr2, requires one to modify d” accordingly. The plasma cross-section
must become elongated in the binormal direction away from the bottom of the well,
which is a consequence purely of the omnigeneity condition. Looking at the contribution
of the d” term to the equilibrium equation of B,,, (B5), we see that dd"(1 — 1/a) > 0
promotes maximum-J behaviour there. Shaping of elongation is once again vital, now
for attaining maximum-J. For this shaping to be synergistic between the omnigeneity
condition and maximum-J, we need a binormally elongated cross-section @ < 1 (i.e.
binormal elongation at the minimum, |d| < 1). In practice, we seek shapes like the
exaggerated schematic in figure 5, features that appear to be common in many QI
configurations (Camacho Mata et al. 2022; Jorge et al. 2022).

Given the central role played by the local field-line twist, a non-zero plasma current can
be either beneficial or detrimental depending on its alignment with the torsion of the axis.
As can be inferred from its contribution to the rotational transform (Mercier & Luc 1974),
a negative current acts constructively with a positive torsion (and vice versa). The term fj,
reflects precisely this fact. In QI configurations, toroidal currents tend to be small and this
contribution may then be disregarded.

All in all, we learn from this analysis that in a vacuum magnetic field there is only
one way of possibly attaining maximum-J behaviour for deeply trapped particles, which
is to have a large torsion at the point of minimum B, in the sense that 1oLz > /Ry /2,
and thereby also a strong growth of binormal elongation. In other words, the binormal
vector must rotate significantly within the magnetic well. From this analysis, it follows
that it is possible to make deeply trapped particles precess in the favourable maximum-J
direction, unlike the case in quasi-symmetric or tokamak fields. This result is robust even

SIdentifying d” with the change in elongation at the minimum is not quite correct, as the elongation can vary through
other means (Landreman & Sengupta 2018; Rodriguez 2023) even when d does not change. In fact, one may show that at
the minimum the change in elongation is affected by ", Bj and 72 It can be rigorously shown that in the omnigeneous
case increasing the torsion and By (when & # 1 for the latter) always increase the elongation. Anyhow, the interpretation

of d” as an added change to elongation is correct and illustrating.
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FIGURE 5. Prototypical shape of flux surfaces of an omnigeneous, maximum-J field near the
point of minimum field strength. Three-dimensional illustration of features generally expected
from maximum-J, QI magnetic fields. Note that field lines twist and that the elongation grows
with increasing distance from the field-strength minimum.

if we acknowledge the impossibility of exact QI at first order in the near-axis expansion,
because the violation of omnigeneity is only necessary near the maximum of |B].

The construction above poses some important practical difficulties. First of all, the
field will generally tend to develop large shaping, both because the maximum-J criterion
requires significant torsion and omnigeneity also an increase in elongation (see the
depiction in figure 5). Comparing the various contributions with f; in (2.18) reveals that
the shaping needs to be specific and substantial to endow the deeply trapped particles
with the maximum-J property. If the shaping is constrained by practical considerations,
as is usually the case in stellarator optimisation studies, the opportunity for attaining the
maximum-J property is correspondingly limited. How much shaping is sufficient varies
from case to case, and the competition between the various field and geometric quantities
(we shall recall that the shaping arguments above are a simplified local view near the
minimum). The second thing to bear in mind is that our considerations here are limited to
deeply (and barely) trapped particles. Intermediate orbits could behave differently, which
is something that needs to be checked by computing w,, for all k.

2.4.4. Beyond stellarator symmetry

The realisation that a certain level of asymmetry about the bottom of the magnetic
well provides the means to enhance the precession of deeply trapped particles opens the
door to several possibilities. In the case of a straight mirror, one needs to break left-right
symmetry in order to achieve an omnigeneous, maximum-J field (see Appendix C and
Catto & Hazeltine (1981)). In the case of a QI stellarator it is then natural to ask the
question whether breaking stellarator symmetry can be exploited to further improve the
behaviour of the deeply trapped particles.

The procedure followed for the discussion above can be extended to the
non-stellarator-symmetric case. The details of the derivation are presented in Appendix B.
As a result of this extension, the expression for fy acquires a number of additional terms,
and the stellarator-symmetric contributions are also modified. The additions are, however,
limited if we specialise, for simplicity, to the case in which the elliptical cross-section at
the bottom of the magnetic well remains up—down symmetric in the Frenet—Serret frame,

https://doi.org/10.1017/50022377824000345 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000345

The maximum-J property in quasi-isodynamic stellarators 15

i.e. if we choose o (¢ = 0) = 0. In that case, there is only a single additional term that
arises from stellarator symmetry, which is proportional to (d')?

a/ E/ 2
Jfay = % (2.20)

It is clear that f ;. > 0, and thus one can exploit stellarator-symmetry breaking to improve
the maximum-J behaviour of deeply trapped particles. In this particular case, fz). > 0
and thus any amount of symmetry breaking will help the precession of deeply trapped
particles. When the level of asymmetry is such that it changes d significantly within
the well, L; < Lg,, where L. ~ 3,Ind, this is capable of overturning the unfavourable
contribution from By at the bottom of the well. This may be regarded as evidence that
breaking stellarator symmetry might be beneficial.

3. Some examples

We showed in the previous section that it is possible to achieve maximum-J behaviour
for deeply trapped particles in QI stellarators but not in QS ones. To attain this goal,
the shaping of the magnetic field must, however, be carefully tailored and, in particular,
significant shaping of the magnetic field is necessary to promote the correct precession
behaviour. In this section, we construct concrete examples of QI fields and analyse their
maximum-J properties.

3.1. Near-axis constructions

We begin by considering configurations found through the near-axis expansion. To this

end, we use the QI-specific developments of Plunk er al. (2019) and Rodriguez & Plunk

(2023) as well as the general equilibrium framework of Landreman & Sengupta (2019). To

diagnose the resulting fields, we use the normalised precession frequency @,, (2.2), where

we express ¥, the value of the flux at the boundary, in terms of an effective aspect ratio.
To this end, we denote the length of the magnetic axis by

2nR = % di, 3.1)

where the integral is taken along the axis once around the torus. To lowest order in the
distance from the magnetic axis, the volume enclosed by a flux surface { = 1, is equal to
(Helander 2014)

V= 2m/fay§ g, (3.2)

0

where By is the magnetic strength on axis. It is natural to define an ‘average’ minor radius
a by setting V = 27R - ma?, and a logical definition of the aspect ratio is then

) e

which may be expressed in terms of averages over the Boozer toroidal angle ¢

1 G0>2 /B,
a=— S\ —_— 3.4
v 2(A — (34)
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@ Py Py Pz Pai B Biox
N2 0.21 —1.83 —10.48 0 —8.82 55% 15.5%
N3 0.16 —10.01 0 0 —17.14 4.3 % 4.7 %

TABLE 1. Critical 8 and geometric contributions. Geometric parameters and critical g for the
N = 2 and N = 3 near-axis QI examples in Camacho Mata et al. (2022). Here, 8* is a measure of
the required plasma beta to prevent deeply trapped particles from precessing in the diamagnetic
direction in an idealised omnigeneous field (B, if the non-omnigeneous nature of the field is
considered).

where the overline represents a toroidal average (...) = fozn (...)de/2m. We shall use this
form of the toroidal flux in the presentation of numerical results to follow (choosing the
representative value of A ~ 10).

To illustrate the behaviour of the precession in some near-axis constructions, we first
consider configurations recently constructed by Camacho Mata ef al. (2022), which
were designed to be QI to first order in the distance from the magnetic axis. This
work emphasised the reduction of shaping and neoclassical transport losses when a
global equilibrium was constructed using the near-axis field. Because only first-order
considerations were taken into account, there is, in principle, not a unique precession
frequency characterising these configurations since a certain degree of freedom exists at
second order to complete the construction. Nevertheless, there is a ‘natural’ second-order
extension of these configurations, which we refer to as the minimal-shaping construction,
namely, the one that makes the X,. and X,; modulations in the near-axis vanish. The
resulting field should be representative of the first-order construction, especially if one
considers the construction of a global solution using the first-order fields. We construct
the field following the equilibrium equations in Landreman & Sengupta (2019) (see
Appendix B), using the code pyQIC (Jorge, Agostinho & Rodriguez 2023). With such
a second-order field in place, we may calculate the precession frequency, which is plotted
in figure 6 for the N = 2 and N = 3 configurations of Camacho Mata et al. (2022), where
the necessary integrals were computed following (A24) and (A25). Some additional details
are included in table 1.

Similarly to the global QI-optimised stellarators in figure 1, these configurations
do not have the maximum-J property. Most of the trapped particles precess in the
diamagnetic direction, but some particles with turning points close to the magnetic-field
maxima behave as expected in a maximum-J field. This behaviour is similar to that in
axisymmetric/QS fields: deeply trapped particles tend to co-precess with the diamagnetic
frequency, while barely trapped ones do the opposite. The configurations importantly
exhibit a significant field-line-to-field-line variation (see the different grey lines), as a
result of deviations from omnigeneity. This should not come as a surprise given that
the second-order construction is not QI. But in addition, as noted in the construction of
Camacho Mata et al. (2022), the tops of the wells deviate from QI already at first order.
The result is a variability of @, that diverges as » — 0 and primarily affects shallowly
trapped particles, see figure 6. Note, however, that this first-order effect is only noticeable
very close to the axis. This is testimony to the quality of the QI optimisation performed by
Camacho Mata et al. (2022).

Although the precise form of the curves in figure 6 depends on how the near-axis
magnetic field has been completed at second order, the behaviour of deeply trapped
particles is independent of this detail, as we learnt in previous sections. For these particles,
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FIGURE 6. Precession of trapped electrons for two near-axis QI examples. Three-dimensional
rendition of flux surfaces at r = 0.1 (with the colour map representing the magnetic-field
strength) and normalised precession frequency @, at two different radii for near-axis fields
with N =2 and N = 3 of Camacho Mata et al. (2022). The precession is computed using the
analytical expressions derived in this paper. The near-axis fields have been constructed to second
order, taking a ‘minimal-shaping’ construction X, = 0 = X»;. The grey curves denote the
variation of precession between different field lines (with the black curve corresponding to the
average over «), reflecting the non-omnigeneous nature of the fields. Two different origins of the
variability are apparent: a roughly r independent variation from the second-order contribution,
and a variation proportional to 1/r due to breaking omnigeneity at first order.

1;
X

it suffices to compute the various terms that make up w, in (2.9) at the minimum of By. For
this calculation, however, one should not use the form of fj in (2.18) but instead relax the
assumption of QI at second order. Setting the explicit non-QI contributions aside for now,
we must use the expression for B, needed for (2.9). The necessary expressions are given
in Appendix B, (B5), where we use the notation P; to denote the contribution of a quantity
i to By, in analogy to f; in f;. These terms can be used to assess the near-axis construction
at first order as in table 1. As d” = 0 (and thus P;3 = 0) and d < 1 in these examples, it is
a priori clear that it is impossible for the deeply trapped particles to have the maximum-J
property in these configurations. A finite plasma S would be necessary to attain this
property. Much like the critical B; in (2.19), we can define 8* = a*(>_ P,)/(2(¢')?), where
a is the value of r at the plasma edge, which we take to be at roughly a ~ R/10. The
quantity B* represents the plasma B necessary to make the vacuum QI configuration
reverse the behaviour of deeply trapped particles. The key features for the equilibria in
figure 6 are collected in table 1. We have at this point neglected the contribution of @™
to (2.9), and since the configurations listed in table 1 are not exactly omnigenous, it is
actually necessary to increase f further in order to overcome the w-dependence. The
requisite B can be estimated from (A26) and (B7), and we may thus define B, as the
total B needed to make the ‘least-maximum-J’ field line be so.

The analytical value of 8* can be seen to be correct in the example of figure 7, where
the plasma 8 of the configuration in figure 6(a) increases. Here, the pressure gradient
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FIGURE 7. Reversal of trapped-particle precession with increasing B. Normalised precession
frequency @, for three different values of plasma g for the ‘minimally shaped’ near-axis field
N = 2 from Camacho Mata et al. (2022) at r = 0.01. The black lines correspond to the @ = 7 /4
field line, and grey curves reflect the variation in precession frequency due to non-omnigeneity.
The analytical estimate for the normalised pressure at which deeply trapped particles reverse
their precession is f* = 5.5 % and corresponds to the middle set of curves. The legend on the
right shows how the plasma cross-section at the radii » = 0.05, 0.1 and toroidal angle ¢ = 0
change with 8.

has been varied whilst the shape of the magnetic axis and the ellipticity of the flux
surfaces in its vicinity is kept fixed to first order. Note that different authors and contexts
mean different things by ‘increasing B’ (i.e. different features of the equilibrium are kept
constant), making direct comparison difficult. Of course, reaching this g is necessary but
not sufficient for maximum-J of the whole trapped population. This is especially true in
the examples in figure 6, where it is not the most deeply trapped particles that have the
largest precession frequency. From the preceding analysis, we expect a non-zero plasma S
to introduce an overall upshift of the precession qw,, which is indeed seen numerically.

A central conclusion of our analysis thus far is the possibility of making deeply trapped
particles acquire maximum-J behaviour without the need of a non-zero plasma pressure.
Accordingly, we now attempt to construct such a field first through optimisation within the
near-axis framework. We construct an optimisation measure for maximum-J by summing
wﬁ (which we have learnt how to compute) over values of k that satisfy gw, < 0, call it
8s,- We are also interested in imposing the condition of QI, especially at second order.
At the maxima and minima of the field strength we learnt in this work that we must
satisfy (B9), from which we may construct an additional cost function, call it gq;. Under
the assumption of satisfying this condition, one can show that it is possible to choose
the near-axis construction at second order in such a way that it guarantees the correct
second-order QI behaviour elsewhere. We give the most essential elements of this in
Appendix D, but leave a full exploration to a later publication. Note that this way of
completing the solution is formally correct, but in practice (i.e. when taking into account
shaping, QI breaking in buffer regions, etc.) it may not be the best choice. For our proof
of principle, however, it should suffice. With this, then, we construct our near-axis cost
function simply as the weighted sum of the negative gw, and the QI condition, (B9), at
the |B| extrema, g = g,,, + a1

With the cost function thus defined, we must explicitly state which our minimal degrees
of freedom are. We shall allow only the axis shape and the function d(¢) to vary, while
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FIGURE 8. Proof of principle of a maximum-J-optimised near-axis field. The panels show
a near-axis field optimised so as to exhibit quasi-isodynamicity and maximum-J behaviour,
especially near the minimum of the magnetic field on each flux surface. The shaping of
the configuration is very large, and thus the resulting field impracticable, but shows that the
optimisation criteria can be met. (a) A three-dimensional rendition of the field for r = 0.02,
using only the first-order description. (Second-order contributions are large and obscure the
visualisation.) (b) First-order cross-sections near the minimum of |B| (in (R, Z) coordinates
and between ¢ = 3w /4, 51t/4). The dotted curve represents the position of the magnetic axis.
(c) Precession &, computed numerically using |B| from the near-axis expansion at two different
radii on a number of field lines (grey curves, with the black representing the average). The
increase in variability at low r is due to the buffer region in which omnigeneity is broken.
For this example, this contribution was not minimised. Close to the magnetic axis, the field
satisfies the maximum-J criterion for almost every orbit, except those trapped in secondary
minima (Rodriguez & Plunk 2023).

keeping the field strength By(¢) fixed. The idea is not to find a practical field, which would
require limiting the shaping and other additional practical features (and unlocking other
degrees of freedom such as By and the order of curvature zeroes). We are simply aiming
at the construction of a proof-of-principle field that exhibits maximum-J behaviour in
vacuum, especially for the deeply trapped particles. Other details of the optimisation are
left to Appendix D. In figure 8 we present the resulting optimised configuration for N = 1.
The shaping is forbiddingly large, owing to the fact that no attention was paid to limit
it. Flux surfaces are extremely shaped and limit the physical radius of the configuration
(r. 2 0.002 (Landreman 2021)). However, we may from this approach formally construct
an asymptotic form of B at any r using its near-axis form as a model, and represent the
geometry to first order to exhibit the features resulting from the optimisation.

The optimised field is one in which the deeply trapped particles exhibit maximum-J/
behaviour (see figure 8¢).° To achieve this, the optimiser has found a field with the

There exists some noise very close to the minimum owing to the appearance of ‘puddles’ in |B| (Rodriguez &
Plunk 2023). This is the result of the simple axis shapes considered for this case. The noise should, however, disappear
asr — 0.
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features identified in the preceding section. Specifically, the flux surfaces are twisted in
the necessary manner and elongated away from the region of low magnetic-field strength.
Although maximum-J behaviour has thus been achieved for deeply trapped particles, it
is clear that the field is not exactly omnigenous especially at larger k. This is mainly
due to the first-order deviations from omnigeneity which the optimisation target did not
include (clearly seen by the growth of the variation going from the bottom to the top plot
of figure 8). Reducing the ‘buffer region’ (the region where omnigeneity is violated at
first order) would reduce number of trapped-particles that do not satisfy the maximum-J
condition.

3.2. Traditionally optimised equilibrium

Motivated by the theoretical possibility of a vacuum, QI, maximum-/ field and proceeding
beyond the near-axis expansion, we now turn to more traditional, global, stellarator
optimisation. From what we have learned, relaxing the requirements in shaping and
pushing for QI and maximum-J/-behaviour should result in a valid equilibrium solution.
We attempt this optimisation to verify these predictions. To this aim, we employ three
target functions: gy, ensures that the field is QI, g, ensures that the most deeply trapped
particles satisfy the maximum-J criterion, and g; ensures that the other particles also do
so. The total target function that we minimise is thus

8= 8o+ 8. T 8- (3.5

Both g¢; and g, are complicated targets, which are explained in greater detail by Goodman
et al. (2024), and so is the starting point for the optimisation. Broadly speaking, g,
penalises the difference between J-contours on a flux surface by computing the difference
in the second adiabatic invariant and a closely related, artificially constructed, perfectly
QI flux surface. From the calculation of 7}, we also evaluate the term g,;, which imposes
dyJ < 0in this constructed field. Thus, as go; and g, decrease, the field becomes more QI
and more maximum-J.

The term gp,, is a more straightforward target function. Using the fact that the
maximum-J condition corresponds to minimum-B (for the most deeply and shallowly
trapped particles), we simply designed this function to encourage the flux-surface’s
minimum field strength, By, (s), to have a positive derivative, where s = (r/a)?. To do this,
for every consecutive pair of flux surface, the target calculates By, on sy and s; = 59 + 65
and then the fractional difference between the two

1 Bmin(sl) - Bmin(so)

8B(SO) - 5 Bmin(sl) + Bmin(SO) ‘ (36)

We can thus define the target as fz . = max(0.01 — dg, 0)2, where the value of 0.01 has
been chosen as an arbitrary positive number here.

We initialise optimisation from a near-axis construction with a flatter bottom of the
magnetic well (which we know from the work above that should favour maximum-J), using
techniques to be presented by Plunk er al. (2024). The resulting optimised configuration
is indeed (mostly) maximum-J and QI. This can be seen in the second adiabatic invariant
contours of figure 10, which show that J decreases from the centre of the (s, «) plot
radially outward, and the contours are approximately circular. It is evident, however, that
for trapped particles sufficiently close to the bottom of the wells (see left-most plot), there
is a fraction of the population that does not behave in a maximum-J fashion. This is
signalled here by a relative shift of the approximately circular contours respect to the
centre. As a result, there is a portion of field lines that are minimum-J (see also the top
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FIGURE 9. Example of a maximum-J-optimised global equilibrium. The plots show a magnetic
field optimised by minimising (3.5) so as to attain quasi-isodynamicity and maximum-J
behaviour in a vacuum magnetic field. The configuration has an aspect ratio of Aymec ~ 7, three
field periods and exhibits strong shaping, which was not constrained in this proof-of-principle
example. (a) Three-dimensional rendition of the outermost surface of the field, where the colour
map represents |B|. (b) Detail of cross-sections near the core (at o = 0.1, and for reference
to indicate the large shaping of surfaces o = 0.5 as broken contours) and about the minimum
of |B| (in (R, Z) coordinates and between ¢ = 371/4, 5n/4), showing features of twist and
shape studied analytically. The dotted curve represents the position of the magnetic axis. (c)
Precession frequency at two radii on a number of field lines (grey curves, with the black
o = 1t/2). The increase in variability at low r is a consequence of the breaking of omnigeneity.
The overwhelming majority of all trapped particles satisfy the maximum-J criterion, @y > 0.

plot of figure 9¢). In the spirit of a more quantitative measure, it would be convenient
to come up with a single scalar that indicates what ‘fraction’ of the configuration truly
behaves in a maximum-J fashion. For a Maxwellian distribution function, the fraction of
the trapped-particle population whose rotation satisfies gw, > 0 is equal to

2n 1/Bmin
fmax J = N / o dQ / da / @[qa)a (/lv o, Q)]fb(l’ o, Q) dd7 (37)

1/Bmax

where © is the Heaviside step function, 0 = /¥ /¥,

2n 1/Buin
N = / ng/ doc/ (4, a, 0) dA, (3.8)
1/Brnax
and
. e de
Ty = e — 3.9

o ~1—AB
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FIGURE 10. Contours of the second adiabatic invariant 7 in polar coordinates (s, oz). Contours
showing the second adiabatic invariant as a function of the polar coordinates (s, «) for three
different trapped-particle classes. The values of A used are A = [(Bmax — Bmin)An + Bmin]_1
where Bnax and B, denote the maximum and minimum field strengths on the flux surface
in question. An ideal omnigeneous field would have concentric circular contours. The wiggle
in the contours is indicative of QI breaking, which is particularly prominent close to the
trapped—passing boundary (small 1). An ideally maximum-J field would show a monotonic
decrease of 7 along any ray emanating from the origin.

is proportional to the bounce time of trapped particles. This way each flux surface is
considered equally important (the Maxwellian distribution does not change from surface to
surface). With this definition, for the optimised configuration above, fi.x.; = 0.996. That
is, 2 99.6 % of the volume is maximum-J; i.e. for all intents and purposes, the configuration
is maximum-J. The omnigeneous nature of the configuration can be quantified by the
effective ripple (Nemov ef al. 1999), which measures the 1/v neoclassical transport and in
the present case remains in the range €. ~ 0.15 % — 0.45 % across the volume.

To realise these features in a vacuum configuration, we see that the optimiser indeed
found the extreme shaping that we expected in such a configuration. In particular, we
observe extremely elongated flux surfaces towards the field maximum, and a dramatic,
localised ‘twist’ of the flux surfaces near the field minimum. Such features can be seen in
figure 9(b).

The resulting configuration also has a significant so-called ‘vacuum magnetic well” of
approximately 3.3 % (as defined in Landreman & Paul 2022), a property that is important
for MHD stability (Landreman 2021). A field is said to have a vacuum magnetic well if
V() < 0 (where V is the volume enclosed by a flux surface). Generally, unless special
care is taken, optimised configurations tend to have a ‘magnetic hill’, i.e. V"(¢) > 0, so
it is notable that this configuration has such a substantial vacuum well.

The condition for a magnetic well means that, on a suitable average, the magnetic-field
strength should increase with minor radius. This can be seen from the circumstance that
the volume enclosed by a flux surface ¥ is

v 2n 2n
V() = / dy’ f do J de, (3.10)
0 0 0
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where the Jacobian in Boozer coordinates is J = (G + «I)/B?. Since the flux-surface
average is defined as

1 27 27
=g | [T G
van o s Y
it follows that (B?) = 41*(G + «I)/V' and consequently
v dIn{5") + d In(G + d) (3.12)
_— = — — In ), .
1% dyr dyr

where the last term vanishes in a vacuum field, where G'(y) and I(y) vanish. The
magnetic well is sometimes defined without this term (Freidberg 2014). Thus we see,
as argued in § 1, that increasing the radial derivative of B is directly related to MHD
stability. Indeed, Helander (2014, p. 24) showed that there is a mathematical relation
between maximum-J and magnetic-well criteria, but they are not identical. In the limit
of large mirror ratio, where most particles are magnetically trapped, then the maximum-J/
property rigorously implies a magnetic well. It is therefore not surprising that the particular
configuration optimised here possesses a vacuum magnetic well.

4. Discussion and conclusions

Before concluding the paper, we comment on the connection between the maximum-J
condition and the suppression of trapped-particle instabilities (Proll et al. 2012; Helander
et al. 2013) as well as the general reduction of curvature-driven instabilities and turbulence
(Proll et al. 2022). These phenomena are sensitive to the relative size of the drift frequency
wy = kyw, and the diamagnetic frequency

koT Inn
Wy = PR

q dyr
where T denotes the plasma temperature in units of energy, n the density and the wave
vector has been taken to be k = k, V. It is thus of interest to assess the magnitude of the

4.1)

ratio
@o_mv_ Gu 42)
N AT Y,dInn/dy

which for a density profile n = ny(1 — ¥/v,) becomes wy/w, = —d,/2 for particles

moving at the thermal speed, v = /27 /m. In the QI cases studied numerically in the
present paper, @, is of order 1/10, making w,/w, < 1 for most of the particles in a thermal
distribution. This circumstance is stabilising to trapped-electron modes even if the absence
of the maximum-J property. Relatively few electrons are able to satisfy the resonance
condition in the limit w,;/w, — 0 (Connor, Hastie & Helander 2006), and the nonlinear
energy available to trapped electrons for driving instabilities is small (Mackenbach, Proll
& Helander 2022; Mackenbach et al. 2023a). The latter was recently studied and labelled
as the ‘strong’ regime (Rodriguez & Mackenbach 2023), in which the available energy
is only supplied by a small fraction of the trapped population proportional to w,/w,.
From a practical point of view, it is true that as long as |®,| < 1 the magnetic field may
not need to strictly satisfy the maximum-J condition in order to substantially improve
trapped-electron-mode stability. This condition is nevertheless helpful for MHD stability
and fast-particle confinement, since particles with w, = 0 are less prone to collisionless
losses (Velasco et al. 2021; Paul et al. 2022). In any case, whenever the magnetic field
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of any concrete stellarator is optimised, a compromise will need to be found between the
maximum-J condition and other desirable properties.

It is fortunate, although not merely a happy coincidence, that the maximum-J property
is related to both MHD stability, trapped-electron-mode suppression, and good fast-ion
confinement: three very beneficial properties that are otherwise considered separate
and independent of each other. Quasi-symmetric stellarators struggle to possess the
maximum-J property, but we show that QI ones are more amenable to it, and can
be designed accordingly. Physically, this property is realised if all trapped particles
experience average favourable magnetic curvature, and the precession frequency of these
particles then has the opposite sign from the diamagnetic frequency. The behaviour of the
most deep and the most shallow trapped-particle orbits can be examined analytically. It
is found that the former usually precess in the wrong (i.e. diamagnetic) direction. This
behaviour may be modified by appropriate twisting and flattening of the field near the
bottom of the trapping well. Barely trapped particles always precess as desired, provided
the magnetic field is perfectly omnigenous. Nevertheless, omnigeneity always fails for
some of these particles, making them, too, precess in the wrong direction (as explicitly
shown). As we have seen, despite this formal limitation, it is possible to design a vacuum
QI field in which the vast majority of all particles satisfy the maximum-J condition.
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Appendix A. Precession frequency
A.l. General expressions

In accordance with the discussion in § 1, we first turn our attention to the derivatives of the
adiabatic invariant 7. In Boozer coordinates, the magnetic field can be written as (Boozer
1981; Helander 2014)

B=GW)Ve +1(y)VO + By (.0, 0)VY, (AD)
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the arc length element is d¢ = (G + «I) dg/B, so the adiabatic invariant becomes
/1 —
J) —mv(G—i-LI)/ (A2)

and its derivatives are

LN = —mv(G-i—LI)/wR <8—B> F(A, B) dy, (A3)
aa ¥, A PL 80[ Ve
{;—‘i |:(G+LI)/ =By, (G+L1)/ ( ) F(A’B)d‘p}’
a, A “
' (A4)
with
F(1,B) = 11872 (AS)

B2/1— 2B’
and the contribution from the boundary terms vanishing at the end points of the bounce
integral. Equation (A4) can be simplified by using the MHD force balance equation.
In particular, using (A1) to find the plasma current, computing j x B using the Boozer

Jacobian and flux-surface averaging the Vi component of the equation (Kruskal &
Kulsrud 1958; Helander 2014)

G+

G/ +L1/ = —op W

: (A6)

where p(yr) denotes the plasma pressure and angular brackets indicate the usual
flux-surface average. Hence

| _ L pop \/1_7 (0B
I y = mv(G + ) |:<G+LI )/ / (aw>wF(/l, B) d§0j|.
(A7)

The bounce time is

At_/“’RdZ_ G+t1/“’“ de (A8)
“Joouw v Jy BYT=IB

and the precession frequency w, = A« /At, using (1.2b), thus becomes

o, =M /W(§> F(1,B)d
= G . B) dg

() [ ot

The same expressions may be reached by considering the bounce integral of the poloidal
and radial drifts directly.
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A.2. Precession for deeply trapped particles

The expression in (A9) is valid in any stellarator with flux surfaces, but becomes much
simpler for deeply trapped particles. In this case 1 —AB < 1 in the full integration
domain, which also shrinks as A~! approaches the minimum of |B|. This makes the first
term in the square brackets dominate over the second one, and F (1, B) ~ 1/(2B*\/1 — AB)
independently of the shape of the magnetic well. To show this, one can approximate the
bottom of the well as B ~ By(1 + B™¢"/n!) and evaluate for a deeply trapped particle
with bounce point ¢g

fw VI=B VT [U+1n (. B”
A B YT B, G2+ Um0

“ B JE T(+1n (AB B
ST B Y B a2+ 1/m "

The second term in the square bracket of (A9) thus yields a contribution that is ~(1 — AB)
smaller than the first, and thus vanishes for deeply trapped particles regardless of the shape
of the well.

As a result, at the bottom of the magnetic well (i.e. at the point where B - VB = 0) the
precession frequency becomes simply

mv®> [ OB
Wy =—— | — . (A11)
2gB \ 0y v

This result regarding the local role of d,B also applies to the mostly shallowly trapped
particles, which spend most of the time close to the turning point where the magnetic field
strength reaches its maximum on the field line in question, AB.x >~ 1.

The partial derivative of B keeping (¢, ¢) constant can be expressed in terms of common
Boozer derivatives at fixed (6, ¢) by using the chain rule

—1/n
) (1 — AB) /¥, (A10a)

—1/n
) (1 — ABy)V*/n  (A10b)

81/,B|a,¢ = 8]/,B|9q(p + L/§0893|¢,(p. (A12)

In this expression, the second term must vanish at the bottom of the magnetic well if the
field is QI (in fact pseudosymmetry is sufficient Mikhailov et al. 2002; Skovoroda 2005),
as can be seen from the following argument. By definition, (1dy + d,)B = 0 at the bottom
of the magnetic well. Moreover, in a QI field, the level contours of B = |B| are poloidally
closed, which implies that (c¢dy 4 9,)B = 0 for some c(v, 0, ¢) # 0 that cannot equal ¢, at
least not at all minima of B. At the bottom of the well, then, the directional derivative of B
vanishes in two independent directions tangential to the magnetic surface, which implies
that it vanishes in any such direction including dyB = 0. As a result, (A12) becomes

3yBlay = 0yBlo.,. (A13)

A similar argument also applies to maxima of the field strength.

A.3. Near-axis expansion
We now consider the region close to the magnetic axis, expanding in the minor-radius
variable » = +/2v/B, where B is some reference magnetic-field strength. To second order,
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this expansion is (Garren & Boozer 1991b; Rodriguez & Plunk 2023)
B = By(¢) + rBi(, @) + r’By(a, 9), (Al4)
with
Bi(a, ¢) = Bo(¢) d(¢) cos [a + v(p)], (Al5a)
By (e, ) = Bo(9) + Bac(@) cos2 [a + v(@)] + Bas(@) sin2 [ +v(p)].  (AlSh)

To check for omnigeneity, let us write the integral in (A3) for 9,7

3B % ( 3B B a
/ 5P By dp ~ / (r—l + r2—2> [F(/l, Bo) + rBla—B] do, (A16)
o

o o oo o

where 0F/dB = (0F (A, By))/d¢)/B(¢) and the integral is meant between bouncing
points ¢ ;. Expanding to second order in r and integrating by parts’

or oB, ,0B, , 0 (B;dB;
FQA,By) |r—+r— —r—(—-— || d¢
o du da dp \ B, dx

(73
= / F(A, Bo) [—rdBysin(a + v) + 2r* (B cos 2(a + v) — By sin2(a + v))

(23

) (B
+ r2£ ( 0 sin 20 + v)>:| do. (A7)
0

where the integral is taken between bounce points of By(¢). If the field is to
be omnigenous, 9, = 0, this quantity must vanish for all A € [B;., B, ] and all

a € [0, 2n]. For a stellarator-symmetric field, B(r, o, ¢) = B(r, —a, —¢), we have the
relations

Bo(¢) = Bo(—¢), (A18a)
d(e) cos[a + v(¢)] = d(—¢) cos[—a + v(—@)], (A18D)
which are satisfied if d is chosen to be odd in ¢, and v = (n + 1/2)7. As a result of these

constraints, the first-order contribution to (A17) in r vanishes. That at second order will
also vanish if

Bo(p) = ~Bu(—). (Alge)
B —i B(Z)d2> (A18d
() = 5 (436 . )

These relations form the basic requirements for omnigeneity close to the magnetic axis
and were recently derived by Rodriguez & Plunk (2023) by a different method that avoids
the explicit integrals. We refer to that paper for further details and discussion.

7Some care is called for when computing perturbations of bounce integrals since the limits of integration (bounce
points) are themselves perturbed and one must guarantee that the argument in /1 — AB is positive. This can be
nevertheless done carefully to arrive at the same final QI conditions.
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Employing the same near-axis expansion to (A7) gives in analogy to (A17) for a general

stellarator
PR aB
/ FA,B)| — de
bL a w o,

_2 1‘/(pRF(/lB)Bd —{—/WRF(/IB)B o (B d (A19)
=%l » Do)b1dy » Bo 28g0 2B, @ |

(23 Pr

where the integrals are, once again, taken between bounce points of By(¢). Substituting
the omnigeneous forms of the magnetic-field functions into this integral, and noting that
the enclosed toroidal current / ~ 7? (in the absence of an infinite current density on axis),
one obtains w, = Wy vac + W, With

o 1—A1Bo/2 | By 1(Bgd2)’ q
omu? " ® BowT =By | Bo 4By \ B, ¢

Wy,vac = = s A20
' qB Iz de (A20)
L Bya/1 — ABy
o T= 1By |
2 2 oL @
_ 2mvT [opa By ’ (A21)

Wgp = —=
r qB (B(z)) [ ng
L Bya/1 — ABy

where p(r) = po + por* + - - - and ¢; and g, to reiterate it, denote the toroidal locations
of the bounce point to the left (L) and right (R) of the bottom of the well (for stellarator
symmetry ¢, = —¢g). Although we have used the notation w, v, and w, ,, one should
not forget that the former includes pressure effects through Bag. The flux average of B}
appearing in this expression is equal to

21
(B}) =2m / / c;—‘f. (A22)
0 0

A.4. Omnigeneity breaking

Because the expression in (A9) is valid for any stellarator, it provides an opportunity
to learn how deviations from exact omnigeneity affect the precession frequency w,. We
consider this question from the near-axis perspective.

A.4.1. First-order breaking

Let us start with the QI requirement at first order in r. As we saw following (A17), the
condition of omnigeneity requires the functions d and v to be odd and even, respectively,
in ¢ (see Plunk & Helander 2018; Camacho Mata et al. 2022; Rodriguez & Plunk 2023).
This symmetry is crucial in a QI stellarator, as it causes the radial drift on either side of
the magnetic well to cancel to leading order (as discussed in the main text). When the
condition of omnigeneity is satisfied exactly, the 1/r contribution to w, in (A19) vanishes.
This balance is delicate, however, as any small deviation can lead to a large precession,
restoring the O(1/r) dependence. This behaviour can be understood as the result of a finite
poloidal drift occurring over an increasingly smaller flux surface as the magnetic axis is
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approached. The contribution may be written as

2 @R -1 24
non-QI mv~ 1 / d¢ :| /
0] = —- _ F(4, By)B:(«, @) do, A23
o1 qBr[% BoJT—1B.) /. (4, Bo)Bi(a, @) do (A23)

following directly from (A19).

This term is, in principle, always present since omnigeneity can never be realised exactly
except in trivial cases (Cary & Shasharina 1997; Landreman & Catto 2012; Plunk et al.
2019; Rodriguez & Plunk 2023). In any non-axisymmetric torus, the requirements of
omnigeneity clash with the required periodicity of the solution in 6 and ¢. Formally,
periodicity requires v(—m) = v(7w) 4+ 27 (¢ — N) in our near-axis description, which is
incompatible with its even symmetry. This condition is necessarily broken at the points
of maximum field strength, which we may write v = /2 + v and v is odd in ¢. Barely
trapped particles will always experience this lack of omnigeneity.

Using this notation, we may rewrite the O(1/r) contribution to the precession

2on-Ol mv? cos [/“’R de }_] /WR F(A, By)Bydsin v d (A24)
w = —— [ p— ’ v ’
o, —1 gB 1 W, BovI— 1B, g 0)bo i

to which contributions arise from any particles that venture into the region where
omnigeneity is broken, i.e. sin v 7 0. For these orbits, the non-omnigeneous part of the
precession will always dominate for sufficiently small r. Because of the cos o dependence
of the precession, these particles will precess in either poloidal direction depending on
the field line considered. The immediate implication of this behaviour is that in a realistic
magnetic field (one that allows for the necessary breaking of QI), the maximum-J property
is technically not possible close to the magnetic axis, independently of plasma pressure.

This somewhat bleak result appears to rule out maximum-J behaviour in QI
configurations, much as in QS stellarators or tokamaks. It should, however, be noted that
the factors that determine the size of the 1/r terms are naturally small. At the top of the
magnetic well, where the conditions of exact omnigeneity need to be relaxed, it is by
construction the case that the function d vanishes. That is, the magnetic-field perturbation
By is small in the vicinity of the maximum, as is necessary for the consistency with
a locally straight magnetic field (and for the contour of By, to be independent of the
poloidal angle). By shrinking the region in which omnigeneity is broken, the number of
particles for which the precession frequency diverges as 1/r can be made arbitrarily small.?
Only extremely close to the axis is the divergent behaviour of the precession frequency
significant.

The size of this region can be gauged by estimating the minor radius r, below which the
1/r behaviour, (A24), dominates over the second-order contributions, (A20). By way of

L

example, we define and compute the critical radius r, = \/ Y Wa 1/ 2pwa o (withthe —1

and 0O indices referring to the respective r scalings) for the near-axis fields in figure 6. The
amplification of the precession and its variation from field line to field line is especially
noticeable in figure 6(b) for which r, ~ 0.003, driven by the presence of ‘buffer’ regions
(Plunk et al. 2019; Camacho Mata et al. 2022). It may perhaps appear counterintuitive that
close to the axis, where the field is most omnigeneous, the variation between field lines (an
indicator of departure from omnigeneity) increases. However, the bounce-averaged radial
drift w, does decrease linearly in r as expected from (A17)), indicating that omnigeneity
does become perfect in the limit » — 0. The existence of a region very close to the axis in

8There is, however, a price to be paid in terms of geometric complexity, see Camacho Mata ef al. (2022).
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which the maximum-J condition cannot be satisfied is nevertheless unavoidable, but this
region can, in principle, be made arbitrarily small.

A.4.2. Second-order breaking

From figure 6 it is clear that there are non-QI contributions even if the leading
first-order field is precisely QI. In the exactly omnigenous limit, the contribution to w,
from second-order terms is a-independent, but one regains some o« dependence when
omnigeneity is broken. Taking into account the symmetry conditions on the various
functions that constitute the near-axis description, we may write the non-QI contribution
to the precession as

non-QI va2 o d(ﬂ B
@y, 0 Q = — = —_— cos 2«
' qB oL Bo«/ 1-— /?.Bo

/wk F(A1,By) 3| B ! B%dz / 2V + | By, + Bgdz V' |sin2v ¢ d
X , . — = cos2v B V' |sin2v .
. 0 2, 1 36 2 236 @

(A25)

Two limits of this expression are of particular interest. The first limit concerns deeply
trapped particles, which are relatively easily well confined and may therefore be
omnigenous to second order. Then ¥ = 0 and

2mv? 1 (B>
W = |:B26——( 0 )i|cosZa. (A26)

9B} 4\ B

The second limit of interest is realised when B, has its QI form, (A18d). Then the first term
in square brackets of the second integral vanishes, leaving a contribution that vanishes
unless omnigeneity is broken at first order. The QI contribution @, y,c in (A20) remains
unchanged.

A.5. Stellarator-symmetry breaking

The expressions above were derived under the assumption of stellarator symmetry. This is
a convenient simplifying assumption, under which functions acquire a definite parity in ¢,
which simplifies bounce integrals. If By is not symmetric in ¢, the expressions need to be
revisited although most of the considerations for symmetric fields continue to hold.

To deal with the stellarator asymmetric case, we employ the notation of Rodriguez &
Plunk (2023) and denote the ‘bounce mapping’ by ny(¢). This is the function that maps
a point on one side of the magnetic well defined by B, to the other side of the well,
i.e. Bo(p) = Bo[no(¢)]. Symmetry conditions on the functions By, d etc. then apply with
respect to the mapping 1, (Rodriguez & Plunk 2023).

With this in mind, we proceed from (A19) without making any assumption of
symmetry.’ The first term, corresponding to the 1/r order, vanished due to the QI condition
and the odd symmetry of B;. It can be shown that this vanishing holds even when
stellarator symmetry is abandoned

PR oL
/ F(A, Bo)B,(¢) dp = / F(A, By) Bi[n0(@)1ny(¢) dg =0, (A27)
YL (73 —_—
2B, (5)

°It can be rigorously shown that such an expression holds even upon breaking of stellarator symmetry to the order
shown.
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where we changed variables ¢ = no(¢) for the first equality, applied the first-order
QI condition in a generally non-symmetric QI field (equation (19) in Rodriguez &
Plunk 2023), and noted that the second integral is exactly the negative of the first one.
This proves that the QI property is sufficient to make the integral vanish, without any
stellarator-symmetry requirement being necessary. This should not come as a surprise.

The QI condition at second order may be succinctly written as an equation for the
a-dependent part of B, as (equation (C12) in Rodriguez & Plunk 2023)

2

_ B _ B?
By(0, ¢) — By(p) — 9, (ﬁ) =, [Bzw,so) — By(p) — 9, (ﬁ)] . (A28)
0 0 b

where the subscript b denotes the evaluation of the expression inside the brackets at 1y and
the barred B, represents the poloidal average of B,. Following the same substitution trick
as for (A27), the 6 dependent part of the order O(1) contribution to w, can be shown to
vanish, only leaving the 6 (or «) dependent piece. The conclusion is that the expression for
the omnigeneous part of w, o is the same whether or not the field is stellarator symmetric,
with the difference that in the asymmetric case usually ¢; # —¢g. In addition, symmetry
breaking will also affect the value of By.

Appendix B. Radial derivative of B for deeply trapped particles in QI configurations

As we have seen in the main text, the average radial derivative of B at the minimum
along the field, B,y = B, B/2|y—. is key in determining the tangential drift of trapped
particles. This term is related to the magnetic well (3.12), which plays an important role
for MHD stability (Freidberg 2014; Landreman & Jorge 2020; Rodriguez 2023).

Regardless of whether the field is QI, the term By, must have a form that is consistent
with the equilibrium and solenoidal properties of the magnetic field. That is, it must
be consistent with V - B =0 and j x B = Vp. Within the asymptotic framework of the
near-axis description of the field, the function B, is only partially constrained by the
properties of the magnetic field on the axis and to first order. There is in general some
freedom in its choice. However, at ‘straight’ sections where the curvature of the magnetic
axis vanishes, the constraints of the equations become particularly stringent leaving
no freedom. B,y becomes uniquely determined by lower-order choices and the plasma
pressure. In this appendix we find determine its value and explore formal consequences
of it.

For this purpose, we focus on the minimum of |B| along field, where deeply trapped
particles reside and ¥ = 0. We are interested in relating the magnetic-field magnitude By
to lower-order quantities in the near-axis expansion and to the flux-surface geometry. To
do so, and as part of what is known as the inverse-coordinate approach to the near-axis
expansion (Garren & Boozer 1991b), we describe flux surfaces in terms of Boozer
coordinates (our independent set of coordinates) respect to a signed Frenet—Serret frame
(Plunk et al. 2019) {b, &, £} as x — ro = Xk + Y + Zb. Here, r represents the magnetic
axis and {X, Y, Z} are functions describing the flux-surface shape. The near-axis expansion
framework is designed to uncover the connection between the |B| and these features. The
relevant equations and constructions can be found in Landreman & Sengupta (2019), to
which we refer for further details. We shall invoke results from this work, reproducing the
necessary expressions. In what follows, the symbol f;; represents the expansion coefficients
of the function f, where the subscript i corresponds to the power of r in the expansion, and
j equals 0, ¢ or s depending on the 6 harmonic it represents (constant, cosine or sine). At
higher-order generalised notation can be devised (Rodriguez & Bhattacharjee 2021).

https://doi.org/10.1017/50022377824000345 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000345

32 E. Rodriguez, P. Helander and A.G. Goodman

We first consider the shape of flux surfaces in the direction normal to the magnetic axis
and begin with the function X,(, which describes a rigid shift of the flux surfaces relative to
each other (akin to the Shafranov shift Landreman 2021; Rodriguez 2023). This function
can be read off from equation (A34) of Landreman & Sengupta (2019)

1 , 1 G(Z)Bzo 3G§ (ch + st)
XZO = 0 S, | — 3 + 4
it/ v| B 4B}
G (G I X2 XZ 2 2 2 2
O( 2:"'0 2) . lc+ ls(Kg/)Z_qc—l_qs—i_rc—i_rx , (Bl)
B2 4 4

where all the expressions on the right-hand side except By, G» and I, are first-order
quantities.

Since k appears in the denominator of this expression, to avoid an unphysical diverging
shift of flux surfaces at the point where k = 0, By is highly constrained at this point. If
the curvature has a zero of order v, then we expect the first v — 1 derivatives of By, to
be determined by (B1). Let us momentarily focus on Byy(¢ = 0) for k(¢ = 0) = 0. We
shall assume stellarator symmetry and the configuration to be QI to first order, so that
d = d/k is even in @, the (signed) curvature is odd, the torsion even, By even, and o odd
(o = (B1,Y1s + B1.Y1.)/Bk is ameasure of up-down asymmetry). With this in mind, using
the expression for Z,y and ¢; from equations (A24), (A27) and (A37-40) of Landreman &
Sengupta (2019), we find"”

B 1 - B? B BB/
ﬁ — _'u/olz)z + dd// (1 _ _ ) + (__) (0/)2 _ _0
By B} 4)? B2d* Bod Bid?

[(Ey (2 ) .
_ - _— = T .
4|\ By Byt'd "

To further simplify this expression, we eliminate ¢’ in favour of the properties of the
axis and first-order quantities. Using the near-axis Riccati o-equation (Landreman &
Sengupta 2019, equation (A21)), assuming an exact QI magnetic field at first order
By. = —Bydsin e and By; = Bydcos (p@ (Plunk ef al. 2019; Rodriguez & Plunk 2023),

I God?
o’=2(§2—fo) o~ (B3)

With this and the relation £ = Gy/B, (assuming G, > 0) (Landreman & Sengupta 2019,
equation (A20)) we obtain

By HopP2 1
—_— =+ — P, B4
By B(z) + 402 Z (B4
where
__ B2
Piw=dd" |1 — —— |, B5a
e (1) -

10 All functions of ¢ are meant to be evaluated at ¢ = 0, but we avoid writing this explicitly for simplicity of notation.
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B/ BZ
Py =0 B B5b
5=~ (BSh)
_ B
P = (dnl) (3 Bgc‘r*)’ (B5¢)
ol
P, = —4(0)d* 22 (B5d)

B’

which are the forms used in the main text. It will be convenient to choose our reference
field B to equal B at the bottom of the well, B, but we keep the expressions here general.

An analogous approach to avoid divergence of X,. yields the consistent value of B, at
the minimum of the magnetic field. In this case, we need equation (A36) from Landreman
& Sengupta (2019)

1 1 [ G2B,, 3G3(B? — B2
XZC - {Zéc + 2ZOZZS — — |:— 02 0( lc 15)

Tkl v B 4B}
X2 — X2 G —g+rr—r
_ e S (el 2 e s c S . B6
— 5 &) 2 “ (B6)
Then, as before, we may write for B,
B 1 B B \’B] Tl
. dd’ (1 + = ) + (-) 20 _ 4222
By 4(0)? d*B2 dB,) Bo B
- ) B2
+(dwol") (3 + = )] (B7)
d*B:

with all quantities evaluated at the point ¢ = 0. For a simple zero, the equivalent
for B, yields that By,(¢ = 0) = 0. This is satisfied by the parity conditions derived
from stellarator symmetry, and thus bring no additional information to the table. The
expressions here presented may be found derived in a Mathematica script in the Zenodo
repository associated with this paper. We re-emphasise that the form of these expressions
assumes exact QI at first order in the near-axis expansion. For more general forms of the
expressions see the comments in Appendix D.

B.1. Implications of the QI condition

We showed in Appendix A and learnt from Rodriguez & Plunk (2023) that, in an
omnigeneous field, B,. must have a very particular form in a stellarator-symmetric field.
At the same time, from the conditions of equilibrium, we have also found in (B7) that the
value of B, is constrained at the bottom of the magnetic well. Thus, in principle, there are
two different constraints that must be simultaneously satisfied in a QI field.

To further look into this issue, we note that the B,. employed in this section is somewhat
different from the QI form of B,. employed elsewhere in the text. In fact, B,. here (see
Landreman & Sengupta 2019) is defined respect to the helical angle x = 6 — N¢, where
N is related to the self-linking number of the signed Frenet frame of the axis (Rodriguez,
Sengupta & Bhattacharjee 2022). In contrast, the QI version of B,. (which we may denote
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by Bg) is defined in (A15) respect to the angle o + v. Therefore

By, = BY cos2(ip — v) — BY sin2(ip — v), (B8a)
B, = B%I cos2(tp —v) + Bgcl sin2(tp — v), (B8b)

where ¢ = ¢ — N. Now, for a stellarator-symmetric QI field at the bottom of the well, v =
1t/2 and ¢ = 0, meaning that B,. = —Bg. Due to the sign flip, the resulting constraint

from (A18d) becomes
T BZ B ng ’ 2_27’—012
dd <1+z_1’432) + (&?) B——4(€) d 5
0 0 0
B BZ (E/)Z BZdZ 4
+dr£’2(3+_ ): (0 ) . B9
(d7ol) B B, B, ) (B9)

The condition of omnigeneity at the bottom of the trapping well thus translates into an
additional constraint on the zeroth- and first-order components that make up the magnetic
field. In the limit of a vacuum field with no secondary minima of |B|, it follows that dd” <
0: geometrically, flux surfaces must become more elongated in the binormal direction away
from the minimum. This is a geometric consequence of the QI conditions.

With this constraint at hand, we may eliminate d” altogether from the expression we
have for By in (B4). Defining fy = Ba/Bo — (B3d*/By) /4By = f, + fa; + fi, +frz + far,
the resulting expression is

f=-100 (B10a)
BO
1 % BB
foy = ———ﬁ_ -2, (B10b)
" T2 1+ aB, By
N
s — 22 B10
fs=15aB " (B100)
2W/a b
—_ 2 B10d
flz 1+O_lB()TO ( )
1 1 (Bd\
- , B10
fa ZBOI+64<B()> . (B10e)

where @ = d*B2/B>.

B.2. Stellarator-symmetry breaking

The derivation above may be extended to non-stellarator-symmetric fields, which leads
to additional terms in various equations. For simplicity, we shall assume once again that
the field is exactly omnigeneous to first order and that v = 1t/2. The latter condition is
not necessary as one could add an even function U while still satisfying the conditions
of omnigeneity (Rodriguez & Plunk 2023). In the interest of brevity, however, we only
consider this simplest case.

As a result of the lack of symmetry, the expression for the magnetic well By, changes.
Proceeding in an equivalent way to that above, it can be shown that, in the expression (B4),

https://doi.org/10.1017/50022377824000345 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000345

The maximum-J property in quasi-isodynamic stellarators 35

the coefficients of By/B, become (assuming G, > 0)

_ B2(1 + o2 - Bot
P = dd" (1 - %) Py = 4d’€’%
N 0 0¢
B! BX(1 + o?) _ LB (1+0?)
Py = _3_032—[12 Pay =2 )232—&4
o B PO 5 B (B11)
_ o o
> = (dtol)* |3 — ——= = =270 —
Pr2 = (drot’) ( B > P T, B
I
P, = —4) 2822,
B

The main difference to the stellarator-symmetric case is the modification of terms through
the breaking of up-down symmetry, o, and the appearance of three new terms. If the field
is up-down symmetric at the minimum of |B| (o = 0), the only new term compared with
the stellarator-symmetric case is that proportional to (d')%. This term is always positive,
thus indicating a potential benefit of breaking stellarator symmetry to increase the depth
of the radial well.

Proceeding similarly with B,., we find

B 1 [-- B2(1 — o2 B\’ B! 1ol
22— aa 1+ (72") + (—) 201 — o) — a0y P 22
By 40" d*Bj dBy/ Bo B

i} B%*(1 — ¢?)
+ @) (34 ———= d’Z— —2(d
(drol") ( d4B(2) Odafo (d)?

57 4(1—0 ) —2t4t'o

(B12)

Now, when stellarator symmetry is broken, the condition of QI at second-order changes,
and the self-consistency condition for B,.(0) will change accordingly. That is, we must
check the implications of (A28), drawn from Rodriguez & Plunk (2023) (see (26b) there).
At the bottom of the well it is always true that n;, ~ —1, by virtue of having a minimum
(and thus in a local Taylor expansion in ¢, a leading even power of ¢). Because d must
vanish at this position rapidly enough to avoid the loss of confinement of deeply trapped
particles (see the discussion on pseudosymmetry and the behaviour at the bottom of the
well in Rodriguez & Plunk (2023)), B,.(0) must be the same as in the stellarator-symmetric
case, at least under the assumption made on the form of v.

This way, we form the equivalent to (B10) when stellarator symmetry is broken, which

becomes
_ Hop2 B 0T —
= , =2 . d
Ty B Ja Bydt' 1 +a — o>
oo L& BE .1 a\’
BT o a+1-02ByBy, T T 1+a—o2\¢ )
_ B13
f va B, P BB o (B13)
2= - 55 %> = P
" 14+a&—02By ° 0 ¢ Byl+a—o?
P Ve b PR 1 B3d*\
T T NG0By T 2Byl+a—o2 \ B ,
L/):

Some of these expressions are used in the main text.
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Appendix C. The magnetic mirror problem

There is an obvious analogy between magnetic mirrors and QI stellarators. Indeed, the
latter are sometimes referred to as linked mirrors. This analogy is especially accurate near
the maxima and minima of |B| along field lines, which tend to be located in places where
the curvature is small (and vanishes on the magnetic axis) and where trapped particles thus
have little sense of the toroidicity of the field. This analogy provides us with a practical
tool to assess the behaviour of the QI field from the perspective of a straight magnetic
mirror.

C.1. Near-axis expansion procedure

The near-axis approximation (commonly referred to as the paraxial approximation in
the context of magnetic mirrors) is common in the study of magnetic mirrors (Furth &
Rosenbluth 1964; Kadomtsev & Pogutse 1967; Catto, Tang & Baldwin 1981; Savenko
2006). In this appendix, we adopt this approximation within the inverse-coordinate
approach used for stellarators. We do so in an attempt to simplify the comparison and
to clarify the quadrupole ansatz traditionally used in the analysis of magnetic mirrors.

We focus on the case of a vacuum field and describe the field lines as curves of constant
Y and «, whose position is given by x(¥, «, z) = XX+ Yy + (z + Z)z in Cartesian
coordinates. The z-axis can be thought of as the ‘magnetic axis’, about which we will
perform the expansion, and the function Z can without loss of generality be chosen to
vanish.

In order to find the governing equations, we write the vacuum condition of the magnetic
field and its Clebsch representation as (D’haeseleer et al. 2012)

V& =Vy x Va, (C1)
or in the inverse-coordinate representation {v, «, z},
0.X = 0y PIpx X 0,X + 0, P 0, x X dyx + 0, Dy x X 0pX. (C2)

To relate it to the magnetic-field magnitude, we then write what we shall refer to as the

Jacobian equation
9.0\
( : ) = 9.x]?, (C3)

B

which follows from taking the scalar product of (C1) with its right-hand-side, using the
dual relation Vi x Vo = J'9.x = B.

As usual, we need to expand these equations by expressing all functions as
Taylor—Fourier expansions in the pseudo-radial coordinate = /2v/B and «. The latter
is a field-line label, and because we are in a straight, non-toroidal system, we may take it as
our poloidal angle. (In the absence of toroidal flux surfaces, there is no need to introduce a
toroidal or a helical angle.) The relevant functions in the expansion are B, X and Y as well
as the scalar potential @. We shall use the same index notation as in the regular stellarator
near-axis expansion, so that, for instance,

X(wa a, Z) =r [Xls(z) SinOl + ch(z) Ccos (X]
+ 7 [Xa0(2) + X5, (2) sin 20 + X, (z) cos 2a] + - - - . (C4)

Here, the functions X;.(z) and X,,(z) are considered to be first-order inputs to the problem
alongside B(z), the magnetic-field strength on axis.
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C.1.1. Zeroth order (C3)
To leading order O(r°) of (C3),

%=/&@@, (C5)

where By is taken to be positive.

C.1.2. Leading order (C2)
To leading order, O(r~!), there are three different equations we obtain from the three
projections along the Cartesian basis of (C2). From the Z-projection we have

B

X]cyls - Xlsylc =
By (2)

(Co)

which is a statement of magnetic flux conservation along the flux tube labelled by r. This
is of course fully analogous to the situation in a stellarator, as it is a property inherent to
any flux tube.

For a non-vanishing magnetic field By # 0, the other two components of (C2) to O(r)
can be combined linearly using X;. and X,,. The result is that @, . = @, ; = 0. There is,
in other words, no first-order contribution to the vacuum magnetic potential.

Next, the first-order O(r) form of (C3) yields the natural conclusion that B;; = 0 and
B, = 0, so that there is no «-variation of the magnetic-field strength to first order. This
is an expected result, as we well know that, in the absence of a pressure gradient, the
perpendicular gradient of |B| is proportional to the curvature vector. In the vicinity of
a straight axis, there is therefore no first-order variation of the magnetic-field strength.
This circumstance sets the straight mirror apart from a typical QI stellarator, in which the
toroidal nature of the field forces the field to exhibit such a variation in most places along
the magnetic axis. The leading form of the field is then that at next order, which must be
quadrupole-like.

C.1.3. Zeroth order (C2)

Let us now turn to the next order of (C2), which is O(°). At this order we have a total
of six independent equations, as each of the projections has cos & and sin o terms.

From the Z projection, and constructing appropriate linear combinations of the
equations, we may write the following equations for Y,. and Y»;:

_ X]ZC - X]ZY chyls - XIA‘YIC XICYIC + Xlsyls
CUXex T xexy U xexy
Xlelx - chYlC
— o X, (C7a)
Xt + X3,
2X10X15 chYIC +X13Y15 XleIC _XICY1S
2c = 595 0 120 T2 v D2 T 2 0 D2
Xie + X, Xi. + X, Xi. + X,
Xl.lec + chle
——— o X, (C7b)
Xi. + X3,

which are thus explicitly related to the second-order quantities X, and Y. This
circumstance is reminiscent of the situation in a stellarator (equations (A32)—(A33) in
Landreman & Sengupta 2019). In the interest of brevity, we shall not proceed to find
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expressions for these coefficients. Full expressions may be found in the Zenodo repository
associated with this paper.

The remaining components of (C2) can also be combined to yield expressions for @,
(i.e. three equations) and a consistency condition on first-order quantities. The former may
be written as follows, using (C6):

@ (X%c + Xlzs)(YISXic + YlCXis) + (Y12€ + YIZS)(XLVY{C + XlCY{s)

Dyy = , C8
2 4 Xlelc + ch'Yls ( a)
¢2C — lﬁ (X%C B X%S)(Ylsxic + YlCXiS) + (YIZC — les) (XleiC + XICY{S) , (Cgb)
4 Xlelc +chY1s
_ @chle[(Xfy), + (Y%s)/]) + Xlels[(Xlzc), + (lec),]) Exlcxis - XlinC
» 4 Xlelc +chY1s 2 Xlelc +X1L'Yls ,
(C8¢)
and the latter as
X7, — X1) X1, X, — X1 X, + Y\,Y]. — Y,.Y;) = 0. (C9)

Because we have adopted an approach in which X;; and X;. are inputs to the near-axis
construction, the second bracket must vanish. This is an ordinary differential equation for
Y1, which together with (C6) give both Y|, and Y;. in terms of X; and B,. Introducing
the definition Y,. = Yy 0, this equation can be cast, with (C6), into the form of a Riccati
equation

B 2
o' = - X — Xle)z (EO) (XISX;C - chxis), (C10)

while (C6) becomes

B

Yj= 7.
By(Xi. — oXjy)

(C11)
C.14. Second order (C3)
Having closed forms for the various terms in @,, we are in a position to evaluate the

magnetic field B, by considering the O(r*) expansion of (C3). From each of its harmonics
the following relations can be read off

B P 1
= B X+ (X (V)P + ()7, (C12a)
By B 4
By, P, 1 2 2 2 2
== _|X ) - X Y ) — (Y , Cl12b
B =g 3K X0 - ()] (C120)
st CD/S 1 / / / /
B_O = Bf) - 5 (XICX1S+ chyls)’ (C12C)

which uniquely describe the magnetic-field magnitude to second order in terms of
first-order shaping. Note that the quadrupole nature of |B| arises naturally through the
near-axis construction.
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C.2. Magnetic field at the bottom of the well

We now have all the tools we need to understand the behaviour of the field at the bottom
of the magnetic well, which we define to be at z = 0. We choose to align our coordinate
system with the leading elliptical shape at z = 0 and define the poloidal label « in such
a way that 0(0) =0 and X;,(0) = 0, without any loss of generality."" By definition,
B((0) = 0 and we shall choose our reference field as B, (0) = B.

With these definitions and choices, we may then evaluate the magnetic field at the
bottom of the magnetic well for a general straight magnetic mirror. The result is

BO Bg Xic ? 7 N2 1/ 1
Bzo(ZZO):Z “BX +2 X + (X7 | + X1 X1 I—X—4 ,  (Cl3a)

le

Bo.( —0)—B° B 51 ( e 2+(X/)2 cxx (14— (C13b)
20\ = = 4 B()Xlzc Xlzc 1s 12 le X4 ’

le

By 1
By(z=0) = EXICX

Ls>

(C13¢)

where all quantities are evaluated at z = 0.

C.3. Maximum-J in a magnetic mirror

The analysis of the maximum-J condition in a mirror closely follows that in a QI stellarator
and proceeds from the general expression for the precession frequency (A9). In the context
of a straight mirror, relaxing the conditions of omnigeneity and stellarator symmetry, but
instead noting that there is no first-order variation in the field magnitude, B;, we find in

vacuum
. 1—1By/2

o By T B,
qB fZR dZ
V1 — ABy

where B, = B,y + By, cos 2o + By, sin 2w, z; g are the bouncing points for given A and
the magnetic-field functions are given in (C12). We may normalise w, following the
prescription in (2.2), for which we need to define an edge flux ,. Following the same
procedure as for the near-axis stellarator, defining the aspect ratio as A = L/a, where L is

the length of the mirror
M /dz - C15)
‘7 2A42\J By)

At the bottom of the well, the expression for w, for deeply trapped particles reduces to
a form analogous to (2.9)

By (z, a)dz

, (C14)

Wy =

2
v
Wy ~ m_32 (Byo -+ Bae cOs 20t -+ Bo, sin 2a). (C16)
qbg

For maximum-J/ behaviour, i.e. gw, > 0 for all «, it is thus necessary that
B%O > B%c—I_B%s’ (C17)

"'We could have kept o (0) non-zero in order to mirror the stellarator case, but in the interest of reducing the algebra
we choose it to vanish. The reason why in the stellarator case this choice is not general is that the basis used is the
Frenet—Serret frame, which we are not free to redefine.
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in addition to B,y > 0. Because the mirror has no first-order variation of |B|, the
maximum-J/ and minimum-B properties are equivalent, i.e. both require d,B > 0 to
leading order in the expansion in . This minimum-B property is well known to endow
the magnetic mirror with MHD stability at sufficiently low g (Berkowitz, Grad & Rubin
1958; Taylor 1963; Furth & Rosenbluth 1964).

Using the expressions for B, at the bottom of the mirror, (C13), one may show that the
maximum-J condition is equivalent to

X! X, > 0, (C18a)

X/lc ’ + (X/ )2 _ Bg > X]L‘Xi/c L + Xils ’ (Clgb)
X12C o ZBOX%C 2 X?C X;/C '

These two conditions may qualitatively be interpreted as

Elongation increase # 0, (C19a)
Mirror ratio

TWiSt2 I
Well width

> Elongation increase. (C19b)

Equation (C18a) is a statement about the elongation of flux surfaces having to grow away
from the middle of the mirror, where X7, is the elongation of the elliptical cross-section in
the x-direction. We are free to take X;. > 1 to make this direction coincide with the major
axis of the ellipse. Then X/, > 0 can be interpreted as a condition for growing elongation
away from the minimum (in both directions). This property indeed constitutes a typical
feature of optimised magnetic mirrors (see figure 11).

Equation (C18b) is more interesting than (C18a), as it involves more aspects of the
field. Maximum-J behaviour can only be attained if there is a sufficiently large ‘twist’ of
field lines across the bottom of the magnetic well. By ‘twist” we refer to the contribution
from X/ and X|, which describes a left-right symmetry breaking of the field. This ‘local
shearing’ of field lines and lack of symmetry about the minimum of the configuration is
common in mirror designs. The twist of the field must be strong enough to overcome the
effect of elongation and the natural tendency for a negative radial magnetic field derivative,
indicated by the B term.

All in all, strong twist and large elongation are helpful for maximum-J behaviour, but
they must be balanced in a careful way. Making the minimum flat (reducing By)) is also
helpful. These features are visible in typically shaped mirrors such as the example shown
in figure 11.

C.4. Omnigeneity in a magnetic mirror

Magnetic mirrors can be made to be omnigenous by careful tailoring of the quadrupole
magnetic field (Hall & McNamara 1975; Catto & Hazeltine 1981). What this means in an
open ended device is that the surfaces of constant ¥ correspond to precession surfaces
for all trapped species in the sense introduced by Hall & McNamara (1975). In order to
characterise this property, we measure of the ‘radial’ drift (normal to constant v surfaces)
by the quantity Y,m, = V@ x VB - Vi/B - VB, which plays a key role in the analysis of
stellarator omnigeneity and in our coordinates (¥, ¢, z) can be written as

3.8
Yomn = 0@ — 0.5 (C20)
39.B
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FIGURE 11. Example of an optimised ‘symmetric’ magnetic mirror. The figure shows a
three-dimensional rendition of a near-axis magnetic mirror optimised for omnigeneity and the
maximum-J property. Panels (b,c) illustrate the elongation of flux surfaces, £, and the normalised
precession frequency (with @, > 0 indicating maximum-J behaviour) as a function of z, where
the black line represents the average over the field-line label «. The mirror was constructed
assuming symmetry of X;. and X1y, and employs a simple quadratic magnetic field.

We follow the approach of Rodriguez & Plunk (2023) to obtain a near-axis expansion of
the condition for omnigeneity, which requires that Y, is equal and opposite at bounce
points.

Expanding this condition in powers of r, we obtain Y = 0 to first order by virtue of

the straight axis: there is no leading curvature drift. It is only at the next order that there is a
non-zero radial drift, so we may write Y2 = Y@ cos2a + Y@ sin2a. The expansion

gives e o
B B? @5\
Y(2> =2 ¢s__OBs =2 2 Vo, C21
omn,c ( 2 B6 2 B6 B, + Vs ( a)
B B[ [ @5\
Yoo, = =2 (@‘ch —~ —?BZC> =220 [( 2 ) + vl], (C21b)
h B B By
where
Vi =[P+ (X)) — (V) — (X7, (C22a)
Vo = =3 (XX}, + Y1.7)), (C22b)

and we have made use of (C12). For omnigeneity, the expressions for Y& and Y®

omn,¢ omn,s

must be even in z (provided By is symmetric about its minimum). This imposes constraints
on the choice of X;. and X;.
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It is natural to ask whether this condition is at all compatible with the maximum-J/
requirements derived above. In other words, is it possible to design an omnigenous,
maximum-J magnetic mirror? Let us consider omnigeneity at the bottom of the mirror, in
which the condition reduces to that of locally vanishing radial drift. Evaluating the square
brackets in (C21) at the minimum, and requiring them to vanish (assuming a first-order
zero of B # 0)

X! =0, (C23a)
! 2 /! 1
(X;C> L= 2oy XK (1 n L4> (C23b)
ch ZBOXlc 2 ch

which, incidentally, implies B»y/By = X|.Xi./2 and B,. = 0 = B,, at the minimum. If
we choose X{ > 0 to comply by the first of the two maximum-J conditions, (C18a),
the second maximum-J condition, (C18b), is satisfied by satisfying the condition of
omnigeneity, (C23b). This suggests that it is possible to construct a mirror that is
omnigeneous and satisfies the maximum-J/ condition simultaneously, at least at the
minimum. Indeed, Catto & Hazeltine (1981) have shown that it is possible in a finite region

around the minimum.

C.5. Example of approximately omnigeneous and maximum-J mirror

To venture beyond the bottom of the well, we present a numerical example in which
the maximum-J and omnigeneity conditions are both satisfied over a non-zero interval
in z. To construct such an example, we choose for simplicity a symmetric solution with
well-defined parity (so that X, and X, are odd and even respectively). This guarantees the
correct behaviour of (C21b), but leaves us free to find inputs such that V| 4+ (&@,./By) = 0.
This task can be formulated as an optimisation problem in which X;; and X;. are the
degrees of freedom (fixing By). We initialise the search with a configuration that satisfies
the omnigeneity requirement at the bottom of the well (as we know in closed form what
this choice should be). The result of the optimisation (with 6 scalar degrees of freedom) is
presented in figure 11.

Appendix D. Details of near-axis optimisation for a vacuum QI field with the
maximum-J property

In this appendix, we document details of the optimisation approach to the near-axis
field presented in figure 8 of the main text. A more in-depth discussion will be presented
elsewhere.

The main goal of our optimisation effort is to construct a proof-of-concept
near-axis field that exhibits the maximum-J property in the omnigenous portion of the
trapped-particle population. In that regard, we do not optimise for the particles in the
so-called buffer region (Plunk et al. 2019), the part of the domain where omnigeneity
is violated in order to enforce periodicity of the magnetic field. In general, narrow
buffer regions lead to large shaping gradients, and these regions are therefore often made
relatively wide although omnigeneity then suffers. As far as the maximum-J property
is concerned, this will increase the number of particles with large (~1/r) detrimental
precession. We shall, however, not be concerned with this detail but argue that we could,
in principle, shrink the buffer region to become arbitrarily small.

Focusing, then, on the other contributions to the precession, we need to introduce
a measure for maximum-J behaviour that serves as a target function in the numerical
optimisation. In order to exclude contributions from the buffer regions proportional to
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1/r, we evaluate the precession frequency as the sum of (A20) and (A25), and construct
the target function as the sum

8a, = Y _ (k) (D1)
k

taken over values of k such that &, < 0. The required integrals are evaluated using the
help of the BAD library in python (Mackenbach et al. 2023b).

A second ingredient in the optimisation is the condition of omnigeneity (outside the
buffer regions). Given first-order inputs, second-order choices necessary to enforce the
correct form for B,.. Accordingly, we construct X,. and X, following (B6) and the
equivalent for X,;, assuming that B, has the correct form for QI. Writing X,. = }N(zcczm +
5(255'20,1 and Xzs = XZL‘SZC(] — X25C2a1 , We find

- 1|4 . B (d*\
X c = T 7: o 7; o L s D2
2 KB()|: Coay T S2]+4(36):| (D2a)
~ 1 ~ ~
Yoy = — | Tosna, — Frco — BY] (D2b)
KB()

where ¢y, = cos 2o and s,,, = sin 2¢;, and

. B L R S
T2z f gz T T T (D3a)
r 47
il BO / qcqs + Vels
T = 7 Zy — 2002y + | (D3b)

and o) = v — (¢ in the notation of Appendix A, following Garren & Boozer (1991b).
This construction guarantees QI behaviour at second order for any odd Bg, as can be
checked by substitution. The only exceptions are points where the curvature vanishes,
where we learnt in Appendix B, (B9), that the QI condition reduces to a condition on
lower-order coefficients. An indication of the latter is that the construction will generally
diverge wherever x = 0, from which more general expressions than those of (B9) can be
obtained which do not assume QI at first order (this is important for the tops of the well
in practice). Thus, one must add to the optimisation a measure of the deviation from QI at
the points of minimum and maximum field strength, which the optimiser should attempt
to reduce. We denote the sum of this ‘residual’ at all extrema along the field by gq1. To
simplify the available choices, we further take p, = 0 and 5(25 = 0, which is not the most
general choice, and most likely not even the best, but suffices for our purposes. Although
this approach enforces QI at second order exactly, it does not appear to be the best one
in practice, as it leads to highly shaped configurations, and unnecessarily enforces QI at
second order in regions where it is already violated at first order. However, it suffices
for our purposes of proof-of-principle construction, and we leave further refinements for
future work.

The target function to be numerically is thus g = g, + gq1, and we proceed to discuss
the degrees of freedom over which the optimisation is to be carried out. At first order, there
are many free functions, some of which will be fixed for simplicity. The magnetic-field
strength is taken to vary along the axis as By =1+ 0.16cos ¢, but the shape of the
magnetic axis and the elongation measure d are allowed to change. For the former, we vary
three even Fourier harmonics (three for each Z and R describing the axis in cylindrical
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coordinates), a fourth one being chosen consistently to make the curvature vanish at
¢ =0, 7 (Camacho Mata et al. 2022; Rodriguez et al. 2022). This restricts us to first-order
zeroes of curvature (Rodriguez et al. 2022; Camacho Mata & Plunk 2023). The function d
is allowed to have 7 degrees of freedom through collocation points of a symmetric spline,
symmetry being necessary to preserve stellarator symmetry.

With the optimisation procedure defined this way, we finally need to specify a starting
point, which we take to be a generic QI axis with N = 1 and d = 1. Other details, such
as the buffer region size etc. can be found in the supplementary material, in which all
the numerical tools are provided. The optimisation is performed using the near-axis code
pyQIC (Jorge et al. 2023) with appropriate upgrades (use of splines, second-order choice,
etc.), and the optimisation libraries of scipy (the algorithms Nelder-Mead and BFGS are
used, the latter as a refinement of the former). Broadly speaking, the optimisation proceeds
in two stages: (i) Nelder—-Mead optimisation for QI and maximum-J/ behaviour at the
minima and maxima of By; (ii) full optimisation (on a few field lines) of the function
g. Step (i) has the benefit of only requiring a first-order near-axis solution, thus being quite
fast, while (ii) is slower as it needs to compute @,. Additional refinements are of course
possible.

The results of the optimisation are presented in figure 8, and all the pertinent files and
scripts are included in the Zenodo repository associated with this paper.
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