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Abstract

We investigate conditions on a permutation group G sufficient to ensure that G fixes a graph
in any switching class of graphs that it stabilizes. Our main result gives a necessary and sufficient
condition for a dihedral group G to have this property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 25.

1. Introduction

Let G be a permutation group stabilizing the switching class &#(I') of a graph T'.
Although every element of G occurs in the automorphism group of some graph
in #(I'), the group G does not necessarily fix a graph in the class. If it does, we say
that G is exposable in #(I'). We consider the following problem: what conditions
on G are sufficient to ensure that G is exposable in all switching classes that it
stabilizes ? It is implicit in the work of Mallows and Sloane (1975) that it is sufficient
for G to be cyclic. Further known conditions are that G be of odd order, or of order
4k +2. Our main result is Theorem 5.10, where we give a necessary and sufficient
condition on the permutation representation of a dihedral group G such that G
is exposable in all switching classes that it stabilizes.

We will present a general approach for studying isomorphisms in switching
classes of graphs, which we then apply to obtain the above results.

2. Definitions and notation

We consider the collection % of labelled undirected graphs on » vertices, without
loops and without multiple edges. Let " be a graph in 4. We label its vertices
1,2,...,n, and call the set of labels Q = {1,2,...,n}.

A switch on T with respect to the vertex labelled i is a function s, mapping
T to the graph s, T which is obtained from I' by deleting all edges in I" which are
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incident to the vertex i/ and adding edges {i, k}, for all vertices k not adjacent to
vertex / in I'. Switching is a commutative operation: s,(s;T") = 5,(s; ) for all i,
1€ Q. A switch s with respect to a set of vertices @ = {i, ..., 5} is defined to be the
composition of functions s = s;,...s, . This switch transforms T into the graph sT,
which is obtained from I' by deleting all the edges in I that are incident to a vertex
in ® and a vertex in Q | @, and adding edges {i, k} for all vertices k not adjacent to i
in T, where ie ®, keQ\ ®.

A switch s on I with respect to @ is equal to a switch on T with respect to @'
if and only if either @' = ® or ®' = Q\ ®. Clearly s(sT) = s2T" =T, and we write
s2 = ¢, where e is the switch with respect to the empty set, or equivalently with
respect to Q. The set of all switches on any graph in ¢ forms an elementary Abelian
group S with respect to the natural composition of switches. Its identity is e and
its order is 2"~1,

Suppose that s and s" are switches on I' with respect to the subsets ® and @’
of Q. Then the product ss’ is a switch with respect to the symmetric difference of
® and @’ given by ® AP’ = (PUD)\ (DND’). The switching class £ (T) is the set
of 2"~ graphs {s'|se S}.

Given a permutation 7 in X, the symmetric group on Q, we define #I” to be the
labelled graph, such that {z(i), =(/)} is an edge in #nI if and only if {i, j} is an edge
in I. The stabilizer of the switching class &(I') is the group Stab (") of all
permutations in X that permute the members of &(I') among themselves; that is,

Stab #(I') = {ne X" L () = =" e #(I')}.
An automorphism of a graph I is a permutation z in X such that zT" = I'. The set
of all automorphisms of I' is a group which we denote by AutI".

Our definitions can be presented in terms of the (—1,1,0) adjacency matrix of
I'. (See, for example, Seidel (1976).) Let G be a subgroup of Stab &(I'). Two possi-
bilities arise: either G is a subgroup of the automorphism group of some graph
in &(T) or there is no graph in #(I') fixed by G. We say that G is exposable in
&(I) in the first case and that G is hidden in #(T) in the second. We say that a
permutation group G is always exposable if it is exposable in every switching class
that it stabilizes.

3. Preliminary results

As in the previous section, I denotes a graph on n vertices.

LeMMA 3.1. Given neX and switch s with respect to ® = {i,,...,i,} SQ, define
switch s with respect to ®, = {n(i,), ..., n(i,)}. Then

(3.2) 2(sT) = s(al).

Proofr. Immediate.
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We observe that the graphs in ¢ are permuted by switches in S, by permutations
in X and by compositions of these operations, which we call switch-permutations.
Their totality forms a group W, where the law of composition of a switch and a
permutation is given by (3.2). In view of our definition of left action on graphs,
products of elements in W are evaluated from right to left. (Our notation ensures
that ,(,$) = ,.5.)

We proceed to study the stabilizer of a switching class £#(I"). Our first result
shows that a necessary and sufficient condition for a permutation to belong to the
stabilizer of &(I') is that it maps any one graph in &(I') to a graph in this class.

LemMMA 3.3. Let neX. Then nl" € () if and only if meStab £ ().

Proor. Suppose that nI" € #(I'). Then for some switch s, nl" = sI". Now consider
an arbitrary switch s’. Then, by Lemma 3.1,

a(s’T) = @) = ') =s*T' e (D).
Therefore = eStab #(I'). The converse is true by definition.

1 2 1 2

6 3 6‘/ 3

5 4 5 *4
Graph T Graph s3sgT
FiG. 1.

ExAMPLE 3.4. Let T be the labelled graph illustrated in Fig. 1. The stabilizer
Stab &#(I') is a representation of degree 6 of the Alternating group A;. It is gene-
rated by u and = where

o= (143)(256), = = (23456)(1).
As is clear from Fig. 1, the graphs I" and s; 55 I" are isomorphic, and s; 55T = uI.
The cyclic group {u) lies in Aut (s, s¢I'). Next consider the dihedral subgroups of
Stab #(I)
D = {(26)(35)(1)(4), (23456)(1)> of order 10

and
D' = {(26)(35)(1)(4), (14)(35)(2)(6)) of order 4.
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The group D is equal to AutI"; however, the group D’ does not occur in the auto-
morphism group of any graph in &(T') and so D’ is hidden in &(I'). The element
53 55 ¢ fixes I', and no other su in B has this property. In contrast, there is no graph
in #(I') fixed by s,u. In fact there is no graph in the class % of all graphs on 6
vertices that is fixed by s; u.

The underlying theory of Example 3.4 will be explained in Section 5. The follow-
ing well-known result provides a partial answer to our problem.

THEOREM 3.5. A4 necessary and sufficient condition for a permutation group G
to be exposable in a switching class (I') is that it has an orbit on #(I') of odd length.

PRrROOF. Suppose that {I'y, ..., I',} is an orbit of G on &(I') where r is odd. Let sV

denote a switch such that

sOT, =Ty, i=1,...,r.
A permutation 7 in ¥ permutes the graphs I';,...,I,. Since neStab (') there
exists a switch s such that nl"; = sI"y. Then

s, = sWsT, =sPT, forsomeje{l,...,r}

Put s’ = s@ ... 50, Since r is odd,

S’ Fl = (S)'rl = Srl = ﬂrl,

and hence n(s'T";) = s'T";. The choice of s’ is independent of the choice of # in
G, and so G fixes s'I'y, and G is exposable in &(I"). The converse is immediate.

COROLLARY 3.6. A group G is always exposable if it has an odd orbit on Q. In
particular, a permutation group on Q, where |Q| is odd, is always exposable.

Proor. Corresponding to an odd orbit {1,...,r} of G on Q there is an orbit of
G on S(I') containing the graphs sV T, i = 1, ..., r, where s” I" denotes the (unique)
graph in &(I') that has vertex i isolated. The number of graphs in this orbit is a
divisor of r.

COROLLARY 3.7. Let G be a permutation group containing a subgroup H that is
always exposable. If the index r of H in G is odd, then G is always exposable.

PROOF. Suppose that G stabilizes #(I'). Then there is a graph I'" in #(T") which
is fixed by H. Then I" lies in an orbit of G on &(I') whose length divides r.

Towards further progress it is important to establish a criterion for the existence
of a graph fixed by an element sz of W, or more generally by a subgroup Q in W.

NotaTioN. We introduce a convenient notation for the switch-permutations
w=sn of W: the permutation = is written as a product of disjoint cycles, and a bar
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is placed over each symbol that occurs in the set ® switched by s. To illustrate,

in Example 3.4
5355 1 = (143)(236).

Since 5355 it = §, 5, 56 56 4, We observe that

(143) (256) = (143)(256).

THEOREM 3.8. A subgroup Q of W does not fix any graph T in G if and only if some
element in Q involves either a switch-transposition (ij) or switch-1-cycles (i)(j) ...

PRroOF. In view of the action of permutations and switches on graphs, a necessary
and sufficient condition for a switch-permutation sz to fix a graph I is as follows:
for all p, ¢ Q, {p,q} and {n(p), n(¢)} are both edges or both non-edges of I if and
only if the set @ switched by s contains both or neither of #(p) and n(g).

The construction of a graph fixed by Q will break down if and only if the stage
is reached that an unordered pair {i,j} represents both an edge and a non-edge.
This will arise if and only if Q contains a switch-permutation sz such that ®
contains exactly one of i and j and either (1) =(i) = j, n(j) = i, or (2) n(i) =i and
n(j) =J.

COROLLARY 3.9. Suppose a group Q of switch-permutations fixes a graph.

(i) If sm and s’ belong to Q then s’ = s. The set of permutations {neX|sne Q for
some switch s (depending on 1)} forms a group, which we call the permutation group
associated with Q. Its order is |Q)|.

(ii) Q fixes exactly 2* different graphs, where 1 is the number of orbits of unordered
pairs {i, j}, i#], in Q x  under the action of the permutation group associated with Q.

ProoF. (i) ste Q and s'ne Q=>sn ™' s’ = 55’ € Q. By Theorem 3.8, ss" = e.
(ii) A graph is specified by assigning in each orbit one pair to be an edge or a non-
edge.

4. Cyclic subgroups of stabilizers

THEOREM 4.1. A cyclic group is always exposable.
To prove this result we require the following lemmas.

LEMMA 4.2. Consider the r-cycle o = (1 2 ... r) and the switch s with respect to
©c={1,2,...,r}. Then
1) Q2)...(r), if|D| is even,
(so) =
MDQ@)...(7), if || is odd.
Moreover, if r = 2k, then (so)* involves a switch-transposition (ij) if and only if |®|
is odd.
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Proor. Apply the formula
(so)" = 5(;8) (525) ... (ym-18)a™,

DEFINITION 4.3. Let n be a permutation in X, and let ®<=Q. We say that
@ is compatible with n if each cycle of z involves an even number of symbols of @,
where 7 is expressed as the product of disjoint cycles (including 1-cycles).

LEMMA 4.4. Let s be a switch with respect to ® =Q, and let € X. Then the switch
permutation sz fixes some graph if and only if either ® or Q\ ® is compatible with 7.

Proor. This follows by applying Lemma 4.2 to Theorem 3.5.

LEMMA 4.5. Let s be a switch with respect to ® =Q, and let n € X. Then there exists
a switch s’ such that st = s’ ns’ if and only if either ® or Q\ ® is compatible with =.

PROOF. If s = 5" ns’ then s = §' 5" and clearly ® or Q\® is compatible with z.

Conversely, suppose that @ or Q\ ® is compatible with 7. We suppose without
loss of generality that @ involves an even number of symbols from each cycle of z.
Consider a particular cycle of 7, which we write ¢ =(12 ... r). If ®n suppo is
not empty then it is expressible in the form

®n suppo = {iy, ..., ixn},
where 1<i; <... <y <r. Define the set
O* = {i|isg_, <i<izgg=1,...,k}
Then
(D), = {i|lzq_1 <iSirgqg=1,...,k}
and, forming the symmetric difference, we obtain
(@*) A (®*), ={i},....Iin} = D N suppo.

We define s’ to be the switch with respect to the set ® which is the union of the
sets @* constructed in the above manner and corresponding to all the cycles of =
having common symbols with ®. Then s',s" = s, and sz = s’ zs’. This completes
the proof.

ProoF oF THEOREM 4.1. Suppose a cyclic group G stabilizes #(I). If G = {(n),
then there is a switch s with respect to a set ® = such that sz fixes I. By Lemma
4.4, either ® or Q\ ® is compatible with z. By Lemma 4.5 there exists a switch s’
such that s’ s’ is equal to sn. But then s'zs’' T’ =T, and hence n(s'T") = s'T. Thus
7 fixes the graph I'" = s'T, and G is exposable in Z(T).

As an immediate application of Theorem 4.1 and Corollary 3.7 we have the
following result.
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THEOREM 4.6. A group with cyclic Sylow 2-subgroup is always exposable. In
particular, all groups of order 4k +2 are always exposable.

5. Dihedral subgroups of stabilizers

Our aim in this section is to classify the dihedral subgroups in £ which are
always exposable. We see from Example 3.4 that not all dihedral groups are always
exposable.

Now let D be an arbitrary dihedral subgroup of . Then D is generated by two
involutions, « and . The following lemma applies to dihedral groups as a special
case.

LEMMA 5.1. Suppose a subgroup G of T is generated by two permutations n and
. If G stabilizes a switching class ¥ (I') then G is associated with a group Q fixing
a graph in (), such that Q is generated by switch-permutations sn and su for some
switch s.

PrROOF. By Theorem 4.1, there is a graph I'” in &(I") which is fixed by #~ ' x.
So there is a switch s such that

al’ = I’ = 5T,

and the switch-permutations sz and sy fix I'"".

According to Lemma 5.1, in order to study the action of the dihedral group D
on a switching class which it stabilizes, we can equivalently study subgroups Q
of W that fix a graph, where Q is generated by switch permutations sx and sf. We
next establish a criterion depending on s, « and S for the existence of a graph fixed

by Q = (sa,sB).

LEMMA 5.2. Let a and B by involutions in X, and let s be a switch with respect to
O =Q. There exists a graph fixed by Q = {sa,sB) if and only if either ® or Q\ @ is
compatible with a, and either ® or Q\ @ is compatible with p.

Proor. If Q fixes a graph then the condition of Lemma 5.2 is satisfied, by Lemma
4.4. Conversely, suppose that the condition of Lemma 5.2 is satisfied. Then, since
a and f are involutions,

(5.3) oS =S =5.

We will show the existence of a graph fixed by Q by an application of Theorem
3.8. The elements of Q are of the form

(so)(spsa)’ = (s)*(Be)’,
where £ =0,1 and /=0,1,2, ..., the last expression being obtained on applying
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(5.3). We must show that the conditions in Theorem 3.8 for the non-existence of a
graph do not arise. This is clear when k& = 0. Consider next an element w = sx(fx)’
of Q. If the permutation a(fa)' transposes two symbols then by (5.3) either @
or Q\ @ contains both these symbols. Finally, suppose that « (f«)* fixes two symbols
iandj. If / = 2m, put
Bay@) =p, (B2Y"G) = g

Then ap) = a(fa)™(i) = (f)™(i)) = p and similarly a(q) =¢. By our hypothesis,
either @ or Q\ @ contains both of p and g and hence also both of i = («f)™(p) and
j=(@B)y(q). If /=2m+1, a similar argument applies to the elements a(fa)"(i)

and afa)™(j) which are fixed by f, using the hypothesis that either @ or Q\® is
compatible with .

LEMMA 5.4. Let s be a switch with respect to ® <Q, where ® is compatible with
both the involutions & and B in X. Then there is a switch s’ such that

(5.5) se=s"as’" and sf=s"ps’.

PrOOF. By our hypothesis on s, the set @ is a union of orbits ®@,,...,®, of
D =<a, > on Q. Choose from each orbit ®, a symbol i,, r=1,...,¢. Then the
switch s’ is defined with respect to the set @', where

O = {(fay"G), r=1,....,t, m=0,1,2,...}.

We will show that s’ satisfies relations (5.5), in other words, that 5 = 5" 5" = 5" 45".
This follows from the observation that @' consists of precisely one symbol from
each transposition in « and in  whose symbols lie in ®. For if this is not the case
then for some i, in @’ and some integer m,

(B)"(ir) = aliy) or BG).

In either case this leads to the conclusion (by a method used in the proof of Lemma
5.2) that either « or f fixes a symbol in ®,. This contradicts that ® is compatible
with both « and §, and the proof is complete.

COROLLARY 5.6. Suppose that the graph I is fixed by Q = {sa,sB), where a and f
are involutions. If the set @ switched by s is compatible with both a and f then there
is a graph T in #(') which is fixed by the dihedral group D = {a, ).

PrOOF. Apply Lemma 5.4, putting I'' = s'T".

We must now consider the case of a switch s with respect to @, where @ is
compatible with «, and Q\® is compatible with § (so that by Lemma 5.2 there
exists a graph fixed by s« and sf), but neither ® nor Q\® is compatible with both

https://doi.org/10.1017/5144678870001199X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001199X

9] Isomorphisms in switching classes of graphs 483

a and B. The following examples motivate our next lemma. The second of these
examples provides a further illustration of a dihedral group stabilizing a class but
fixing no graph in it.

ExAMPLES 5.7
(i) Consider the switch involutions

sa=(1)@BHGE(TY),
sp = (12)(35) (46) (7) (8).

Here ® ={3,4,5,6,7,8}, and this is compatible with « and not with B, whereas
Q\ ® = {1, 2} is compatible with £ and not with «. There exists a switch s’ such that
sa=s'as’ and sf=s"Ps'. (Choose for example @' ={1,3,5,7} or {2,4,6,7}.)
By Lemma 5.2 there exists a graph I fixed by s« and by sf. Let s be the switch with
respect to ®’. The graph s'I is fixed by D = {a, p>.
(ii) Put
sa=(12)3H(G6)(THOA10)(11)(12),
sB = (1)(3)(24)(510)(67) (89) (11 12).

Here ® is compatible with « and not £, and Q\ ® is compatible with § and not «.
There is no switch s’ such that sa = s’ as’ and s§ = s’ fs". Again by Lemma 5.2,
there exists a graph I' fixed by sa and by sf, but in this case there is no graph in
F(I) fixed by D = {a, .

The essential difference between Examples 5.7(i) and (ii) lies in the length of the
orbits of D on Q, none of whose symbols is fixed by « or by #. In Example (i)
the only such orbit is {3,4,5,6}, and in Example (ii) the only such orbit is
{5,6,7,8,9, 10}. As the next lemma shows, the length of these orbits is crucial to our
analysis.

LeEMMA 5.8. Let D be the dihedral group generated by involutions a and B, and let
s be a switch with respect to ®. Suppose that ® is compatible with « and not with f,
and that Q\ @ is compatible with f and not with a. Then there is a switch s’ such that
s = §'as’ and sP = s' Ps’ if and only if every orbit of D on Q, none of whose symbols
is fixed by «a or by B, has length divisible by four.

PrOOF. We partition the orbits of D on Q into three classes:

(i) orbits containing a symbol fixed by «;
(ii) orbits containing a symbol fixed by f;
(iii) orbits none of whose symbols is fixed by « or by 8.

The classes are disjoint, for suppose an orbit ® is common to class (i) and class (ii).
Then it contains a symbol fixed by « and a symbol fixed by f, and it follows from
our hypothesis on @ that this cannot happen.
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First we note that @ is a union of orbits of D. For if ic ® then a(i)e®, since ®
is compatible with «, and (i) € @ since Q\ @ is compatible with B. It follows from
this that if @ is an orbit in class (i) then ® €Q\ ® and that if © is an orbit in class
(ii) then @ c@.

Suppose now that every orbit of D in class (iii} has length divisible by four. We
will construct a switch s’ with respect to a set ®' =Q such that s« = s'as’ and
sp =" Ps’s or equivalently s = s’ ,s" = 5" g5". The set @’ will be a union of subsets
®* constructed as follows.

First consider an orbit ® in class (i). Then the symbols of © are involved in,
say, k transpositions of § where |®| = 2k, and « fixes at least two symbols of ©.
We claim that af acts on © as a 2k-cycle. To prove this, consider a symbol i in ©
fixed by a. Every element of D is expressible in the form («f)" or (af) '« for some
integer r. If aff were not a 2k-cycle then, since (af) a(i) = (¢8)(i), the group D
would not act transitively on @. Let the subset @* of © consist of the k alternate
symbols from the cycle af, so chosen as to include the symbol i. We calculate

() (i) = alaf) a(i) = (Boy (i) = (2B)**~" (i)
and
BBy (@) = P@BY ali) = (B **(i) = (@B)**~"=1(d).
From this we see that « fixes ®* setwise, and f maps ®* onto ©\®*. Hence
®* A®, is empty and ®* A®, = ©. By reversing the roles of « and £ or an orbit
O in class (ii) we obtain similarly a set ®* such that ®* A®; = © and ®* Ad, is
empty.

Finally consider an orbit © in class (iii). Then either @ <® or O cQ\®. In
either case ®| is even, |®| = 2k, say. Choose an arbitrary symbol i in ©. We will
show that the sets

{@py@), r=1,..,k} and {@f) a@),r=1,....k}
are disjoint. For if not, then there are integers b and ¢ such that
(@p)°(i) = (@B)° a(i), giving a(fo)°~*() = i.
This implies, as in the proof of Lemma 5.2, that « or § fixes a symbol in @,
depending on the parity of c¢—b.

Since |®| = 2k, it now follows that af acts on © as the product of two k-cycles.
In the case that @ = ® we choose ®* as the subset of © consisting of (a) alternate
symbols including i in the cycle of «f that contains i, and (b) alternate symbols in the
other cycle of af not including the symbol a(i). (It is at this stage that we require k&
to be even and hence |®] to be a multiple of four.) It can be shown by a method
similar to that used for class (i) orbits that ®* A @, = © and that ®* A @, is empty.
In the case that ® =Q\® we choose ®* as above but with the roles of « and §
reversed. Then ®* A @} is empty and ®* A, = O.
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We now define s’ to be the switch with respect to the set ®’, where @' is the
union of the sets ®* constructed in the above manner, one for each orbit. Then
OAD, =Pand O’'AD, =Q\D, and 50 5 =5 ,8" =5 s".

Conversely, suppose that there is a switch s’ with respect to a set ®' such that
sa=s'as’ and sf=s'fs’, or equivalently s =15, =s"ps’. Since Q\® is not
compatible with a, ® =® A®,, and since ® is not compatible with B,
Q\D=0'AD,.

Let © be an orbit of class (iti), and assume by way of contradiction that
|®| = 2+ 4k for some integer k. Then « and S each contain the symbols of © in
142k transpositions. Now either @< ® or @< Q\®. In the first case &’ must
contain exactly one symbol from each of these transpositions that occur in
a, which is 1+2k symbols in all from ©. But also, (Q\®)n@ is empty and
Q\D = (I)’A(Dﬂ', and this means that ®’ contains either both or neither of the
symbols in each transposition in § that involves ©. So @’ contains an even number
of symbols from O, which is a contradiction. The case @ cQ\® is treated
similarly. Hence |©| = 4k for some integer k, and the proof is complete.

COROLLARY 5.9. Let s be a switch with respect to @< and let o and f be involu-
tions in . Suppose that the graph U is fixed by {sa,sf8). If @ is compatible with o
but not with p and Q\ ® is compatible with § but not with « then the dihedral group
D =<a, B> is exposable in (') if and only if every orbit of D on Q containing no
symbol fixed by a or by B has length divisible by four.

It is clear that a dihedral group D = <a, §> can stabilize many switching classes.
Provided that a switch s is chosen to satisfy the conditions of Lemma 5.2, a switching
class &(I') stabilized by D can be constructed by applying Theorem 3.8 to the
group Q generated by the switch-permutations sa and sf. Our next result gives a
necessary and sufficient condition on a dihedral group D in a permutation represen-
tation to be always exposable.

THEOREM 5.10. A dihedral group D, represented as a permutation group on S,
and generated by involutions « and B, is always exposable if and only if at least one
of the following three conditions is satisfied.

(1) At least one of o and B fixes no symbol in Q.

(2) Some orbit of D contains a symbol fixed by a and a symbol fixed by p.

(3) (i) o and B both fix symbols. (ii) The orbits containing symbols fixed by o
contain no symbols fixed by . (iii) Every orbit of D, none of whose symbols is fixed
by a or by B has length divisible by four.

Proor. Suppose D satisfies at least one of conditions (1), (2) and (3), and
stabilizes a switching class #(I'). Then by Lemma 5.1 there is a switch s with respect
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to a set ® such that Q = {sa,sp) fixes a graph in #(I'). By Lemma 5.2 we may
suppose that either ® is compatible with both « and £ or ® is compatible with « and
not with § and Q\® is compatible with £ and not with «. If D satisfies conditions (1)
or (2) then the first case arises and, by Corollary 5.6, D fixes a graph in (). If D
satisfies condition (3) either case may arise, the first being dealt with by Corollary
5.6 and the second by Corollary 5.9. Hence D is always exposable.

Conversely, if D does not satisfy any of conditions (1), (2) and (3), then (i) « and 8
both fix symbols; (ii) the orbits containing symbols fixed by « contain no symbols
fixed by B; (iii) there is an orbit of D none of whose symbols is fixed by « or by g
and whose length is of the form 2+ 4k. Let @ be the union of the orbits containing
symbols fixed by f. Then @ is compatible with a and not £ and Q\ @ is compatible
with f and not a. Let s be the switch with respect to ®. By Lemma 5.2,
Q =<sa, sf) fixes some graph, I" say. By Corollary 5.9, D is not exposable in & (I').
This completes the proof.

COROLLARY 5.11. 4 dihedral group D is always exposable if D on S has fewer than
three orbits. In particular, all transitive dihedral groups are always exposable.

PRrOOF. If D is transitive on Q then condition (1) or (2) of Theorem 5.10 must hold.
If D on Q has two orbits and if conditions (1) and (2) do not hold then « fixes
symbols in the first but not the second orbit and f fixes symbols in the second
but not the first orbit. Then condition (3) holds, for (3)(iii) is vacuously satisfied.
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