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Summary

With a large number of quantitative trait loci being identified in genome-wide association studies, researchers
have become more interested in detecting interactions among genes or single nucleotide polymorphisms
(SNPs). In this research, we carried out a two-stage model selection procedure to detect interacting gene pairs
or SNP pairs associated with four important traits of outbred mice, including glucose, high-density lipoprotein
cholesterol, diastolic blood pressure and triglyceride. In the first stage, a variance heterogeneity test was used
to screen for candidate SNPs. In the second stage, the Lasso method and single pair analysis were used to sel-
ect two-way interactions. Moreover, the shared Gene Ontology information about the selected interacting
gene pairs was considered to study the interactions auxiliarily. Based on this method, we not only replicated
the identification of important SNPs associated with each trait of outbred mice, but also found some SNP
pairs and gene pairs with significant interaction effects on each trait. Simulation studies were also conducted
to evaluate the performance of the two-stage method in different situations.

1. Introduction

There are various meanings for the term interaction,
here it is defined as a joint SNP–SNP or gene–gene ef-
fect that can not be readily explained by their separate
marginal effect (Kahn, 1983). As is known, interac-
tion between genes or gene and environment is one
of the main factors that contribute to a trait (i.e. dis-
ease). Many strategies and methods have been applied
to genome-wide interaction studies (GWIS), such as
regression, machine learning, Bayesian method and
SNP filtering etc. (Mckinney et al., 2006; Zhang &
Liu, 2007; Bai et al., 2012). Balancing computational
load and statistical power, SNP filtering or screening
that select candidate SNPs based on a priori infor-
mation is a promising method for genome-wide data
(Herold et al., 2009). Sources of the a priori infor-
mation include statistical evidence (single marker as-
sociation at a moderate level), genetic relevance
(genomic location) and biologic relevance (SNP func-
tion class and pathway information).

Kooperberg & Leblanc (2008) proposed a two-
stage analysis, in which they only test for interactions
between SNPs that show some marginal effects. Some
SNPs or genes may not show strong marginal associa-
tions when they affect disease risk through interac-
tions with other SNPs or genes. As a result, these
genes may not be identified by the single marker as-
sociation screening method in GWIS. Considering
both computational load and statistical power, Wu
et al. (2009) conducted an exhaustive two-dimensional
search in the first stage, which detected joint effects
that may fail to emerge from single maker analysis,
but may have an inflated type I error. Paré et al.
(2010) demonstrated that, under plausible scenarios of
genetic interaction, the variances of a quantitative
trait are expected to differ among the three possible gen-
otypes of a biallele SNP. Thus a variance heterogeneity
test can be used to screen for potentially interacting
SNPs. Then an exhaustive two-dimensional scan was
conducted among the candidates identified in the first
stage. Paré’s screening method has the advantage that
the interacting covariants need not be known or mea-
sured for a SNP to be prioritized and independence
between the two steps under the null hypothesis of no
interaction can guarantee correct type I error.* Corresponding author: E-mail: yzhou@aliyun.com
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In this study, we carried out genome-wide interac-
tion association studies using 288 mice from a com-
mercially available outbred stock with four traits
and 44 428 SNPs (Zhang et al., 2012). The four traits
including glucose (GLU), high-density lipoprotein
cholesterol (HDL), diastolic blood pressure (DBP)
and triglyceride (TG) are strongly associated with
some complex diseases, such as diabetes, cardiovascu-
lar disease and adiposity. Detecting interacting SNP
or gene pairs is of great significance for learning
about the mechanisms of some complex diseases.

A two-stage model selection procedure was used to
detect interacting SNP pairs or gene pairs for each
trait. In the first stage, based on Paré’s idea, variance
heterogeneity tests were used to screen for potentially
interacting SNPs. As multiple genetic variants are
expected to jointly affect a complex trait, the Lasso
method (Tibshirani, 1996) and single pair analysis
were both used to select significant interacting pairs
among the candidates in the second stage. Several
simulation scenarios were designed to evaluate the
performance of the two-stage procedure, where
Hardy-Weinberg equilibrium (HWE) and linkage
equilibrium may be not satisfied.

2. Materials

The raw data set includes 288 NMRI mice with eight
traits and 581 672 SNPs. Zhang et al. (2012) carried
out some basic work on the data by excluding those
SNPs whose HWE χ2 ≥ 20, minor allele frequencies
<2% and missing values >40%, and collapsing ident-
ical SNPs within 2Mb intervals, resulting in a total
of 44 428 unique SNPs in the final data.

These traits include systolic blood pressure (SBP),
DBP, mean arterial pressure (MAP), GLU, TG,
cholesterol (CHL), HDL and urinary albumin-to-
creatinine ratio (ACR). All traits except ACR were
approximately normally distributed. Since the lipid
traits (HDL and CHL) and blood pressure traits
(SBP, DBP and MAP) were highly correlated among
themselves (r> 0·97), here we only report our analysis
results of DBP, GLU, TG and HDL as representative
of this group of traits.

3. Method

A two-stage method based on Paré’s idea is intro-
duced in this section. In the first stage, equality of
the conditional variances under three possible geno-
types for each SNP is tested, which is equivalent to
test interaction between this SNP and another covari-
ant. Then the Lasso method and single pair analysis
are both used to select SNP pairs among the candi-
dates chosen before. The details of the two-stage
approach are given in the following sections.

(i) Stage one: variance heterogeneity test

The objective of the first stage is to select SNPs that
are likely to have interaction effects. In detail, if we
want to test whether a SNP (G represents its genotype)
has an interaction effect on a quantitative trait y with
a covariant C (another SNP or environment factor),
the follow linear model is considered:

y = β0 + β1G + β2C + β3GC + ε,

then Var(y|G = g) = (β2 + β3g)
2Var(C|G = g)+ σ2.

Under the assumption of independence between G
and C, we further have:

Var(y|G = g) = (β2 + β3g)
2Var(C)+ σ2.

It is clear that Var(y|G = 0) = Var(y|G = 0·5) =
Var(y|G = 1) if and only if β3 = 0. Thus, testing the
interaction effect between G and C is equivalent to
testing the equality of the conditional variances (i.e.
σ20 = σ20·5 = σ21, where σ2i = Var(y|G = i)). The biggest
character of this approach is that we do not need to
know the covariant’s informationwhen judging whether
one factor has an interaction effect with another
covariant or not.

The Levene’s test (Olkin et al., 1960) was applied to
verify the equality of variances under different geno-
types for each of 44 428 SNPs in the data set we
considered. Suppose the sample size N can be divided
into K subgroups and let Ni denote the sample size
of the ith group. The Levene’s test statistic is
defined as:

W =
(N − K)

∑
i
Ni(Zi.− Z..)2

(K − 1)
∑
i

∑
j
(Zij − Zi.)

2 ,

where Zij = |Yij − Yi.|, and Yij is the trait value for
the jth individual of the ith group; Yi. is the mean of
the ith subgroup; Zi. and Z.. are the subgroup mean
and overall mean of Zij , respectively. Under the null
hypothesis of variance homogeneity, the Levene’s stat-
istic follows a F distribution with K–1 and N–K
degrees of freedom. In this paper we have K = 3 and
N= 288.

(ii) Stage two: interaction test

The purpose of the second stage is to further identify
interacting pairs among the candidate SNPs selected
from the first stage. When building statistical models,
the marginal association loci reported by Zhang et al.
(2012) are included. Single pair scan and multiple
marker analysis with the Lasso model are both used
here. The details of the two linear models are as fol-
lows:

y = β0 +
∑5

k=1

βkSNPk + βijXiXj + ε, (1)
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y = β0 +
∑5

k=1

βkSNPk +
∑p

k=1

β∗kXk +
∑

i,j

βijXiXj + ε,

s.t.
∑5

k=1

|βk| +
∑p

k=1

|β∗k| +
∑

i,j

|βij| ≤ γ,

(2)
where SNPk, 1 ≤ k ≤ 5 represent the five main effect
loci identified by Zhang et al. (2012), Xk, 1 ≤ k ≤ p are
genotypes of the SNPs selected in the first stage, XiXj is
product of the candidate pair’s genotype values and
γ ≥ 0 is a tuning parameter to be determined separately.

Although the single pair scan and multiple marker
analysis may detect some different interacting SNP
pairs in the second stage, we expect that the results
from the analysis of the two strategies can supplement
each other, since we do not want to miss any valuable
interaction effect.

4. Results

(i) Results from stage one

In order to avoid filtering out interesting SNPs by the
variance heterogeneity tests, a relaxed type I error or
family wise error rate is allowed in stage one. In the
real data analysis, significance level α = 0·05 was cho-
sen for each SNP. Taking trait GLU as an example,
there are 2487 SNPs showing significant variance het-
erogeneity (see the second line of Table 1).

As some SNPs are very close in their locations on
the chromosome, their genotypes are very similar
among the 288 mice in the data set. For example,
only three mouse genotypes are different on the
three loci respectively located at 74104950bp,
74187929bp and 74201260bp on chromosome 1. In
general, if one of them was significant in the variance
heterogeneity test, then all would pass the first stage
test. Therefore, the loci we picked up in the first
stage would not be independent, and that would also
increase the burden of multiple tests. So we combined
those SNPs that were within 2Mb and gave the same
genotype among more than 97·5% of the 288 mice.
There are 779 SNPs left after reorganizing the 2487
SNPs for trait GLU (see the third line of Table 1).
The allelic association between two SNP loci was
used as a measure of linkage disequilibrium (LD).
We observed a sharp decay in LD with increasing
physical distance between the 779 SNPs on the same
chromosome (see Fig. 1). The numbers of SNPs
after reorganizing for each trait are listed in Table 1.

(ii) Results from stage two

(a) Single pair analysis based on model (1)

Taking trait GLU as an example, 779 SNPs were cho-
sen from stage one and C2

799 SNP pairs were tested

with model (1). After calculation, 199 SNP pairs
among them have P-values smaller than 1E-4. The
mean square error (MSE) reduction by including
each interaction term in model (1) was also calculated,
respectively. Tables S1–S4 in File 1 of the supplemen-
tary material give the annotations of SNP pairs
with P-values <1E-4 and significant shared Gene
Ontology (GO) information for the four traits. We
listed some representative SNP pairs with validated
interaction effects in model (1) for each trait in
Table 2.

Fig. 1. LD plot for trait GLU. The allelic association
between two SNP loci was used as a measure of LD. Each
dot represents the LD value of a SNP pair on the same
chromosome.

Table 1. The number of selected SNPs and SNP pairs.

Trait GLU HDL DBP TG

Number of selected SNPsa 2487 2326 3220 2596
Number of reorganized
SNPsb

779 900 1063 1001

Number of SNP pairs with
p-value <1E-4 in Model (1)

199 184 205 10

Number of significant SNP
pairs selected in Model (2)

10 3 5 11

aThe number of significant SNPs in variance heterogeneity
tests with significance level α = 0·05.
bThe number of SNPs after collapsing those SNPs selected
in the first stage with similar genotypes and close positions.
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(b) Multiple marker analysis based on model (2)

The goal of model (2) is to jointly select from the can-
didates. In total, 1784 variables were chosen as candi-
dates for trait GLU, including five marginal
association loci reported by Zhang et al. (2012), 779
unique SNPs selected in stage 1 and the top 1000 epi-
static SNP pairs in model (1). Bayesian information
criterion (Schwarz, 1978) was used as a criterion to
choose the tuning parameter. The Lasso method gen-
erated 11 non-zero coefficients, including one mar-
ginal association locus on chromosome 5 reported
before and ten interacting pairs (see Table 3). The
total MSE has decreased by 26·4% compared with
the previous main effect linear model. The most sign-
ificant pair obtained by the single pair analysis was
also selected by the Lasso method.

For trait HDL, five terms were selected by the
Lasso method, including two marginal association
loci reported before and three interacting pairs (see
Table 3). The total MSE has decreased by 15·9% com-
pared with the main effect linear model. The first two
SNP pairs in Table 3 for trait HDL are near the first

two pairs based on model (1) listed in Table 2. The
analysis results for traits DBP and TG can also be
found in Table 3.

Comparing Table 2 with Table 3, we found that the
single pair analysis may pick up many SNP pairs, but
they are mostly nested within some narrow genomic
regions. While in the joint analysis via the Lasso
method, SNP pairs that have high correlation with
those already included in the model are less likely to
be added into the model again, which may help us
to find more valuable regions. Furthermore, a final
model that can well explain the variability of each
trait can be found by the Lasso method.

The main reason that we considered two analysis
strategies in the second stage is that the results
obtained from the two strategies can supplement
each other, i.e. the single pair analysis and the Lasso
method also detected their own interacting SNP
pairs as well as the common ones. We should not
neglect any detected interacting SNP pairs, since the
true model between the trait and the main and interac-
tion effects of the SNPs is completely unknown.

Table 2. The interacting information detected by the two-stage method via model (1).

Locus 1 Locus 2 MSE
reduction
(%)cTrait Chr Position Gene or nearest gene Chr Position Gene or nearest gene P-valuea Nb

GLU 17 87128520 -Epas1d 18 78042984 Pstpip2 1·47E-06 7 7·45
6 147670244 Gm15762

B230104C08Rik
9 118103317 Gm17399- 3·92E-06 21 7·02

6 147670244 Gm15762- 2 93039320 – 3·53E-06 27 6·89
6 147670244 Gm15762- 3 75843721 Golim4 Fstl5 3·30E-06 25 6·88
6 147639739 1700049E15Rik 5 121142226 Dtx1 4·51E-06 4 6·73
6 147670244 Gm15762- 15 11931111 Sub1 Zfr 4·6E-06 3 5·05

HDL 4 150470889 Camta1 17 32007869 Sik1 Hsf2bp 2·06E-07 7 8·77
1 164206594 Dnm3 17 72311236 Alk 3·01E-06 10 7·07
4 150470889 Camta1 1 106123272 – 4·71E-06 6 6·79
4 150470889 Camta1 1 187715529 Slc30a10 Lyplal1 4·95E-06 2 6·76
4 150470889 Camta1 2 123671035 Gm13988 Sema6d 5·87E-06 7 6·65
4 150470889 Camta1 14 74796750 Gm6984 Htr2a 6·08E-06 25 6·63
5 66555742 Rbm47 13 63998360 0610007P08Rik 6·32E-06 2 6·61

DBP 13 83963970 C130071C03Rik- 3 34764407 Sox2ot- 3·72E-08 6 9·26
13 84273654 C130071C03Rik- 9 115009565 Osbpl10 1·72E-07 24 8·85
13 84273654 C130071C03Rik- 13 60043341 Zcchc6 Gas1 4·29E-07 3 8·27
13 84273654 C130071C03Rik- 7 77717179 B130024G19Rik- 3·37E-06 4 6·96
9 115029912 Osbpl10 18 65601942 Malt1 5·17E-06 6 6·69
3 109582676 Vav3 Ntng1 16 41310194 -Lsamp 9·57E-06 4 6·31

TG 1 135851986 Prelp Fmod 14 17179014 Ngly1 Top2b 6·37E-07 4 7·95
9 116453569 Tgfbr2 Rbms3 13 104033960 Mast4 6·72E-07 2 7·92
9 116453569 Tgfbr2 Rbms3 12 61248230 Ociad2 Cwh43 2·49E-06 7 7·09
5 73732287 Ociad2 Cwh43 17 32035365 Sik1 Hsf2bp 4·43E-06 24 6·72
5 73732287 Ociad2 Cwh43 11 99397875 Krt39 Krt40 6·68E-06 6 6·46

a P-value for model (1) containing five main effects loci and each single SNP pair.
bN: Number of SNP pairs with P-value <5E-4 near the SNP pairs listed in each row.
c The MSE reduction by including each interaction term in model (1).
d -Epas1: The detected SNP is located within the intergenic region of a snRNA or miRNA and MGI gene Epas1.
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5. Simulation studies

In this section, simulation studies are designed to in-
vestigate the effects of minor allele frequency
(MAF), main effects, HWE and LD on the two-stage
method we used in the real data analysis.

(i) Simulation design

We assumed that a quantitative trait (denoted Y) is af-
fected by four causal SNPs, with two of them having
main effects only (denoted X1 and X2) and two of
them having interaction (denoted X3 and X4).
Phenotype data were generated from the following lin-
ear model:

Y = β0 +
∑4

k=1

βkXk + β34X3X4 + ε,

where ε�N(0, σ2), σ2 = 10, β0 = 3. The main effect of
the ith SNP (denoted βi, i = 1,. . .,4) was chosen ac-
cording to its heritability (denoted Hi), which means
the proportion of the trait’s variance is explained by
the ith locus. As loci 1 and 2 do not have an interac-
tion effect, we set H1 = H2 = 10% .

We considered four different situations of loci 3 and
4. For each scenario, 300 individuals were generated,
which is similar to the previous real data set and the pro-
cess was repeated 1000 times. If loci 3 and 4 both came
through the variance heterogeneity test with a signifi-
cant interaction effect in the linear model, we would
conclude that an interacting pair has been discovered,
and then the discovery rate among 1000 replications
was calculated. Four different situations were con-
sidered, as discussed in the following sections.

(a) Situation 1: loci 3 and 4 are independent and have
an interaction effect only (H3 = H4 = 0)

In this situation, β3 and β4 are set to zero and Xi can
be encoded as -2q, 1-2q and 2-2q with probability p2,
2pq and q2, respectively, such that the mean genotypic
value equals to zero. We can easily get:

Hi = 2pqβ2i
Var(Y )

i = 1, ..., 4, and H = 4 p2q2β25
Var(Y )

,

where Var(Y ) = 2pq(β21 + β22 + β23 + β24)+ 4p2q2β25 + 10
and H denotes the heritability of the interaction effect
of loci 3 and 4.

Table 3. SNP pairs selected by the two-stage method via Model (2).

Locus 1 Locus 2
Contribution
rate (%)aTrait Chr Position Gene or nearest gene Chr Position Gene or nearest gene

GLU 1 82062500 Gm5530 Irs1 4 29575401 Gm11923 Gm11925 6·16
12 30998502 Sntg2 18 73383043 -n-R5-8s1 4·45
11 14125120 4930554G24Rik Gm12006 15 77932972 Cacng2 3·82
17 87128520 -Epas1 18 78042984 Pstpip2 3·34
3 143110185 Gm2574- 15 77327564 2·45

12 113645375 16 66284359 -Cadm2 2·36
5 121142226 Dtx1 6 147639739 1700049E15Rik 2·27
4 96540503 Gm12695 Gm10192 16 39177513 Igsf11- 1·33
6 147670244 Gm15762 B230104C08Rik 7 135179430 1·30
4 65160973 Astn2 19 18752026 2410127L17Rik 1·06

HDL 4 150470889 Camta1 17 32007869 Sik1 Hsf2bp 9·49
1 163546745 -Gm15429 17 72311236 Alk 6·15

10 6331899 Mthfd1l 9 115878311 Gadl1 5·90
DBP 3 111579000 16 41310194 -Lsamp 7·28

9 115009565 Osbpl10 13 84273654 C130071C03Rik- 6·65
2 129096371 Ckap2l 15 19802913 Cdh10- 5·37

11 42826374 7 77717179 B130024G19Rik- 4·26
11 42826374 -Gm9972 13 84273654 C130071C03Rik- 0·04

TG 1 181436563 Smyd3 5 123349051 Kdm2b 6·09
1 195979059 4631405K08Rik Plxna2 15 81491304 Ep300 L3mbtl2 4·82
7 143625565 Mki67- 12 17139883 2410004P03Rik Kcnf1 4·70

13 103304354 Cd180 15 70171048 -Fam135b 4·70
3 129089662 Enpep Elovl6 12 39963955 Etv1- 4·06

11 99310169 Krt20 Krt23 16 49935728 Cd47 Bbx 3·93
9 89545898 AF529169 Tmed3 11 120587173 Dcxr 3·55
4 10784867 Gm12919 2610301B20Rik 9 120440907 2·03
6 65836389 Prdm5 14 17179014 Ngly1 Top2b 1·14
9 116453569 Tgfbr2 Rbms3 13 104033960 Mast4 1·14
3 129089662 Enpep Elovl6 9 116453569 Tgfbr2 Rbms3 0·12

aThe increased rate of MSE after deleting each pair from the final full model selected by the Lasso method.
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For each MAF q, we respectively took H (%) = 10,
15, 20, 25, 30, 35, 50. For example, when q = 0·3,
H= 10%, we can obtain β= 1·22, 1·22, 0, 0, 2·005,
which satisfies the assumptions of heritabilities. As
estimates of powers, the discovery rates among 1000
replications were presented in Table 4.

(b) Situation 2: loci 3 and 4 are independent and have
main effects (H3 = H4 = 0)

In this situation, we investigate the influence of mar-
ginal effects of interacting factors on the power of
the variance heterogeneity test. We fixed q at 0·3, be-
cause the effect of MAF has been studied in situation
1. For each H (%) (5, 7, 10, 15, 20), we respectively
took H3 +H4 (%) = 10, 15, 20, 30, 40. The simulation
results are listed in Table 5.

(c) Situation 3: loci 3 and 4 are independent and
HWE is not satisfied for locus 3

Firstly, we define a measure of skew for HWE. Let A
and a denote the two alleles of locus 3 with P(A) = p
and P(a) = q. By fixing one of the three genotype prob-
abilities, we can define skew coefficient of HWE ac-
cording to the other two genotype probabilities. For

example, Supposing P(Aa) = 2pq, skew coefficient r
of HWE is defined by the following expressions:

p(AA) = p2 − r, P(aa) = q2 + r.

If r ≥ 0, then r , p2, otherwise r . −q2. r = 0 indi-
cates that HWE holds. The simulation results of two
different cases by respectively fixing P(Aa) = 2pq and
p(aa) = q2 are both given in Table 6.

(d) Situation 4: loci 3 and 4 are linked and have
interaction effect only (H3 = H4 = 0)

The performance of the two-stage method on two
linked loci with various LD coefficients θ is con-
sidered. The detailed information to chose genotypes
of loci 3 and 4 and regression coefficients are listed
in the supplementary material (File 2). For each H,
we respectively took, 0= 0·9, 0·85, 0·8, 0·75, 0·7,
0·65, 0·6, 0·55, 0·5. The simulation results are listed
in Table 7.

(ii) Simulation results

The discovery rate among 1000 replicates is con-
sidered as an estimate of power. From Table 4, we
can see that the powers increase with increasing inter-
action effect and MAF except when MAF is small.
This result is intuitive. When MAF is 0·1, the power
always stays at a low level, even if the interaction ef-
fect is highly significant (H = 50%). So the method

Table 4. The discovery rates of 1000 simulations in
situation 1.

qa
Hb (%)

10 15 20 25 30 35 50

0·1 0·173 0·012 0·006 0·006 0·006 0·014 0·050
0·2 0·073 0·192 0·334 0·496 0·621 0·712 0·896
0·3 0·051 0·150 0·320 0·508 0·670 0·831 0·985
0·4 0·030 0·120 0·234 0·522 0·759 0·900 1·000

aMAF.
bThe proportion of variance (heritability) explained by in-
teraction effect of loci 3 and 4.

Table 5. The discovery rates of 1000 simulations with
q = 0·3 in situation 2.

H (%)
H3 +Ha

4 (% )

10 15 20 30 40

5 0·012 0·032 0·066 0·020 0·392
7 0·340 0·094 0·178 0·382 0·594
10 0·118 0·240 0·364 0·606 0·860
15 0·342 0·494 0·632 0·904 0·990
20 0·566 0·704 0·852 0·984 1

aThe total proportion of variance explained by the marginal
effects of loci 3 and 4.

Table 7. The discovery rates of 1000 simulations with
q = 0·3 in situation 4.

θa

H
(%) 0·9 0·85 0·8 0·75 0·7 0·65 0·6 0·55 0·5

20 0·003 0·009 0·014 0·011 0·013 0·016 0·017 0·016 0·018
25 0·008 0·017 0·028 0·035 0·052 0·065 0·068 0·063 0·068
30 0·012 0·036 0·056 0·084 0·014 0·161 0·188 0·196 0·210
35 0·017 0·077 0·152 0·227 0·304 0·351 0·407 0·436 0·448
40 0·039 0·152 0·313 0·447 0·548 0·601 0·674 0·718 0·713

aThe LD coefficient between loci 3 and 4.

Table 6. The discovery rates of 1000 simulations with
different r in situation 3.

ra −0·03 −0·02 −0·01 0 0·01 0·02 0·03 0·04
0·521 0·591 0·637 0·670 0·701 0·756 0·783 0·806

rb −0·3 −0·2 −0·1 0 0·1 0·2 0·3 0·4
0·515 0·599 0·664 0·670 0·638 0·566 0·424 0·254

aThe skew coefficient of HWE when fixing P(Aa) = 2pq.
bThe skew coefficient of HWE when fixing P(aa) = q2.
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we used may be ineffective in detecting interaction ef-
fects among rare variants.

Table 5 shows that the marginal effects of interact-
ing factors can affect the power and the dependence is
monotonic in most cases. While some violation may
exist for small H. The reasons that contribute to this
contra-intuitive phenomenon are explained as follows
(Struchalin et al., 2010): from the linear model given
before, we can get σ2AA = Var(y|G = 1) = (β2 + β3)

2+
σ2, σ2Aa = Var(y|G = 0·5) = (β2 + 0·5β3)2 + σ2, σ2aa =
Var(y|G = 0) = β22 + σ2. Let

f (β2) =
σ2AA − σ2Aa

σ2AA
.

When MAF is small, f (β2) is one of the main factors
that affects the power of the variance heterogeneity
test, and interacting loci tend to be discovered with
large f (β2). So an optimum β2 may exist.

From Table 6 we can see that there is no simple
change of powers when HWE is not satisfied. As the
skew coefficient r of HWE influences the distribution
of the three genotypes, the power of detecting interac-
tion would increase if the skew coefficient r makes the
distribution more uniform, otherwise the power would
decrease. For example, in the first case, where
P(Aa) = 2pq, P(AA) = p2 − r and P(aa) = q2 + r.
When r> 0, P(aa) would increase r from q2 = 0·09
and P(AA) would decrease from p2 = 0·49, which
makes the three probabilities more close. So the
power increases with the increasing of r.

It can be seen from Table 7 that the two-stage
method performs poorly when independence assump-
tion of loci is not satisfied. Even for H= 25%, the dis-
covery rate is <10% and the discovery rate also
decreases with the increasing of the LD coefficient θ.

In addition, the performance of the two-stage
method for cases of different sample sizes was also
considered in our simulation. Table 8 lists the change
of powers when we increase the number of individuals
from 300 to 500, 750 and 1000, where q = 0·3.

6. Discussion

In this paper, a two-stage method based on Paré’s idea
was used to conduct a genome-wide interaction

analysis for four important traits of NMRI outbred
mice. For each trait, we found some SNP pairs that
are potentially valuable in further exploring the rela-
tionships between genes and these traits. From a
bioinformatics point of view, the GO information
was also used to auxiliarily explain the selected inter-
acting pairs. Special simulation scenarios were also
conducted in this research to evaluate the effects of
practical factors such as HWE and LD on the two-
stage screening method.

The NMRI outbred mice data set we used in this
paper originated from a single population that de-
scended from two males and seven females imported
from Lausanne, Switzerland (Lynch, 1969). There-
fore, it has minimal population structure and a small
proportion of private alleles. Furthermore, all the
mice are bred in the same situation, which can avoid
wild factors. From this aspect, the population size
needed is much smaller than would be needed in
human association studies. Association mapping
with a population of outbred mice is similar to
human genome-wide association studies (GWAS) in
many respects; therefore, we expect that the two-stage
method and the analysis results in this paper can pro-
vide valuable reference for human GWAS.

Simulation results show that the power is affected
by the MAF of a SNP and it grows sharply with in-
creasing MAF. In the real data set, we just analysed
SNPs with a MAF >2%, thus we may have neglected
some rare variants with interaction effects. Fang et al.
(2011) modified Paré’s two-stage approach such that it
can be applied to rare variants. They just simply col-
lapsed the rare variants in a gene to a part that is con-
sidered as a single variant, so the marginal effect of a
rare variant can not be measured. Currently, the issues
surrounding rare variant analysis are arousing many
researchers’ attention.

In our statistical analysis of the mouse data, we
assumed that all SNPs are independent. SNPs in dif-
ferent chromosomes may satisfy this assumption,
while some SNPs in the same chromosome may
have LD, especially for those whose positions are
very close. In NMRI mice, there is probably no sign-
ificant LD between markers approximately more than
10Mb apart (Zhang et al., 2012), and the distance is
approximately 0·5Mb in humans (Dawson et al.,
2002). So our statistical method may neglect some
interacting SNPs that are located on the same chro-
mosome and whose positions are very close. Our
further research will be to test interaction effects
among dependent variants.
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