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Abstract. It has been proved by D. E. Cohen [1] that the lattice of all varieties of
metabelian groups is countable. In this paper, we show that the lattice of all varieties
of completely simple semigroups with metabelian subgroups has the cardinality of
the continuum. M. Petrich and N. R. Reilly have introduced in [6] the notion of
near varieties of idempotent generated completely simple semigroups. The mapping
assigning to every varietyV of completely simple semigroups the class of all idempotent
generated members of V is a complete lattice homomorphism of the lattice of all
varieties of completely simple semigroups onto the lattice of all near varieties of
idempotent generated completely simple semigroups. In this paper we show that,
in fact, the lattice of all near varieties of idempotent generated completely simple
semigroups with metabelian subgroups has itself the cardinality of the continuum.

2000 Mathematics Subject Classification. Primary 20M07. Secondary 20E10.

Introduction. Completely simple semigroups form a subclass of the wider class
of all completely regular semigroups. Completely regular semigroups are semigroups
which are unions of (mutually disjoint) groups. Any completely regular semigroup S
can thus be viewed as a semigroup with an additional unary operation assigning to
every element of S its inverse in the maximal subgroup of S where this element occurs.
Considerd in this way, all completely regular semigroups form a variety of unary
semigroups, when they are treated as algebras with the operations of multiplication
and inversion. Notice that the necessity to deal with completely regular semigroups
as with unary semigroups in this context is enforced by the demand that varieties
should be closed under the formation of subalgebras. As far as homomorphic images
are concerned, it does not matter if completely regular semigroups are viewed as
ordinary semigroups or as unary semigroups. Every homomorphism of completely
regular semigroups preserves by itself the unary operation of inversion.

Recall that a non-empty subset I of a semigroup S is an ideal of S if it has
the property that SI ⊆ I and IS ⊆ I . A semigroup S is said to be simple if it has
no proper ideal. Now completely simple semigroups are precisely semigroups which
are at the same time completely regular and simple. Viewed as unary semigroups in
the way described above, all completely simple semigroups form a proper subvariety
of the variety of all completely regular semigroups. Completely simple semigroups can
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also be characterized as rectangular bands of groups. For more information on this
subject, we refer the reader to the monograph [8] by M. Petrich and N. R. Reilly.

Yet a substantially larger class of semigroups than the one consisting of all
completely regular semigroups is the well-established class of all regular semigroups.
Notice, in this context, that if completely regular semigroups are treated as unary
semigroups, then unary subsemigroups of completely regular semigroups are the same
as regular subsemigroups of completely regular semigroups. Thus we will often use the
latter terminology to express this circumstance. If S is a regular semigroup, then its
subsemigroup generated by all its idempotents is well known to be a regular semigroup
again — see the paper [2] by D. G. Fitz-Gerald. Therefore the subsemigroup of any
completely regular semigroup S generated by all idempotents of S is a completely
regular semigroup again, even if, this time, the given completely regular semigroup S is
considered only as an ordinary semigroup and only multiplication is used to generate
the mentioned subsemigroup from the idempotents of S.

An ordinary semigroup S is idempotent generated if it is generated by a set of its
idempotents (merely by means of multiplication). In particular, this viewpoint applies
to regular semigroups. As far as completely regular semigroups are concerned, if they
are treated as unary semigroups, it would seem appropriate to say that a completely
regular semigroup S is idempotent generated if it is generated by a set of its idempotents
using both operations of multiplication and inversion. However, from the previous
remarks it becomes evident that one can dispense with the application of the operation
of inversion in this particular context. Namely, it turns out that a completely regular
semigroup S is idempotent generated as a unary semigroup if and only if it is idempotent
generated as an ordinary semigroup. To put it a bit more precisely, a completely regular
semigroup S is idempotent generated by means of multiplication and inversion if and
only if S is generated from the set of all its idempotents using only multiplication. Thus,
in the case of completely regular semigroups, it does not matter if they are viewed as
ordinary semigroups or as unary semigroups, when idempotent generated semigroups
are considered.

A class W of idempotent generated completely regular semigroups is said to
be a near variety of idempotent generated completely regular semigroups, if W is
closed under the formation of idempotent generated regular subdirect products of
arbitrary collections of semigroups, under the formation of idempotent generated
regular subsemigroups, and under the formation of arbitrary homomorphic images. It
can be easily verified that the direct product of any finite collection of idempotent
generated completely regular semigroups is an idempotent generated completely
regular semigroup again. Thus any near varietyW of idempotent generated completely
regular semigroups is closed under the formation of direct products of finite collections
of semigroups. The class of all idempotent generated completely regular semigroups
and the class of all idempotent generated completely simple semigroups are examples
of near varieties of idempotent generated completely regular semigroups. However,
as it will be shown later in this paper, neither of these two classes is closed under
the formation of direct products of infinite collections of semigroups. Such direct
products need not remain idempotent generated. Therefore the original definition of
near varieties from [6], which imposed the requirement that near varieties should be
closed under the formation of direct products of arbitrary families of semigroups, must
be amended in the way specified above in this paragraph. And this must be done so
even if the definition of near varieties is restricted, as in [6], only to the class of all
idempotent generated completely simple semigroups.
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It will be shown in the next section of this paper that the mapping assigning
to every variety V of completely regular semigroups the class IV of all idempotent
generated members of V is a complete lattice homomorphism of the lattice of all
varieties of completely regular semigroups onto the lattice of all near varieties of
idempotent generated completely regular semigroups. Restricted to the lattice of all
varieties of completely simple semigroups, this result has already been obtained in [6].
Later in this paper, a continuum of near varieties of idempotent generated completely
simple semigroups with metabelian subgroups will be provided. Hence, naturally, also
a continuum of varieties of completely simple semigroups with metabelian subgroups
will emerge.

Even more striking results in this direction will be obtained. For any distinct prime
numbers p, q, letAp ◦Aq be the Mal’cev product of the varietiesAp andAq of all abelian
groups of exponent p and q, respectively. Of course, Ap ◦Aq is a variety of metabelian
groups. It has been shown by G. Higman in [3] already that this variety Ap ◦Aq is
generated by a finite group. Consequently, according to the famous results of S. Oates
and M. B. Powell [5], Ap ◦Aq is a Cross variety, which incidentally means that this
variety has only finitely many subvarieties. We refer the reader also to the last chapter
in the monograph [4] by H. Neumann for more details on this subject. In contrast to
these facts, in the last section of this paper, a continuum of near varieties of idempotent
generated completely simple semigroups with subgroups in the group variety Ap ◦Aq

just treated will actually be obtained. As before, this clearly yields also a continuum
of varieties of completely simple semigroups with subgroups in the mentioned variety
Ap ◦Aq.

It is worth noticing that, for any distinct prime numbers p, q, the variety Ap ◦Aq

consists of groups whose exponents divide pq. Consequently, in any completely simple
semigroup S with subgroups in Ap ◦Aq, the unary operation of inversion coincides
with the unary operation assigning to every element a ∈ S its power apq−1. Therefore,
the result on varieties of completely simple semigroups with subgroups in Ap ◦Aq

mentioned lastly in the previous paragraph is, in fact, a result concerning varieties of
ordinary semigroups (without any additional unary operation).

M. Petrich and N. R. Reilly have completely described in [7] the lattice of all
varieties of central completely simple semigroups in terms of the lattice of all varieties
of groups. In fact, they have decomposed the former lattice into a subdirect product of
the lattice of varieties of rectangular bands, the lattice of all varieties of abelian groups
and the lattice of all varieties of groups. This result can also be found in [8], VIII.8. It
seems that, up to now, the variety of all central completely simple semigroups represents
the largest variety of completely simple semigroups for which a complete description of
the lattice of its subvarieties modulo group varieties is available. None the less, already
in the introduction to chapter VIII in [8], the authors have expressed their conviction
that the whole lattice of all varieties of completely simple semigroups should not be
amenable to an easy treatment modulo the varieties of groups. The results obtained
in the present paper which are sketched briefly in the preceding paragraphs seem to
confirm once and for all the justice of this estimate of the authors of the monograph [8].

This paper begins in section 1 with a brief outline of the general theory of
near varieties of idempotent generated completely regular semigroups. In section 2,
this theory is adapted to near varieties of idempotent generated completely simple
semigroups, taking advantage of the classic Rees matrix representation of completely
simple semigroups. Particular attention is paid to near varieties of idempotent
generated completely simple semigroups containing all rectangular bands and technical
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devices are developed with the view of their application in the later sections of this paper.
In section 3, for any distinct prime numbers p, q, certain finite groups from the Mal’cev
productAp ◦Aq of the varieties of abelian groups mentioned above are exhibited which
will be used in the last two sections of the paper. In section 4, as distinct from the
group varieties Ap ◦Aq which are finitely generated, the varieties of completely simple
semigroups containing all completely simple semigroups with maximal subgroups from
the given group variety Ap ◦Aq are shown not to be generated by any finitely generated
completely simple semigroup. Finally, in the concluding section 5, the tools prepared
so far are employed, for any distinct prime numbers p, q, to provide 2ℵ0 near varieties
of idempotent generated completely simple semigroups whose maximal subgroups
belong to the group variety Ap ◦Aq, as promised above.

1. Near varieties of idempotent generated completely regular semigroups. For any
semigroup S, we denote by E(S) the set of all idempotents of S. If S is a regular
semigroup, then the subsemigroup of S generated by E(S), which is also called the core
of S and is usually denoted by C(S), is fairly well known to be a regular semigroup
again. Returning briefly to the notions recalled already in the introduction to this paper,
we can now say that a regular semigroup S is called idempotent generated if its core
C(S) is equal to the whole semigroup S. From the considerations in the introduction,
it becomes apparent that this viewpoint can be applied also in the particular case of
completely regular semigroups, even though completely regular semigroups are often
considered as unary semigroups with the additional unary operation assigning to
every element its inverse within the maximal subgroup containing this element. This is
incidentally this point of view of completely regular semigroups that we will use in the
rest of this paper. That is, from now on, we will treat completely regular semigroups as
unary semigroups in the way already specified.

Recall also from the introduction to this paper that by a near variety of idem-
potent generated completely regular semigroups we mean any class W of idempotent
generated completely regular semigroups such that W is closed under the formation
of idempotent generated regular subdirect products of arbitrary collections of
semigroups, under the formation of idempotent generated regular subsemigroups,
and under the formation of arbitrary homomorphic images. Further comments on the
concept of near varieties of idempotent generated completely regular semigroups can
be found in the introduction.

For any class C of completely regular semigroups, we denote by

IC — the class of all idempotent generated members of C,
〈C〉 — the variety of completely regular semigroups generated by the class C,
Ĉ — the class of all completely regular semigroups whose cores belong to C.

Straightforward arguments show that ifV is a variety of completely regular semigroups,
then IV is a near variety of idempotent generated completely regular semigroups.
In the same manner, one can check directly that if V is a variety of completely
regular semigroups, then V̂ is a variety of completely regular semigroups again, and
if W is a near variety of idempotent generated completely regular semigroups, then
Ŵ is a variety of completely regular semigroups, as well. In addition, if C is any
class consisting only of completely simple semigroups, then the same is true of the
class Ĉ.
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Let CR stand for the variety of all completely regular semigroups and let CS
stand for the variety of all completely simple semigroups. Let L(CR) denote the lattice
of all varieties of completely regular semigroups and let L(ICR) denote the lattice
of all near varieties of idempotent generated completely regular semigroups. Let the
notations L(CS) and L(ICS) have analogous meanings relative to the class CS of all
completely simple semigroups. Then the following holds.

THEOREM 1.1. The mapping

L(CR) → L(ICR)

given by the formula

V 	→ IV,

for all varieties V of completely regular semigroups, is a complete lattice homomorphism
of the lattice L(CR) onto the lattice L(ICR). It induces a complete lattice congruence on
L(CR) such that, for every near variety W of idempotent generated completely regular
semigroups, the congruence class that maps to W is the interval

[〈W〉, Ŵ ]

in L(CR). For every variety V of completely regular semigroups, the congruence class
containing V is the interval

[〈IV〉, V̂ ]

in L(CR).

Proof. The statements in this theorem can be verified in a manner analogous to the
respective statements in [6], Theorem 4.4 concerning the lattices L(CS) and L(ICS),
with some necessary amendments, of course.

For any near variety W of idempotent generated completely regular semigroups,
it is obvious that IŴ = W , which means that the above mapping is surjective. For
any variety V of completely regular semigroups, we have IV = V ∩ ICR, which shows
that the above mapping preserves intersections of arbitrary non-empty families of
varieties of completely regular semigroups. So let {Vi | i ∈ I} be a non-empty family of
varieties of completely regular semigroups, and consider the joins

∨
i∈I Vi inL(CR) and∨

i∈I IV i in L(ICR). Immediately we obtain that
∨

i∈I IV i ⊆ I(
∨

i∈I Vi). On the other
hand, straightforward arguments based on the facts that any semigroup in I(

∨
i∈I Vi)

is idempotent generated and, at the same time, it is a homomorphic image of a regular
subsemigroup of a direct product of a family of semigroups selected from the varieties
Vi, for i ∈ I , eventually show that any semigroup in I(

∨
i∈I Vi) actually belongs to∨

i∈I IV i, which entails that I(
∨

i∈I Vi) ⊆ ∨
i∈I IV i and equality prevails. Thus the

above mapping preserves also joins of arbitrary non-empty families of varieties of
completely regular semigroups. Altogether, the above mapping is a complete lattice
homomorphism. Consequently, it induces a complete lattice congruence on L(CR)
whose congruence classes are intervals in L(CR). The fact that these intervals are of
the form given above is now obvious. �

The operator on the lattice L(CR) assigning to every variety V of completely
regular semigroups the variety V̂ was studied by L. Polák in section 7 of his paper [9].
In section 8 of [9], among other things, several non-trivial intervals of the form [V, V̂ ]
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in the latttice L(CR) are exhibited, from which it is evident that the intervals of the
above form [〈IV〉, V̂ ] in L(CR) may be considerably large.

We proceed with a slight amendment of the definition of free idempotent generated
objects in classes of idempotent generated completely regular semigroups, which notion
was originally conceived in section 3 of [6] for classes of completely simple semigroups.
Thus let C be a class of idempotent generated completely regular semigroups and let
X be a non-empty set. Then by a free idempotent generated object in C on X we mean
a semigroup S ∈ C together with a mapping ι : X → E(S) such that, for any semigroup
T ∈ C and any mapping ϑ : X → E(T), there exists a unique homomorphism ϕ : S → T
which, when composed with ι, yieldsϑ . Clearly, such a free idempotent generated object
S in C on X is unique, up to isomorphism, if it exists. In addition, if the class C is closed
under taking idempotent generated regular subsemigroups and the mentioned object
S exists, then S, viewed as a unary semigroup, is generated by the set of idempotents
ι(X).

In order to provide further information on near varieties of idempotent generated
completely regular semigroups, we introduce the following notation. For any non-
empty (preferably infinite) set X , we denote by

U(X) — the absolutely free unary semigroup on X .

Remember that, as in [8], I.10, U(X) can be constructed as the smallest subset of the
absolutely free semigroup on the set X ∪ {(, )−1}, where ( and )−1 are two new distinct
elements, having the following properties: X is a subset of U(X), whenever u, v ∈ U(X),
then also uv ∈ U(X), and whenever u ∈ U(X), then also (u)−1 ∈ U(X). Then elements
of U(X) will be called words over X . Next we denote by

IU(X) — the unary subsemigroup of U(X) generated by the set {x(x)−1 : x ∈ X}.

Notice that then IU(X) is, in fact, the absolutely free unary semigroup on the set
{x(x)−1 : x ∈ X}.

Remember next that, in this context, by an identity over the set X we mean any pair
u � v of words u, v ∈ U(X), and that such an identity u � v is said to be satisfied in
a completely regular semigroup S if, for any mapping ϑ : X → S, we have θ (u) = θ (v)
where θ : U(X) → S is the homomorphism of unary semigroups extending ϑ . Now, by
a nearly restricted identity over the set X we mean any pair s � t of words s, t ∈ IU(X).
Of course, viewed from this perspective, nearly restricted identities over X represent
merely a special case of the previous common identities over X . Next we wish to say
what it means for a nearly restricted identity s � t to be satisfied in an idempotent
generated completely regular semigroup S. In view of the previous notes, we may
consider this to be already defined, if we treat s � t as an ordinary identity and S
simply as some completely regular semigroup. However, it can be easily seen that,
in this particular case, this definition is equivalent to the following one. A nearly
restricted identity s � t over X is satisfied in an idempotent generated completely
regular semigroup S if, for any mapping π : {x(x)−1 : x ∈ X} → E(S), we have� (s) =
� (t) where� : IU(X) → S is the homomorphism of unary semigroups extending π .

For any class C of completely regular semigroups and for any non-empty set X ,
we denote by

ρ(C,X) — the set of all identities over X that are satisfied in all semigroups of C.
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Then ρ(C,X) can be treated as a binary relation on U(X). In fact, ρ(C,X) is then a fully
invariant congruence on U(X). Recall that this means that ρ(C,X) is invariant under
all endomorphisms of U(X). Often we will write for brevity ρ(C) instead of ρ(C,X).

Likewise, for any class C of idempotent generated completely regular semigroups
and for any non-empty set X , we denote by

ıρ(C,X) — the set of all nearly restricted identities over X that are satisfied in all
semigroups of C.

Again, ıρ(C,X) can be treated as a binary relation, this time on IU(X). In fact, ıρ(C,X)
is a congruence on IU(X) and it is invariant under all endomorphisms of IU(X) which
arise as restrictions to IU(X) of homomorphisms of U(X) into IU(X). Often we will
write for brevity ıρ(C) instead of ıρ(C,X). (Just to be safe, remember that here as well
as before we have congruences and homomorphisms of unary semigroups in mind.)

The notes in the previous paragraph lead us to introduce the following notion.
Let X be a non-empty set. We say that a congruence η on the unary semigroup
IU(X) is nearly invariant if, for any words s, t ∈ IU(X) satisfying s η t and for any
homomorphism of unary semigroups ψ : U(X) → IU(X), we have also ψ(s) η ψ(t).
Then the conclusion in the previous paragraph can be restated in the following form.
For any class C of idempotent generated completely regular semigroups, ıρ(C,X) is
a nearly invariant congruence on IU(X).

In particular, for any non-empty set X , ıρ(ICR,X) is the nearly invariant
congruence on IU(X) stemming from the set of all nearly restricted identities over X
which are satisfied in all idempotent generated completely regular semigroups. Then it
is easy to verify that, for any congruence η on IU(X) satisfying ıρ(ICR,X) ⊆ η,
it is the case that this congruence η on IU(X) is nearly invariant if and only if
the congruence η/ıρ(ICR,X) on IU(X)/ıρ(ICR) is fully invariant. Notice that this
quotient semigroup is completely regular and that it is idempotent generated.

According to the standard results from universal algebra, in any class V of
completely regular semigroups which is closed under taking regular subsemigroups
and direct products of arbitrary families of semigroups, there exists a free object on any
non-empty set X , and it is isomorphic to the quotient semigroup U(X)/ρ(V). We shall
see that an analogous statement holds for classes of idempotent generated completely
regular semigroups and for free idempotent generated objects in such classes:

THEOREM 1.2. In any classW of idempotent generated completely regular semigroups
which is closed under taking idempotent generated regular subsemigroups and idempotent
generated regular subdirect products of arbitrary families of semigroups, there exists a free
idempotent generated object on any non-empty set X, and it is isomorphic to the quotient
semigroup IU(X)/ıρ(W).

Proof. Let {ηi : i ∈ I} be the non-empty collection of all congruences on the unary
semigroup IU(X) such that the quotient unary semigroups IU(X)/ηi are isomorphic
to completely regular semigroups in W and, for all x ∈ X , the elements x(x)−1ηi

of IU(X)/ηi are idempotents. Put η = ⋂
i∈I ηi and consider the quotient semigroup

IU(X)/η. Then the unary semigroup IU(X)/η is isomorphic to a subdirect product
of the unary semigroups IU(X)/ηi, for i ∈ I , and hence IU(X)/η is isomorphic to
a regular subdirect product of a non-empty collection of completely regular semigroups
from W . Thus IU(X)/η itself is a completely regular semigroup and, viewed as a unary
semigroup, it is generated by the set of idempotents {x(x)−1η : x ∈ X}. Therefore
IU(X)/η is idempotent generated, and hence it is isomorphic to a semigroup in W . An
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obvious modification of the standard universal algebraic arguments then shows that
this isomorphic copy of IU(X)/η in W is a free idempotent generated object on X
in W and that η is precisely the nearly invariant congruence ıρ(W,X) on IU(X). �

Observe that if V is a class of completely regular semigroups which is closed under
taking regular subsemigroups and direct products of arbitrary families of semigroups,
then the class IV of all idempotent generated completely regular semigroups from V
is closed under taking idempotent generated regular subsemigroups and idempotent
generated regular subdirect products of arbitrary families of semigroups. Notice also
that, for any nearly restricted identity s � t on a non-empty set X , it is clearly true that
s � t is satisfied in all semigroups of IV if and only if s � t, considered as an ordinary
identity, is satisfied in all semigroups of V . Hence, in this situation, we immediately
obtain the equality

ıρ(IV,X) = ρ(V,X) ∩ (IU(X) × IU(X)).

This means that the mapping

IU(X)/ıρ(IV) → U(X)/ρ(V)

given by the formula

t ıρ(IV) 	→ tρ(V),

for all words t ∈ IU(X), is an embedding of the semigroup IU(X)/ıρ(IV) into the
semigroup U(X)/ρ(V). In view of Theorem 1.2 and the paragraph preceding it, we
may now summarize our present findings in the following form:

COROLLARY 1.3. Let V be a class of completely regular semigroups closed under
taking regular subsemigroups and direct products of arbitrary families of semigroups.
Then, for any non-empty set X, there exists a free object in V on X which is isomorphic to
the quotient semigroup U(X)/ρ(V), and there exists a free idempotent generated object
in IV on X which is isomorphic to the quotient semigroup IU(X)/ıρ(IV). Moreover, the
semigroup IU(X)/ıρ(IV) is then isomorphic to the unary subsemigroup of U(X)/ρ(V)
generated by the set of idempotents {x(x)−1ρ(V) : x ∈ X}. �

For any non-empty (again preferably infinite) set X and for any binary relation 

on U(X) viewed as a set of identities over X , we denote by

[
] — the class of all completely regular semigroups in which all identities from

 are satisfied.

Then [
] is a variety of completely regular semigroups. Furthermore, for any binary
relation � on IU(X) viewed as a set of nearly restricted identities over X , we denote
by

[[�]] — the class of all idempotent generated completely regular semigroups in
which all nearly restricted identities from � are satisfied.

Then it is fairly easy to verify that [[�]] is a near variety of idempotent generated
completely regular semigroups.

Now, by the classical Birkhoff theorem, we know that a class V of completely
regular semigroups is a variety if and only if there exists a set 
 of identities of the
above form such that V = [
]. Moreover, if this is the case then, for any infinite set X ,
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we have V = [ρ(V,X)]. We shall see that an analogous Birkhoff-type theorem holds
for near varieties of idempotent generated completely regular semigroups and for sets
of nearly restricted identities:

THEOREM 1.4. A class W of idempotent generated completely regular semigroups
is a near variety if and only if there exists a set � of nearly restricted identities such
that W = [[�]]. Moreover, if this is the case then, for any infinite set X, we have W =
[[ıρ(W,X)]].

Proof. In view of the above notes, it remains to show that, for any near variety
W of idempotent generated completely regular semigroups and for any infinite set X ,
we have [[ıρ(W,X)]] ⊆ W , since the reverse containment is obvious. However, if S is
any idempotent generated completely regular semigroup such that all nearly restricted
identities in ıρ(W,X) are satisfied in S then, since X is an infinite set, for whichever
non-empty set Y , all nearly restricted identities in ıρ(W,Y ) are satisfied in S, as well.
In particular, this holds for sets Y whose cardinality is at least as large as that of the set
of idempotents E(S). Consequently, every surjection of the set {y(y)−1 : y ∈ Y} onto
the set E(S) can be extended in a unique way to a homomorphism of the quotient
semigroup IU(Y )/ıρ(W) onto the semigroup S. Uniqueness here follows from the fact
that the semigroup IU(Y )/ıρ(W) is generated by the set {y(y)−1ıρ(W) : y ∈ Y}, and
the homomorphism thus gained is surjective since the completely regular semigroup S
is idempotent generated. Since, at the same time, IU(Y )/ıρ(W) is the free idempotent
generated object in W on Y by Theorem 1.2, it hence follows that the semigroup S
belongs to W , as well. �

According to a classical result from universal algebra, for any infinite set X , the
rules

V 	→ ρ(V,X) and ρ 	→ [ρ]

determine mutually inverse order reversing bijections between the lattice of all varieties
V of completely regular semigroups and the lattice of all fully invariant congruences
ρ on U(X) satisfying ρ(CR,X) ⊆ ρ. We conclude this section by showing that an
analogous result holds also for near varieties of idempotent generated completely
regular semigroups and for nearly invariant congruences on IU(X) containing
ıρ(ICR,X).

First notice that, for any non-empty set X and for any nearly invariant con-
gruence η on IU(X) satisfying ıρ(ICR,X) ⊆ η, every pair in η (viewed as a nearly
restricted identity) is satisfied in the idempotent generated completely regular
semigroup IU(X)/η. This holds since the congruence η on IU(X) is nearly invariant.
Consequently, the semigroup IU(X)/η belongs to the near variety [[η]]. This clearly
entails the equality η = ıρ([[η]],X). From this note and from the equality in
Theorem 1.4, we deduce the desired conclusion:

COROLLARY 1.5. For any infinite set X, the rules

W 	→ ıρ(W,X) and η 	→ [[η]]

determine mutually inverse order reversing bijections between the lattice of all near
varieties W of idempotent generated completely regular semigroups and the lattice of
all nearly invariant congruences η on IU(X) satisfying ıρ(ICR,X) ⊆ η. �
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2. Near varieties of idempotent generated completely simple semigroups. By the
famous Rees–Suschkewitsch theorem, completely simple semigroups are precisely
semigroups which are isomorphic to Rees matrix semigroups over groups. Recall that
the latter semigroups are constructed as follows. Let H be a group, let J and Λ be
non-empty sets and let Q :Λ× J → H be any mapping. The mapping Q is treated as
aΛ× J matrix over H, and for any λ ∈ Λ and j ∈ J, the image of the pair (λ, j) under Q
is usually denoted by qλj. Thus one can write Q = (qλj)λ∈Λ,j∈J . Define a multiplication
on the set J × H ×Λ by the formula

(i, g, λ)( j, h, µ) = (i, gqλjh, µ),

for all i, j ∈ J, g, h ∈ H and λ,µ ∈ Λ. Then the set J × H ×Λ together with this
multiplication forms a semigroup which is denoted by M(J,H,Λ; Q) and is called the
Rees matrix semigroup over the group G. The matrix Q is called the sandwich matrix
of this Rees matrix semigroup. Since M(J,H,Λ; Q) is a completely simple semigroup,
there is the unary operation of inversion on it, which is given by the formula

( j, h, λ)−1 = (
j, q−1

λj h−1q−1
λj , λ

)
,

for all j ∈ J, h ∈ H and λ ∈ Λ.
The representation of any given completely simple semigroup S by a Rees matrix

semigroup M(J,H,Λ; Q) is not unique, as a rule. More precisely, the set J has always
the same cardinality and the same concerns the set Λ, and the group H is unique
up to isomorphism. But the sandwich matrix Q = (qλj)λ∈Λ,j∈J may vary. If there exist
elements κ ∈ Λ and i ∈ J such that, for all j ∈ J and λ ∈ Λ, one has qκj = 1 and
qλi = 1, where 1 is the identity of the group H, then the sandwich matrix Q is said to be
normalized at the pair (κ, i). Now the previous formulation of the Rees-Suschkewitsch
theorem can be adjusted by remembering the familiar fact that every completely simple
semigroup is isomorphic to a Rees matrix semigroup M(J,H,Λ; Q) whose sandwich
matrix Q is normalized at some pair of elements from Λ× J.

As mentioned already, the class CS of all completely simple semigroups forms
a variety of completely regular semigroups. Hence, for every non-empty set X , there
exists a free object in CS on X , that is, there exists a free completely simple semigroup
on X . Next we recall from [8], VIII.2 the representation of this free completely simple
semigroup on X by a suitable Rees matrix semigroup with normalized sandwich matrix.
Before we can do so, we have to introduce some notation.

Thus let X be a non-empty set. Fix a distiguished element z ∈ X and choose
new elements pxy, for all x, y ∈ X − {z}, distinct from each other and distinct from all
elements of X . Denote by

G — the absolutely free group on the set X ∪ {pxy : x, y ∈ X − {z}}.
Next put pxz = 1 and pzy = 1, for all x, y ∈ X , where 1 now stands for the identity of
the group G, and consider the X × X matrix

P = (pxy)x,y∈X .

Furthermore, for any word u ∈ U(X), we denote by

h(u) — the head of u, that is, the element of X occurring in u first from the left,
t(u) — the tail of u, that is, the element of X occurring in u first from the right.
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Additionally, for any word u ∈ U(X), we denote by m(u) the element of the above
absolutely free group G which is constructed inductively as follows:

m(x) = x, for all x ∈ X,

m(uv) = m(u)pt(u)h(v)m(v), for all u, v ∈ U(X),

m((u)−1) = p−1
t(u)h(u)m(u)−1p−1

t(u)h(u), for all u ∈ U(X).

It can be easily seen that, in this way, the element m(u) of G is well defined, for all
words u ∈ U(X). Then, according to [8], VIII.2, the following holds.

RESULT 2.1. The mapping

ζ : U(X) → M(X,G,X ; P)

given by the formula

u 	→ (h(u),m(u), t(u)),

for all u ∈ U(X), is a surjective homomorphism of unary semigroups which induces the
congruence ρ(CS,X) on U(X). This gives rise to an isomorphism

ξ : U(X)/ρ(CS) → M(X,G,X ; P)

of the free completely simple semigroup U(X)/ρ(CS) onto the Rees matrix semigroup
M(X,G,X ; P). Therefore the Rees matrix semigroup M(X,G,X ; P) together with the
mapping ι : X → M(X,G,X ; P) given by the formula x 	→ (x, x, x), for all x ∈ X, is
a free object in CS on X. �

Pursuing the above considerations, we notice that the idempotents of the form
ζ (x(x)−1) in the Rees matrix semigroup M(X,G,X ; P) are exactly the idempotents
(x, p−1

xx , x), for all x ∈ X . Since, for any x, y ∈ X , we have

(
x, p−1

xx , x
)((

y, p−1
yy , y

)(
x, p−1

xx , x
))−1(y, p−1

yy , y
)

= (
x, p−1

xx , x
)(

y, p−1
yy pyxp−1

xx , x
)−1(y, p−1

yy , y
)

= (
x, p−1

xx , x
)(

y, p−1
xy pxxp−1

yx pyyp−1
xy , x

)(
y, p−1

yy , y
)

= (
x, p−1

yx , y
)
,

which is again an idempotent of M(X,G,X ; P), we see that the unary subsemigroup
of M(X,G,X ; P) generated by the idempotents (x, p−1

xx , x), for all x ∈ X , actually
contains all idempotents of M(X,G,X ; P), and hence it coincides with the core of
M(X,G,X ; P). In particular, for any x, y ∈ X − {z}, the idempotents (z, 1, x) and
(y, 1, z) are contained in the mentioned unary subsemigroup, whence it follows that
also the elements (z, 1, x)(y, 1, z) = (z, pxy, z) and (z, pxy, z)−1 = (z, p−1

xy , z) belong to
this unary subsemigroup. Consequently, for any reduced group word w over the
set {pxy : x, y ∈ X − {z}}, we obtain that the element (z, w, z) occurs in this unary
subsemigroup. Therefore, denoting by

Ĝ — the subgroup of G generated by the elements pxy, for all x, y ∈ X − {z}, that
is, the absolutely free group on the set {pxy : x, y ∈ X − {z}},
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we come to the conclusion that the unary subsemigroup of M(X,G,X ; P) generated
by the idempotents (x, p−1

xx , x), for all x ∈ X , which coincides with the core of
M(X,G,X ; P), is just the Rees matrix semigroup M(X, Ĝ,X ; P).

Since the class ICS of all idempotent generated completely simple semigroups
forms a near variety of idempotent generated completely regular semigroups, by
Theorem 1.2, there exists a free idempotent generated object in ICS on the set X ,
that is, there exists a free idempotent generated completely simple semigroup on X .
Now, since for every word s ∈ IU(X), we have m(s) ∈ Ĝ, in view of the conclusion made
at the end of the previous paragraph, from Result 2.1 and Corollary 1.3 we deduce the
following representation of the free idempotent generated completely simple semigroup
on X by a Rees matrix semigroup with normalized sandwich matrix.

COROLLARY 2.2. The mapping

ζ̂ : IU(X) → M(X, Ĝ,X ; P)

given by the formula

s 	→ (h(s),m(s), t(s)),

for all s ∈ IU(X), is a surjective homomorphism of unary semigroups which induces the
congruence ıρ(ICS,X) on IU(X). This gives rise to an isomorphism

ξ̂ : IU(X)/ıρ(ICS) → M(X, Ĝ,X ; P)

of the free idempotent generated completely simple semigroup IU(X)/ıρ(ICS) onto
the Rees matrix semigroup M(X, Ĝ,X ; P). Therefore the Rees matrix semigroup
M(X, Ĝ,X ; P) together with the mapping ε : X → M(X, Ĝ,X ; P) given by the formula
x 	→ (x, p−1

xx , x), for all x ∈ X, is a free idempotent generated object in ICS on X. �
Now we are in a position to demonstrate that the near varietyICS of all idempotent

generated completely simple semigroups is not closed under the formation of direct
products of infinite families of semigroups. Assume that the set X in the previous
considerations is not one-element and take an element x ∈ X − {z}. Consider the direct
product of an infinite sequence of copies of the Rees matrix semigroup M(X, Ĝ,X ; P)
from the previous corollary. Consider the element of this direct product of the form(

(z, pxx, z), (z, pxxpxx, z), (z, pxxpxxpxx, z), . . . , (z, pxx · · · pxx︸ ︷︷ ︸
n

, z), . . .
)
.

From the above description of idempotents in M(X, Ĝ,X ; P) it now becomes apparent
that this element cannot be obtained as a product of any finite sequence of idempotents
of the direct product of the mentioned infinite sequence of copies of M(X, Ĝ,X ; P).
Therefore this direct product is not idempotent generated.

Assume henceforth that the set X is infinite. Then the rules V 	→ ρ(V,X) and
ρ 	→ [ρ] determine mutually inverse order reversing bijections between the lattice of
all varieties V of completely simple semigroups and the lattice of all fully invariant
congruences ρ on U(X) satisfying ρ(CS,X) ⊆ ρ. Hence, in view of Result 2.1, we
deduce that there is an order reversing bijection between the lattice of all varieties
of completely simple semigroups and the lattice of all fully invariant congruences
on the Rees matrix semigroup M(X,G,X ; P). We further confine our attention to
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varieties of completely simple semigroups containing all rectangular bands. Let RB
stand for the variety of all rectangular bands. Since the Green’s relation H is the largest
idempotent separating congruence on M(X,G,X ; P) and the quotient semigroup
M(X,G,X ; P)/H is clearly the free rectangular band on X , the previously mentioned
bijection restricts to give an order reversing bijection between the interval consisting
of all varieties V of completely simple semigroups satisfying RB ⊆ V and the lattice of
all idempotent separating fully invariant congruences on M(X,G,X ; P).

Since we have to deal with congruences of this kind, we first recall from [8], III.4
the characterization of idempotent separating congruences on arbitrary Rees matrix
semigroups.

RESULT 2.3. Let M(J,H,Λ; Q) be a Rees matrix semigroup. Then the mapping
assigning to every normal subgroup N of the group H the binary relation ρN on the set
J × H ×Λ defined by the formula

(i, g, λ) ρN ( j, h, µ) ⇔ i = j, gh−1 ∈ N, λ = µ,
for all i, j ∈ J, g, h ∈ H and λ,µ ∈ Λ, is an isomorphism of the lattice of all nor-
mal subgroups of H onto the lattice of all idempotent separating congruences on
M(J,H,Λ; Q). Moreover, the quotient semigroup M(J,H,Λ; Q)/ρN is isomorphic to
the Rees matrix semigroup M(J,H/N,Λ; Q/N) where Q/N is the Λ× J matrix over
H/N of the form Q/N = (qλjN)λ∈Λ,j∈J . �

Next, since we have to deal with fully invariant congruences, we recall from [8],
III.3 the description of all endomorphisms of arbitrary Rees matrix semigroups with
normalized sandwich matrices.

RESULT 2.4. Let M(J,H,Λ; Q) be a Rees matrix semigroup whose sandwich matrix
Q is normalized at some pair (κ, i) ∈ Λ× J. Let σ : I → I and τ :Λ→ Λ be any
mappings and let ω : H → H be any endomorphism such that

ω(qλj) = qτ (κ)σ (i)q−1
τ (λ)σ (i)qτ (λ)σ ( j)q−1

τ (κ)σ ( j)

holds for all j ∈ J and λ ∈ Λ. (This condition obviously holds if j = i or λ = κ.) Then the
mapping of the set J × H ×Λ into itself defined by the formula

( j, h, λ) 	→ (
σ ( j), q−1

τ (κ)σ ( j)ω(h)qτ (κ)σ (i)q−1
τ (λ)σ (i), τ (λ)

)
,

for all j ∈ J, h ∈ H and λ ∈ Λ, is an endomorphism of M(J,H,Λ; Q), and conversely,
every endomorphism of M(J,H,Λ; Q) can so be written uniquely. �

From these two results the following conclusion follows essentially immediately.

COROLLARY 2.5. Let M(J,H,Λ; Q) be a Rees matrix semigroup whose sandwich
matrix Q is normalized at some pair (κ, i) ∈ Λ× J. Then, for any normal subgroup N
of H, the idempotent separating congruence ρN on M(J,H,Λ; Q) corresponding to N
according to Result 2.3 is fully invariant if and only if the conditionω(N) ⊆ N holds for all
endomorphisms ω of H that arise in association with endomorphisms of M(J,H,Λ; Q),
as described in Result 2.4. �

Remember that by Result 2.1, the Rees matrix semigroup M(X,G,X ; P) is a free
completely simple semigroup on X . Notice that its sandwich matrix P is normalized at
the pair (z, z) where z ∈ X is the distinguished element. If the set X is infinite then, from
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the text preceding Result 2.3, we know that there is a bijection between the sublattice of
all varieties V of completely simple semigroups satisfying RB ⊆ V and the lattice of all
idempotent separating fully invariant congruences on M(X,G,X ; P). Now, applying
Corollary 2.5 to the Rees matrix semigroup M(X,G,X ; P), we get a description
of all idempotent separating fully invariant congruences on M(X,G,X ; P). This
was incidentally done in [8], VIII.3. Thus we come to the conclusion that there is
a bijection between the sublattice of all varieties V of completely simple semigroups
satisfying RB ⊆ V and the lattice of all normal subgroups N of G satisfying ω(N) ⊆ N
for all endomorphisms ω of G that arise in association with endomorphisms of
M(X,G,X ; P). For any variety V of completely simple semigroups satisfying RB ⊆ V ,
we denote by

NV — the normal subgroup of G corresponding to V in the way just described.

Then from Results 2.1 and 2.3 we obtain the following representation of the free
semigroup on X in any variety V of completely simple semigroups satisfying RB ⊆ V
by a Rees matrix semigroup with normalized sandwich matrix.

COROLLARY 2.6. Let V be any variety of completely simple semigroups satisfying
RB ⊆ V . Then the mapping

ζV : U(X) → M(X,G/NV ,X ; P/NV )

given by the formula

u 	→ (h(u),m(u)NV , t(u)),

for all u ∈ U(X), is a surjective homomorphism of unary semigroups which induces the
congruence ρ(V,X) on U(X). This gives rise to an isomorphism

ξV : U(X)/ρ(V) → M(X,G/NV ,X ; P/NV )

of the free semigroup U(X)/ρ(V) in the variety V on X onto the Rees matrix semigroup
M(X,G/NV ,X ; P/NV ). Therefore M(X,G/NV ,X ; P/NV ) is a free semigroup in V
on X. �

Remember once again our assumption, that the set X is infinite. Now consider
the near varieties of idempotent generated completely simple semigroups. Note that
the class RB of all rectangular bands is itself also a near variety of idempotent
generated completely simple semigroups. Furthermore, just as in the previous section,
one can check that, for any congruence δ on IU(X) satisfying ıρ(ICS,X) ⊆ δ, it is
true that this congruence δ on IU(X) is nearly invariant if and only if the congruence
δ/ıρ(ICS,X) on IU(X)/ıρ(ICS) is fully invariant. Then from Corollaries 1.5 and 2.2
we obtain an order reversing bijection between the lattice of all near varieties of
idempotent generated completely simple semigroups and the lattice of all fully invariant
congruences on the Rees matrix semigroup M(X, Ĝ,X ; P). We next again confine our
attention to those near varieties of idempotent generated completely simple semigroups
which contain all rectangular bands. Arguing in the same way as earlier in this section,
we conclude that the bijection just mentioned restricts to give an order reversing
bijection between the interval consisting of all near varietiesW of idempotent generated
completely simple semigroups satisfying RB ⊆ W and the lattice of all idempotent
separating fully invariant congruences on M(X, Ĝ,X ; P). Recall also once again that
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the sandwich matrix P is normalized at the pair (z, z). Thus we can apply Corollary 2.5
to the Rees matrix semigroup M(X, Ĝ,X ; P) to get a description of all idempotent
separating fully invariant congruences on M(X, Ĝ,X ; P). In this way, we come to the
conclusion that there is a bijection between the sublattice of all near varieties varieties
W of idempotent generated completely simple semigroups satisfying RB ⊆ W and the
lattice of all normal subgroups M of Ĝ satisfying ω(M) ⊆ M for all endomorphisms
ω of Ĝ that arise in association with endomorphisms of M(X, Ĝ,X ; P). For any near
variety W of idempotent generated completely simple semigroups satisfying RB ⊆ W ,
we denote by

MW — the normal subgroup of Ĝ corresponding to W in the way just described.

Then from Corollary 2.2 and Result 2.3 we obtain the following representation of
the free idempotent generated semigroup on X in any near variety W of idempo-
tent generated completely simple semigroups satisfying RB ⊆ W by a Rees matrix
semigroup with normalized sandwich matrix.

COROLLARY 2.7. Let W be any near variety of idempotent generated completely
simple semigroups satisfying RB ⊆ W . Then the mapping

ζ̂W : IU(X) → M(X, Ĝ/MW ,X ; P/MW )

given by the formula

s 	→ (h(s),m(s)MW , t(s)),

for all s ∈ IU(X), is a surjective homomorphism of unary semigroups which induces the
congruence ıρ(W,X) on IU(X). This gives rise to an isomorphism

ξ̂W : IU(X)/ıρ(W) → M(X, Ĝ/MW ,X ; P/MW )

of the free idempotent generated semigroup IU(X)/ıρ(W) in W on X onto the Rees
matrix semigroup M(X, Ĝ/MW ,X ; P/MW ). Therefore M(X, Ĝ/MW ,X ; P/MW ) is
a free idempotent generated semigroup in W on X. �

REMARK. According to Result 2.4, the normal subgroups M of Ĝ appearing in
the text preceding the above corollary are exactly those normal subgroups which are
invariant under all endomorphisms ω of Ĝ satisfying the condition that, for some two
mappings σ, τ : X → X , the eqality

ω(pxy) = pτ (z)σ (z)p−1
τ (x)σ (z)pτ (x)σ (y)p−1

τ (z)σ (y)

holds for all x, y ∈ X . (This equality obviously holds if x = z or y = z.) Since Ĝ is the
absolutely free group on the set {pxy : x, y ∈ X − {z}}, the mentioned endomorphisms
ω of Ĝ are fully determined by the underlying mappings σ, τ : X → X , which, in turn,
can be chosen arbitrarily.

Now let V be any variety of completely simple semigroups satisfying RB ⊆ V .
Then the near variety IV of idempotent generated completely simple semigroups
likewise satisfies RB ⊆ IV. By Corollary 1.3, the free idempotent generated semigroup
IU(X)/ıρ(IV) in IV on X is isomorphic to the unary subsemigroup of the free
semigroup U(X)/ρ(V) in V on X which is generated by the set of idempotents
{x(x)−1ρ(V) : x ∈ X}. Consequently, by Corollaries 2.6 and 2.7, the idempotent
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generated Rees matrix semigroup M(X, Ĝ/MIV ,X ; P/MIV ) is isomorphic to the
unary subsemigroup of the Rees matrix semigroup M(X,G/NV ,X ; P/NV ) generated
by the set of idempotents {(x, p−1

xx NV , x) : x ∈ X}. From the notes following Result 2.1
it becomes apparent that the mentioned unary subsemigroup is actually the core of the
semigroup M(X,G/NV ,X ; P/NV ) and that it is, in fact, the Rees matrix semigroup
M(X, Ĝ/N̂V ,X ; P/N̂V ) where N̂V = Ĝ ∩ NV . Comparing this with the former
idempotent generated Rees matrix semigroup, we thus come to the equality MIV =
Ĝ ∩ NV . Thus we arrive at the following conclusion which, with some shortcomings
though, was also obtained in [6], Theorem 3.2.

COROLLARY 2.8. Let V be any variety of completely simple semigroups satisfying
RB ⊆ V . Then the Rees matrix semigroup M(X, Ĝ/N̂V ,X ; P/N̂V ) where N̂V = Ĝ ∩ NV
together with the mapping assigning to every element x ∈ X the idempotent (x, p−1

xx N̂V , x)
is a free idempotent generated object on X in the near variety IV. �

We next adjust the Birkhoff theorem to the varieties of completely simple
semigroups which contain all rectangular bands. In this connection, we introduce
the following notation which will prove useful later in this paper. We continue working
with our infinite set X containing the distinguished element z ∈ X .

We begin with the following rules assigning a word from U(X) to every element of
the set X ∪ {pxy : x, y ∈ X − {z}} of generators of the absolutely free group G and also
to the inverse in G of each of these elements :

x 	→ z(z)−1xz(z)−1, for all x ∈ X,

x−1 	→ (z(z)−1xz(z)−1)−1, for all x ∈ X,

pxy 	→ (z(z)−1x(x)−1)−1z(z)−1x(x)−1y(y)−1z(z)−1(y(y)−1z(z)−1)−1

for all x, y ∈ X − {z},
p−1

xy 	→ ((z(z)−1x(x)−1)−1z(z)−1x(x)−1y(y)−1z(z)−1(y(y)−1z(z)−1)−1)−1

for all x, y ∈ X − {z}.

These assignments can be extended in a unique way to a homomorphism γ of the free
semigroup on the set X ∪ {x−1 : x ∈ X} ∪ {pxy, p−1

xy : x, y ∈ X − {z}} to the semigroup
U(X). In particular, every element g ∈ G − {1} expressed as a reduced group word
over the set X ∪ {pxy : x, y ∈ X − {z}} can be viewed as an element of the former free
semigroup, and hence, for every element g ∈ G − {1}, the word γ (g) of U(X) is defined.
Then it can be verified straightforwardly that, for every element g ∈ G − {1}, we have
m(γ (g)) = g. It is also worth noting that, for every element h ∈ Ĝ − {1}, the word γ (h)
clearly belongs to the subsemigroup IU(X).

PROPOSITION 2.9. A class V of completely regular semigroups is a variety of
completely simple semigroups satisfying RB ⊆ V if and only if there exists a set 

of identities of the form u2 � u where u ∈ U(X) has the property that h(u) = z = t(u)
such that V = CS ∩ [
]. Moreover, if this is the case then V = CS ∩ [
̃] where 
̃ =
ρ(V,X) ∩ {(u2, u) : u ∈ U(X), h(u) = z = t(u)}.

Proof. Every rectangular band satisfies all identities of the form u2 � u where
u ∈ U(X) is such that h(u) = z = t(u). Consequently, every classV of completely regular
semigroups of the form V = CS ∩ [
] where 
 is a set of identities of the mentioned
kind is a variety of completely simple semigroups such that RB ⊆ V .
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Conversely, let V be a variety of completely simple semigroups satisfying
RB ⊆ V . Consider any element r ∈ NV − {1} and the corresponding word γ (r) of
U(X). Since h(γ (r)) = z = t(γ (r)), we obtain m(γ (r2)) = m(γ (r))2 = r2, and hence
m(γ (r2))NV = r2NV = NV = rNV = m(γ (r))NV . Consequently, by Corollary 2.6, we
have γ (r)2 ρ(V,X) γ (r), which means that the identity γ (r)2 � γ (r) is satisfied in V .
Therefore, putting U = CS ∩ [{γ (r)2 � γ (r) : r ∈ NV − {1}}], we have V ⊆ U . On the
other hand, for every element r ∈ NV − {1}, we now have γ (r)2 ρ(U ,X) γ (r), whence,
by Corollary 2.6 again, we obtain m(γ (r2))NU = m(γ (r))NU , that is, r2NU = rNU , which
entails that r ∈ NU − {1}. This shows that NV ⊆ NU , and so U ⊆ V . Altogether we get
that V = U , so that the variety V is determined within CS by identities of the required
form. The last statement of this proposition is now obvious. �

We can similarly adapt the Birkhoff-type theorem for near varieties of idempotent
generated completely regular semigroups to the near varieties of idempotent generated
completely simple semigroups containing all rectangular bands.

PROPOSITION 2.10. A classW of idempotent generated completely regular semigroups
is a near variety of idempotent generated completely simple semigroups satisfying
RB ⊆ W if and only if there exists a set � of nearly restricted identities of type v2 � v
where v ∈ IU(X) has the property that h(v) = z = t(v) such that W = ICS ∩ [[�]].
Moreover, if this is the case then W = ICS ∩ [[�̃]] where

�̃ = ıρ(W,X) ∩ {(v2, v) : v ∈ IU(X), h(v) = z = t(v)}.
Proof. This proposition can be proved in the same manner as the previous one,

with the help of Theorem 1.4, of course. Elements r ∈ MW − {1} and the corresponding
words γ (r) of IU(X) are considered now and Corollary 2.7 is invoked in this case in
order to complete the arguments. �

The last two propositions indicate that it will be useful to explore in more detail
what it means to say that an identity of the form u2 � u, where u ∈ U(X) is such
that h(u) = z = t(u), is satisfied in a completely simple semigroup, that is, in a Rees
matrix semigroup, say M(J,H,Λ; Q). For this purpose, we will need the procedure of
normalization of the sandwich matrix Q described in [8], III.3 which produces a Rees
matrix representation of M(J,H,Λ; Q) whose sandwich matrix is normalized at any
position selected beforehand. This procedure looks as follows.

Thus, once again, let M(J,H,Λ; Q) be an arbitrary Rees matrix semigroup where
Q = (qλj)λ∈Λ,j∈J . Select arbitrary elements κ ∈ Λ and i ∈ J and consider the Rees
matrix semigroup M(J,H,Λ; Q

κi
) whose sandwich matrix Q

κi
is of the form

Q
κi = (

q−1
λi qλjq−1

κj qκi
)
λ∈Λ,j∈J .

Then the matrix Q
κi

is obviously normalized at the selected pair (κ, i). Moreover, the
mapping

ςκi : J × H ×Λ→ J × H ×Λ
given by the formula

( j, h, λ) 	→ (
j, q−1

κi qκjhqλi, λ
)
,

for all j ∈ J, h ∈ H and λ ∈ Λ, is an isomorphism of the semigroup M(J,H,Λ; Q)
onto the semigroup M(J,H,Λ; Q

κi
). This statement can be verified straightforwardly.
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We continue by introducing, for the selected elements κ ∈ Λ and i ∈ J and for any
mapping ϑ : X → J × H ×Λ satisfying ϑ(z) ∈ {i} × H × {κ}, a homomorphism

χϑ
κi : G → H

of the absolutely free group G on the set X ∪ {pxy : x, y ∈ X − {z}} into the group H
in the following way. Clearly, it suffices to determine this homomorphism only on the
generators of G. For this purpose, consider first the mappings ϕ : X → J, β : X → H
and ψ : X → Λ given, for every x ∈ X , by the formula ϑ(x) = (ϕ(x), β(x), ψ(x)). Then
define the homomorphism χϑ

κi by the following assignments :

x 	→ β(x), for all x ∈ X,

pxy 	→ q−1
ψ(x) iqψ(x)ϕ(y)q−1

κ ϕ(y)qκi, for all x, y ∈ X − {z}.

Note that in the second set of assignments, we could include the same assignments
also for x = z or y = z, since these added assignments reduce to 1 	→ 1 in view of
the fact that ϕ(z) = i and ψ(z) = κ. Observe also that then, for any x, y ∈ X , the
homomorphism χϑ

κi sends the element pxy to the entry of the matrix Q
κi

occurring in
the position (ψ(x), ϕ(y)).

Now we are ready to state and prove the following criterion for the validity of the
above-mentioned identities in arbitrary Rees matrix semigroups:

PROPOSITION 2.11. LetM(J,H,Λ; Q) be a Rees matrix semigroup. Let u ∈ U(X) be
any word such that h(u) = z = t(u). Then the identity u2 � u is satisfied in the semigroup
M(J,H,Λ; Q) if and only if, for every i ∈ J, κ ∈ Λ and for every mapping ϑ : X →
J × H ×Λ such that ϑ(z) ∈ {i} × H × {κ}, the equality χϑ

κi(m(u)) = 1 holds in H.

Proof. Remember that, by Result 2.1, the semigroup M(X,G,X ; P) together
with the mapping ι : X → M(X,G,X ; P) given, for every x ∈ X , by the formula
x 	→ (x, x, x) is a free completely simple semigroup on X . The mapping ι extends
in a unique way to a homomorphism of unary semigroups ζ : U(X) → M(X,G,X ; P).

Now, by definition, the identity u2 � u is satisfied in M(J,H,Λ; Q) if, for every
mapping η : X → J × H ×Λ, we have θ (ζ (u2)) = θ (ζ (u)) where θ :M(X,G,X ; P) →
M(J,H,Λ; Q) is the homomorphism satisfying θ (x, x, x) = η(x), for all x ∈ X , that
is, θ is the homomorphism which, when composed with ι, yields η. Now let us take
care of the element η(z). Of course, η(z) = (i, h,κ) for some i ∈ J, h ∈ H and κ ∈ Λ,
and so η(z) ∈ {i} × H × {κ} for these i ∈ J and κ ∈ Λ. As η : X → J × H ×Λ is an
arbitrary mapping, the mentioned elements i ∈ J and κ ∈ Λ can also be arbitrary.
Having in view the above isomorphism ςκi :M(J,H,Λ; Q) → M(J,H,Λ; Q

κi
), we

can now restate the above condition in the following way. The identity u2 � u
is satisfied in M(J,H,Λ; Q) if, for every i ∈ J, κ ∈ Λ and for every mapping
ϑ : X → J × H ×Λ such that ϑ(z) ∈ {i} × H × {κ}, we have θκi(ζ (u2)) = θκi(ζ (u))
where θκi :M(X,G,X ; P) → M(J,H,Λ; Q

κi
) is the homomorphism satisfying

θκi(x, x, x) = ϑ(x), for all x ∈ X .
Note that the equality θκi(ζ (u2)) = θκi(ζ (u)) appearing in the condition stated

at the end of the previous paragraph is the same as the equality θκi(ζ (u)2) =
θκi(ζ (u)), and as h(u) = z = t(u), in view of the former description of the homo-
morphism ζ : U(X) → M(X,G,X ; P) given in Result 2.1, this equality is equivalent
to the equality θκi((z,m(u), z)2) = θκi(z,m(u), z), and hence to the equality
θκi(z,m(u)2, z) = θκi(z,m(u), z).
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Now, for every i ∈ J, κ ∈ Λ and for every mapping ϑ : X → J × H ×Λ such that
ϑ(z) ∈ {i} × H × {κ}, one can check straightforwardly, on the basis of the definition
of the homomorphism χϑ

κi : G → H (see the definition of χϑ
κi before this proposition

and the note after it), that the mapping

Υκi :M(X,G,X ; P) → M(J,H,Λ; Q
κi

)

given by the formula

(x, g, y) 	→ (
ϕ(x), χϑ

κi(g), ψ(y)
)
,

for all x, y ∈ X and g ∈ G, is a homomorphism of Rees matrix semigroups such
that Υκi(x, x, x) = ϑ(x), for all x ∈ X . However, the homomorphism θκi also
satisfies θκi(x, x, x) = ϑ(x), for all x ∈ X , and it is determined uniquely by this
property. Consequently, this homomorphism θκi coincides with Υκi, and hence it is
completely described by the formula displayed above. Therefore, since ϕ(z) = i and
ψ(z) = κ, for the given word u ∈ U(X) with h(u) = z = t(u), we have θκi(z,m(u)2, z) =
(i, χϑ

κi(m(u)2),κ) = (i, χϑ
κi(m(u))2,κ) and θκi(z,m(u), z) = (i, χϑ

κi(m(u)),κ). Thus
the above equality θκi(z,m(u)2, z) = θκi(z,m(u), z) is equivalent to the equality
χϑ

κi(m(u))2 = χϑ
κi(m(u)), that is, to the equality χϑ

κi(m(u)) = 1, as required. �
We conclude this section by extracting from the previous proposition a criterion

for the validity of nearly restricted identities of the form v2 � v, for v ∈ IU(X) with
h(v) = z = t(v), in arbitrary (idempotent generated) completely simple semigroups,
that is, in an arbitrary Rees matrix semigroup, say M(J,H,Λ; Q). For any elements
κ ∈ Λ and i ∈ J and for any mapping π : X → J ×Λ satisfying π (z) = (i,κ), consider
the homomorphism

χ̂π
κi : Ĝ → H

defined in the following way. Again, it is enough to determine it merely on the
set {pxy : x, y ∈ X − {z}} of generators of Ĝ. First take the mappings µ : X → J and
ν : X → Λ specified by the formula π (x) = (µ(x), ν(x)), for all x ∈ X . Then define the
homomorphism χ̂π

κi by means of the following assignments :

pxy 	→ q−1
ν(x) iqν(x)µ(y)q−1

κ µ(y)qκi, for all x, y ∈ X − {z}.

As before, no harm will be done by including the same assignments also for x = z or
y = z, since these additional assignments will reduce to 1 	→ 1.

Now we can state the promised criterion for the validity of the above nearly
restricted identities in arbitrary Rees matrix semigroups:

COROLLARY 2.12. Let M(J,H,Λ; Q) be a Rees matrix semigroup. Let v ∈ IU(X)
be any word such that h(v) = z = t(v). Then the nearly restricted identity v2 � v is
satisfied in M(J,H,Λ; Q) if and only if, for every i ∈ J, κ ∈ Λ and for every mapping
π : X → J ×Λ such that π (z) = (i,κ), the equality χ̂π

κi(m(v)) = 1 holds in H.

Proof. One only has to notice that every mapping π : X → J ×Λ satisfying π (z) =
(i,κ) can be made up into a mapping ϑ : X → J × H ×Λ such that ϑ(z) ∈ {i} × H ×
{κ} which agrees with π in the first and the last components of the image of every
element of X . The homomorphism χϑ

κi : G → H then restricts on the subgroup Ĝ to
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the homomorphism χ̂π
κi : Ĝ → H. Since all words v ∈ IU(X) have the property that

m(v) ∈ Ĝ, it is enough to refer now to Proposition 2.11. �

3. Some finite metabelian groups. Metabelian groups are solvable groups of
derived length at most 2. Equivalently, metabelian groups are groups which are
extensions of an abelian group by another abelian group. We provide now some
instances of finite metabelian groups which will be useful in the subsequent sections
of this paper. For every prime number p, we denote by Ap the variety of all abelian
groups of exponent p. More specifically, we supply in this section certain finite groups
from the Mal’cev product Ap ◦Aq, for distinct prime numbers p, q.

Thus let p, q be two prime numbers such that p 
= q. Throughout this section, these
prime numbers will be fixed. Let

〈a〉 = {1, a, a2, . . . , ap−1}
be a cyclic group of order p generated by an element a, and let

〈b〉 = {1, b, b2, . . . , bq−1}
be a cyclic group of order q generated by another element b. Let

〈a〉〈b〉 = { f : 〈b〉 → 〈a〉}
be the power of the group 〈a〉 indexed by elements of the group 〈b〉. Then the group
〈b〉 has a left action on the group 〈a〉〈b〉 given, for every j ∈ {0, 1, 2, . . . , q − 1} and for
every map f : 〈b〉 → 〈a〉, by the formula

b j · f = jf

where jf : 〈b〉→〈a〉 is the map defined, for every k ∈ {0, 1, 2, . . . , q − 1}, by the formula

jf (bk) = f (b j+k)

(the sum of exponents is taken modulo q, of course). For every i ∈ {0, 1, 2, . . . , p − 1},
let ci : 〈b〉 → 〈a〉 be the constant map such that ci(〈b〉) = {ai}. Consider the following
subgroup of the group 〈a〉〈b〉:

� = {c0, c1, c2, . . . , cp−1}.
Since 〈a〉〈b〉 is an abelian group, � is a normal subgroup in it, and so we may further
consider the quotient group 〈a〉〈b〉/ �. Elements of this quotient group are the classes of
maps f · �, for all maps f : 〈b〉 → 〈a〉. Notice that all constant maps c0, c1, c2, . . . , cp−1

are fixed points of the above left action of 〈b〉 on the group 〈a〉〈b〉. Consequently,
a left action of 〈b〉 on the quotient group 〈a〉〈b〉/ � arises, which is given, for every
j ∈ {0, 1, 2, . . . , q − 1} and for every map f : 〈b〉 → 〈a〉, by the formula

b j · ( f · �) = jf · �.

We next show that this left action of 〈b〉 on 〈a〉〈b〉/ � no longer has any fixed point
except the identity class �. More precisely, we check that every element of 〈b〉 except
the identity 1 acting on 〈a〉〈b〉/ � in the way specified above permutes the classes of
〈a〉〈b〉/ � − {�} in such a way that this permutation has no fixed points.
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LEMMA 3.1. For every j ∈ {1, 2, . . . , q − 1} and for every map f : 〈b〉 → 〈a〉 such that
f /∈ �, we have

b j · ( f · �) 
= f · �.

Proof. Assume, by contradiction, that for some j ∈ {1, 2, . . . , q − 1} and for some
map f : 〈b〉 → 〈a〉, f /∈ �, we have b j · ( f · �) = f · �. That is, we have jf · � = f · �, which
means that jf · f −1 ∈ �, so that, for some i0 ∈ {0, 1, 2, . . . , p − 1}, we have jf · f −1 =
ci0 and hence jf = ci0 · f . By the definition of the map jf , this entails that f (b j+k) =
ai0 · f (bk) holds for all k ∈ {0, 1, 2, . . . , q − 1}. Multiplying these equalities for all k =
0, 1, 2, . . . , q − 1, we obtain that

f (1) · f (b) · f (b2) · · · · · f (bq−1) = aqi0 · f (1) · f (b) · f (b2) · · · · · f (bq−1),

whence it follows that aqi0 = 1. Since the element a is of order p and p, q are distinct
prime numbers, this yields that p|i0, so that i0 = 0. Thus we get that jf = c0 · f . However,
since c0 is the constant map such that c0(〈b〉) = {1}, this entails that jf = f . This means
that f (b j+k) = f (bk) holds for all k ∈ {0, 1, 2, . . . , q − 1}. In particular, this results in
the equalities

f (1) = f (b j) = f (b2j) = · · · = f
(
b(q−1) j)

(the exponents are again taken modulo q). As j ∈ {1, 2, . . . , q − 1} and q is a prime
number, the element b j is of order q, which means that 〈b〉 = {1, b j, b2j, . . . , b(q−1) j}.
The equalities displayed above thus show that f is a constant map, that is, f ∈ �, which
is a contradiction. �

Turning back to the left action of the group 〈b〉 on the quotient group 〈a〉〈b〉/ �
defined above, we may use it to construct the semidirect product of the group 〈a〉〈b〉/ �
by the group 〈b〉 determined by this left action. That is, we may consider the group

Kp,q = 〈a〉〈b〉/ �∗ 〈b〉

whose elements are of the form ( f · �, b j), for all j ∈ {0, 1, 2, . . . , q − 1} and for any
maps f : 〈b〉 → 〈a〉, and the multiplication is given by the formula

( f · �, b j) · (g · �, bk) = (( f · jg) · �, b j+k),

for all j, k ∈ {0, 1, 2, . . . , q − 1} and for any maps f, g : 〈b〉 → 〈a〉 (the sum of exponents
is again taken modulo q). Taking the identity 1 of the group 〈b〉, we may further
consider the subgroup

Lp,q = 〈a〉〈b〉/ �∗ {1}

of the group Kp,q consisting of all elements of the form ( f · �, 1), for arbitrary maps
f : 〈b〉 → 〈a〉. Then Lp,q is clearly a normal subgroup of Kp,q and it is obviously
isomorphic to the group 〈a〉〈b〉/ � which belongs to the variety Ap. The quotient group
Kp,q/Lp,q is evidently isomorphic to the group 〈b〉 which belongs to the variety Aq.
Thus the group Kp,q is an extension of the group 〈a〉〈b〉/ � from Ap by the group 〈b〉
from Aq, and therefore the group Kp,q itself belongs to the Mal’cev product Ap ◦Aq.
The element (�, 1) is the identity of Kp,q.
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LEMMA 3.2. All elements of the group Kp,q occurring in the set Lp,q − {(�, 1)} are of
order p. All elements occurring in the set Kp,q − Lp,q are of order q.

Proof. The first statement is obvious. As far as the second statement is concerned,
every element in the set Kp,q − Lp,q is of the form ( f · �, b j) for some j ∈ {1, 2, . . . , q − 1}
and for some map f : 〈b〉 → 〈a〉. According to the above formula for multiplication in
Kp,q, we obtain

( f · �, b j) · · · · · ( f · �, b j)︸ ︷︷ ︸
q

= (
f · jf · 2jf · · · · · (q−1) jf · �, bq j )

(indices at f are computed modulo q, of course). However, since q is a prime number
and j ∈ {1, 2, . . . , q − 1}, we have {0, j, 2j, . . . , (q − 1)j} = {0, 1, 2, . . . , q − 1} if the
numbers in the first of these two sets are taken modulo q. Consequently, we see
that f · jf · 2jf · · · · · (q−1) jf = f · 1f · 2f · · · · · q−1f . But f · 1f · 2f · · · · · q−1f clearly is the
constant map of 〈b〉 to the element f (1) · f (b) · f (b2) · · · · · f (bq−1) of 〈a〉, so that it
belongs to �. Therefore, the product displayed above is equal to the identity (�, 1)
of Kp,q. This verifies that the elements ( f · �, b j) from the set Kp,q − Lp,q are of
order q. �

LEMMA 3.3. For any pair of elements of the group Kp,q such that one of them belongs
to the set Lp,q − {(�, 1)} and the other one belongs to the set Kp,q − Lp,q, it is the case
that these two elements do not commute in Kp,q.

Proof. For any j ∈ {1, 2, . . . , q − 1} and for any maps f, g : 〈b〉 → 〈a〉 such that
f /∈ �, we obtain

( f · �, 1) · (g · �, b j) = ( f · g · �, b j) = (g · f · �, b j),

(g · �, b j) · ( f · �, 1) = (g · jf · �, b j).

However, by Lemma 3.1, we have b j · ( f · �) 
= f · �, that is, jf · � 
= f · �, and hence
g · jf · � 
= g · f · �. Consequently, we see that

( f · �, 1) · (g · �, b j) 
= (g · �, b j) · ( f · �, 1),

as claimed. �

LEMMA 3.4. For any pair of elements from the set Kp,q − Lp,q, it is true that these
two elements commute in the group Kp,q if and only if each of them is a positive power of
the other one.

Proof. Clearly, it is enough to prove only the necessity of this condition. Thus
assume that j, k ∈ {1, 2, . . . , q − 1} and that f, g : 〈b〉 → 〈a〉 are maps such that

( f · �, b j) · (g · �, bk) = (g · �, bk) · ( f · �, b j).

Let � ∈ {1, 2, . . . , q − 1} be that integer for which j · � ≡ k (mod q). Then from the
previous equality we deduce that

( f · �, b j)q−� · (g · �, bk) = (g · �, bk) · ( f · �, b j)q−�.
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That is, putting f̂ = f · jf · 2jf · · · · · (q−�−1)jf , we obtain that

( f̂ · q−kg · �, 1) = (g · kf̂ · �, 1),

so that f̂ · q−kg · � = g · kf̂ · �. Hence it follows that bk · (g · kf̂ · �) = bk · (f̂ · q−kg · �) =
kf̂ · g · � = g · kf̂ · �. By Lemma 3.1, this means that g · kf̂ ∈ �. Therefore g · kf̂ · � = �,
that is, g · � · kf̂ · � = �. Thus g · � is the inverse of kf̂ · � in the group 〈a〉〈b〉/�. Now,
putting f̄ = f · jf · 2jf · · · · · (�−1)jf , we also obtain that

( f · �, b j)q = ( f · �, b j)� · ( f · �, b j)q−� = ( f̄ · �, bk) · ( f̂ · �, bq−k) = ( f̄ · kf̂ · �, 1),

while, by Lemma 3.2, we have

( f · �, b j)q = (�, 1).

This yields that f̄ · kf̂ · � = �, that is, f̄ · � · kf̂ · � = �. Thus also f̄ · � is the inverse of
kf̂ · � in the group 〈a〉〈b〉/ �. Therefore we get that g · � = f̄ · �. Hence it follows that

(g · �, bk) = ( f · �, b j)�.

Letting m ∈ {1, 2, . . . , q − 1} be the integer for which � · m ≡ 1 (mod q) and taking the
m-th powers on both sides of this equality, we also obtain that

( f · �, b j) = (g · �, bk)m,

referring to Lemma 3.2 once again. This is what had to be shown. �

4. Generating varieties of all completely simple semigroups having subgroups in
prescribed varieties of groups. Given any variety Q of groups, we denote by CS(Q) the
variety of all completely simple semigroups whose maximal subgroups belong to Q.
In accordance with our notation introduced previously, ICS(Q) then stands for the
near variety of all idempotent generated completely simple semigroups whose maximal
subgroups belong to Q.

We will show that, for any prime numbers p, q such that p 
= q and for any variety
V of completely simple semigroups such that CS(Ap ◦Aq) ⊆ V , it is the case that the
variety V is not generated by any finitely generated completely simple semigroup. This
generalizes the well known fact that the variety CS of all completely simple semigroups
itself is not generated by any finitely generated completely simple semigroup, see [8],
VIII.10. As a matter of fact, we will see that none of the varieties V of completely
simple semigroups satisfying CS(Ap ◦Aq) ⊆ V is generated by a completely simple
semigroup having either only finitely many R-classes or only finitely many L-classes.
Our arguments will be of such a kind that they will document that the same statement
holds true also for the near varieties W of idempotent generated completely simple
semigroups satisfying ICS(Ap ◦Aq) ⊆ W .

Thus again let p, q be any prime numbers such that p 
= q. We begin with
a modification and simplification of some of the notation introduced in the previous
section in connection with the group Kp,q exhibited there. Recall that Kp,q is the
semidirect product of groups 〈a〉〈b〉/ � ∗ 〈b〉. As a first thing, we will denote by

� — the identity (�, 1) of the group Kp,q.
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Also the present notation for the set of all constant maps of 〈b〉 into 〈a〉, that is, the
symbol � for the identity class of the quotient group 〈a〉〈b〉/ � seems to be somewhat
clumsy with regard to its further usage. Thus, from now on, we will denote by

II — the identity class � of 〈a〉〈b〉/ �.

Furthermore, we will consider the following particular map ∂ : 〈b〉 → 〈a〉 given by the
formulas

1 	→ a and b j 	→ 1, for all j ∈ {1, 2, . . . , q − 1}.

Then we will denote by

∆ — the class ∂ · II , that is, using the earlier notation, the class ∂ ·� of 〈a〉〈b〉/�.

In connection with the left action of 〈b〉 on 〈a〉〈b〉/ �, that is, on 〈a〉〈b〉/II , which has
been introduced in the previous section, we will use the following notation. For every
j ∈ {0, 1, 2, . . . , q − 1}, we will denote the class b j ·∆, that is, the class b j · ∂ · II = j∂ · II
simply by j∆. Instead of q−j∆ we will write only −j∆. Moreover, as is usual, ∆−1 will
stand for the inverse of ∆, that is, for the class ∆p−1 in 〈a〉〈b〉/II , and b−1 will stand for
the inverse of b, that is for the element bq−1 in 〈b〉.

We next consider the elements

(II, b) and (∆, b−1)

of the group Kp,q. Both these elements belong to the set Kp,q − Lp,q and the second one
is certainly not a positive power of the first one. Therefore, by Lemma 3.4, these two
elements do not commute in Kp,q. Moreover, it is a routine task to verify that, in fact,
these two elements generate the entire group Kp,q.

Now we are ready to introduce the following Rees matrix semigroups which will
have their role to play in this and the next sections of this paper. For every integer
n � 3, we put Jn = {0, 1, 2, . . . , n} and we take the Rees matrix semigroup

M(Jn,Kp,q, Jn; Rn)

over the group Kp,q whose sandwich matrix Rn = (
nri j

)
i,j∈Jn

is described below. The
entries of the matrix Rn look as follows :

nrii = (II, b), for all i ∈ {1, 2, . . . , n},
nri i+1 = (∆, b−1), for all i ∈ {1, 2, . . . , n − 1},

nrn1 = (∆, b−1), and
nri j = � otherwise.

Thus the sandwich matrix Rn is normalized at the pair (0, 0) and each of its entries is
equal either to the identity � of Kp,q or to one of the two elements (II, b), (∆, b−1) of Kp,q

displayed above. Since, as we have noted, these two elements generate the whole group
Kp,q, the Rees matrix semigroup M(Jn,Kp,q, Jn; Rn) equals its core, see [8], III.2, and
therefore it is idempotent generated. Thus, for every n � 3, the Rees matrix semigroup
M(Jn,Kp,q, Jn; Rn) belongs to the near variety ICS(Ap ◦Aq). For n = 5 the sandwich
matrix Rn is shown in Figure 1.
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⎜⎜⎜⎜⎜⎜⎝

� � � � � �
� (II, b) (∆, b−1) � � �
� � (II, b) (∆, b−1) � �
� � � (II, b) (∆, b−1) �
� � � � (II, b) (∆, b−1)
� (∆, b−1) � � � (II, b)

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 1. The sandwich matrix R5.

Remember that, given any group H, for any elements g, h ∈ H, the commutator
[g, h] of g, h is defined to be the element of H of the form

[g, h] = g−1h−1gh.

More generally, for any integer n � 2 and for any elements h1, h2, . . . , hn ∈ H, the
n-fold commutator [h1, h2, . . . , hn] is the element of H defined by induction as follows.
For n = 2 it has just been done. If n > 2 then the inductive definition proceeds by
letting

[h1, h2, . . . , hn] = [[h1, h2, . . . , hn−1], hn],

the formula relies on the above definition of the two-fold commutator.
The following observation regarding the group Kp,q in connection with

commutators will come in useful later.

CLAIM 4.1. For any integer n � 1 and for arbitrary elements �0,�1,�2, . . . ,�n of
the group Kp,q, we have

[ �0,�1,�2, . . . ,�n] ∈ Lp,q.

Moreover, if �0 ∈ Lp,q − {�} and �1,�2, . . . ,�n ∈ Kp,q − Lp,q, then

[ �0,�1,�2, . . . ,�n] 
= �.
On the other hand, if this inequality holds, then evidently �0 
= �, and if, in addition,
�0 ∈ Lp,q − {�}, then �1,�2, . . . ,�n ∈ Kp,q − Lp,q.

Proof. The first statement is obvious, since the commutator of any two elements
of the group Kp,q belongs to the subgroup Lp,q. Assume that �0 ∈ Lp,q − {�}
and �1,�2, . . . ,�n ∈ Kp,q − Lp,q. Then, using Lemma 3.3, we can verify by
induction that, for every i ∈ {1, 2, . . . , n}, we have [ �0,�1,�2, . . . ,�i] ∈ Lp,q − {�}.
Indeed, then [ �0,�1] ∈ Lp,q − {�} and, if i ∈ {2, . . . , n} and [ �0,�1,�2, . . . ,�i−1] ∈
Lp,q − {�}, then [ �0,�1,�2, . . . ,�i] = [[ �0,�1,�2, . . . ,�i−1],�i] ∈ Lp,q − {�} by
Lemma 3.3. Thus this assertion holds and, in particular, for i = n, we obtain
the desired inequality. Assume further that �0 ∈ Lp,q − {�}. If �1 ∈ Lp,q, then
[ �0,�1] = �, and hence [ �0,�1,�2, . . . ,�n] = �. If, for some j ∈ {2, . . . , n}, we
have �j ∈ Lp,q, then, since [ �0,�1,�2, . . . ,�j−1] ∈ Lp,q, we get [ �0,�1,�2, . . . ,�j] =
[[ �0,�1,�2, . . . ,�j−1],�j] = �, and hence [ �0,�1,�2, . . . ,�n] = � again. These
notes verify the last statement formulated above. �

Again let X be an infinite set containing a distinguished element z ∈ X . Remember
the absolutely free group G on the set X ∪ {pxy : x, y ∈ X − {z}} introduced in Section 2.
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We next define, for every integer n � 3, an element πn of the group G in the follow-
ing way. We first choose pairwise distinct elements x1, x2, . . . , xn ∈ X − {z}. The
element πn will then be defined in such a way that it will actually become an
element of the absolutely free group on the set {pxixj : i, j ∈ {1, 2, . . . , n}}. The defini-
tion of the element πn will proceed by forming consecutively certain elements
πo

n , π
11
n , π

12
n , π

22
n , π

23
n , . . . , π

n−1 n
n , πnn

n , π
n1
n of G as follows. We first put

πo
n = [ px1x1 , px1x2 ]

and

π11
n = [

πo
n , px1x1 p−1

x2x1
, px1x1 p−1

x3x1
, . . . , px1x1 p−1

xn−1x1

]
.

Then, for every k = 2, . . . , n, we put

πk−1 k
n = [

πk−1 k−1
n , pxk−1xk p−1

xk−1xk+1
, pxk−1xk p−1

xk−1xk+2
, . . . , pxk−1xk p−1

xk−1xn+k−2

]
and

πkk
n = [

πk−1 k
n , pxkxk p−1

xk+1xk
, pxkxk p−1

xk+2xk
, . . . , pxkxk p−1

xn+k−2xk

]
.

Finally, we put

πn1
n = [

πnn
n , pxnx1 p−1

xnx2
, pxnx1 p−1

xnx3
, . . . , pxnx1 p−1

xnxn−1

]
.

Then we let

πn = πn1
n .

Note that all indices in these formulas are positive integers occurring within the interval
1, 2, . . . , n, and that they are computed modulo n, if necessary.

Now remember that in section 2, in the text preceding Proposition 2.9, we have
defined, for every element g ∈ G − {1}, the word γ (g) of U(X) having the properties that
h(γ (g)) = z = t(γ (g)) and m(γ (g)) = g. In addition, this definition of γ (g) has been of
such a form that, for every element h ∈ Ĝ − {1}, the word γ (h) appears in IU(X). In
the previous paragraph, we have defined, for every integer n � 3, an element πn of the
group G, distinct from the identity of G, which actually belongs to the subgroup Ĝ.
Thus we can take, for every integer n � 3, the word

un = γ (πn)

of IU(X). Then we will work with the sequence of identities

u2
n � un for all n � 3.

Notice that it is, in fact, a sequence of nearly restricted identities. The following
observation considers the validity of these identities in the Rees matrix semigroups
introduced earlier in this section.

CLAIM 4.2. For every integer n � 3, the identity u2
n � un is not satisfied in the Rees

matrix semigroup M(Jn,Kp,q, Jn; Rn).

Proof. Since, for every n � 3, un ∈ IU(X) and h(un) = z = t(un), according to
Corollary 2.12, in order to show that the nearly restricted identity u2

n � un is not
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satisfied in M(Jn,Kp,q, Jn; Rn), it suffices to find indices k, � ∈ Jn and a mapping
η : X → Jn × Jn such that η(z) = (k, �) and χ̂ η

�k(m(un)) 
= � in Kp,q, where χ̂ η
�k : Ĝ →

Kp,q is the homomorphism defined as in the text preceding Corollary 2.12 in section 2.
But un = γ (πn), and hence m(un) = πn. Therefore, given any integer n � 3, it is enough
to find indices k, � ∈ Jn and a mapping η : X → Jn × Jn such that η(z) = (k, �) and
χ̂
η

�k(πn) 
= �.
Thus take k = 0, � = 0 and let η : X → Jn × Jn be any mapping satisfying

η(z) = (0, 0) and η(xi) = (i, i), for all i ∈ {1, 2, . . . , n}. Then, by the definition of the
homomorphism χ̂

η

00 : Ĝ → Kp,q, we have χ̂ η00(pxixj ) = nri j, for all i, j ∈ {1, 2, . . . , n},
where nri j is the respective entry of the sandwich matrix Rn. Then we will see that
χ̂
η

00(πn) ∈ Lp,q − {�}.
In order to verify this statement, it is essentially enough to unfold the formulas in

the definition of the element πn of Ĝ, or rather the formulas stemming from them and
determining the homomorphic image χ̂ η00(πn) of πn in Kp,q. First note that

χ̂
η

00

(
πo

n

) = [
χ̂
η

00

(
px1x1

)
, χ̂

η

00

(
px1x2

)] = [nr11,
nr12] = [(II, b), (∆, b−1)] ∈ Lp,q − {�},

since this element, being a commutator of two elements of Kp,q, obviously belongs to
Lp,q, but it is distinct from �, because the two elements (II, b), (∆, b−1) do not commute
in Kp,q, as we have seen above. Next observe that

χ̂
η

00

(
π11

n

) = [
χ̂
η

00

(
πo

n

)
, χ̂

η

00

(
px1x1

)
χ̂
η

00

(
px2x1

)−1
, χ̂

η

00

(
px1x1

)
χ̂
η

00

(
px3x1

)−1
, . . .

. . . , χ̂
η

00

(
px1x1

)
χ̂
η

00

(
pxn−1x1

)−1]
= [
χ̂
η

00

(
πo

n

)
, nr11

nr−1
21 ,

nr11
nr−1

31 , . . . ,
nr11

nr−1
n−1 1

]
= [
χ̂
η

00

(
πo

n

)
, (II, b), (II, b), . . . , (II, b)

] ∈ Lp,q − {�},
according to Claim 4.1, since χ̂ η00(πo

n ) ∈ Lp,q − {�} and (II, b) ∈ Kp,q − Lp,q. Then
proceed further by observing that

χ̂
η

00

(
π12

n

) = [
χ̂
η

00

(
π11

n

)
, χ̂

η

00

(
px1x2

)
χ̂
η

00

(
px1x3

)−1
, χ̂

η

00

(
px1x2

)
χ̂
η

00

(
px1x4

)−1
, . . .

. . . , χ̂
η

00

(
px1x2

)
χ̂
η

00

(
px1xn

)−1]
= [
χ̂
η

00

(
π11

n

)
, nr12

nr−1
13 ,

nr12
nr−1

14 , . . . ,
nr12

nr−1
1n

]
= [
χ̂
η

00

(
π11

n

)
, (∆, b−1), (∆, b−1), . . . , (∆, b−1)

] ∈ Lp,q − {�},

again by Claim 4.1, since χ̂ η00(π11
n ) ∈ Lp,q − {�} and (∆, b−1) ∈ Kp,q − Lp,q. In this

manner, we can continue inspecting the (n − 1)-fold commutators defining con-
secutively the further elements χ̂ η00(π22

n ), χ̂ η00(π23
n ), . . . , χ̂ η00(πn−1 n

n ), χ̂ η00(πnn
n ), until we

reach the element χ̂ η00(πn1
n ) = χ̂ η00(πn). In this way, we arrive at the conclusion that

χ̂
η

00(πn) ∈ Lp,q − {�}, as claimed above. �
Now we are ready to prove the result announced in the preface to this section.

PROPOSITION 4.3. No variety V of completely simple semigroups having the property
that CS(Ap ◦Aq) ⊆ V , where p, q are distinct prime numbers, is generated by a completely
simple semigroup having only finitely manyR-classes or by a completely simple semigroup
having only finitely many L-classes.

Proof. By contradiction, suppose that some variety V satisfying CS(Ap ◦Aq) ⊆ V
with p, q as above is generated by a completely simple semigroup S having finitely many
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R-classes, say. Let M(I,H,Λ; Q) be a Rees matrix representation of this semigroup S.
Then the set I is finite. Let I have m elements. Then m � 2, as RB ⊆ V . We shall show
subsequently that then the semigroup M(I,H,Λ; Q) satisfies the identities u2

n � un for
all integers n > m. Since this semigroup generates V , the variety V should satisfy these
identities, as well. However, since CS(Ap ◦Aq) ⊆ V , the variety V contains the Rees
matrix semigroups M(Jn,Kp,q, Jn; Rn) introduced earlier in this section, for all n � 3.
But this means, according to Claim 4.2, that none of the identities u2

n � un for n � 3
are satisfied in V , which will be the desired contradiction.

Thus take any integer n > m and consider the corresponding identity u2
n � un. Since

un ∈ IU(X) and h(un) = z = t(un), according to Corollary 2.12, in order to show that
the identity u2

n � un is satisfied in the semigroup M(I,H,Λ; Q), we need to verify that,
for every j ∈ I , κ ∈ Λ and for every mapping η : X → I ×Λ such that η(z) = ( j,κ), we
have χ̂ η

κj(m(un)) = 1 in H where χ̂ η
κj : Ĝ → H is the homomorphism defined in section 2

in the text preceding Corollary 2.12. Since un = γ (πn), we have m(un) = πn in this condi-
tion. Thus we need to check that, for every j ∈ I , κ ∈ Λ and for every mapping η : X →
I ×Λ such that η(z) = ( j,κ), we have χ̂ η

κj(πn) = 1. Let, in this situation, µ : X → I
and ν : X → Λ be the mappings determined by the formula η(x) = (µ(x), ν(x)), for all
x ∈ X . Further, let the sandwich matrix Q be of the form Q = (qλi)λ∈Λ,i∈I . Remember
from section 2 that then the homomorphism χ̂

η
κj : Ĝ → H is defined in such a way

that, for every k, � ∈ {1, 2, . . . , n}, we have χ̂ η
κj(pxkx� ) = q−1

ν(xk)j qν(xk)µ(x�) q−1
κ µ(x�)

qκj. Now
since the set I has only m elements and n > m, there exist indices ı, ε ∈ {1, 2, . . . , n}
satisfying ı < ε such thatµ(xı) = µ(xε). From the just mentioned characteristics of the
homomorphism χ̂

η

κj it becomes evident that the equality µ(xı) = µ(xε) entails that,
for every k ∈ {1, 2, . . . , n}, we have χ̂ η

κj(pxkxı) = χ̂ η
κj(pxkxε ). Looking at the definition

of the elements π11
n , π

12
n , π

22
n , π

23
n , . . . , π

n−1 n
n , πnn

n , π
n1
n , we observe that if 1 < ı < ε

then pxı−1xıp
−1
xı−1xε appears among the elements in the (n − 1)-fold commutator defining

the element π ı−1 ı
n , if ı + 1 < ε then pxε−1xεp

−1
xε−1xı appears among the elements in the

(n − 1)-fold commutator defining the elementπε−1 ε
n , and if ı = 1 and ε = 2 then we note

that pxnx1 p−1
xnx2

appears among the elements in the (n − 1)-fold commutator defining the
element πn1

n . Hence it turns out that if 1 < ı < ε then χ̂ η
κj(pxı−1xı)χ̂

η

κj(pxı−1xε )
−1 = 1 and

so χ̂ η
κj(π

ı−1 ı
n ) = 1, if ı + 1 < ε then χ̂ η

κj(pxε−1xε )χ̂
η
κj(pxε−1xı)

−1 = 1 and so χ̂ η
κj(π

ε−1 ε
n ) =

1, and if ı = 1 and ε = 2 then χ̂ η
κj(pxnx1 )χ̂ η

κj(pxnx2 )−1 = 1 and so χ̂ η
κj(π

n1
n ) = 1. In every

case, we thus eventually come to the conclusion that χ̂ η
κj(πn) = 1, which we needed to

verify. �
Looking through the arguments used in the proof of Proposition 4.3, we readily

ascertain that, in parallel with the statement formulated in this proposition concerning
varieties of completely simple semigroups, we have proved also the analogous statement
concerning near varieties of idempotent generated completely simple semigroups,
which has also been mentioned in the opening paragraphs of this section. Namely,
we have also verified that no near variety W of idempotent generated completely
simple semigroups having the property that ICS(Ap ◦Aq) ⊆ W , where p, q are distinct
prime numbers, is generated by a semigroup having only finitely many R-classes or by
a semigroup having only finitely many L-classes.

5. Uncountably many near varieties of idempotent generated completely simple
semigroups with metabelian subgroups. In this final section, we intend to prove the
following result, which has been the real motivation for writing this paper. Remember
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once more that, for any prime numbers p, q such that p 
= q,ICS(Ap ◦Aq) stands for the
near variety of all idempotent generated completely simple semigroups whose maximal
subgroups belong to the Mal’cev product Ap ◦Aq, which group variety consists, of
course, of metabelian groups.

THEOREM 5.1. For arbitrary prime numbers p, q such that p 
= q, there exist 2ℵ0 near
varieties of idempotent generated completely simple semigroups occurring in the interval
between the near variety RB of all rectangular bands and the near variety ICS(Ap ◦Aq)
mentioned above. �

In view of Theorem 1.4 or, more specifically, in view of Proposition 2.10,
Theorem 5.1 will emerge as an immediate consequence of Proposition 5.2 which is
stated below. In this proposition, certain nearly restricted identities will appear which
we must first introduce.

Thus let again X be an infinite set containing a distinguished element z ∈ X .
Remember once more the absolutely free group G on the set X ∪ {pxy : x, y ∈ X − {z}}
introduced in section 2. Now, for every integer n � 7, we define an element ωn of
the group G in the following manner. As in the previous section, we first choose
pairwise distinct elements x1, x2, . . . ,xn ∈ X − {z}. Then the elementωn will be defined
in such a way that, in fact, it will belong to the absolutely free group on the set
{pxixj : i, j ∈ {1, 2, . . . , n}}. This element ωn will arise as the last element of the sequence
of elements ωo

n , ω
11
n , ω

12
n , ω

22
n , ω

23
n , . . . , ω

n−1 n
n , ωnn

n , ω
n1
n of G which are consecutively

formed as follows. We begin by putting

ωo
n = [ px1x1 , px1x2 ]

and

ω11
n = [

ωo
n , px1x1 , px1x1 p−1

x2x1
, px1x1 p−1

x3x1
, px1x1 p−1

x4x1
, px1x1 p−1

x5x1
, px1x1 p−1

x6x1
,

px1x1 p−1
x1xn
, px1x1 p−1

x1xn−1
, px1x1 p−1

x1xn−2
, px1x1 p−1

x1xn−3
, px1x1 p−1

x1xn−4
,

px1x1 p2
xnx1
, px1x1 p2

x1x2

]
.

Then we continue, for every k = 2, . . . , n, by putting

ωk−1 k
n = [

ωk−1 k−1
n , pxk−1xk , pxk−1xk p−1

xk−1xk+1
, pxk−1xk p−1

xk−1xk+2
,

pxk−1xk p−1
xk−1xk+3

, pxk−1xk p−1
xk−1xk+4

, pxk−1xk p−1
xk−1xk+5

,

pxk−1xk p−1
xk−2xk

, pxk−1xk p−1
xk−3xk

, pxk−1xk p−1
xk−4xk

,

pxk−1xk p−1
xk−5xk

, pxk−1xk p−1
xk−6xk

,

pxk−1xk p2
xk−1xk−1

, pxk−1xk p2
xkxk

]
,

and

ωkk
n = [

ωk−1 k
n , pxkxk , pxkxk p−1

xk+1xk
, pxkxk p−1

xk+2xk
, pxkxk p−1

xk+3xk
,

pxkxk p−1
xk+4xk

, pxkxk p−1
xk+5xk

,

pxkxk p−1
xkxk−1

, pxkxk p−1
xkxk−2

, pxkxk p−1
xkxk−3

,

pxkxk p−1
xkxk−4

, pxkxk p−1
xkxk−5

,

pxkxk p2
xk−1xk

, pxkxk p2
xkxk+1

]
.
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Finally, we end by putting

ωn1
n = [

ωnn
n , pxnx1 , pxnx1 p−1

xnx2
, pxnx1 p−1

xnx3
, pxnx1 p−1

xnx4
, pxnx1 p−1

xnx5
, pxnx1 p−1

xnx6
,

pxnx1 p−1
xn−1x1

, pxnx1 p−1
xn−2x1

, pxnx1 p−1
xn−3x1

, pxnx1 p−1
xn−4x1

, pxnx1 p−1
xn−5x1

,

pxnx1 p2
xnxn
, pxnx1 p2

x1x1

]
.

Having this done, we let

ωn = ωn1
n .

We again point out that all indices appearing in these formulas are positive integers
occurring within the interval 1, 2, . . . , n, and that they are computed modulo n, if
necessary. For instance, in the 14-fold commutator defining the element ωkk

n for k = n,
the element appearing last is pxnxn p2

xnx1
.

Next remember once again that in section 2, in the text preceding Proposition 2.9,
we have defined, for every element g ∈ G − {1}, the word γ (g) of U(X) having the
properties that h(γ (g)) = z = t(γ (g)) and m(γ (g)) = g. Moreover, this definition of
γ (g) has been of such a form that, for every element h ∈ Ĝ − {1}, the word γ (h)
belongs to IU(X). Now, in the previous paragraph, we have defined, for every integer
n � 7, an element ωn of the group G, distinct from the identity of G, which actually
occurs in the subgroup Ĝ. Thus, for every integer n � 7, we have in hand the word

wn = γ (ωn)

of IU(X). We will further use the sequence of identities

w2
n � wn for all integers n � 7.

Subsequently, however, we will rather deal with the selected subsequence of identities

w2
s � ws for all prime numbers s � 7.

Notice again that all these identities are, in fact, nearly restricted identities.
Now we can state the promised proposition which yields the above Theorem 5.1

as a direct consequence.

PROPOSITION 5.2. For any prime numbers p, q such that p 
= q, it is the case that
the identities w2

s � ws, for all prime numbers s � 7, form an infinite independent set of
nearly restricted identities within the near variety ICS(Ap ◦Aq). That is, none of these
identities is a consequence of the other ones within ICS(Ap ◦Aq). �

This proposition will ensue from the next two statements which both have to do
with the Rees matrix semigroups M(Jn,Kp,q, Jn; Rn) over the group Kp,q introduced in
the previous section. Remember in this context that, for all integers n � 3, these Rees
matrix semigroups M(Jn,Kp,q, Jn; Rn) are members of the near variety ICS(Ap ◦Aq).

Proposition 5.2 means that distinct subsets of the family of nearly restricted
identities w2

s � ws where s � 7 are arbitrary prime numbers, when considered within
the near variety ICS(Ap ◦Aq), determine distinct near subvarieties of this near variety.
In addition, all near subvarieties arising in this manner contain the class RB of all
rectangular bands. Thus, in this way, we obtain 2ℵ0 near subvarieties of ICS(Ap ◦Aq)
containing all rectangular bands.
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CLAIM 5.3. For every integer n � 7, the identity w2
n � wn is not satisfied in the Rees

matrix semigroup M(Jn,Kp,q, Jn; Rn).

Proof. We proceed entirely analogously to the proof of Claim 4.2 in the previous
section. Referring to Corollary 2.12 again and arguing in the same way as before,
we come to the following criterion. Given any integer n � 7, in order to establish
that the nearly restricted identity w2

n � wn is not satisfied in M(Jn,Kp,q, Jn; Rn), it
suffices to find indices k, � ∈ Jn and a mapping π : X → Jn × Jn such that π (z) = (k, �)
and χ̂π

�k(ωn) 
= �, where χ̂π
�k : Ĝ → Kp,q is the homomorphism defined as in the text

preceding Corollary 2.12 in section 2.
Thus, as in the proof of Claim 4.2, take k = 0, � = 0 and let π : X → Jn × Jn be

any mapping satisfying π (z) = (0, 0) and π (xi) = (i, i), for all i ∈ {1, 2, . . . , n}. Then,
according to the definition of χ̂π00 : Ĝ → Kp,q, we have χ̂π00(pxixj ) = nrij, for all i, j ∈
{1, 2, . . . , n}, where nrij is the respective entry of the sandwich matrix Rn. Then, similarly
as before, we will see that χ̂π00(ωn) ∈ Lp,q − {�}.

In order to verify this statement, it is again essentially enough to unfold the
formulas according to which the element χ̂π00(ωn) of Kp,q is consecutively calculated.
Notice that these formulas stem from those appearing in the above definition of the
element ωn of Ĝ. Thus, we first note that

χ̂π00

(
ωo

n

) = [
χ̂π00(px1x1 ), χ̂π00(px1x2 )

] = [nr11,
nr12] = [(II, b), (∆, b−1)] ∈ Lp,q − {�},

just as in the proof of Claim 4.2. Next, examining similarly the formula defining the
element ω11

n of Ĝ and determining thus its homomorphic image χ̂π00(ω11
n ) in Kp,q, we

observe that

χ̂π00

(
ω11

n

) = [
χ̂π00

(
ωo

n

)
, nr11,

nr11
nr−1

21 ,
nr11

nr−1
31 ,

nr11
nr−1

41 ,
nr11

nr−1
51 ,

nr11
nr−1

61 ,

nr11
nr−1

1n ,
nr11

nr−1
1 n−1,

nr11
nr−1

1 n−2,
nr11

nr−1
1 n−3,

nr11
nr−1

1 n−4,
nr11

nr2
n1,

nr11
nr2

12

]
=

[
χ̂π00

(
ωo

n

)
, (II, b), (II, b), . . . , (II, b)︸ ︷︷ ︸

10

, (1∆ ·∆, b−1), (1∆ ·∆, b−1)
]
∈ Lp,q − {�},

in view of Claim 4.1, since χ̂π00(ωo
n ) ∈ Lp,q − {�} and (II, b), (1∆ ·∆, b−1) ∈ Kp,q − Lp,q.

Then we proceed further by examining the formula defining the element ω12
n of Ĝ and

determining hereby its homomorphic image χ̂π00(ω12
n ) in Kp,q. We thus observe that

χ̂π00

(
ω12

n

) = [
χ̂π00

(
ω11

n

)
, nr12,

nr12
nr−1

13 ,
nr12

nr−1
14 ,

nr12
nr−1

15 ,
nr12

nr−1
16 ,

nr12
nr−1

17 ,

nr12
nr−1

n2 ,
nr12

nr−1
n−1 2,

nr12
nr−1

n−2 2,
nr12

nr−1
n−3 2,

nr12
nr−1

n−4 2,
nr12

nr2
11,

nr12
nr2

22

]
=

[
χ̂π00

(
ω11

n

)
, (∆, b−1), (∆, b−1), . . . , (∆, b−1)︸ ︷︷ ︸

10

, (∆, b), (∆, b)
]

∈ Lp,q − {�},

again by Claim 4.1, since χ̂π00(ω11
n ) ∈ Lp,q − {�} and (∆, b−1), (∆, b) ∈ Kp,q − Lp,q.

In this manner, we can continue further inspecting the formulas determining the
subsequent elements χ̂π00(ω22

n ), χ̂π00(ω23
n ), . . . , χ̂π00(ωn−1 n

n ), χ̂π00(ωnn
n ) of Kp,q, until we get

to the element χ̂π00(ωn1
n ) = χ̂π00(ωn). In this way, we arrive at last to the conclusion that

χ̂π00(ωn) ∈ Lp,q − {�}, as claimed above. �
CLAIM 5.4. For arbitrary prime numbers s, t � 7 such that s 
= t, the identityw2

t � wt

is satisfied in the Rees matrix semigroup M(Js,Kp,q, Js; Rs).
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Proof. Let s, t � 7 be prime numbers such that s 
= t. Sincewt ∈ IU(X) and h(wt) =
z = t(wt), according to Corollary 2.12, in order to show that the identity w2

t � wt is
satisfied in the semigroup M(Js,Kp,q, Js; Rs), we need to verify that, for every k, � ∈ Js

and for every mappingπ : X → Js × Js such thatπ (z) = (k, �), we have χ̂π
�k(m(wt)) = �

in Kp,q where χ̂π
�k : Ĝ → Kp,q is the homomorphism defined as in section 2 in the text

preceding Corollary 2.12. Since wt = γ (ωt), we have m(wt) = ωt in this condition.
Thus we need to check that, for every k, � ∈ Js and for every mapping π : X → Js × Js

such that π (z) = (k, �), we have χ̂π
�k(ωt) = �. Let, in this situation, µ, ν : X → Js be the

mappings determined by the formula π (x) = (µ(x), ν(x)), for all x ∈ X . Remember
that the sandwich matrix Rs is of the form Rs = (

srij
)

i,j∈Js
where the entries srij are the

elements of Kp,q specified in the previous section. Recall now from section 2 that then the
homomorphism χ̂π

�k : Ĝ → Kp,q is defined in such a way that, for every x, y ∈ X , we have
χ̂π
�k(pxy) = sr−1

ν(x)k
srν(x)µ(y)

sr−1
�µ(y)

sr�k. That is, for every x, y ∈ X , the homomorphism χ̂π
�k

assigns to the element pxy the entry of the normalized sandwich matrix R
�k
s occurring in

the position (ν(x), µ(y)). Indeed, in accordance with the description of the procedure
of normalization of the sandwich matrices which has been reviewed in section 2 in
the text following Proposition 2.10, the sandwich matrix R

�k
s which is normalized at

the pair (�, k) is of the form R
�k
s = (sr−1

ik
srij

sr−1
�j

sr�k)i,j∈Js . Thus the homomorphism χ̂π
�k

behaves as stated above. (The conditions µ(z) = k,ν(z) = � coming from π (z) = (k, �)
ensure that this determination of χ̂π

�k is all right even if x = z or y = z.)
In the course of the verification of the condition formulated in the previous

paragraph, namely that for every k, � ∈ Js and for every mapping π : X → Js × Js

such that π (z) = (k, �), the equality χ̂π
�k(ωt) = � holds, we will have to distinguish

several cases corresponding to various values of the indices k, � and we will have to
discuss them separately.

I. Assume that k = 0, � = 0.
Then the matrix R

�k
s , that is, the matrix R

00
s is just the matrix Rs, π (z) = (0, 0),

and, for all x, y ∈ X , we have χ̂π
�k(pxy) = χ̂π00(pxy) = srν(x)µ(y), since the matrix Rs is

normalized at (0, 0). Consider now the element χ̂π00(ωt) of the group Kp,q and the
elements of this group emerging consecutively during the calculation of the element
χ̂π00(ωt) in accordance with the sequential definition of the element ωt of the group
Ĝ. Suppose, by contradiction, that χ̂π00(ωt) 
= �. This means that χ̂π00(ωt1

t ) 
= �. Hence,
for every κ = 1, 2, . . . , t, it follows that χ̂π00(ωκκt ) 
= �, and for every κ = 2, . . . , t, it
follows that χ̂π00(ωκ−1 κ

t ) 
= �. Now note that, for every κ ∈ {1, 2, . . . , t}, the element
srν(xκ )µ(xκ ) appears as the second element in the commutator determining χ̂π00(ωκκt ), and
that, for every κ ∈ {2, . . . , t}, the element srν(xκ−1)µ(xκ ) appears as the second element
in the commutator determining χ̂π00(ωκ−1 κ

t ). Also the element srν(xt)µ(x1) appears as
the second element in the commutator determining χ̂π00(ωt1

t ). Consequently, according
to Claim 4.1, for every κ ∈ {1, 2, . . . , t}, we have srν(xκ )µ(xκ ) ∈ Kp,q − Lp,q, further for
every κ ∈ {2, . . . , t}, we have srν(xκ−1)µ(xκ ) ∈ Kp,q − Lp,q, and we also have srν(xt)µ(x1) ∈
Kp,q − Lp,q. Therefore, in view of the form of the sandwich matrix Rs described in the
previous section, each of the elements just mentioned must be equal either to (II, b) or
to (∆, b−1). Furthermore, for every κ ∈ {1, 2, . . . , t}, the elements srν(xκ )µ(xκ )

sr−1
ν(xκ+1)µ(xκ )

and srν(xκ )µ(xκ )
sr−1
ν(xκ )µ(xκ−1) appear, respectively, as the third and the eighth elements

in the commutator determining χ̂π00(ωκκt ). (The values κ + 1 and κ − 1 occur within
the interval 1, 2, . . . , t and they are computed modulo t, if necessary.) Therefore,
according to Claim 4.1 again, these elements must all belong to the set Kp,q − Lp,q,
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and hence, in particular, none of these elements can be equal to �. That is, for every
κ ∈ {1, 2, . . . , t}, we have srν(xκ )µ(xκ )

sr−1
ν(xκ+1)µ(xκ ) 
= � and srν(xκ )µ(xκ )

sr−1
ν(xκ )µ(xκ−1) 
= �, so

that srν(xκ )µ(xκ ) 
= srν(xκ+1)µ(xκ ) and srν(xκ )µ(xκ ) 
= srν(xκ )µ(xκ−1). This entails that, for all
κ ∈ {2, . . . , t}, we have µ(xκ−1) 
= µ(xκ ), and we also have µ(xt) 
= µ(x1), and further,
for all κ ∈ {2, . . . , t} again, we have ν(xκ−1) 
= ν(xκ ), and we also have ν(xt) 
= ν(x1).
Returning to the previous conclusion regarding the elements srν(xκ )µ(xκ ), for all κ ∈
{1, 2, . . . , t}, we remember, in particular, that we may have either srν(x1)µ(x1) = (II, b) or
srν(x1)µ(x1) = (∆, b−1). If srν(x1)µ(x1) = (II, b), then we further have srν(x1)µ(x2) = (∆, b−1),
srν(x2)µ(x2) = (II, b), srν(x2)µ(x3) = (∆, b−1), and so on, since there is no other way that
the inequalities µ(xκ−1) 
= µ(xκ ) and ν(xκ−1) 
= ν(xκ ) just deduced together with the
previous conclusions concerning the elements srν(xκ−1)µ(xκ ) and srν(xκ )µ(xκ ) can be satisfied
at once. For the same reason, we then also have srν(xt)µ(x1) = (∆, b−1), srν(xt)µ(xt) = (II, b),
and so on. Looking at the form of the sandwich matrix Rs once again, we see that, in
this case, we therefore necessarily have

µ(x1) = ε, µ(x2) = ε + 1, µ(x3) = ε + 2, . . . and

ν(x1) = ε, ν(x2) = ε + 1, ν(x3) = ε + 2, . . . for some ε ∈ {1, 2, . . . , s}.

(This time, these values occur within the interval 1, 2, . . . , s and they are computed
modulo s.) However, at the same time, coming out of the above considerations, we see
that we inevitably have

µ(xt) = ε − 1, µ(xt−1) = ε − 2, . . . and

ν(xt) = ε − 1, ν(xt−1) = ε − 2, . . . .

(These values are likewise computed modulo s within 1, 2, . . . , s.) However, the length
of the above two sequences which is equal to t cannot be divisible by s, since
s and t are distinct prime numbers. Consequently, the equalities displayed last cannot
be fulfilled if the sets of equalities displayed previously have to be satisfied. This
yields a contradiction. Next we examine the possibility that srν(x1)µ(x1) = (∆, b−1).
Arguing as in the previous case, we find that now we further have srν(x1)µ(x2) = (II, b),
srν(x2)µ(x2) = (∆, b−1), srν(x2)µ(x3) = (II, b), and so on, and, at the same time, we also have
srν(xt)µ(x1) = (II, b), srν(xt)µ(xt) = (∆, b−1), and so on. Thus, looking at the sandwich
matrix Rs once more, we see that, in this case, we necessarily have

µ(x1) = ε + 1, µ(x2) = ε, µ(x3) = ε − 1, . . . and

ν(x1) = ε, ν(x2) = ε − 1, ν(x3) = ε − 2, . . . for some ε ∈ {1, 2, . . . , s}.

(As before, these values again occur within the interval 1, 2, . . . , s and they are
computed modulo s.) However, we likewise see that we inevitably have

µ(xt) = ε + 2, µ(xt−1) = ε + 3, . . . and

ν(xt) = ε + 1, ν(xt−1) = ε + 2, . . . .

(These values are again computed modulo s within 1, 2, . . . , s.) But since s and t are
distinct prime numbers, and so s does not divide t, analogous considerations as before
show that the two sets of equalities displayed above cannot be fulfilled simultaneously.
This again leads to a contradiction, confirming thus that χ̂π00(ωt) = � holds, as required.
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398 JIŘÍ KAĎOUREK⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� (II, b−1) (1∆−1, b) � � � � �
� � � � � � � �
� (II, b−1) (2∆−1, b2) (∆, b−1) � � � �
� (II, b−1) (1∆−1, b) (II, b) (∆, b−1) � � �
� (II, b−1) (1∆−1, b) � (II, b) (∆, b−1) � �
� (II, b−1) (1∆−1, b) � � (II, b) (∆, b−1) �
� (II, b−1) (1∆−1, b) � � � (II, b) (∆, b−1)
� (∆, b−2) (1∆−1, b) � � � � (II, b)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2. The sandwich matrix R
10
7 .

II. Assume that k = 0, � 
= 0.
Notice, in this case, that by rearranging those rows and columns of the sandwich
matrices Rs and R

�k
s = R

�0
s which are not indexed by 0 simultaneously in such a

way that the rows indexed by �, �+ 1, . . . , s are placed first in their respective order
and only after that the rows indexed by 1, 2, . . . , �− 1 are placed according to their
order, and subsequently also the columns indexed by �, �+ 1, . . . , s are placed first in
their respective order and after that the columns indexed by 1, 2, . . . , �− 1 are placed
according to their order, the matrix Rs remains entirely unaltered, while the value of
the index � changes into 1 by this modification. This means that it suffices to examine
only the situation when k = 0 and � = 1. Then π (z) = (0, 1), the sandwich matrix
R
�0
s = R

10
s is normalized at the pair (1, 0) and it is of the form R

10
s = (srij

sr−1
1j )i,j∈Js , since

the matrix Rs is normalized at (0, 0). Recall from the first paragraph of this proof that,
for every x, y ∈ X , the homomorphism χ̂π�0, that is (with � = 1), the homomorphism
χ̂π10 assigns to the element pxy the entry of the sandwich matrix R

10
s occurring in the

position (ν(x), µ(y)). Thus, it will be convenient to gain an overview of the entries
of this matrix R

10
s . For short, let us write sr̂ij = srij

sr−1
1j , for all i, j ∈ Js. Then we can

write R
10
s = (sr̂ij)i,j∈Js and, for all x, y ∈ X , we have χ̂π10(pxy) = sr̂ν(x)µ(y). For s = 7 the

sandwich matrix R
10
s is shown in Figure 2. For general values of the prime number s,

we have

sr̂i1 = (II, b−1) for i = 0 and for all i = 2, . . . , s − 1,
sr̂i2 = (1∆−1, b) for i = 0 and for all i = 3, . . . , s,
sr̂ii = (II, b) for all i = 3, . . . , s,

sr̂i i+1 = (∆, b−1) for all i = 2, . . . , s − 1,
sr̂22 = (2∆−1, b2), sr̂s1 = (∆, b−2), and

sr̂ij = � otherwise.

As in the previous case, suppose, by contradiction, that χ̂π10(ωt) 
= �. As before, this
means that χ̂π10(ωt1

t ) 
= �, whence, for every κ = 1, 2, . . . , t, it follows that χ̂π10(ωκκt ) 
= �,
and for every κ = 2, . . . , t, it follows that χ̂π10(ωκ−1 κ

t ) 
= �. Hence, arguing as in the
previous case, but using the entries of the sandwich matrix R

10
s instead of the respective

entries of the matrix Rs, on the basis of Claim 4.1, we come to the conclusion that,
for every κ ∈ {1, 2, . . . , t}, we have sr̂ν(xκ )µ(xκ ) ∈ Kp,q − Lp,q, for every κ ∈ {2, . . . , t},
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we have sr̂ν(xκ−1)µ(xκ ) ∈ Kp,q − Lp,q, and, additionally, we have sr̂ν(xt)µ(x1) ∈ Kp,q − Lp,q.
In the same manner as before, we further deduce that, for all κ ∈ {2, . . . , t}, we
have µ(xκ−1) 
= µ(xκ ) and ν(xκ−1) 
= ν(xκ ), and we also have µ(xt) 
= µ(x1) and
ν(xt) 
= ν(x1). Consider next any κ ∈ {1, 2, . . . , t}. Notice that then the elements
sr̂ν(xκ )µ(xκ )

sr̂−1
ν(xκ+1)µ(xκ ),

sr̂ν(xκ )µ(xκ )
sr̂−1
ν(xκ+2)µ(xκ ) and sr̂ν(xκ )µ(xκ )

sr̂−1
ν(xκ+3)µ(xκ ) appear as the

third, fourth and fifth elements in the commutator which determines χ̂π10(ωκκt ). (The
values κ + 1, κ + 2 and κ + 3 occur again within the interval 1, 2, . . . , t and they are
computed modulo t, if necessary.) Consequently, according to Claim 4.1, none of
these three elements can occur in the subgroup Lp,q, and hence, in particular, none
of them can be equal to �. Therefore, the element sr̂ν(xκ )µ(xκ ) must be distinct from
each of the elements sr̂ν(xκ+1)µ(xκ ), sr̂ν(xκ+2)µ(xκ ) and sr̂ν(xκ+3)µ(xκ ). This entails that ν(xκ )
must differ from ν(xκ+1), ν(xκ+2) and also from ν(xκ+3). Now, going through the same
deliberations as above, but, this time, having the commutator determining χ̂π10(ωκ+1 κ+1

t )
in view instead of that determining χ̂π10(ωκκt ), we likewise deduce that ν(xκ+1) must
differ from ν(xκ+2) and also from ν(xκ+3). (The values κ + 1, κ + 2, κ + 3, and
similar values appearing as indices in the elements occurring in the commutator
which determines χ̂π10(ωκ+1 κ+1

t ) all belong to the interval 1, 2, . . . , t again and they
are computed modulo t, if necessary.) Repeating this reasoning once again, but, this
time, with the commutator determining χ̂π10(ωκ+2 κ+2

t ), we come to the conclusion that
also ν(xκ+2) must differ from ν(xκ+3). Thus, altogether, we see that ν(xκ ), ν(xκ+1),
ν(xκ+2) and ν(xκ+3) must be pairwise different. Now notice that, in the column of the
sandwich matrix R

10
s indexed by 1, there is a single element �, a single element (∆, b−2),

and all remaining elements in this column are equal to (II, b−1). Therefore, if µ(xκ ) = 1
for some κ ∈ {1, 2, . . . , t}, then at least one of the elements sr̂ν(xκ+1)µ(xκ ), sr̂ν(xκ+2)µ(xκ )

and sr̂ν(xκ+3)µ(xκ ) must be equal to (II, b−1). Consequently, the element sr̂ν(xκ )µ(xκ ) must
be distinct from (II, b−1), since, as we have seen above, it must be distinct from each
of the elements sr̂ν(xκ+1)µ(xκ ), sr̂ν(xκ+2)µ(xκ ) and sr̂ν(xκ+3)µ(xκ ). Turning next to the column

of the matrix R
10
s indexed by 2, in which column there is a single element �, a single

element (2∆−1, b2), and all other elements are equal to (1∆−1, b), analogous reasonings
show that if µ(xκ ) = 2 for some κ ∈ {1, 2, . . . , t}, then the element sr̂ν(xκ )µ(xκ ) must be
distinct from (1∆−1, b). Consider further any κ ∈ {2, . . . , t} and notice that the elements
sr̂ν(xκ−1)µ(xκ )

sr̂−1
ν(xκ−2)µ(xκ ),

sr̂ν(xκ−1)µ(xκ )
sr̂−1
ν(xκ−3)µ(xκ ) and sr̂ν(xκ−1)µ(xκ )

sr̂−1
ν(xκ−4)µ(xκ ) appear as the

eighth, ninth and tenth elements in the commutator which determines χ̂π10(ωκ−1 κ
t ). (The

values κ − 2, κ − 3 and κ − 4 occur again within the interval 1, 2, . . . , t and they are
computed modulo t, if necessary.) Since the fact that ν(xκ ), ν(xκ+1), ν(xκ+2) and ν(xκ+3)
must be pairwise different has been deduced above for arbitrary κ ∈ {1, 2, . . . , t}, we
see that also ν(xκ−1), ν(xκ−2), ν(xκ−3) and ν(xκ−4) must be pairwise different, having
now our present κ ∈ {2, . . . , t} in mind. Arguing further analogously as above, we
hence deduce that if µ(xκ ) = 1 for some κ ∈ {2, . . . , t}, then the element sr̂ν(xκ−1)µ(xκ )

must be distinct from (II, b−1), and if µ(xκ ) = 2 for some κ ∈ {2, . . . , t}, then the
element sr̂ν(xκ−1)µ(xκ ) must be distinct from (1∆−1, b). Finally, considering similarly the
elements occurring in the commutator which determines χ̂π10(ωt1

t ), we likewise obtain
that if µ(x1) = 1 then the element sr̂ν(xt)µ(x1) must be distinct from (II, b−1), and if
µ(x1) = 2 then the element sr̂ν(xt)µ(x1) must be distinct from (1∆−1, b). In this way, we
find that each of the elements sr̂ν(xκ )µ(xκ ), for κ ∈ {1, 2, . . . , t}, each of the elements
sr̂ν(xκ−1)µ(xκ ), for κ ∈ {2, . . . , t}, and also the element sr̂ν(xt)µ(x1) must be equal either
to (II, b) or to (∆, b−1), or possibly to (2∆−1, b2) or to (∆, b−2). Remember, in this
context, that we have seen above that, for all κ ∈ {2, . . . , t}, we have ν(xκ−1) 
= ν(xκ ),
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and we also have ν(xt) 
= ν(x1). Therefore, if for some κ ∈ {1, 2, . . . , t}, we had
sr̂ν(xκ )µ(xκ ) = (2∆−1, b2), then µ(xκ ) = 2 and we inevitably would have sr̂ν(xκ−1)µ(xκ ) = �
or sr̂ν(xκ−1)µ(xκ ) = (1∆−1, b) if κ ∈ {2, . . . , t}, and we would have sr̂ν(xt)µ(x1) = � or
sr̂ν(xt)µ(x1) = (1∆−1, b) if κ = 1, which has been excluded above. Similarly, if for some
κ ∈ {1, 2, . . . , t}, we had sr̂ν(xκ )µ(xκ ) = (∆, b−2), thenµ(xκ ) = 1 and we inevitably would
have sr̂ν(xκ−1)µ(xκ ) = � or sr̂ν(xκ−1)µ(xκ ) = (II, b−1) if κ ∈ {2, . . . , t}, and we would have
sr̂ν(xt)µ(x1) = � or sr̂ν(xt)µ(x1) = (II, b−1) if κ = 1, which has also been excluded above.
Thus, for every κ ∈ {1, 2, . . . , t}, we necessarily must have either sr̂ν(xκ )µ(xκ ) = (II, b) or
sr̂ν(xκ )µ(xκ ) = (∆, b−1). Very similar arguments show that, for every κ ∈ {2, . . . , t}, we
also must necessarily have either sr̂ν(xκ−1)µ(xκ ) = (II, b) or sr̂ν(xκ−1)µ(xκ ) = (∆, b−1). And
finally, for the same reasons, we may actually have only either sr̂ν(xt)µ(x1) = (II, b) or
sr̂ν(xt)µ(x1) = (∆, b−1). So that, in particular, we may have either sr̂ν(x1)µ(x1) = (II, b) or
sr̂ν(x1)µ(x1) = (∆, b−1). If sr̂ν(x1)µ(x1) = (II, b), then, similarly as in the previous case, we
hence further get that sr̂ν(x1)µ(x2) = (∆, b−1), sr̂ν(x2)µ(x2) = (II, b), sr̂ν(x2)µ(x3) = (∆, b−1),

and so on. Looking now at the sandwich matrix R
10
s , we see that, consequently, this

time we must have

µ(x1) = ε, µ(x2) = ε + 1, µ(x3) = ε + 2, . . . , µ(xt) = ε + t − 1, and

ν(x1) = ε, ν(x2) = ε + 1, ν(x3) = ε + 2, . . . , ν(xt) = ε + t − 1,

for some ε ∈ {3, . . . , s − t + 1},
provided that s � t + 2. Otherwise the above conditions are impossible to fulfill.
However, at the same time, for the same reasons as before, we further get that
sr̂ν(xt)µ(x1) = (∆, b−1) and sr̂ν(xt)µ(xt) = (II, b), which means that we must also have
µ(xt) = ε − 1 and ν(xt) = ε − 1. By the way, this enforces that ε � 4. But, above
all, this is incompatible with the previous findings about µ(xt) and ν(xt), leading thus
to a contradiction. Next we examine the possibility that sr̂ν(x1)µ(x1) = (∆, b−1). Then,
similarly as in the previous case again, from the above notes we further deduce that
sr̂ν(x1)µ(x2) = (II, b), sr̂ν(x2)µ(x2) = (∆, b−1), sr̂ν(x2)µ(x3) = (II, b), and so on. Looking at the

sandwich matrix R
10
s once again, we see that, this time, we are led to the conclusion

that we must have

µ(x1) = ε + 1, µ(x2) = ε, µ(x3) = ε − 1, . . . , µ(xt) = ε − t + 2, and

ν(x1) = ε, ν(x2) = ε − 1, ν(x3) = ε − 2, . . . , ν(xt) = ε − t + 1,

for some ε ∈ {t + 1, . . . , s − 1},
provided that s � t + 2. Otherwise the above conditions are again impossible to fulfill.
However, at the same time, from the above notes we further obtain that sr̂ν(xt)µ(x1) =
(II, b) and sr̂ν(xt)µ(xt) = (∆, b−1), which now means that we must also have µ(xt) =
ε + 2 and ν(xt) = ε + 1. Besides, this requires that ε � s − 2. But, first of all, this is
again incompatible with the preceding findings about µ(xt) and ν(xt), yielding thus
a contradiction as previously. This contradiction verifies that χ̂π10(ωt) = � holds, as
required.

III. Assume that k 
= 0, � = 0.
Proceeding in exactly the same way as at the beginning of the previous case, that
is, rearranging the rows and the columns of the sandwich matrices Rs and R

�k
s = R

0k
s

appropriately, we again find that it suffices to examine only the situation when k = 1 and
� = 0, for instance. Then π (z) = (1, 0), the sandwich matrix R

0k
s = R

01
s is normalized
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � � �
(II, b−1) � (−1∆, b−2) (II, b−1) (II, b−1) (II, b−1) (II, b−1) (II, b−1)

� � (II, b) (∆, b−1) � � � �
� � � (II, b) (∆, b−1) � � �
� � � � (II, b) (∆, b−1) � �
� � � � � (II, b) (∆, b−1) �
� � � � � � (II, b) (∆, b−1)

(1∆−1, b) � (1∆−1, b) (1∆−1, b) (1∆−1, b) (1∆−1, b) (1∆−1, b) (1∆−1, b2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3. The sandwich matrix R
01
7 .

at the pair (0, 1) and it is of the form R
01
s = (sr−1

i1
srij)i,j∈Js . Remember once again that,

for every x, y ∈ X , the homomorphism χ̂π0k, that is (with k = 1), the homomorphism
χ̂π01 assigns to the element pxy the entry of the sandwich matrix R

01
s occurring in the

position (ν(x), µ(y)). This is the reason why this sandwich matrix is dealt with. It is
again appropriate to inspect the entries of this matrix R

01
s . However, it is fairly easy

to realize that the form of this matrix is very much like that of the matrix R
10
s in

the previous case. Essentially, except for some insignificant details, only the roles of
the rows and the columns in these matrices are interchanged. For s = 7 the sandwich
matrix R

01
s is shown in Figure 3. Hence it is easy to understand how this matrix

looks for general values of the prime number s. Thus this case can be treated in
quite the same manner as the previous one. Working with the rows of the sandwich
matrix R

01
s rather than with the columns, as opposed to the previous case, and taking

the form of the commutators determining the elements χ̂π01(ω11
t ), χ̂π01(ω12

t ), χ̂π01(ω22
t ),

χ̂π01(ω23
t ), . . . , χ̂π01(ωt−1 t

t ), χ̂π01(ωtt
t ), and χ̂π01(ωt1

t ) = χ̂π01(ωt) into account, in the same way
as before, we find that the assumption that χ̂π01(ωt) 
= � again leads to a contradiction.
Thus χ̂π01(ωt) = � holds, as required.

IV. Assume finally that k 
= 0, � 
= 0.
Notice that in this case, one can also simplify the calculations by rearranging the rows
and the columns of the sandwich matrices Rs and R

�k
s appropriately. Namely, similarly

as before, by rearranging those rows and columns of these matrices which are not
indexed by 0 simultaneously in such a way that the columns indexed by k, k + 1, . . . , s
are placed first in their respective order and only after that the columns indexed by
1, 2, . . . , k − 1 are placed according to their order, and subsequently also the rows
indexed by k, k + 1, . . . , s are placed first in their respective order and after that the
columns indexed by 1, 2, . . . , k − 1 are placed according to their order, the matrix Rs

remains entirely unaltered, while the value of the index k changes into 1 and the value of
the index � changes either into �− k + 1 if k � � or into �+ s − k + 1 if k > �, by this
modification. This reasoning reveals that it is enough to examine only the situation
when k = 1. Nevertheless, we have still to distinguish several subcases according to
possible values of the index �.

IV.i. Assume that k = 1 and that 2 < � < s − 1.
Then π (z) = (1, �), the sandwich matrix R

�1
s is normalized at the pair (�, 1) and, as

sr�1 = � for 2 < � < s − 1, it is of the form R
�1
s = (sr−1

i1
srij

sr−1
�j )i,j∈Js . Recall once more

from the first paragraph of this proof that, for every x, y ∈ X , the homomorphism χ̂π�1
assigns to the element pxy the entry of the sandwich matrix R

�1
s occurring in the position
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � (II,b−1) (1∆−1,b) � � � �
(II,b−1) � (−1∆,b−2) (II,b−1) (II,b−1) (II,b−1) (II,b−2) (∆−1, 1) (II,b−1) (II,b−1) (II,b−1) (II,b−1)

� � (II,b) (∆,b−1) � � (II,b−1) (1∆−1,b) � � � �
� � � (II,b) (∆,b−1) � (II,b−1) (1∆−1,b) � � � �
� � � � (II,b) (∆,b−1) (II,b−1) (1∆−1,b) � � � �
� � � � � (II,b) (∆,b−2) (1∆−1,b) � � � �
� � � � � � � � � � � �
� � � � � � (II,b−1) (2∆−1,b2) (∆,b−1) � � �
� � � � � � (II,b−1) (1∆−1,b) (II,b) (∆,b−1) � �
� � � � � � (II,b−1) (1∆−1,b) � (II,b) (∆,b−1) �
� � � � � � (II,b−1) (1∆−1,b) � � (II,b) (∆,b−1)

(1∆−1,b) � (1∆−1,b) (1∆−1,b) (1∆−1,b) (1∆−1,b) (1∆−1, 1) (Ξ,b2) (1∆−1,b) (1∆−1,b) (1∆−1,b) (1∆−1,b2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4. The sandwich matrix R
6 1
11 , where Ξ = 1∆−1 · 2∆−1.

(ν(x), µ(y)). Thus, as before, it will be convenient to gain an overview of the entries of
this matrix R

�1
s . For short, let us write sr̄ij = sr−1

i1
srij

sr−1
�j , for all i, j ∈ Js. Then we can

write R
�1
s = (sr̄ij)i,j∈Js and, for all x, y ∈ X , we have χ̂π�1(pxy) = sr̄ν(x)µ(y). For s = 11 and

� = 6 the sandwich matrix R
�1
s is shown in Figure 4. For general values of the prime

number s, in view of the assumption that 2 < � < s − 1, we have

sr̄1j = (II, b−1) for j = 0 and for all j = 3, . . . , �− 1, �+ 2, . . . , s,
sr̄i � = (II, b−1) for i = 0 and for all i = 2, . . . , �− 2, �+ 1, . . . , s − 1,
sr̄sj = (1∆−1, b) for j = 0 and for all j = 2, . . . , �− 1, �+ 2, . . . , s − 1,

sr̄i �+1 = (1∆−1, b) for i = 0 and for all i = 2, . . . , �− 1, �+ 2, . . . , s − 1,
sr̄ii = (II, b) for all i = 2, . . . , �− 1, �+ 2, . . . , s − 1,

sr̄i i+1 = (∆, b−1) for all i = 2, . . . , �− 2, �+ 1, . . . , s − 1
sr̄12 = (−1∆, b−2), sr̄1 � = (II, b−2), sr̄1 �+1 = (∆−1, 1),

sr̄�−1 � = (∆, b−2), sr̄�+1 �+1 = (2∆−1, b2),
sr̄s � = (1∆−1, 1), sr̄s �+1 = (1∆−1 · 2∆−1, b2), sr̄ss = (1∆−1, b2), and

sr̄ij = � otherwise.

As in the preceding cases, we again proceed by contradiction. Thus suppose that
χ̂π�1(ωt) 
= �. This means that χ̂π�1(ωt1

t ) 
= �, which entails that χ̂π�1(ωκκt ) 
= �, for all
κ = 1, 2, . . . , t, and that χ̂π�1(ωκ−1 κ

t ) 
= �, for all κ = 2, . . . , t. Thus, arguing as in case I,
but using the entries of the sandwich matrix R

�1
s instead of the respective entries of

the matrix Rs, we again arrive at the conclusion based on Claim 4.1 saying that, for
every κ ∈ {1, 2, . . . , t}, we have sr̄ν(xκ )µ(xκ ) ∈ Kp,q − Lp,q, for every κ ∈ {2, . . . , t}, we
have sr̄ν(xκ−1)µ(xκ ) ∈ Kp,q − Lp,q, and we also have sr̄ν(xt)µ(x1) ∈ Kp,q − Lp,q. In the same
manner as in case I, we next deduce that, for all κ ∈ {2, . . . , t}, we have µ(xκ−1) 
=
µ(xκ ) and ν(xκ−1) 
= ν(xκ ), and we also have µ(xt) 
= µ(x1) and ν(xt) 
= ν(x1). Our
further thoughts will be akin to those encountered in case II. Consider any κ ∈
{1, 2, . . . , t}. Notice that then the elements sr̄ν(xκ )µ(xκ )

sr̄−1
ν(xκ+1)µ(xκ ),

sr̄ν(xκ )µ(xκ )
sr̄−1
ν(xκ+2)µ(xκ ),

sr̄ν(xκ )µ(xκ )
sr̄−1
ν(xκ+3)µ(xκ ),

sr̄ν(xκ )µ(xκ )
sr̄−1
ν(xκ+4)µ(xκ ) and sr̄ν(xκ )µ(xκ )

sr̄−1
ν(xκ+5)µ(xκ ) appear as the third

up to the seventh elements in the commutator which determines χ̂π�1(ωκκt ). (The values
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κ + 1, κ + 2, κ + 3, κ + 4 and κ + 5 occur again within the interval 1, 2, . . . , t and
they are computed modulo t, if necessary.) Consequently, in view of Claim 4.1, none
of these five elements can occur in the subgroup Lp,q, and hence, in particular, none of
them can be equal to �. Therefore, the element sr̄ν(xκ )µ(xκ ) must be distinct from each
of the elements sr̄ν(xκ+1)µ(xκ ), sr̄ν(xκ+2)µ(xκ ), sr̄ν(xκ+3)µ(xκ ), sr̄ν(xκ+4)µ(xκ ) and sr̄ν(xκ+5)µ(xκ ). This
entails that ν(xκ ) must differ from each of ν(xκ+1), ν(xκ+2), ν(xκ+3), ν(xκ+4) and ν(xκ+5).
Now, repeating the same deliberations as above, but having consecutively in view
the commutators determining χ̂π�1(ωκ+1 κ+1

t ), χ̂π�1(ωκ+2 κ+2
t ), χ̂π�1(ωκ+3 κ+3

t ), χ̂π�1(ωκ+4 κ+4
t )

and χ̂π�1(ωκ+5 κ+5
t ) instead of the one determining χ̂π�1(ωκκt ), similarly as in case II, we

eventually come to the conclusion that ν(xκ ), ν(xκ+1), ν(xκ+2), ν(xκ+3), ν(xκ+4) and
ν(xκ+5) must be pairwise different. (The values κ + 1, κ + 2, κ + 3, κ + 4, κ + 5, and
similar values appearing as indices in the elements occurring in the commutators just
mentioned all belong to the interval 1, 2, . . . , t and they are computed modulo t,
as before, if necessary.) Next consider any κ ∈ {1, 2, . . . , t} once again and return
once more to the above deliberations concerning the commutator which determines
χ̂π�1(ωκκt ), but, this time, having the elements sr̄ν(xκ )µ(xκ )

sr̄−1
ν(xκ )µ(xκ−1),

sr̄ν(xκ )µ(xκ )
sr̄−1
ν(xκ )µ(xκ−2),

sr̄ν(xκ )µ(xκ )
sr̄−1
ν(xκ )µ(xκ−3),

sr̄ν(xκ )µ(xκ )
sr̄−1
ν(xκ )µ(xκ−4) and sr̄ν(xκ )µ(xκ )

sr̄−1
ν(xκ )µ(xκ−5) in view, which

appear as the eighth up to the twelfth elements in this commutator. (The values
κ − 1, κ − 2, κ − 3, κ − 4 and κ − 5 occur again within the interval 1, 2, . . . , t and
they are computed modulo t, if necessary.) In view of Claim 4.1 again, none of these
five elements can be equal to �. Therefore, the element sr̄ν(xκ )µ(xκ ) must be distinct from
each of the elements sr̄ν(xκ )µ(xκ−1), sr̄ν(xκ )µ(xκ−2), sr̄ν(xκ )µ(xκ−3), sr̄ν(xκ )µ(xκ−4) and sr̄ν(xκ )µ(xκ−5).
Pursuing farther these reasonings in quite the same way as above, and repeating
them subsequently, but, this time, with the commutators determining consecutively
χ̂π�1(ωκ−1 κ−1

t ), χ̂π�1(ωκ−2 κ−2
t ), χ̂π�1(ωκ−3 κ−3

t ), χ̂π�1(ωκ−4 κ−4
t ) and χ̂π�1(ωκ−5 κ−5

t ) in place of
the one determining χ̂π�1(ωκκt ), we eventually come to the conclusion that also µ(xκ ),
µ(xκ−1),µ(xκ−2),µ(xκ−3),µ(xκ−4) andµ(xκ−5) must be pairwise different. (Once again,
as before, the values κ − 1, κ − 2, κ − 3, κ − 4, κ − 5, and similar values appearing
as indices in the elements occurring in the commutators just mentioned all belong to
the interval 1, 2, . . . , t and they are computed modulo t, if necessary.) Now observe
that, in the column of the sandwich matrix R

�1
s indexed by �, there is a single element �,

a single element (1∆−1, 1), a single element (II, b−2), a single element (∆, b−2), and all
remaining elements in this column are equal to (II, b−1). Therefore, if µ(xκ ) = � for
some κ ∈ {1, 2, . . . , t}, then at least one of the five elements sr̄ν(xκ+1)µ(xκ ), sr̄ν(xκ+2)µ(xκ ),
sr̄ν(xκ+3)µ(xκ ), sr̄ν(xκ+4)µ(xκ ) and sr̄ν(xκ+5)µ(xκ ) must be equal to (II, b−1). Consequently, the
element sr̄ν(xκ )µ(xκ ) must be distinct from (II, b−1), since, as we have seen above, it
must be distinct from each of the five elements just named. Quite similarly, in the
column of the matrix R

�1
s indexed by �+ 1, there is a single element �, a single element

(∆−1, 1), a single element (2∆−1, b2), a single element (1∆−1 · 2∆−1, b2), and all other
elements in this column are equal to (1∆−1, b). Thus, analogous arguments as above
reveal that if µ(xκ ) = �+ 1 for some κ ∈ {1, 2, . . . , t}, then the element sr̄ν(xκ )µ(xκ )

must be distinct from (1∆−1, b). Next turn to the rows of the sandwich matrix R
�1
s .

Notice that, in the row of this matrix indexed by 1, there is a single element �,
a single element (∆−1, 1), a single element (II, b−2), a single element (−1∆, b−2),
and all other elements in this row are equal to (II, b−1). Therefore, if ν(xκ ) = 1 for
some κ ∈ {1, 2, . . . , t}, then at least one of the five elements sr̄ν(xκ )µ(xκ−1), sr̄ν(xκ )µ(xκ−2),
sr̄ν(xκ )µ(xκ−3), sr̄ν(xκ )µ(xκ−4) and sr̄ν(xκ )µ(xκ−5) must be equal to (II, b−1). Consequently, the
element sr̄ν(xκ )µ(xκ ) must be distinct from (II, b−1), since, as we have also seen above, it
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must be distinct from each of the five elements just named. Likewise, in the row of
the matrix R

�1
s indexed by s, there is a single element �, a single element (1∆−1, 1),

a single element (1∆−1, b2), a single element (1∆−1 · 2∆−1, b2), and all other elements
in this row are equal to (1∆−1, b). Thus, analogous arguments as above show that
if ν(xκ ) = s for some κ ∈ {1, 2, . . . , t}, then the element sr̄ν(xκ )µ(xκ ) must be distinct
from (1∆−1, b). We proceed further by considering any κ ∈ {2, . . . , t}, by observing
that the elements sr̄ν(xκ−1)µ(xκ )

sr̄−1
ν(xκ−2)µ(xκ ),

sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−3)µ(xκ ),

sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−4)µ(xκ ),

sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−5)µ(xκ ) together with the element sr̄ν(xκ−1)µ(xκ )

sr̄−1
ν(xκ−6)µ(xκ ) appear as the

eighth up to the twelfth elements in the commutator which determines χ̂π�1(ωκ−1 κ
t ),

and by noting similarly that also the other elements sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−1)µ(xκ+1),

sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−1)µ(xκ+2),

sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−1)µ(xκ+3),

sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−1)µ(xκ+4) and the

element sr̄ν(xκ−1)µ(xκ )
sr̄−1
ν(xκ−1)µ(xκ+5) appear as the third up to the seventh elements in the

mentioned commutator. Since the facts that ν(xκ ), ν(xκ+1), ν(xκ+2), ν(xκ+3), ν(xκ+4)
and ν(xκ+5) must be pairwise different and that µ(xκ ), µ(xκ−1), µ(xκ−2), µ(xκ−3),
µ(xκ−4) and µ(xκ−5) must be pairwise different have been deduced above for arbitrary
κ ∈ {1, 2, . . . , t}, we see that also ν(xκ−1), ν(xκ−2), ν(xκ−3), ν(xκ−4), ν(xκ−5) and ν(xκ−6)
must be pairwise different and that µ(xκ ), µ(xκ+1), µ(xκ+2), µ(xκ+3), µ(xκ+4) and
µ(xκ+5) must be pairwise different, having now our present κ ∈ {2, . . . , t} in mind.
Arguing further entirely analogously as before, we hence deduce that if µ(xκ ) = � for
some κ ∈ {2, . . . , t}, then the element sr̄ν(xκ−1)µ(xκ ) must be distinct from (II, b−1), if
µ(xκ ) = �+ 1 for some κ ∈ {2, . . . , t}, then the element sr̄ν(xκ−1)µ(xκ ) must be distinct
from (1∆−1, b), if ν(xκ−1) = 1 for some κ ∈ {2, . . . , t}, then the element sr̄ν(xκ−1)µ(xκ )

must be distinct from (II, b−1), and if ν(xκ−1) = s for some κ ∈ {2, . . . , t}, then the
element sr̄ν(xκ−1)µ(xκ ) must be distinct from (1∆−1, b). Finally, considering similarly
the elements occurring in the commutator which determines χ̂π�1(ωt1

t ), we likewise
obtain that if µ(x1) = � then the element sr̄ν(xt)µ(x1) must be distinct from (II, b−1), if
µ(x1) = �+ 1 then the element sr̄ν(xt)µ(x1) must be distinct from (1∆−1, b), if ν(xt) = 1
then the element sr̄ν(xt)µ(x1) must be distinct from (II, b−1), and if ν(xt) = s then the
element sr̄ν(xt)µ(x1) must be distinct from (1∆−1, b). We complete these remarks by
noting that (∆−1, 1), (1∆−1, 1) ∈ Lp,q, so that, according to Claim 4.1 again, none of
the elements sr̄ν(xκ )µ(xκ ), for any κ ∈ {1, 2, . . . , t}, and none of the elements sr̄ν(xκ−1)µ(xκ ),
for any κ ∈ {2, . . . , t}, can be equal either to (∆−1, 1) or to (1∆−1, 1). Likewise the
element sr̄ν(xt)µ(x1) can be equal neither to (∆−1, 1) nor to (1∆−1, 1). But there are still

two collections of elements in the sandwich matrix R
�1
s which come into consideration

as possible values of the elements just mentioned. Namely, they are the elements

sr̄12 = (−1∆, b−2), sr̄22 = (II, b), sr̄23 = (∆, b−1), sr̄33 = (II, b),
sr̄34 = (∆, b−1), . . . , sr̄�−2 �−1 = (∆, b−1),

sr̄�−1 �−1 = (II, b), sr̄�−1 � = (∆, b−2), sr̄1 � = (II, b−2),

and the elements

sr̄�+1 �+1 = (2∆−1, b2), sr̄�+1 �+2 = (∆, b−1), sr̄�+2 �+2 = (II, b), sr̄�+2 �+3 = (∆, b−1),
sr̄�+3 �+3 = (II, b), . . . , sr̄s−1 s−1 = (II, b),

sr̄s−1 s = (∆, b−1), sr̄ss = (1∆−1, b2), sr̄s �+1 = (1∆−1 · 2∆−1, b2).
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Thus assume, for instance, that (ν(x1), µ(x1)) is the pair of indices of an element lying
in the first of the above two collections of elements. Then we may have either ν(x1) = ε,
µ(x1) = ε for some ε ∈ {2, . . . , �− 1}, or ν(x1) = 1, µ(x1) = �, or else ν(x1) = ε,
µ(x1) = ε + 1 for some ε ∈ {1, 2, . . . , �− 1}. In accordance with this differentiation,
we will further distinguish three possibilities. Thus, coming out of the remarks on
the diversity of the values µ(xκ ) and ν(xκ ), for distinct κ ∈ {1, 2, . . . , t}, which have
appeared earlier in the treatment of the present subcase, and arguing in a similar way
to case I, we find that, in the situation when the first of the three possibilities just
mentioned occurs, we necessarily must have

µ(x1) = ε, µ(x2) = ε + 1, µ(x3) = ε + 2, . . . and

ν(x1) = ε, ν(x2) = ε + 1, ν(x3) = ε + 2, . . . for some ε ∈ {2, . . . , �− 1},
and, at the same time, we also inevitably must have

µ(xt) = ε − 1, µ(xt−1) = ε − 2, . . . and

ν(xt) = ε − 1, ν(xt−1) = ε − 2, . . . .

(The values involving ε are computed modulo �− 1 this time and, for the mappings
µ and ν, they occur within the intervals 2, . . . , � and 1, . . . , �− 1, respectively.)
Then, if �− 1 > t, the above two sequences whose length is t are shorter then �− 1,
which is obviously impossible. Therefore we must have �− 1 � t. (Then, in fact, �− 1
divides t, so that �− 1 = t.) In this situation, however, there is λ ∈ {2, . . . , t} such that
µ(xλ) = � and ν(xλ) = 1. Furthermore, then µ(xλ−1) = �− 1 and ν(xλ−1) = �− 1.
Thus we get that sr̄ν(xλ−1)µ(xλ) = (∆, b−2) and sr̄ν(xλ−1)µ(xλ−1) = (II, b). Hence we obtain
that sr̄ν(xλ−1)µ(xλ)

sr̄ 2
ν(xλ−1)µ(xλ−1) = (∆, 1), which element belongs to the subgroup Lp,q. But

this element occurs as the last element but one in the commutator which determines
χ̂π�1(ωλ−1 λ

t ). Consequently, by Claim 4.1, we have χ̂π�1(ωλ−1 λ
t ) = �, whence we get that

χ̂π�1(ωt) = �. But this is a contradiction. The situation when the second of the three
possibilities mentioned above occurs, that is, when ν(x1) = 1 and µ(x1) = � holds can
be treated in quite the same manner as the previous one. Namely, it suffices to take ε = �
in the previous situation. The only difference is that, in the concluding deliberations,
we now have λ = 1. Then µ(x1) = �, ν(x1) = 1 and µ(xt) = �− 1, ν(xt) = �− 1. Thus,
similarly as above, we get that sr̄ν(xt)µ(x1) = (∆, b−2) and sr̄ν(xt)µ(xt) = (II, b), whence we
obtain that sr̄ν(xt)µ(x1)

sr̄ 2
ν(xt)µ(xt)

= (∆, 1). This element belongs to the subgroup Lp,q and
it occurs as the last element but one in the commutator which determines χ̂π�1(ωt1

t ), that
is, χ̂π�1(ωt). By Claim 4.1, this yields that χ̂π�1(ωt) = �. This is again a contradiction. In
the situation when the last of the three possibilities mentioned above occurs, arguing
as above, we find that, this time, we necessarily must have

µ(x1) = ε + 1, µ(x2) = ε, µ(x3) = ε − 1, . . . and

ν(x1) = ε, ν(x2) = ε − 1, ν(x3) = ε − 2, . . . for some ε ∈ {1, 2, . . . , �− 1},
and, at the same time, we also inevitably must have

µ(xt) = ε + 2, µ(xt−1) = ε + 3, . . . and

ν(xt) = ε + 1, ν(xt−1) = ε + 2, . . . .

(As before, in this situation again, the values involving ε are computed modulo
�− 1 and, for the mappings µ and ν, they occur within the intervals 2, . . . , � and
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � (II, b−1) (1∆−1, b) � � � �
(II, b−1) � (−1∆, b−3) (∆−1, 1) (II, b−1) (II, b−1) (II, b−1) (II, b−1)

� � � � � � � �
� � (II, b−1) (2∆−1, b2) (∆, b−1) � � �
� � (II, b−1) (1∆−1, b) (II, b) (∆, b−1) � �
� � (II, b−1) (1∆−1, b) � (II, b) (∆, b−1) �
� � (II, b−1) (1∆−1, b) � � (II, b) (∆, b−1)

(1∆−1, b) � (1∆−1, 1) (Ξ, b2) (1∆−1, b) (1∆−1, b) (1∆−1, b) (1∆−1, b2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 5. The sandwich matrix R
21
7 , where Ξ = 1∆−1 · 2∆−1.

1, . . . , �− 1, respectively.) As above, it turns out that the inequality �− 1 > t is
impossible, so that we again have �− 1 � t (in fact, �− 1 divides t, and hence �− 1 = t).
This time, however, there is λ ∈ {1, 2, . . . , t} such that µ(xλ+1) = � and ν(xλ) = 1. (If
λ = t then λ+ 1 is interpreted as 1.) Furthermore, then µ(xλ) = 2 and ν(xλ−1) = 2.
(If λ = 1 then λ− 1 is interpreted as t.) Thus we get that sr̄ν(xλ)µ(xλ) = (−1∆, b−2) and
sr̄ν(xλ−1)µ(xλ) = (II, b), whence we obtain that sr̄ν(xλ)µ(xλ)

sr̄ 2
ν(xλ−1)µ(xλ) = (−1∆, 1). But this

element belongs to the subgroup Lp,q and, at the same time, this element also occurs as
the last element but one in the commutator which determines χ̂π�1(ωλλt ). Consequently,
by Claim 4.1, we have χ̂π�1(ωλλt ) = �, whence we again get that χ̂π�1(ωt) = �. This is
again a contradiction, as before. The treatment of the present subcase is essentially
completed by these conclusions, since the situation when (ν(x1), µ(x1)) is the pair of
indices of an element lying in the second of the two collections of elements of the
matrix R

�1
s displayed previously in this discussion can be settled quite analogously.

Thus altogether we may conclude that χ̂π�1(ωt) = � holds, as required.

IV.ii. Assume that k = 1 and � = 2.
Then π (z) = (1, 2), the sandwich matrix R

21
s is normalized at the pair (2, 1), and

sr21 = �. Notice that, consequently, the entry of the sandwich matrix R
21
s occuring in

the position (1, 2) is

sr̄12 = sr−1
11

sr12
sr−1

22 = (−1∆, b−3).

With this exception, the description of the sandwich matrix R
21
s does not differ from

the description of the matrix R
�1
s given in the previous subcase where, this time, one

takes � = 2, of course. It actually means that the first of the two collections of elements
of the matrix R

�1
s displayed in the above text, where the previous subcase is treated,

now collapses to the single element (−1∆, b−3) shown above. The rest of the matrix R
�1
s

remains essentially unchanged if one takes � = 2. For s = 7 the sandwich matrix R
21
s is

shown in Figure 5. Hence it should be clear how this matrix looks for general values of
the prime number s. The treatment of this subcase proceeds, as before, by showing that
the assumption that χ̂π21(ωt) 
= � leads to a contradiction. The discussion confirming
this fact can be performed in the same fashion as in the previous subcase. However,
at the point where the two collections of elements of the matrix R

�1
s are displayed in

the previous discussion, the first of which now reduces to the single element (−1∆, b−3)
owing to the fact that � = 2, the arguments can be partly simplified by showing that, for
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � (II, b−1) (1∆−1, b)
(II, b−1) � (−1∆, b−2) (II, b−1) (II, b−1) (II, b−1) (II, b−2) (∆−1, 1)

� � (II, b) (∆, b−1) � � (II, b−1) (1∆−1, b)
� � � (II, b) (∆, b−1) � (II, b−1) (1∆−1, b)
� � � � (II, b) (∆, b−1) (II, b−1) (1∆−1, b)
� � � � � (II, b) (∆, b−2) (1∆−1, b)
� � � � � � � �

(1∆−1, b) � (1∆−1, b) (1∆−1, b) (1∆−1, b) (1∆−1, b) (1∆−1, 1) (Θ, b3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 6. The sandwich matrix R
61
7 , where Θ = 1∆−1 · 3∆−1.

any κ ∈ {1, 2, . . . , t}, the element sr̄ν(xκ )µ(xκ ) cannot be equal to (−1∆, b−3), for any κ ∈
{2, . . . , t}, the element sr̄ν(xκ−1)µ(xκ ) cannot be equal to (−1∆, b−3), and also the element
sr̄ν(xt)µ(x1) cannot be equal to (−1∆, b−3). For instance, if for some κ ∈ {1, 2, . . . , t},
we had sr̄ν(xκ )µ(xκ ) = (−1∆, b−3), then µ(xκ ) = 2, and if κ ∈ {2, . . . , t}, we inevitably
would have either sr̄ν(xκ−1)µ(xκ ) = � or sr̄ν(xκ−1)µ(xκ ) = (1∆−1, 1) or sr̄ν(xκ−1)µ(xκ ) = (II, b−1),
since ν(xκ−1) 
= ν(xκ ), and if κ = 1, we would have either sr̄ν(xt)µ(x1) = � or sr̄ν(xt)µ(x1) =
(1∆−1, 1) or sr̄ν(xt)µ(x1) = (II, b−1), since ν(xt) 
= ν(x1), These possibilities, however, have
already been excluded in the preceding discussion. Similar reasonings verify also the
other assertions stated above. Consequently, in our present discussion, we have to deal
only with the second of the two collections of elements of the matrix R

�1
s which are

displayed in the text examining the previous subcase. And this second collection of
elements looks the same even when � = 2. Hence the discussion can be completed in
the same manner as previously, verifying thus that χ̂π21(ωt) = � holds, as required.

IV.iii. Assume that k = 1 and � = s − 1.
Then π (z) = (1, s − 1), the sandwich matrix R

s−1 1
s is normalized at the pair (s − 1, 1),

and srs−1 1 = �. This time, notice that, as a consequence, the entry of the sandwich
matrix R

s−1 1
s occuring in the position (s, s) is

sr̄ss = sr−1
s1

srss
sr−1

s−1 s = (1∆−1 · 3∆−1, b3).

With this exception, the description of the sandwich matrix R
s−1 1
s again does not differ

from the description of the matrix R
�1
s given in subcase IV.i where, this time, one takes

� = s − 1, of course. This time, it actually means that the second of the two collections
of elements of the matrix R

�1
s displayed in the preceding text, where subcase IV.i is

treated, now collapses to the single element (1∆−1 · 3∆−1, b3) shown above. The rest of
the matrix R

�1
s remains again essentially unchanged if one takes � = s − 1. For s = 7

the sandwich matrix R
s−1 1
s is shown in Figure 6. Hence it is obvious how this matrix

looks for general values of the prime number s. Just as before, this subcase is again
settled by showing that the assumption that χ̂πs−1 1(ωt) 
= � leads to a contradiction.
The discussion leading to this conclusion can again be done in the same manner as in
subcase IV.i. Similarly as in the previous subcase, however, the reasonings can be partly
simplified by showing that, this time, for any κ ∈ {1, 2, . . . , t}, the element sr̄ν(xκ )µ(xκ )

cannot be equal to (1∆−1 · 3∆−1, b3), for any κ ∈ {2, . . . , t}, the element sr̄ν(xκ−1)µ(xκ )

cannot be equal to (1∆−1 · 3∆−1, b3), and also the element sr̄ν(xt)µ(x1) cannot be equal
to (1∆−1 · 3∆−1, b3). The arguments confirming these assertions are quite the same as
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(II, b) � (1∆−1, b2) (II, b) (II, b) (II, b) (II, b) (II, b)
� � � � � � � �

(II, b) � (2∆−1, b3) (∆, 1) (II, b) (II, b) (II, b) (II, b)

(II, b) � (1∆−1, b2) (II, b2) (∆, 1) (II, b) (II, b) (II, b)

(II, b) � (1∆−1, b2) (II, b) (II, b2) (∆, 1) (II, b) (II, b)

(II, b) � (1∆−1, b2) (II, b) (II, b) (II, b2) (∆, 1) (II, b)

(II, b) � (1∆−1, b2) (II, b) (II, b) (II, b) (II, b2) (∆, 1)

(1∆−1, b2) � (Ξ, b3) (1∆−1, b2) (1∆−1, b2) (1∆−1, b2) (1∆−1, b2) (1∆−1, b3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 7. The sandwich matrix R
11
7 , where Ξ = 1∆−1 · 2∆−1.

in the previous subcase. With this amendment, the entire discussion can be performed
in the same way as in subcase IV.i. But, this time, only the first of the two collections
of elements of the matrix R

�1
s which are displayed in the text where subcase IV.i is

examined has to be taken into consideration. The fact that we now have � = s − 1
does not affect this collection of elements. Consequently, we can again conclude that
χ̂πs−1 1(ωt) = � holds, as required.

IV.iv. Assume that k = 1 and � = 1.
Then π (z) = (1, 1), the sandwich matrix R

11
s is normalized at the pair (1, 1), and

sr11 = (II, b). The sandwich matrix R
11
s is of the form R

11
s = (sr−1

i1
sri j

sr−1
1j

sr11)i,j∈Js . For

short, let us write sr̃i j = sr−1
i1

sri j
sr−1

1j
sr11. Then we can write R

11
s = (sr̃i j)i,j∈Js . Remember

once again that, for every x, y ∈ X , the homomorphism χ̂π11 assigns to the element pxy

the entry of the matrix R
11
s occurring in the position (ν(x), µ(y)). That is, for all

x, y ∈ X , we have χ̂π11(pxy) = sr̃ν(x)µ(y). Thus, as before, it will be appropriate to gain an

overview of the entries of the matrix R
11
s . For s = 7 the sandwich matrix R

11
s is shown

in Figure 7. For general values of the prime number s, we have

sr̃i2 = (1∆−1, b2) for i = 0 and for all i = 3, . . . , s − 1,
sr̃sj = (1∆−1, b2) for j = 0 and for all j = 3, . . . , s − 1,
sr̃ii = (II, b2) for all i = 3, . . . , s − 1,

sr̃i i+1 = (∆, 1) for all i = 2, . . . , s − 1,
sr̃22 = (2∆−1, b3), sr̃s2 = (1∆−1 · 2∆−1, b3), sr̃ss = (1∆−1, b3),
sr̃i j = � whenever i = 1 or j = 1, and
sr̃i j = (II, b) otherwise.

As in the preceding cases, suppose, by contradiction, that χ̂π11(ωt) 
= �. Then the same
arguments as in case I based on Claim 4.1 and applied to the homomorphism χ̂π11 and
to the entries of the sandwich matrix R

11
s show that, for every κ ∈ {1, 2, . . . , t}, we have

sr̃ν(xκ )µ(xκ ) ∈ Kp,q − Lp,q, for every κ ∈ {2, . . . , t}, we have sr̃ν(xκ−1)µ(xκ ) ∈ Kp,q − Lp,q, and
we also have sr̃ν(xt)µ(x1) ∈ Kp,q − Lp,q. Consequently, none of these elements can be equal
either to � or to (∆, 1). Next, developing the same arguments as in subcase IV.i, based
again on Claim 4.1, we further establish that if µ(xκ ) = 2 for some κ ∈ {1, 2, . . . , t},
then the element sr̃ν(xκ )µ(xκ ) must be distinct from (1∆−1, b2), if ν(xκ ) = s for some κ ∈
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∆,b−1) � (∆,b−1) (∆,b−1) (∆,b−1) (∆,b−1) (∆,b−1) (−1∆,b−2)

(−1∆,b−2) � (−1∆ · −2∆,b−3) (−1∆,b−2) (−1∆,b−2) (−1∆,b−2) (−1∆,b−2) (−2∆,b−3)

(∆,b−1) � (1∆, 1) (∆ · −1∆,b−2) (∆,b−1) (∆,b−1) (∆,b−1) (−1∆,b−2)

(∆,b−1) � (∆,b−1) (1∆, 1) (∆ · −1∆,b−2) (∆,b−1) (∆,b−1) (−1∆,b−2)

(∆,b−1) � (∆,b−1) (∆,b−1) (1∆, 1) (∆ · −1∆,b−2) (∆,b−1) (−1∆,b−2)

(∆,b−1) � (∆,b−1) (∆,b−1) (∆,b−1) (1∆, 1) (∆ · −1∆,b−2) (−1∆,b−2)

(∆,b−1) � (∆,b−1) (∆,b−1) (∆,b−1) (∆,b−1) (1∆, 1) (∆ · −2∆,b−3)

� � � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8. The sandwich matrix R
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{1, 2, . . . , t}, then the element sr̃ν(xκ )µ(xκ ) must be distinct from (1∆−1, b2), if µ(xκ ) = 2
for some κ ∈ {2, . . . , t}, then the element sr̃ν(xκ−1)µ(xκ ) must be distinct from (1∆−1, b2), if
ν(xκ−1) = s for some κ ∈ {2, . . . , t}, then the element sr̃ν(xκ−1)µ(xκ ) must be distinct from
(1∆−1, b2), if µ(x1) = 2 then the element sr̃ν(xt)µ(x1) must be distinct from (1∆−1, b2),
and if ν(xt) = s then the element sr̃ν(xt)µ(x1) must be distinct from (1∆−1, b2). Moreover,
virtually the same arguments reveal that if µ(xκ ) = 0 or if µ(xκ ) ∈ {3, . . . , s} for some
κ ∈ {1, 2, . . . , t}, then the element sr̃ν(xκ )µ(xκ ) must be distinct from (II, b), and also
the element sr̃ν(xκ−1)µ(xκ ) must then be distinct from (II, b) provided that κ 
= 1, and if
µ(x1) = 0 or if µ(x1) ∈ {3, . . . , s}, then the element sr̃ν(xt)µ(x1) must be distinct from
(II, b). Having this clarified, we further see that the same argument as the one used in
subcase IV.ii shows that if µ(xκ ) ∈ {3, . . . , s − 1} for some κ ∈ {1, 2, . . . , t}, then the
element sr̃ν(xκ )µ(xκ ) must be distinct from (II, b2), and also the element sr̃ν(xκ−1)µ(xκ ) must
then be distinct from (II, b2) provided that κ 
= 1, and ifµ(x1) ∈ {3, . . . , s − 1}, then the
element sr̃ν(xt)µ(x1) must be distinct from (II, b2). Quite the same argument (dealing with
the elements of the column of the matrix R

11
s indexed by s) reveals that if µ(xκ ) = s

for some κ ∈ {1, 2, . . . , t}, then the element sr̃ν(xκ )µ(xκ ) must be distinct from (1∆−1, b3),
and also the element sr̃ν(xκ−1)µ(xκ ) must then be distinct from (1∆−1, b3) provided that
κ 
= 1, and ifµ(x1) = s, then the element sr̃ν(xt)µ(x1) must be distinct from (1∆−1, b3). An
analogous argument (dealing with the elements of the row of the matrix R

11
s indexed

by 2) verifies that also the element (2∆−1, b3) is likewise unusable. The only element
of the matrix R

11
s which has remained, namely (1∆−1 · 2∆−1, b3), is therefore equally

unusable as a possible value of any of the elements sr̃ν(xκ )µ(xκ ), for κ ∈ {1, 2, . . . , t},
sr̃ν(xκ−1)µ(xκ ), for κ ∈ {2, . . . , t}, and sr̃ν(xt)µ(x1). This documents the impossibility to reach
the inequality χ̂π11(ωt) 
= �, yielding thus the desired contradiction. Hence it turns out
that χ̂π11(ωt) = � holds again, as required.

IV.v. Assume that k = 1 and � = s.
Then π (z) = (1, s), the sandwich matrix R

s1
s is normalized at the pair (s, 1), and srs1 =

(∆, b−1). This sandwich matrix is of the form R
s1
s = (sr−1

i1
sri j

sr−1
s j

srs1)i,j∈Js . For the
same reasons as before, it will again be adequate to inspect the entries of the sandwich
matrix R

s1
s . For s = 7 this sandwich matrix is shown in Figure 8, whence it is fairly

easy to deduce its form for general values of the prime number s. Despite the fact
that the individual entries of the matrix R

s1
s look different from those of the matrix

R
11
s appearing in the previous subcase, the overall structure of the matrix R

s1
s is very

much like that of the matrix R
11
s . Therefore this last subcase can be treated using

arguments that are quite analogous to those applied in the previous subcase. In this

https://doi.org/10.1017/S0017089506003132 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003132
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manner, one checks once again that, this time, the assumption that χ̂πs1(ωt) 
= � leads
to a contradiction. Thus the equality χ̂πs1(ωt) = � holds, as required. �

Remember, in conclusion, that from Theorem 1.1 and Theorem 5.1 the following
consequence follows immediately.

COROLLARY 5.5. For arbitrary prime numbers p, q such that p 
= q, there exist 2ℵ0

varieties of completely simple semigroups occurring in the interval between the varietyRB
of all rectangular bands and the variety CS(Ap ◦Aq) of all completely simple semigroups
whose maximal subgroups belong to Ap ◦Aq. �
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