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Abstract

We investigate conditions on a permutation group G sufficient to ensure that G fixes a graph
in any switching class of graphs that it stabilizes. Our main result gives a necessary and sufficient
condition for a dihedral group G to have this property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 25.

1. Introduction

Let G be a permutation group stabilizing the switching class Sf(T) OI a graph F.
Although every element of G occurs in the automorphism group of some graph
in y(F) , the group G does not necessarily fix a graph in the class. If it does, we say
that G is exposable in £f(T). We consider the following problem: what conditions
on G are sufficient to ensure that G is exposable in all switching classes that it
stabilizes? It is implicit in the work of Mallows and Sloane (1975) that it is sufficient
for G to be cyclic. Further known conditions are that G be of odd order, or of order
4k+ 2. Our main result is Theorem 5.10, where we give a necessary and sufficient
condition on the permutation representation of a dihedral group G such that G
is exposable in all switching classes that it stabilizes.

We will present a general approach for studying isomorphisms in switching
classes of graphs, which we then apply to obtain the above results.

2. Definitions and notation

We consider the collection <§ of labelled undirected graphs on n vertices, without
loops and without multiple edges. Let F be a graph in 'S. We label its vertices
1,2,...,«, and call the set of labels Q = {1,2,...,«}.

A switch on F with respect to the vertex labelled i is a function st mapping
F to the graph st F which is obtained from F by deleting all edges in F which are
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incident to the vertex / and adding edges {/, k}, for all vertices k not adjacent to
vertex / in F. Switching is a commutative operation: st{SjT) = sJ(stT) for all i,
''eH. A switch s with respect to a set of vertices & = {i1,...,Q is defined to be the
composition of functions s = stl...slr. This switch transforms F into the graph J F ,
which is obtained from F by deleting all the edges in F that are incident to a vertex
in <E> and a vertex in Q \ <D, and adding edges {/, k} for all vertices k not adjacent to i
in r , where / e <J>, k e Q. \ O.

A switch s on T with respect to 0 is equal to a switch on T with respect to $ '
if and only if either <D' = $ or <t>' = Q\ d>. Clearly s(sT) = s2 F = F, and we write
s2 = e, where e is the switch with respect to the empty set, or equivalently with
respect to Q. The set of all switches on any graph in ^ forms an elementary Abelian
group S with respect to the natural composition of switches. Its identity is e and
its order is 2"~l.

Suppose that s and s' are switches on F with respect to the subsets <t> and <E>'
of Cl. Then the product ss' is a switch with respect to the symmetric difference of
3) and $ ' given by $ A O' = ($u$ ' ) \ (On$'). The switching class £^(F) is the set
of 2""1 graphs {sr\seS}.

Given a permutation n in S, the symmetric group on Q, we define nT to be the
labelled graph, such that {n(i), n(j)} is an edge in nT if and only if {i,j} is an edge
in T. The stabilizer of the switching class Sf(T) is the group Stab^CO of all
permutations in £ that permute the members of £f(T) among themselves; that is,

Stab 5"(r) = {n e 21F e S? (T) =* ;rr' e ^(T)}.

An automorphism of a graph F is a permutation 7: in L such that ^ r = T. The set
of all automorphisms of F is a group which we denote by Aut F.

Our definitions can be presented in terms of the (— 1,1,0) adjacency matrix of
F. (See, for example, Seidel (1976).) Let G be a subgroup of Staby(F). Two possi-
bilities arise: either G is a subgroup of the automorphism group of some graph
in S^(T) or there is no graph in S^(T) fixed by G. We say that G is exposable in
y(F) in the first case and that G is hidden in 5^(F) in the second. We say that a
permutation group G is always exposable if it is exposable in every switching class
that it stabilizes.

3. Preliminary results

As in the previous section, F denotes a graph on n vertices.

LEMMA 3.1. Given ne'L and switch s with respect to <S> = {ilt...,ir}£fi, define

switch vs with respect to On = {^(/i), ...,7i(/r)}. Then

(3.2) n(sr) = X*T).

PROOF. Immediate.
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We observe that the graphs in ^ are permuted by switches in S, by permutations
in L and by compositions of these operations, which we call switch-permutations.
Their totality forms a group W, where the law of composition of a switch and a
permutation is given by (3.2). In view of our definition of left action on graphs,
products of elements in W are evaluated from right to left. (Our notation ensures
that a(Ks) = „*.)

We proceed to study the stabilizer of a switching class y(T). Our first result
shows that a necessary and sufficient condition for a permutation to belong to the
stabilizer of S^(T) is that it maps any one graph in Sf(T) to a graph in this class.

if and only if ne Stab.^(F).LEMMA 3.3. Let nel.. Then

PROOF. Suppose that nre£f(T). Then for some switch s, nT = sT. Now consider
an arbitrary switch s'. Then, by Lemma 3.1,

n(sT) = xs'(nT) = «s\sT) = s*TeSf(T).
Therefore n e S t a b ^ ( r ) . The converse is true by definition.

1

5 ' 4

Graph s3 s5 V

FIG. 1.

EXAMPLE 3.4. Let T be the labelled graph illustrated in Fig. 1. The stabilizer
Stab £f(T) is a representation of degree 6 of the Alternating group A5. It is gene-
rated by n and n where

H = (143) (256), n = (23456) (1).

As is clear from Fig. 1, the graphs F and s3 ss T are isomorphic, and s3 s5 F = /uT.
The cyclic group <^> lies in Aut (st s6 F). Next consider the dihedral subgroups of

and
D = <(26) (35) (1) (4), (23456) (1)> of order 10

D' = <(26) (35) (1) (4), (14) (35) (2) (6)> of order 4.
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The group D is equal to AutF ; however, the group D' does not occur in the auto-
morphism group of any graph in £^(T) and so D' is hidden in ̂ (F ) . The element
s3 ss n fixes F, and no other sfi in W has this property. In contrast, there is no graph
in y ( F ) fixed by s^fi. In fact there is no graph in the class & of all graphs on 6
vertices that is fixed by st fi.

The underlying theory of Example 3.4 will be explained in Section 5. The follow-
ing well-known result provides a partial answer to our problem.

THEOREM 3.5. A necessary and sufficient condition for a permutation group G
to be exposable in a switching class Sf (F) is that it has an orbit on y(T) of odd length.

PROOF. Suppose that {F^. . . , Fr} is an orbit of G on ^ ( F ) where r is odd. Let sw

denote a switch such that

A permutation n in <$ permutes the graphs F 1 ; . . . ,F r . Since 7t e Stab ^ (F ) there
exists a switch s such that 7 ^ = sY±. Then

TW^Fi = ^sTj. = s^Tj. for some;e{l, ...,/•}.

Put s' = J ( 1 ) ... j ( r ) . Since r is odd,

and hence n(sTi) = .sTj . The choice of s' is independent of the choice of n in
G, and so G fixes s'Yu and G is exposable in 6^(T). The converse is immediate.

COROLLARY 3.6. A group G is always exposable if it has an odd orbit on fi. In
particular, a permutation group on fi, where |fi| is odd, is always exposable.

PROOF. Corresponding to an odd orbit {1, ...,r} of G on fi there is an orbit of
G on S(T) containing the graphs sa) F, i = 1,..., r, where sU) F denotes the (unique)
graph in S^(T) that has vertex i isolated. The number of graphs in this orbit is a
divisor of r.

COROLLARY 3.7. Let G be a permutation group containing a subgroup H that is
always exposable. If the index r of H in G is odd, then G is always exposable.

PROOF. Suppose that G stabilizes ^ (F ) . Then there is a graph F' in ^ ( F ) which
is fixed by H. Then F ' lies in an orbit of G on ^"(F) whose length divides r.

Towards further progress it is important to establish a criterion for the existence
of a graph fixed by an element m of W, or more generally by a subgroup Q in W.

NOTATION. We introduce a convenient notation for the switch-permutations
w=sn of W: the permutation n is written as a product of disjoint cycles, and a bar
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[5] Isomorphisms in switching classes of graphs 479

is placed over each symbol that occurs in the set O switched by s. To illustrate,
in Example 3.4

s3ss n = (143) (256).

Since s3ssfi = JX s2 s6 s6 fi, we observe that

(143")(256) = (I43)(255).

THEOREM 3.8. A subgroup Qof W does not fix any graph Y in G if and only if some
element in Q involves either a switch-transposition (ij) or switch-l-cycles (i)(j)...

PROOF. In view of the action of permutations and switches on graphs, a necessary
and sufficient condition for a switch-permutation sn to fix a graph T is as follows:
for allp,qe€l, {p,q} and {n(p),n(q)} are both edges or both non-edges of T if and
only if the set 3> switched by J contains both or neither of n(p) and n{q).

The construction of a graph fixed by Q will break down if and only if the stage
is reached that an unordered pair {i,j} represents both an edge and a non-edge.
This will arise if and only if Q contains a switch-permutation sn such that <1>
contains exactly one of / andy and either (1) n(i) =j, n(j) = i, or (2) n(i) = i and

COROLLARY 3.9. Suppose a group Q of switch-permutations fixes a graph.
(i) If sn and s' n belong to Q then s' = s. The set of permutations {nel,\sne Q for

some switch s (depending on n)} forms a group, which we call the permutation group
associated with Q. Its order is \Q\.

(ii) Q fixes exactly 2X different graphs, where k is the number of orbits of unordered
pairs {i,j}, i^j, in f ix Q under the action of the permutation group associated with Q.

PROOF, (i) sneQ and s'neQ^sn n~ls' = ss'eQ. By Theorem 3.8, ss' = e.
(ii) A graph is specified by assigning in each orbit one pair to be an edge or a non-

edge.

4. Cyclic subgroups of stabilizers

THEOREM 4.1. A cyclic group is always exposable.
To prove this result we require the following lemmas.

LEMMA 4.2. Consider the r-cycle a = (1 2 ... r) and the switch s with respect to
£{1,2,...,/•}. Then

(l)(2). . .(r) , if \<^\ is even,

((T)(2)...(r), if \9\is odd.
Moreover, if r = 2k, then (sa)k involves a switch-transposition (ij) if and only if
is odd.
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PROOF. Apply the formula

{sa)m = f W (ff2s)...(ffm-ls)om.

DEFINITION 4.3. Let n be a permutation in 2, and let <J>s£l. We say that
<J> is compatible, with n if each cycle of n involves an even number of symbols of O,
where n is expressed as the product of disjoint cycles (including 1-cycles).

LEMMA 4.4. Let s be a switch with respect to <D s Q , and let nelL. Then the switch
permutation sn fixes some graph if and only if either <S> or £l\<& is compatible with n.

PROOF. This follows by applying Lemma 4.2 to Theorem 3.5.

LEMMA 4.5. Let s be a switch with respect to O £ Q, and let ne'L. Then there exists
a switch s' such that sn = s' ns' if and only if either O or Q \ 3> is compatible with n.

PROOF. If sn = s' ns' then s = s' ns' and clearly $ or Q \ O is compatible with n.
Conversely, suppose that $ or Q \ <E> is compatible with n. We suppose without

loss of generality that <I> involves an even number of symbols from each cycle of n.
Consider a particular cycle of n, which we write a = (1 2 ... r). If On suppa is
not empty then it is expressible in the form

On suppo- = {/1,...,/2J,

where 1 ^ it < ... < i2k < r. Define the set

Then

and, forming the symmetric difference, we obtain

(<D*) A (d>*)ff = {/l5 ...,i2k} = G> n supper.

We define s' to be the switch with respect to the set O' which is the union of the
sets $* constructed in the above manner and corresponding to all the cycles of n
having common symbols with O. Then s'ns' = s, and sn = s'ns'. This completes
the proof.

PROOF OF THEOREM 4.1. Suppose a cyclic group G stabilizes £^(T). If G = <TT>,

then there is a switch s with respect to a set 0 c Q such that sn fixes T. By Lemma
4.4, either O or Q \ O is compatible with n. By Lemma 4.5 there exists a switch s'
such that s' ns' is equal to sn. But then s' ns' F = F, and hence n(s' F) = s' F. Thus
n fixes the graph F ' = s' F, and G is exposable in 6^(T).

As an immediate application of Theorem 4.1 and Corollary 3.7 we have the
following result.
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THEOREM 4.6. A group with cyclic Sylow 2-subgroup is always exposable. In
particular, all groups of order 4k+ 2 are always exposable.

5. Dihedral subgroups of stabilizers

Our aim in this section is to classify the dihedral subgroups in £ which are
always exposable. We see from Example 3.4 that not all dihedral groups are always
exposable.

Now let D be an arbitrary dihedral subgroup of £. Then D is generated by two
involutions, a and /?. The following lemma applies to dihedral groups as a special
case.

LEMMA 5.1. Suppose a subgroup G of 1, is generated by two permutations n and
H. If G stabilizes a switching class y ( F ) then G is associated with a group Q fixing
a graph in -^(T), such that Q is generated by switch-permutations sn and sfi for some
switch s.

PROOF. By Theorem 4.1, there is a graph F in S?(T) which is fixed by n~l n.
So there is a switch s such that

nV = nT' = sT',

and the switch-permutations sn and sfi fix P .

According to Lemma 5.1, in order to study the action of the dihedral group D
on a switching class which it stabilizes, we can equivalently study subgroups Q
of W that fix a graph, where Q is generated by switch permutations so. and sfi. We
next establish a criterion depending on s, a and p for the existence of a graph fixed
by Q = (six, sp}.

LEMMA 5.2. Let a and P by involutions in E, and let s be a switch with respect to
<D £ Q. There exists a graph fixed by Q = (stx, sfi} if and only if either O or Q \ 4> is
compatible with <x, and either O or Sl\O is compatible with /?.

PROOF. If Q fixes a graph then the condition of Lemma 5.2 is satisfied, by Lemma
4.4. Conversely, suppose that the condition of Lemma 5.2 is satisfied. Then, since
a and P are involutions,
(5.3) as = fis = s.

We will show the existence of a graph fixed by Q by an application of Theorem
3.8. The elements of Q are of the form

where k = 0,1 and / = 0,1,2,... , the last expression being obtained on applying

https://doi.org/10.1017/S144678870001199X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001199X


482 David Harries and Hans Liebeck [8]

(5.3). We must show that the conditions in Theorem 3.8 for the non-existence of a
graph do not arise. This is clear when k = 0. Consider next an element w — s<x(fi<x)'
of Q. If the permutation «(/?«)' transposes two symbols then by (5.3) either O
or ft \ <1> contains both these symbols. Finally, suppose that a (/?a)' fixes two symbols
i and j . If / = 2m, put

Then <x(p) = a(/?a)m(j) = (/?a)m0") = p and similarly oc(q) = q. By our hypothesis,
either $ or ft \ <I> contains both of p and q and hence also both of / = (<xfi)m(p) and
j = (<xP)m(q). If l = 2m+\, a similar argument applies to the elements a(fi<x)m(i)
and <x(Jfa)m(j) which are fixed by /?, using the hypothesis that either <S> or ft \ $ is
compatible with p.

LEMMA 5.4. Let s be a switch with respect to <S> £ft , where $ is compatible with
both the involutions a. and p in E. Then there is a switch s' such that

(5.5) stx = s'<xs' and sP = s'Ps'.

PROOF. By our hypothesis on s, the set O is a union of orbits Ox, ...,<!>, of
D = <a,/?> on ft. Choose from each orbit <E>r a symbol /„ r = l,...,t. Then the
switch s' is defined with respect to the set O', where

<&' = { ( M m r = 1 , . . . , / , m = 0,1,2,...}.

We will show that s' satisfies relations (5.5), in other words, that s = s' xs' = s' pSr.
This follows from the observation that <E>' consists of precisely one symbol from
each transposition in a and in p whose symbols lie in <D. For if this is not the case
then for some ir in O' and some integer m,

Cfe)"ft) = «a) or p(ir).

In either case this leads to the conclusion (by a method used in the proof of Lemma
5.2) that either a or /? fixes a symbol in <Dr. This contradicts that O is compatible
with both a and P, and the proof is complete.

COROLLARY 5.6. Suppose that the graph F is fixed by Q = (six, sP~), where a and P
are involutions. If the set <D switched by s is compatible with both a and P then there
is a graph F ' in ^(T) which is fixed by the dihedral group D = <a, /?>.

PROOF. Apply Lemma 5.4, putting F ' = s' T.

We must now consider the case of a switch s with respect to O, where <X> is
compatible with a, and Q \ <D is compatible with P (so that by Lemma 5.2 there
exists a graph fixed by six and sP), but neither O nor ft \O is compatible with both
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[9] Isomorphisms in switching classes of graphs 483

a and /?. The following examples motivate our next lemma. The second of these
examples provides a further illustration of a dihedral group stabilizing a class but
fixing no graph in it.

EXAMPLES 5.7

(i) Consider the switch involutions

«t = (l)(2)(34)(55)(78),
*/? = (! 3) (35) (46) (7) (8).

Here $ = {3,4,5,6,7,8}, and this is compatible with a and not with /?, whereas
Q \ $ = {1,2} is compatible with /? and not with a. There exists a switch s' such that
sa. = s'as' and sp = s'ps'. (Choose for example $ ' = {1,3,5,7} or {2,4,6,7}.)
By Lemma 5.2 there exists a graph T fixed by sa. and by sfi. Let s' be the switch with
respect to $ ' . The graph s' F is fixed by D = <a, /?>.

(ii) Put

sa = (12) (3" 4) (3 5) (7 8) (9 16) (11) (12),
^ = (1)(3) (24) (5 10) (67) (89) (1112).

Here 4> is compatible with a and not P, and Q \ <f> is compatible with P and not a.
There is no switch s' such that .sa = s' as' and J/? = s' fis'. Again by Lemma 5.2,
there exists a graph T fixed by sa and by sP, but in this case there is no graph in
$"(D fixed by Z> = <a,j?>.

The essential difference between Examples 5.7(i) and (ii) lies in the length of the
orbits of D on fi, none of whose symbols is fixed by a or by ft. In Example (i)
the only such orbit is {3,4,5,6}, and in Example (ii) the only such orbit is
{5,6,7,8,9,10}. As the next lemma shows, the length of these orbits is crucial to our
analysis.

LEMMA 5.8. Let D be the dihedral group generated by involutions a and ft, and let
s be a switch with respect to <I>. Suppose that $ is compatible with a and not with /?,
and that Q \ O is compatible with /? and not with a. Then there is a switch s' such that
sa = s'as' and sfi = s' ps' if and only if every orbit of D on Q, none of whose symbols
is fixed by a or by P, has length divisible by four.

PROOF. We partition the orbits of D on Q into three classes:

(i) orbits containing a symbol fixed by a;
(ii) orbits containing a symbol fixed by /?;
(iii) orbits none of whose symbols is fixed by a or by /?.

The classes are disjoint, for suppose an orbit © is common to class (i) and class (ii).
Then it contains a symbol fixed by a and a symbol fixed by /?, and it follows from
our hypothesis on O that this cannot happen.
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First we note that 3> is a union of orbits of D. For if ie<& then oc(i)e<J>, since O
is compatible with a, and /?(/) e <S> since Q \ <& is compatible with /?. It follows from
this that if 0 is an orbit in class (i) then 0 c ( 2 \ $ and that if 0 is an orbit in class
(ii) then 0 c $ ,

Suppose now that every orbit of D in class (iii) has length divisible by four. We
will construct a switch s' with respect to a set O'cf i such that sa = s'txs' and
j/3 = s' fis', or equivalently s = s' xs' = s' fis'. The set O' will be a union of subsets
O* constructed as follows.

First consider an orbit 0 in class (i). Then the symbols of 0 are involved in,
say, k transpositions of /3 where |0 | = 2k, and a fixes at least two symbols of 0.
We claim that a/3 acts on 0 as a 2A>cycle. To prove this, consider a symbol i in 0
fixed by a. Every element of D is expressible in the form (a/3)r or (a/?)pa for some
integer r. If a/3 were not a 2&-cycle then, since (a/3)r a(/) = (a/3)r(i), the group D
would not act transitively on 0. Let the subset O* of 0 consist of the k alternate
symbols from the cycle a/?, so chosen as to include the symbol /. We calculate

and

From this we see that a fixes O* setwise, and /3 maps O* onto 0\<I>*. Hence
<D* A O* is empty and O* A <J>̂  = 0. By reversing the roles of a and /? or an orbit
0 in class (ii) we obtain similarly a set O* such that O* AO* = 0 and <X>* A$^ is
empty.

Finally consider an orbit 0 in class (iii). Then either 0 £ $ or 0 s Q \ O . In
either case |0 | is even, |0 | = 2k, say. Choose an arbitrary symbol i in 0. We will
show that the sets

= 1, ...,*} and {(a/?/a(0, r = 1, ...,*}

are disjoint. For if not, then there are integers b and c such that

giving a(/3ar»(0 = /.

This implies, as in the proof of Lemma 5.2, that a or /? fixes a symbol in 0,
depending on the parity of c—b.

Since |0 | = 2k, it now follows that a/3 acts on 0 as the product of two ̂ -cycles.
In the case that 0 SO we choose O* as the subset of 0 consisting of (a) alternate
symbols including / in the cycle of a/3 that contains /, and (b) alternate symbols in the
other cycle of a/3 not including the symbol a(»). (It is at this stage that we require k
to be even and hence | 0 | to be a multiple of four.) It can be shown by a method
similar to that used for class (i) orbits that O* A O* = 0 and that O* A <S>'0 is empty.
In the case that © s Q \ O we choose O* as above but with the roles of a and fi
reversed. Then O* A O* is empty and O* A O^ = 0.
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[11] Isomorphisms in switching classes of graphs 485

We now define s' to be the switch with respect to the set <D', where O' is the
union of the sets G>* constructed in the above manner, one for each orbit. Then
<&' A<S>'X = $ and <S>' A<5>j, = fi\O, and so s = s' as' = s'ps'.

Conversely, suppose that there is a switch s' with respect to a set O' such that
soc = s' as' and sfi = s' fts', or equivalently s — s' xs' = s' fs'. Since Q \ <& is not
compatible with a, <I> = <D' A Oa, and since O is not compatible with P,

Let 0 be an orbit of class (iii), and assume by way of contradiction that
|@| = 2 + 4£ for some integer k. Then a and /? each contain the symbols of 0 in
1+2A: transpositions. Now either 0 ^ 3 ) or 0 s Q \ $ . In the first case <!>' must
contain exactly one symbol from each of these transpositions that occur in
a, which is l+2k symbols in all from 0 . But also, ( Q \ O ) n 0 is empty and
ft\<J> = <!>' A<bp, and this means that Q>' contains either both or neither of the
symbols in each transposition in P that involves 0 . So <£' contains an even number
of symbols from 0 , which is a contradiction. The case 0<=Q\<I> is treated
similarly. Hence | 0 | = 4k for some integer k, and the proof is complete.

COROLLARY 5.9. Let s be a switch with respect to O c f i and let a and p be involu-
tions in 2. Suppose that the graph T is fixed by (sa,spy. If O is compatible with a
but not with /? and Cl \ <J> is compatible with /? but not with a then the dihedral group
D = <a, py is exposable in 6^(T) if and only if every orbit of D on Q containing no
symbol fixed by a or by P has length divisible by four.

It is clear that a dihedral group D = <a, /?> can stabilize many switching classes.
Provided that a switch s is chosen to satisfy the conditions of Lemma 5.2, a switching
class 6^(T) stabilized by D can be constructed by applying Theorem 3.8 to the
group Q generated by the switch-permutations sat. and sp. Our next result gives a
necessary and sufficient condition on a dihedral group D in a permutation represen-
tation to be always exposable.

THEOREM 5.10. A dihedral group D, represented as a permutation group on Q,
and generated by involutions a and P, is always exposable if and only if at least one
of the following three conditions is satisfied.

(1) At least one of <x and /? fixes no symbol in Q.
(2) Some orbit of D contains a symbol fixed by tx and a symbol fixed by p.
(3) (i) a and P both fix symbols, (ii) The orbits containing symbols fixed by a

contain no symbols fixed by p. (iii) Every orbit of D, none of whose symbols is fixed
by a or by P has length divisible by four.

PROOF. Suppose D satisfies at least one of conditions (1), (2) and (3), and
stabilizes a switching class £^{T). Then by Lemma 5.1 there is a switch s with respect
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to a set <£> such that Q = (six, sft} fixes a graph in 5^(F). By Lemma 5.2 we may
suppose that either O is compatible with both a and /? or $ is compatible with a and
not with P and Q \<I> is compatible with f$ and not with a. If D satisfies conditions (1)
or (2) then the first case arises and, by Corollary 5.6, D fixes a graph in £f(T)- If D
satisfies condition (3) either case may arise, the first being dealt with by Corollary
5.6 and the second by Corollary 5.9. Hence D is always exposable.

Conversely, if D does not satisfy any of conditions (1), (2) and (3), then (i) a and /?
both fix symbols; (ii) the orbits containing symbols fixed by a contain no symbols
fixed by /?; (iii) there is an orbit of D none of whose symbols is fixed by a or by /?
and whose length is of the form 2 + 4k. Let <t> be the union of the orbits containing
symbols fixed by /?. Then Q> is compatible with a and not /? and Q \ O is compatible
with P and not a. Let s be the switch with respect to O. By Lemma 5.2,
Q =(sa,spy fixes some graph, T say. By Corollary 5.9, D is not exposable in 6^(T).
This completes the proof.

COROLLARY 5.11. A dihedral group D is always exposable if D on Q has fewer than
three orbits. In particular, all transitive dihedral groups are always exposable.

PROOF. If D is transitive on Q then condition (1) or (2) of Theorem 5.10 must hold.
If D on Q has two orbits and if conditions (1) and (2) do not hold then a fixes
symbols in the first but not the second orbit and p fixes symbols in the second
but not the first orbit. Then condition (3) holds, for (3)(iii) is vacuously satisfied.
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