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Abstract. Let X be a proper geodesic metric space which is �-hyperbolic in the
sense of Gromov. We study a class of functions on X, called horofunctions, which
generalize Busemann functions. To each horofunction is associated a point in the
boundary at infinity of X. Horofunctions are used to give a description of the
boundary. In the case where X is the Cayley graph of a hyperbolic group �, we
show, following ideas of Gromov sketched in his paper Hyperbolic groups, that the
space of cocycles associated to horofunctions which take integral values on the ver-
tices is a one-sided subshift of finite type.

2000 Mathematics Subject Classification. 20F67, 20F65, 20F69, 53C23, 53C21,
37D40, 37B10.

1. Introduction. Let X be a proper geodesic metric space which is �-hyperbolic
in the sense of Gromov [10]. By a horofunction on X, we mean a function h : X! R

which is quasi-convex and which satisfies the following ‘‘distance-like property’’: for
all x 2 X and for every real number � � hðxÞ, the point x is at distance hðxÞ � � from
the level set h�1ð�Þ � X.

Given a horofunction h on X, there are (descending) gradient rays starting at
every point in X. All these gradient rays converge to a common point on the
boundary at infinity @X of X. This point is called the point at infinity of h.

Two horofunctions which differ by a constant define the same point at infinity.
Let � be the set of all horofunctions on X up to the equivalence relation which
identifies two horofunctions when they differ by a constant. We equip � with the
quotient of the topology of uniform convergence on compact sets. By taking the
point at infinity associated to a horofunction, we obtain a map � : �! @X. The
space � is compact and metrizable, and the map � : �! @X is continuous and
surjective. Furthermore, � is IsomðX Þ-equivariant with respect to the natural actions
of IsomðX Þ on the spaces � and @X.

Now assume that X is the Cayley graph of a word hyperbolic group � with
respect to some finite symmetric generating set A � �. A horofunction h : X! R is
called an integral horofunction if hðX 0Þ � Z, where X0 ¼ � denotes the set of ver-
tices of X. Let �0 � � denote the set of equivalence classes of integral horofunc-
tions. The restriction map � : �0 ! @X is surjective, �-equivariant and uniformly
finite-to-one. We fix an arbitrary total order relation on A. Consider the map
� : �0 ! �0 defined by �ð’Þ ¼ a�1’ for ’ ¼ ½h
 2 �0 and where a ¼ að’Þ is the
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smallest element in A satisfying hðIdÞ � hðaÞ ¼ 1. The main result in this paper is the
following.

Theorem. The dynamical system ð�0; �Þ is topologically conjugate to a subshift of
finite type.

In [8], we use the ideas developed in this paper to obtain a symbolic coding for
the geodesic flow associated to a word hyperbolic group.

The plan of this paper is the following.
In Section 2, we define horofunctions on a �-hyperbolic space X and we study

gradient arcs associated to horofunctions.
In Section 3, we use gradient rays to define the point at infinity associated to a

horofunction. We establish the main properties of the map � : �! @X. We prove
that any horofunction is entirely determined by its restriction to a 16�-neighborhood
of the image of any geodesic ray converging to its point at infinity. We prove also
that every horofunction on X is 68-delta convex.

From Section 4 on, we take X to be the Cayley graph of a hyperbolic group �
with respect to some finite symmetric generating system.

In Section 4, we prove the main properties of the map � : �0 ! @�.
In Section 5, we equip A with a total order relation. This allows us to define the

map � : �0 ! �0.
In Sections 6 and 7, we construct the subshift of finite type �ð1Þ and the

homeomorphism P : �0 ! �ð1Þ conjugating � with the shift map on �ð1Þ. Sec-
tion 8 (the surjectivity of P) is the main difficult part of the proof of the theorem.

We are indebted to M. Gromov for the ideas that we found in [10]. This work
started with an attempt to understand Section 8.5.Q of [10], where a result similar to
the theorem above is stated.

Applications of symbolic dynamics to geometry started with the work of
Hadamard and then of Morse (see [11] and [12]). There is an approach, developed
by various authors, for the study the symbolic dynamics of hyperbolic groups using
Cannon’s cone types, and the theory of automatatic structures (see [5] and [9]). The
work of Bourdon (see [3] and [4]) contains also a study of the symbolic dynamics of
boundaries of hyperbolic groups. In the particular case of surface groups, much has
been done by R. Bowen and C. Series, and later on by C. Series (see for instance [1]
and [13]).

2. Horofunctions and cocycles. For basic facts about Gromov hyperbolic spaces,
we refer the reader to [10] and [6]. In all this paper, X is a metric space which is
proper, geodesic and �-hyperbolic for some � � 0.

A function f : X! R is said to be quasi-convex if there exists � � 0 such that for
all geodesic segment ½x0; x1
 2 X and for every t 2 ½0; 1
, we have

fðxtÞ � ð1� tÞfðx0Þ þ tfðx1Þ þ �;

where xt is the point on ½x0; x1
 satisfying jx0 � xtj ¼ tjx0 � x1j. If we want to specify
the constant � occuring in this definition, then we say that f is �-convex.
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Definition 2.1. Let � � 0. An �-horofunction (or a horofunction) on X is a
function h : X! R satisfying the following two properties:

(i) ‘‘Quasi-convexity property’’: h is �-convex.
(ii) ‘‘Distance-like property’’: For every x 2 X and for every � satisfying

hðxÞ � �, we have

hðxÞ ¼ �þ dist
�
x; h�1ð�Þ

�
:

We note that this definition is slightly different from that given in [10], and
which is the one we used in [7], in which the set h�1ð�Þ in Property (ii) is replaced by
the set h�1ð
 �1; �
Þ.

We call the level set h�1ð�Þ the horosphere of radius � associated to the horo-
function h.

The following is an easy consequence of the distance-like property.

Proposition 2.2. If h : X! R is a horofunction, then h is 1-Lipschitz

An important class of horofunctions is the class of Busemann functions. We
recall the definition.

Definition 2.4. Let r : ½0;1½! X be a geodesic ray. The associated Busemann
function hr : X! R is defined by

hrðxÞ ¼ lim
t!1

ðjx� rðtÞj � tÞ:

Using the triangle inequality, one can see easily that this limit exists and is finite. The
proof of the following proposition is contained in [7], Chapter 3, with a slight
modification to take into account the new definition of a horofunction.

Proposition 2.5. A Busemann function on X is a 4�-horofunction.

Definition 2.6. A function ’ : X� X! R is called an �-cocycle if there exists
an �-horofunction h : X! R such that ’ðx; yÞ ¼ hðxÞ � hðyÞ for every x and y in X.
We call such a function h a primitive for ’, and we say that ’ is the cocycle of h.

As in the case of horofunctions, we shall use the term cocycle instead of �-
cocycle, unless it is necessary to specify the value of �.

We note that if ’ is a cocycle and if h is a primitive for ’, then the set of all
primitives of ’ consists exactly in the functions on X which are of the form hþ C,
with C being an arbitrary constant.

Proposition 2.7. Let ’ be a cocycle. For every x, y, z and t 2 X, we have
(i) ’ðx; xÞ ¼ 0,
(ii) ’ðx; yÞ ¼ �’ðy; xÞ,
(iii) ’ðx; yÞ ¼ ’ðx; zÞ þ ’ðz; yÞ (the ‘‘cocycle property’’),
(iv) j’ðx; yÞj � jx� yj,
(v) j’ðx; yÞ � ’ðz; tÞj � jx� zj þ jy� tj.

Proof. The proof follows immediately from Proposition 2.2.
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If ’ is a cocycle, then the relation � on X defined by x � y() ’ðx; yÞ ¼ 0 is
an equivalence relation. The equivalence classes of � are called the horospheres of
’. If h is a primitive of ’, then the horospheres of ’ coincide with the horospheres
of h.

Let 
 be an isometry of X and let h : X! R is an �-horofunction. The function

h : X! R defined by


hðxÞ ¼ hð
�1xÞ

is clearly an �-horofunction. In the same way, if ’ : X� X! R is an �-cocycle, then
the function 
’ : X� X! R defined by


’ðx; yÞ ¼ ’ð
�1x; 
�1yÞ

is an �-cocycle. In fact, if ’ is the cocycle of h, then 
’ is the cocycle of 
h.
Let � be the set of cocycles on X, that is, the set of all �-cocycles, with all pos-

sible values of �. We equip � with the quotient topology of the topology of uniform
convergence on compact sets.

Let IsomðX Þ denote the group of isometries of X. We see easily from the defi-
nitions that the action of IsomðX Þ on � defined by ð
; ’Þ7!
’ is continuous.

Definition 2.8. Let ’ be a cocycle on X. A gradient arc for ’, or a ’-gradient
arc is a path g : I! X parametrized by arclength and satisfying ’ðgðtÞ; gðt0ÞÞ ¼ t0 � t
for every t and t0 in I. In the case where I ¼ R, we say that g is a gradient line. In the
case where I ¼ ½0;1½, we say that g is a gradient ray. If g is a gradient ray and if
x ¼ gð0Þ, then we say that g starts at x. If h : X! R is a horofunction, then a gra-
dient arc for h, or an h-gradient arc is a gradient arc for the cocycle of h.

The proof of the following lemma follows easily from the definitions.

Lemma 2.9 (Concatenation of gradient arcs). Let ’ be a cocycle on X and let
I � R be an interval, with a 2 I, I1 ¼ I\ 
 �1; a
 and I2 ¼ I \ ½a;1½. If g : I! X is
a path whose restrictions to I1 and I2 are ’-gradient arcs, then g is itself a ’-gradient
arc.

The next proposition establishes relations between gradient arcs and geodesics.

Proposition 2.10. Let ’ be a cocycle on X. Then
(i) Any ’-gradient arc g : I! X is a geodesic.
(ii) If x and y are points in X satisfying ’ðx; yÞ ¼ jx� yj, and if g : ½a; b
 ! X is

a geodesic joining x and y, then g is a ’-gradient arc.

Proof. The proof follows from Properties (iii) and (iv) of Proposition 2.7.

If Y � X, and x 2 X, then a projection of x on Y is a point y0 2 Y satisfying
distðx;YÞ ¼ jx� y0j, where distðx;YÞ ¼ infy2Y jx� yj.

Proposition 2.11. Let h be a horofunction on X and let g : I! X be an h-gra-
dient arc. Then, for every t and t0 in I satisfying t � t0, gðt0Þ is a projection of gðtÞ on
h�1

�
h
�
gðt0ÞÞ

�
.
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Proof. Since g is geodesic, we have jgðtÞ � gðt0Þj ¼ t0 � t. Since t � t0, we have
h
�
gðtÞ

�
� h

�
gðt0Þ

�
, which implies h

�
gðtÞ

�
¼ h

�
gðt0Þ

�
þ dist

�
gðtÞ; h�1ðhðgðt0ÞÞÞ

�
. There-

fore, we obtain jgðtÞ � gðt0Þj ¼ t0 � t ¼ h
�
gðtÞ

�
� h

�
gðt0Þ

�
¼ dist

�
gðtÞ; h�1ðhðgðt0ÞÞ

��
.

Proposition 2.12. Let h be a horofunction on X, let x 2 X and let � � hðxÞ. Then,
there exists a projection of x on h�1ð�Þ. Furthermore, if y is a projection of x on h�1ð�Þ,
then hðyÞ ¼ � and every geodesic joining x and y is an h-gradient arc.

Proof. By property (ii) of Definition 2.1, we have dist
�
x; h�1ð�Þ

�
<1. There-

fore, h�1ð�Þ 6¼ ;. The set h�1ð�Þ is closed, and since X is proper, we can find a pro-
jection y of x on this set. We have dist

�
x; h�1ð�Þ

�
¼ jx� yj ¼ hðxÞ � �, and since

y 2 h�1ð�Þ, we obtain hðyÞ ¼ �.
If g : ½a; b
 ! X is now a geodesic arc joining x and y, we have

h
�
gðaÞ

�
� h

�
gðbÞ

�
¼ jx� yj. By Proposition 2.10 (ii), g is an h-gradient arc.

Proposition 2.13. For every cocycle ’ and for every x in X, there exists a ’-
gradient ray g : ½0;1½! X starting at x.

Proof. Let h be a primitive for ’ and let us fix an arbitrary real number � > 0.
We let x0 ¼ x and for every integer i � 0, we take xiþ1 to be a projection of xi on
h�1

�
hðxiÞ � �

�
(such a point xiþ1 exists by Proposition 2.12). There is a unique path

g : ½0;1½! X starting at x0, parametrized by arclength and whose image is obtained
by concatenating the segments ½xi; xiþ1
. By Proposition 2.12, each subpath of g
whose image is one of the geodesic segments ½xi; xiþ1
 is an h-gradient arc. Lemma
2.9 implies now that g is an h-gradient ray.

Proposition 2.14. Let ’ be a cocycle on X, let g : I! X be a ’-gradient arc and
let 
 2 IsomðX Þ. Then 
g : I! X is a gradient arc for the cocycle 
’.

Proof. The proof follows easily from the definitions.

3. The point at infinity associated to a cocycle. Given a cocycle ’ on X, any ’-
gradient ray g : ½0;1½! X, being a geodesic, converges to a well-defined point
gð1Þ 2 @X.

Proposition 3.1. Let ’ be a cocycle on X and let g : ½0;1½! X and
g0 : ½0;1½! X be two ’-gradient rays. Then gð1Þ ¼ g0ð1Þ.

To prove Proposition 3.1, we shall use the following lemma, which is an exten-
sion of Lemma 3.2 in [2]:

Lemma 3.2. Let x; y; p; q 2 X and let m be the middle of some geodesic seg-
ment ½p; q
. Assume that L and � are real numbers satisfying the following three
properties:

(i) L � jx� pj and L � jy� qj,
(ii) jx� pj � jx�mj þ � and jy� qj � jy�mj þ �,
(iii) jx� yj < 2L� 2�� 16�.
Then, we have jp� qj � 32�þ 2�.
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Proof. Let us draw three geodesic segments ½p; x
, ½x; y
 and ½y; q
. By �-hyper-
bolicity, there is a point u on ½p; x
 [ ½x; y
 [ ½y; q
 such that jm� uj � 8�. We cannot
have u 2 ½x; y
 since otherwise we can assume by symmetry that u lies between x and
the middle m0 of the geodesic segment ½x; y
, and we would get then

jx� yj ¼ 2jx�m0j

� 2jx� uj

� 2ðjx�mj � jm� ujÞ by the triangle inequality,

� 2ðjx�mj � 8�Þ

� 2ðjx� pj � �� 8�Þ by (ii),

� 2L� 2�� 16� by (i),

which contradicts (iii). Therefore, we have u 2 ½p; x
 [ ½y; q
. By symmetry, we can
assume u 2 ½p; x
 (see Figure 1).

We have

jp� uj þ ju� xj ¼ jp� xj � jm� xj þ � � jm� uj þ ju� xj þ � � 8�þ ju� xj þ �

which yields jp� uj � 8�þ �. Therefore, we obtain

jp� qj ¼ 2jp�mj � 2ðjp� uj þ ju�mjÞ � 32�þ 2�:

Proof of Proposition 3.1. Suppose that ’ is an �-cocycle. We can assume, without
loss of generality, that a ¼ ’

�
gð0Þ; g0ð0Þ

�
� 0. Let x ¼ gðaÞ and y ¼ g0ð0Þ. The cocycle

property implies then ’ðx; yÞ ¼ 0. Let h be the primitive of ’ satisfying hðxÞ ¼ hðyÞ ¼ 0.
Consider a real number L � 0 and let p ¼ gðaþ LÞ and q ¼ g0ðLÞ. Since g and g0 are
gradient rays for h, we have hðpÞ ¼ hðqÞ ¼ �L.

Let m be the midpoint of some geodesic segment ½p; q
 (see Figure 2).
By the �-convexity of h, we have hðmÞ � 1

2 hðpÞ þ
1
2 hðqÞ þ � ¼ �Lþ �. We obtain

therefore jx� pj ¼ L � �hðmÞ þ � ¼ hðxÞ � hðmÞ þ � � jx�mj þ �.

Figure 1.
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Similarly, we have jy� qj � jy�mj þ �.
Using Lemma 3.2, we deduce that jp� qj � 32�þ 2�, provided L satisfies

jx� yj < 2L� 2�� 16�.
Therefore, we have jgðaþ LÞ � g0ðLÞj � 32�þ 2� for all L large enough, which

proves Proposition 3.1.

We can define now the a map � : �! @X which associates to each cocycle
’ 2 � the endpoint of an arbitrary ’-gradient ray.

Proposition 3.3. The map � : �! @X is continuous, surjective and equivariant
with respect to the actions of IsomðX Þ on the spaces � and @X.

Proof. For the surjectivity, let 
 2 @X and let r : ½0;1½! X be a geodesic ray
converging to 
. Let hr be the associated Busemann function and let ’r be the cocycle
of hr. For every t � 0, we have hr

�
rðtÞ

�
¼ �t, from which it is easy to see that r is a

’r-gradient ray. Therefore, we have �ð’rÞ ¼ rð1Þ ¼ 
.
To prove the continuity of �, let ð’nÞn�0 be a sequence of elements of � con-

verging to ’ 2 �, and for each n � 0, let hn be a primitive of ’n, normalized so as to
take the same value on a fixed point x 2 X for all n � 0. In this way, the sequence
ðhnÞ converges to a primitive h of ’. For each n � 0, we can construct, as in the proof
of Proposition 2.13, a ’n-gradient ray gn starting at x by taking a sequence of suc-
cessive projections on the horospheres of hn. As the values of the horofunctions hn
are close to those of h uniformly on compact sets of X, we can manage so that the
sequences of projections that we use to construct the rays gn are uniformly close to
the sequence of projections which are associated to ’. Thus, as n!1, the geodesic
rays gn are uniformly close on every compact set from the ’-gradient ray. Therefore
we have �ð’nÞ ! �ð’Þ. This proves the continuity of �. The equivariance follows
easily from the definitions.

For each cocycle ’, for each geodesic ray r : ½0;1½! X satisfying rð1Þ ¼ �ð’Þ
and for each t � 0, we set

R’;t ¼ fz 2 X : ’
�
rðtÞ; z

�
¼ 0g \ B

�
rðtÞ; 16�

�
:

Figure 2.
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Proposition 3.4. Let ’ be a cocycle on X and let r : ½0;1½! X be a geodesic ray
such that rð1Þ ¼ �ð’Þ. For all x in X and for all t satisfying t > jx� rð0Þj þ 16�, we
have ’

�
x; rðtÞ

�
¼ distðx;R’;tÞ

Proof. Let x 2 X and let t > jx� rð0Þj þ 16�. Let g : ½0;1½! X be a ’-gradient
ray starting at x. By Proposition 3.1, the geodesic rays g and r converge to the same
point at infinity. By �-hyperbolicity, since we have t > jx� rð0Þj þ 16�, we can find
t0 � 0 such that jrðtÞ � gðt0Þj � 8�. We have

t0 ¼ jx� gðt0Þj�jrð0Þ � rðtÞj�jx� rð0Þj�jrðtÞ � gðt0Þj¼ t�jx� rð0Þj�jrðtÞ � gðt0Þj�8�:

Let us set u ¼ ’
�
x; rðtÞ

�
.We have u ¼ ’

�
x; gðt0Þ

�
þ ’

�
gðt0Þ; rðtÞ

�
¼ t0 � ’

�
rðtÞ; gðt0Þ

�
.

Using Proposition 2.7 (iv), we obtain ’
�
rðtÞ; gðt0Þ

�
� jrðtÞ � gðt0Þj � 8�. This

shows that u � 0.
Using the cocycle property, we have ’

�
rðtÞ; gðuÞ

�
¼ ’ðgð0Þ; gðuÞ

�
� u ¼ 0. On the

other hand, we have jrðtÞ � gðuÞj � jrðtÞ � gðt0Þj þ jgðt0Þ � gðuÞj � 8�þ jgðt0Þ � gðuÞj.
Since jgðt0Þ � gðuÞj ¼ j’

�
gðt0Þ; gðuÞ

�
j ¼ j’

�
gðt0Þ; rðtÞ

�
j � jgðt0Þ � rðtÞj � 8�, we deduce

that jrðtÞ � gðuÞj � 16�. Thus, gðuÞ 2 R’;t. By Proposition 2.11, the point gðuÞ is a
projection of x on R’;t. Therefore, we have distðx;R’;tÞ ¼ jx� gðuÞj ¼
jgð0Þ � gðuÞj ¼ u, that is, distðx;R’;tÞ ¼ ’

�
x; rðtÞ

�
. This proves Proposition 3.4.

Corollary 3.5. Let r : ½0;1½! X be a geodesic ray, let rð1Þ ¼ 
 2 @X and let
ðtnÞn�0 be a sequence of nonnegative real numbers tending to infinity. For each n � 0,
let Bn be the closed ball of radius 16� centered at rðtnÞ. Let ’ and ’0 be two elements of
� satisfying �ð’Þ ¼ �ð’0Þ ¼ 
 and such that for every n � 0, ’ and ’0 have the same
restriction on Bn � Bn. Then ’ ¼ ’0.

Proof. Let x and y be two arbitrary points in X. Since tn !1, we can find
an integer n � 0 satisfying tn > maxðjx� rð0Þj; jy� rð0ÞjÞ þ 16�. We fix such an
integer n.

The hypotheses imply that R’;tn ¼ R’0;tn , and we have, by Proposition 3.4,

’
�
x; rðtnÞ

�
¼ dist

�
x;R’;tn

�
¼ ’0

�
x; rðtnÞ

�

and

’
�
y; rðtnÞ

�
¼ dist

�
y;R’;tn

�
¼ ’0

�
y; rðtnÞ

�
:

Using the cocycle property, we obtain ’ðx; yÞ ¼ ’0ðx; yÞ: This proves Corollary
3.5.

Corollary 3.6. Let h : X! R and h0 : X! R be horofunctions on X having the
same point at infinity 
 2 @X. Let r : ½0;1½! X be a geodesic ray with rð1Þ ¼ 
.
Assume that h and h0 have the same restrictions to the closed 16�-neighborhood of
rð½0;1½Þ. Then h ¼ h0.

Proof. Consider a sequence ðtnÞn�0 of nonnegative real numbers tending to
infinity and for every n � 0, let Bn ¼ B

�
rðtnÞ; 16�

�
. By hypothesis, the cocycles
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associated to h and h0 coincide on Bn � Bn, for every n � 0. By Corollary 3.5, these
cocycles are equal. Since h

�
rð0Þ

�
¼ h0

�
rð0Þ

�
, this shows that h ¼ h0.

Corollary 3.7. Every horofunction on X is 68�-convex.

Proof. Let h : X! R be a horofunction and let ’ denote the cocycle of h. We
use the notations of Proposition 3.4. Let x and y 2 X and for t � 0, let p and q be
respectively projections of x and y on R’;t. Consider a geodesic segment ½x; y
 and let
z be a point on this segment satisfying jx� zj ¼ ujx� yj for some u 2 ½0; 1
.

By the quasi-convexity of the distance-function (see [7], Chapter 3, Lemma 3.2.),
we have jz� pj � ð1� uÞjx� pj þ ujy� pj þ 4�. Since the diameter ofR’;t is bounded
by 32�, we have jy� pj � jy� qj þ 32�.

Letting s be a projection of z on R’;t, we can write now

jz� sj � jz� pj þ 32� � ð1� uÞjx� pj þ ujy� pj þ 4�þ 32�

¼ ð1� uÞjx� pj þ ujy� qj þ 68�:

Let t > maxðjx� rð0Þj; jy� rð0ÞjÞ þ jx� yj þ 16�. By the triangle inequality, this
implies that for every z 2 ½x; y
, we have t > jz� rð0Þj þ 16�. Proposition 3.4 implies
now that hðxÞ ¼ h

�
rðtÞ

�
þ jx� pj, hðyÞ ¼ h

�
rðtÞ

�
þ jy� qj and hðzÞ ¼ h

�
rðtÞ

�
þ jz� sj.

Therefore, we obtain

hðzÞ � ð1� uÞhðxÞ þ uhðyÞ þ 68�:

This proves Corollary 3.7.

For F : X� X! R, we define kFk1 ¼ supðx;yÞ2X�X jFðx; yÞj.

Corollary 3.8. Let ’ and ’0 2 �. Then, the following three perperties are
equivalent :

(i) �ð’Þ ¼ �ð’0Þ
(ii) k’� ’0k1 � 64�
(iii) k’� ’0k1 <1:

Proof. Suppose first that �ð’Þ ¼ �ð’0Þ ¼ 
 and let r : ½0;1½! X be a geodesic
ray satisfying rð0Þ ¼ Id and rð1Þ ¼ 
. Let x and y be arbitrary points in X and let
t � maxfjx� rð0Þj; jy� rð0Þjg þ 16�. Proposition 3.4 implies then ’

�
x; rðtÞ

�
¼

distðx;R’;tÞ and ’
�
y; rðtÞ

�
¼ distðy;R’;tÞ.

By the cocycle property, we obtain therefore

’ðx; yÞ ¼ ’
�
x; rðtÞ

�
� ’

�
y; rðtÞ

�
¼ distðx;R’;tÞ � distðy;R’;tÞ:

In the same way, we have ’0ðx; yÞ ¼ distðx;R’0;tÞ � distðy;R’0;tÞ.
Therefore, we have

j’ðx; yÞ � ’0ðx; yÞj ¼ jdistðx;R’;tÞ � distðy;R’;tÞ �
�
distðx;R’0;tÞ � distðy;R’0;tÞ

�
j

� jdistðx;R’;tÞ � distðx;R’0;tÞj þ jdistðy;R’;tÞ � distðy;R’0;tÞj:

Since the sets R’;t and R’0;t are both contained in the closed ball BðrðtÞ; 16�Þ
whose diameter is bounded above by 32�, we have jdistðx;R’;tÞ � distðx;R’0;tÞj � 32�

GROMOV HYPERBOLIC GROUPS 433

https://doi.org/10.1017/S0017089501030063 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501030063


and jdistðy;R’;tÞ � distðy;R’0;tÞj � 32�. Therefore, we obtain j’ðx; yÞ � ’0ðx; yÞj �
32�þ 32� ¼ 64�; which proves that (i))(ii).

The implication (ii))(iii) is clear. We prove now (iii))(i).
Let ’ and ’0 2 � satisfy �ð’Þ ¼ 
 and �ð’0Þ ¼ 
0, with 
 6¼ 
0, and let ‘ : R! X

be a geodesic line such that ‘ð�1Þ ¼ 
0 and ‘ð1Þ ¼ 
. We set x ¼ ‘ð0Þ and for t > 0,
we set y ¼ ‘ðtÞ. Let g : ½0;1½! X be a ’-gradient ray starting at x. We have there-
fore gð1Þ ¼ 
. By �-hyperbolicity, we have jy� gðtÞj � 4�. Proposition 2.7 (iv) gives
j’
�
y; gðtÞ

�
j � 4�. By the cocycle property, we obtain j’ðx; yÞ � tj � 4�.

Let g0 : ½0;1½! X be a ’0-gradient ray starting at y (see Figure 3). In the same
way, we obtain j’0ðy; xÞ � tj � 4�.

We conclude that j’ðx; yÞ � ’0ðx; yÞ � 2tj � 8�. Since t � 0 is arbitrary, we
obtain k’� ’0k1 ¼ 1. This proves that (iii))(i), which concludes the proof of
Corollary 3.8.

Proposition 3.9. The space � is compact.

Proof. Let us fix a point x0 2 X and let H denote the space of horofunctions on
X which vanish at x0. The map which associates to each element of H its cocycle is
clearly a homeomorphism between H and �. Let us prove that H is compact.

Every function h 2 H is 1-Lipschitz (Proposition 2.2) and satisfies jhðxÞj �
jx� x0j for all x 2 X. Therefore, to prove that H is compact, it is sufficient by
Ascoli’s theorem to show that H is a closed subset of the space of continuous func-
tions on X (for the topology of uniform convergence on compact sets).

Consider a function f on X which is the limit of a sequence ðhnÞ of elements in H
and let us show that f 2 H. The function f is 68�-convex since every hn is 68�-convex
(Corollary 3.7). Let us show that f satisfies the distance-like property. Let x 2 X and
let � < fðxÞ. The function f is 1-Lipschitz since every hn is 1-Lipschitz. This implies
that

fðxÞ � �þ distðx; f�1ð�ÞÞ: ð3:9:1Þ

Let ð�nÞ be a sequence of real numbers which converges to � and such that
� < �n < fðxÞ for all n. Since the distance-like property is satisfied by hn, we can find,
for n large enough, a point pn 2 X such that

hnðxÞ ¼ �n þ jx� pnj ð3:9:2Þ

and

Figure 3.
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hnðpnÞ ¼ �n: ð3:9:3Þ

After possibly replacing the sequence ðpnÞ by a subsequence, we can assume that ðpnÞ
converges to a point p 2 X. By taking limits, we deduce from (3.9.2) that

fðxÞ ¼ �þ jx� pj: ð3:9:4Þ

Since jhnðpnÞ � hnðpÞj � jpn � pj, we have, using (3.9.3),

fðpÞ ¼ lim
n!1

hnðpÞ ¼ lim
n!1

hnðpnÞ ¼ �: ð3:9:5Þ

It follows from (3.9.4) and (3.9.5) that

fðxÞ � �þ distðx; f �1ð�ÞÞ: ð3:9:6Þ

We deduce from (3.9.1) and (3.9.6) that fðxÞ ¼ �þ distðx; f�1ð�ÞÞ: Thus f satisfies the
distance-like property. We have shown that f is a horofonction. Since hnðx0Þ ¼ 0 for
all n, we have fðx0Þ ¼ 0. Therefore f 2 H. This completes the proof of Proposition
3.9.

Theorem 3.10. Let � be the equivalence relation on � defined by

’ � ’0 () k’� ’0k1 <1:

Then the map � : �! @X induces an IsomðX Þ-equivariant homeomorphism from the
quotient space �= � onto @X.

Proof. This quotient map is IsomðX Þ-equivariant, continous and bijective, by
Proposition 3.3 and Corollary 3.8. Since � is compact and since @X is Hausdorff, the
quotient map is a homeomorphism.

4. Integral cocycles on hyperbolic groups. In all what follows, � is a group which
is �-hyperbolic with respect to some fixed finite set of generators A, and X is the
Cayley graph associated to the pair ð�;AÞ. We denote by X0 ¼ � the set of vertices
and by X1 the set of edges of X.

Definition 4.1. An integral horofunction on X is a horofunction h : X! R

satisfying hðX0Þ � Z. An integral cocycle is a cocycle having an integral horofunc-
tion as a primitive. Equivalently, an integral cocycle is a cocycle taking integral
values on X0 � X0.

Proposition 4.2. Let r : ½0;1½! X be a geodesic ray starting at a point in
X0 ¼ �. Then, the associated Busemann function hr is an integral 4�-horofunction.

Proof. The proof is easy, using Proposition 2.5.

Proposition 4.3. Let h : X! R be an integral horofunction and let x and y be
adjacent vertices of X. Then hðyÞ is equal either to hðxÞ, to hðxÞ � 1 or to hðxÞ þ 1.
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Furthermore, the restriction of h to the segment ½x; y
 is entirely determined by the
values hðxÞ and hðyÞ.

Proof. The proof is easy, using Proposition 2.2, Proposition 2.10 (ii) and Pro-
position 2.13.

Corollary 4.4. An integral cocycle ’ is completely determined by its values on
the set X0 � X0 ¼ �� �.

Thus, we can regard an integral cocycle ’ on X as a function from �� � to Z.
Let �0 � � be the space of integral cocycles on X. The topology induced by � on
�0 is the topology of pointwise convergence on �� �.

For simplicity, we still denote by � : �0 ! @� the restriction of the map
� : �! @� defined in Section 3.

Proposition 4.5. The map � : �0 ! @� is continuous, �-equivariant, onto and
uniformly finite to one. In fact, we have, for every 
 2 @�,

cardf’ 2 � : �ð’Þ ¼ 
g � ð2N0 þ 1ÞN1 ;

where N0 is the integral part of 16�þ 1 and where N1 is the number of elements in �
contained in the closed ball of radius N0 centered at the identity.

Proof. The continuity and the �-equivariance of the map � follow from Propo-
sition 3.3, and the surjectivity follows from Proposition 4.2. To prove the last state-
ment in the proposition, we need the following lemma, which will also be useful in
Section 7 below.

Lemma 4.6. Let B ¼ Bðx0;N0Þ be a closed ball in X centered at x0 2 � and whose
radius is an integer N0 � 0. Then the number of distinct restrictions to B� B of ele-
ments ’ 2 �0 is bounded above by ð2N0 þ 1ÞN1 , where N1 is the number of elements of
� at distance � N0 from the identity.

Proof. By Proposition 4.3 and the cocycle property, the restriction of ’ to B� B
is determined by the function f : B \ �! Z defined by fðxÞ ¼ ’ðx0; xÞ. We have, for
every x in B, using Proposition 2.7(iv), jfðxÞj ¼ j’ðx0; xÞj � jx� x0j � N0. Since the
cardinality of B \ � is N1, the assertion follows easily.

Consider now an arbitrary finite subset F � ��1ð
Þ and let N0 ¼ cardðFÞ. Let
r : ½0;1½! X be a geodesic ray starting at a vertex of X, with rð1Þ ¼ 
, let ðtnÞn�0 be
a sequence of nonnegative real numbers and for every n � 0, let Bn be the closed ball
in X of radius N0 centered at rðtnÞ. We choose the sequence ðtnÞ in such a way that
for every n � 0, tnþ1 � tn ¼ jrðtnÞ � rðtnþ1Þj > N0 þ 16�.

Let ’ and ’0 be two distinct elements of F. By Corollary 3.5, we can find an
integer m � 0 such that the restrictions of ’ and ’0 to Bm � Bm are distinct.

We claim now that if n � 1 is an integer such that ’ and ’0 have the same
restrictions on Bn � Bn, then ’ and ’0 have also the same restrictions on Bn�1 � Bn�1.
Indeed, for x 2 Bn�1, we have
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tn ¼ jrð0Þ � rðtnÞj

¼ jrð0Þ � rðtn�1Þj þ jrðtn�1Þ � rðtnÞj

� ðjrð0Þ � xj � jx� rðtn�1ÞjÞ þ jrðtn�1Þ � rðtnÞj

> ðjrð0Þ � xj �N0Þ þ ðN0 þ 16�Þ

¼ jrð0Þ � xj þ 16�:

Therefore, Proposition 3.4 gives ’
�
x; rðtnÞ

�
¼ distðx;R’;tnÞ.

For x and y arbitrary in Bn�1, we obtain ’ðx; yÞ ¼ ’
�
x; rðtnÞ

�
� ’

�
y; rðtnÞ

�
¼

distðx;R’;tnÞ � distðy;R’;tnÞ.
Thus, the value of ’ðx; yÞ depends only on the restriction of the cocycle ’ on Bn.

This proves the claim.
Therefore, there exists an integer n0 � 0 such that for every n � n0, we have

’jBn�Bn
6¼ ’jBn�Bn

. Since F is finite, we can find, by taking n large enough, a ball Bn

with the property that the restriction to Bn � Bn of all of the N0 cocycles in F
are distinct. By Lemma 4.6, we obtain therefore N0 � ð2N0 þ 1ÞN1 . This proves
Proposition 4.5.

5. The map � : �0 ! �0. We start with the following

Lemma 5.1. For every element ’ 2 �0 and for every x 2 � ¼ X0, there exists an
element a 2 A satisfying ’ðx; xaÞ ¼ 1.

Proof. By Proposition 2.13, we can find a ’-gradient ray g : ½0;1½! X starting
at x. In particular, we have ’

�
x; gð1Þ

�
¼ 1. Furthermore, since g is a geodesic, we

have jx� gð1Þj ¼ 1, which implies that gð1Þ ¼ xa for some a in A.

We fix now, and for the rest of this paper, a total order relation on the gen-
erating set A. Let x 2 X. The lexicographic order on AN induces a total order on the
set of ’-gradient rays starting at x.

Proposition 5.2. Let x 2 �. The set of ’-gradient rays starting at x has a smal-
lest element.

Proof. We define first by induction a sequence ðxnÞn�0 of vertices of X. We start
by letting x0 ¼ x. Assuming that xn has been defined, we let a 2 A be the smallest
element of A such that ’ðxn; xnaÞ ¼ 1 and we take then xnþ1 ¼ xna. Let
g : ½0;1½! X be the uniquely defined ray, parametrized by arclength and satisfying
gðnÞ ¼ xn for every n 2 N. By Lemma 2.9, g is a ’-gradient ray. It is clear that this
ray g is smallest among all the gradient rays staring at x.

We call the gradient ray provided by Proposition 5.2 the smallest ’-gradient ray
starting at x.

Proposition 5.3. Let ’ 2 �0, x 2 X and 
 2 �. If g : ½0;1½! X is the smallest
’-gradient ray starting at x, then for every n � 0, the smallest ’-gradient ray starting
at gðnÞ is the ray gn : ½0;1½! X defined by gnðtÞ ¼ gðtþ nÞ, for every t � 0.
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Proof. The proof follows from the construction of the smallest ’-gradient ray
given in the proof of Proposition 5.2.

Proposition 5.4. Let ’ 2 �0, let x 2 � and let g : ½0;1½! X be the smallest ’-
gradient ray starting at x. Then for all 
 2 �, the map 
g : ½0;1½! X is the smallest

’-gradient ray starting at 
x.

Proof. The proof is easy, using the construction of the smallest gradient ray
described in the proof of Proposition 5.2.

Definition 5.5. We define the map � : �0 ! �0 by letting, for every ’ 2 �0,
�ð’Þ ¼ a�1’, where a is the smallest element in A satisfying ’ðId; aÞ ¼ 1.

Proposition 5.6. The map � : �0 ! �0 is continuous.

Proof. Let ’n be a sequence of elements in �0 converging to ’ 2 �0. There exists
n0 2 N such that for all n � n0, the cocycles ’ and ’n coincide on BðId; 1Þ � BðId; 1Þ.
Therefore, there exists a 2 A such that 8n � n0, �ð’Þ ¼ a�1’ and �ð’nÞ ¼ a�1’n.
Since � acts continuously on �0, this shows that �ð’nÞ ! �ð’Þ as n!1.

Proposition 5.7. Let ’ 2 �0 and let g : ½0;1½! X be the smallest ’-gradient ray
starting at the identity. For every n 2 N, let an 2 A be the label of the oriented edge
going from gðnÞ to gðnþ 1Þ and let gn : ½0;1½! X be the smallest �nð’Þ-gradient ray
starting at the identity. Then, we have

(i) �nð’Þ ¼ gðnÞ�1’.
(ii) For every t � 0, gnðtÞ ¼ gðnÞ�1gðtþ nÞ.
(iii) For every k 2 N, the label of the oriented edge going from gnðkÞ to gnðkþ 1Þ

is akþn.

Proof. Let us first prove (i) by induction on n. For n ¼ 0, the statement is
obviously true. Suppose now that �nð’Þ ¼ gðnÞ�1’ for some n 2 N. Then,
�nþ1ð’Þ ¼ �

�
�nð’Þ

�
¼ �ðgðnÞ�1’Þ: By definition, we have �

�
gðnÞ�1’

�
¼ a�1gðnÞ�1’

where a is the smallest element in A satisfying gðnÞ�1’ðId; aÞ ¼ 1, or equivalently
’
�
gðnÞ; gðnÞa

�
¼ 1. By the construction of the ’-gradient ray given in Proposition

5.2, we see that a ¼ an. Therefore we have �
�
gðnÞ�1’

�
¼ a�1n

�
gðnÞ�1’

�
¼�

gðnÞan
��1

’ ¼ gðnþ 1Þ�1’, which completes the induction and the proof of (i).
Proposition 5.4 implies that for every n � 0, gðnÞgn is the smallest ’-gradient ray

starting at gðnÞ. By Proposition 5.3, wo obtain gðnÞgnðtÞ ¼ gðtþ nÞ for every t � 0, or
equivalently gnðtÞ ¼ gðnÞ�1gðnþ tÞ, which proves (ii). Now (ii) clearly implies (iii).
This completes the proof of Proposition 5.7.

6. Consistent sequences. Let S be a finite set. We denote by � the set SN of
sequences ð�nÞn�0 with �n 2 S for every n � 0. The sets N and S are equipped with
the discrete topology, and � with the product topology, i.e. the topology of point-
wise convergence. The shift map is the continuous map T : �! � defined, for
� ¼ ð�nÞn�0 2 �, by Tð�Þ ¼ �0 where �0 is the sequence ð�0nÞn�0 such that �0n ¼ �nþ1
for every n � 0.

The dynamical system ð�;TÞ is usually called the one-sided Bernoulli shift on S.
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Definition 6.1. Let k � 1 be an integer and let W be a subset of Skþ1. The set

�W ¼ f� ¼ ð�nÞ 2 � : 8n 2 N;
�
�n; :::; �nþk

�
2Wg

is a closed T-invariant subset of of �. The dynamical system ð�W;TÞ is called the
subshift of finite type associated to the pair ðS;WÞ.

In this section, we define a subshift of finite type ð�ð1Þ;TÞ and a map
P : �0 ! �ð1Þ. We show that P is continuous, injective, and that it satisfies the
relation P � � ¼ T � P. In Section 8, we shall prove that P is surjective. Thus, P is a
topological conjugacy between the dynamical systems ð�0; �Þ and ð�ð1Þ;TÞ.

We continue using the notations of the preceding section. We take a real num-
ber R0 � 100�þ 1 and an integer L0 � 2R0 þ 32�þ 1.

For every subset Y � X and for every � � 0, we set

NðY; �Þ ¼ fx 2 X : distðx;YÞ � �g:

Let ’ 2 �0 and let g : ½0;1½! X be the smallest ’-gradient ray starting at Id.
We set

Vð’Þ ¼ N
�
gð½0;L0
Þ;R0

�
:

Note that we have Vð’Þ � BðId;L0 þ R0Þ.
For each ’ 2 �0, let �ð’Þ : Vð’Þ ! R be the function defined by

�ð’ÞðxÞ ¼ ’ðx; IdÞ;

for each x 2 Vð’Þ. We note that �ð’Þ is the restriction to Vð’Þ of the primitive h of ’
satisfying hðIdÞ ¼ 0.

Let S be the set of functions �ð’Þ, with ’ ranging over �0. Thus, we have a
surjective map � : �0 ! S which associates to each ’ 2 �0 the function �ð’Þ. Given
an element s 2 S, we denote by VðsÞ the domain of definition of this function s.

Lemma 6.2. The set S is finite.

Proof. Consider an integer N0 � L0 þ R0 and let B ¼ BðId;N0Þ. The cardinality
of S is bounded by the number of distinct restrictions of elements ’ 2 �0 to B� B.
By Lemma 4.6, this number is bounded above by ð2N0 þ 1ÞN1 , where N1 is the
number of elements of � at distance � N0 from the identity.

Let P : �0 ! � be the map which associates to each ’ 2 �0 the element
� ¼ ð�nÞn�0 2 � defined by �n ¼ �

�
�nð’Þ

�
for all n � 0.

Lemma 6.3. We have P � � ¼ T � P.

Proof. Let Pð’Þ ¼ ð�nÞn�0 and let P � �ð’Þ ¼ ð�0nÞn�0. Then, we have, for every
n � 0,

�0n ¼ �
�
�nð�ð’ÞÞ

�
¼ �

�
�nþ1ð’Þ

�
¼ �nþ1:
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Lemma 6.4. The map P : �0 ! � is continuous.

Proof. Let ð’nÞn�0 be a sequence in �0 converging to ’ 2 �0 and consider an
integer k � 0. By Proposition 5.7, the map �k : �0 ! �0 is continuous. Therefore,
we have �kð’nÞ ! �kð’Þ as n!1. Hence, for all n large enough, the cocycles �kð’nÞ
and �kð’Þ have the same restriction on the product BðId;L0 þ R0Þ � BðId;L0 þ R0Þ.
This implies that �

�
�kð’nÞ

�
¼ �

�
�kð’Þ

�
. Therefore, for all n large enough, the

sequences Pð’nÞ and Pð’Þ have the same ðkþ 1Þ-th coordinate. This shows that Pð’nÞ
converges to Pð’Þ.

We note now that since R0 � 1, then for every s 2 S, its domain VðsÞ contains
the closed ball BðId; 1Þ. Therefore the value sðaÞ is well-defined for all a 2 A. Since
the set A is equipped with a total order relation, we can define wðsÞ 2 A to be the
smallest element a 2 A satisfying sðaÞ ¼ �1.

Let � ¼ ð�nÞn�0 2 �. We associate to � the sequence
�

nð�Þ

�
n�0

of elements in
X0 ¼ �, defined by setting 
0ð�Þ ¼ Id and for every n � 1,


nð�Þ ¼ wð�0Þ:::wð�n�1Þ:

For every n � 0, let

Vnð�Þ ¼ 
nð�ÞVð�nÞ ¼ f
nð�Þx : x 2 Vð�nÞg:

We note that the set Vnð�Þ depends only on the first nþ 1 coordinates of �.
For every n � 0, we define the function fnð�Þ : Vnð�Þ ! R by

fnð�ÞðxÞ ¼ �nð
nð�Þ
�1xÞ � n:

We note that fnð�Þ is the restriction to Vnð�Þ of a horofunction. In fact, if
h : X ! R is a horofunction whose restriction to Vnð�Þ is �n, then 
nð�Þh� n is a
horofunction whose restriction to Vð�nÞ is fnð�Þ.

Lemma 6.5. Let ’ 2 �0, let � ¼ Pð’Þ and let g : ½0;1½! X be the smallest ’-
gradient ray starting at Id. Then, for every n � 0, we have the following:

(i) 
nð�Þ ¼ gðnÞ
(ii) Vnð�Þ ¼ N

�
gð½n; nþ L0
Þ;R0

�

(iii) fnð�Þ is the restriction to Vnð�Þ of the primitive h of ’ satisfying hðIdÞ ¼ 0.

Proof. By Proposition 5.7 (iii), wð�nÞ is the label of the oriented edge going from
gðnÞ to gðnþ 1Þ. Therefore, we have 
nð�Þ ¼ gðnÞ. This proves (i).

To prove (ii), we note that Proposition 5.7 (ii) implies that the �nð’Þ-gradient
say starting at the identity is defined, for t � 0, by t7!gðnÞ�1gðtþ nÞ. Therefore, we
have

Vð�nÞ ¼ N
�
gðnÞ�1gð½n; nþ L0
Þ;R0

�
:

Thus, we obtain

Vnð�Þ ¼ 
nð�ÞVð�nÞ ¼ gðnÞVð�nÞ ¼ N
�
gð½n; nþ L0
Þ;R0

�
:
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To prove (iii), let x 2 Vnð�Þ. Then, we have

fnð�ÞðxÞ ¼ �n
�

nð�Þ

�1x
�
� n

¼ �
�
�nð’Þ

��

nð�Þ

�1x
�
� n

¼ �nð’Þ
�

nð�Þ

�1x; Id
�
� n

¼ �nð’Þ
�
gðnÞ�1x; Id

�
� n

¼ ’
�
x; gðnÞ

�
� n (Proposition 5.7(i))

¼ hðxÞ � h
�
gðnÞ

�
� n

¼ hðxÞ:

Lemma 6.6. The map P : �0 ! � is injective.

Proof. Let ’ and ’0 be two elements of �0 such that Pð’Þ ¼ Pð’0Þ and let
g : ½0;1½! X and g0 : ½0;1½! X be the smallest gradient rays starting at the iden-
tity and associated respectively to ’ and ’0. By Lemma 6.5 (i), we have gðnÞ ¼ g0ðnÞ
for every n � 0. This implies that g ¼ g0. Using proposition 5.7 (i), we have, for
every n � 0, �nð’Þ ¼ gðnÞ�1’. Since gðnÞ�1’ and g0ðnÞ�1’0 coincide on
B
�
Id;R0

�
� B

�
Id;R0

�
then ’ and ’0 coincide on B

�
gðnÞ;R0

�
� B

�
gðnÞ;R0

�
. As

R0 > 16�, Proposition 3.5 implies that ’ ¼ ’0. This proves Lemma 6.6.

Definition 6.7. Let � 2 � and consider an integer k � 1. We say that � is con-
sistent up to order k if for all i and j 2 N satisfying i � j � iþ k, we have

fið�ÞðxÞ ¼ fjð�ÞðxÞ 8x 2 Við�Þ \ Vjð�Þ:

We say that � is consistent if it is consistent up to order k for all k � 1, i.e. if we have
fið�ÞðxÞ ¼ fjð�ÞðxÞ for all i; j 2 N and for all x 2 Við�Þ \ Vjð�Þ.

For every integer k � 1, we let �ðkÞ � � denote the set of sequences which are
consistent up to order k, and we let �ð1Þ � � denote the set of consistent sequences.

Lemma 6.8. We have Pð�0Þ � �ð1Þ.

Proof. Let ’ 2 �0 and let � ¼ Pð’Þ. By Lemma 6.5 (iii), we have, for every
x 2 Vnð�Þ, fnð�ÞðxÞ ¼ hðxÞ, where h is the primitive of ’ which vanishes at the iden-
tity. The right hand side does not depend on n, which proves the assertion.

Proposition 6.9. For every integer k � 1, the set �ðkÞ � � is a subshift of finite
type.

Proof. An element � 2 � is consistent up to order k if and only if we have

�ið
ið�Þ
�1xÞ � i ¼ �jð
jð�Þ

�1xÞ � j: ð6:9:1Þ

for every i and j 2 N such that i � j � iþ k and for every x 2 Við�Þ \ Vjð�Þ.
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Let y ¼ 
ið�Þ
�1x and let 
i;jð�Þ ¼ 
ið�Þ

�1
jð�Þ. Then, equation (6.9.1) is equiva-
lent to �iðyÞ ¼ 
i;jð�Þ�jðyÞ � ð j� iÞ, for all y 2 Vð�iÞ \ 
i;jð�ÞVð�jÞ:

We have 
i;jð�Þ ¼ wð�i�1Þ
�1:::wð�0Þ

�1wð�0Þ:::wð�j�1Þ ¼ wð�iÞ:::wð�j�1Þ. Let
W � Skþ1 be the set of words ðs0; :::; skÞ satisfying s0ðyÞ ¼

�
wðs0Þ:::wðsm�1Þ

�
smðyÞ �m

for every m such that 1 � m � k and for every y 2 Vðs0Þ \ wðs0Þ:::wðsm�1ÞVðsmÞ: Then
�ðkÞ ¼ �W. Thus, �ðkÞ is a subshift of finite type. This proves Lemma 6.9.

For A � X and R > 0, we define

SðA;RÞ ¼ fx 2 X : distðx;AÞ ¼ Rg:

It is easy to see that if if A � X is a bounded set, then, for every R > 0, the set
SðA;RÞ is finite.

Lemma 6.10. Let A1; :::;An be a collection of bounded subsets of X, let R1; :::;Rn

be a collection of positive real numbers and let I � [n
i¼1NðAi;RiÞ be a topological

segment (that is, I is a subset of X which is homeomorphic to a compact interval).
Then, we can find a sequence of consecutive points z0; :::; zk 2 I such that for every
i ¼ 1; :::; k� 1, there exists an integer j ¼ jðiÞ 2 f1; :::; ng such that the topological
segment ½zi; ziþ1
 � I is contained in NðAj;RjÞ.

Proof. Let # ¼ [n
i¼1SðAi;RiÞ. Thus, # is a finite set. Let z0; :::; zn be the sequence

of points in I \#, appearing in this order. For each i ¼ 1; :::; n� 1, let z0i be a point
in the interior of the topological segment ½zi; ziþ1
 � I . The point z

0
i belongs there-

fore to a set NðAj;RjÞ for some j ¼ jðiÞ. The intermediate value theorem implies then
that the segment ½zi; ziþ1
 is contained in NðAj;RjÞ. This proves Lemma 6.10.

Let � ¼ ð�nÞn�0 2 �. Since 
nþ1ð�Þ ¼ 
nð�Þwð�nÞ for every n � 0, we have
j
nð�Þ � 
nþ1ð�Þj ¼ 1. Therefore, there is a unique path rð�Þ : ½0;1½! X para-
metrized by arclength and satisfying rð�ÞðnÞ ¼ 
nð�Þ for every n � 0.

Lemma 6.11. Let k � 2ðLO þ R0Þ be an integer and let � ¼ ð�nÞn�0 2 � be con-
sistent up to order k. Then, rð�Þ is a geodesic ray and � is a consistent sequence.

Proof. To fix our notations, let us record the fact that the sequence ð�nÞn�0 is
consistent up to order k implies the following:

(6.11.1) For every i and j 2 N satisfying i � j � iþ 2ðL0 þ R0Þ and for every x in
Við�Þ \ Vjð�Þ, we have fið�ÞðxÞ ¼ fjð�ÞðxÞ.

We use induction on n to prove simultaneously the following two properties for
every n � 0:

(Pn) The restriction of rð�Þ to ½0; n
 is geodesic.
(Qn) For every 0 � i � j � n and for every x 2 Við�Þ \ Vjð�Þ, we have fið�ÞðxÞ ¼

fjð�ÞðxÞ.
This will clearly prove the lemma.
P0 and Q0 are trivially satisfied. Let us suppose that Pn and Qn are satisfied for

some n 2 N and let us prove Pnþ1 and Qnþ1.
By property Qn, there exists a function Hnð�Þ : V0ð�Þ [ ::: [ Vnð�Þ ! R whose

restriction to each Við�Þ is equal to fið�Þ for every i � n.
From the definitions, we have
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fnþ1ð�Þ
�
rð�Þðnþ 1Þ

�
¼ fnþ1ð�Þ

�

nþ1ð�Þ

�
¼ �nþ1ðIdÞ � ðnþ 1Þ ¼ �ðnþ 1Þ:

Condition (6.11.1) implies in particular that fnþ1ð�Þ coincides with fnð�Þ on
Vnð�Þ \ Vnþ1ð�Þ. We have rð�Þðnþ 1Þ 2 Vnð�Þ \ Vnþ1ð�Þ. Therefore

Hnð�Þ
�
rð�Þðnþ 1Þ

�
¼ fnð�Þ

�
rð�Þðnþ 1Þ

�
¼ �ðnþ 1Þ:

Consider a geodesic segment ½rð�Þð0Þ; rð�Þðnþ 1Þ
 and let T be the geodesic triangle
in X whose vertices are rð�Þð0Þ, rð�ÞðnÞ and rð�Þðnþ 1Þ, and whose sides are
½rð�Þð0Þ; rð�Þðnþ 1Þ
, the edge joining rð�ÞðnÞ to rð�Þðnþ 1Þ and the segment
rð�Þð½0; n
Þ.

By �-hyperbolicity, if z is an arbitrary point on ½rð�Þð0Þ; rð�Þðnþ 1Þ
, there exists
an integer i satisfying 0 � i � n such that jz� rð�ÞðiÞj � 4�þ 1. Since the set Við�Þ
contains the closed ball of radius R0 � 100�þ 1 centered at rð�ÞðiÞ, we have
z 2 Við�Þ. Therefore, ½rð�Þð0Þ; rð�Þðnþ 1Þ
 � V0ð�Þ [ ::: [ Vnð�Þ.

By Lemma 6.10, there exists a sequence Id ¼ z0; z1; :::; zk ¼ rð�Þðnþ 1Þ of con-
secutive points on ½rð�Þð0Þ; rð�Þðnþ 1Þ
 such that for every i ¼ 0; 1; :::; k� 1,
½zi; ziþ1
 � Vjð�Þ, for some j ¼ jðiÞ 2 f0; :::; ng (see Figure 4).

We can write, for every i ¼ 0; 1; :::; k� 1,

jHnð�ÞðziÞ �Hnð�Þðziþ1Þj ¼ j fjð�ÞðziÞ � fjð�Þðziþ1Þj:

Since fjð�Þ is the restriction to Vjð�Þ of a horofunction, and since horofunctions
are 1-Lipschitz (Proposition 2.2), we obtain jHnð�ÞðziÞ �Hnð�Þðziþ1Þj � jzi � ziþ1j.

We have therefore

jHnð�Þ
�
rð�Þð0Þ

�
�Hnð�Þ

�
rð�Þðnþ 1Þ

�
j ¼ j

Xk�1

i¼0

Hnð�ÞðziÞ �Hnð�Þðziþ1Þ j

�
Xk�1

i¼0

jzi � ziþ1j

¼ jrð�Þð0Þ � rð�Þðnþ 1Þj:

Thus, we obtain

lengthðrð�Þj½0;nþ1
Þ ¼ nþ 1 ¼ jHnð�Þ
�
Id
�
�Hnð�Þ

�
rðnþ 1Þ

�
j � jrð�Þð0Þ � rð�Þðnþ 1Þj;

which proves that rð�Þj½0;nþ1
 is a geodesic. This proves property Pnþ1.

Figure 4.
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We prove now property Qnþ1. Let 0 � i � j � nþ 1. If ji� jj � 2ðL0 þ R0Þ, then
fið�ÞðxÞ ¼ fjð�ÞðxÞ for all x 2 Við�Þ \ Vjð�Þ, since � is consistent up to order k.
Assume now that ji� jj > 2ðL0 þ R0Þ. We have Við�Þ � B

�
rð�ÞðiÞ;L0 þ R0

�
and

Vjð�Þ � B
�
rð�Þð jÞ;L0 þ R0

�
. By property Pnþ1, rð�Þj½0;nþ1
 is a geodesic, which implies

jrð�ÞðiÞ�rð�Þð jÞj¼ji�jj>2ðL0þR0Þ. Therefore, B
�
rð�ÞðiÞ;L0þR0

�
\B

�
rð�Þð jÞ;L0þR0

�

¼;. Thus, we have Við�Þ \ Vjð�Þ ¼ ;. This proves property Qnþ1. This proves
Lemma 6.11.

Lemma 6.12. Let k � 2ðL0 þ R0Þ be an integer. Then, �ðkÞ ¼ �ð1Þ.

Proof. This is a consequence of Lemma 6.11.

We obtain finally the following

Theorem 6.13. The set of consistent sequences �ð1Þ � � is a subshift of finite
type.

Proof. This follows from Lemmas 6.9 and 6.12.

7. The horofunction associated to a consistent sequence. Let � ¼ ð�nÞn�0 2 �ð1Þ
be a consistent sequence. Our aim is to construct an element ’ 2 �0 such that
Pð’Þ ¼ �, in order to prove the surjectivity of the map P : �0 ! �ð1Þ. This will
require several lemmas.

We fix an element � 2 �ð1Þ and we set, in order to simplify the notations,
rð�Þ ¼ r and for every n � 0, Vnð�Þ ¼ Vn, fnð�Þ ¼ fn, 
nð�Þ ¼ 
n and wð�nÞ ¼ wn.

We let V ¼ [n�0Vn, and we define f : V! R to be the function whose restric-
tion to each Vn is equal to fn.

Lemma 7.1. We have
(i) For all n � 0, Vð�nÞ ¼ N

�

�1n r

�
½n; nþ L0
Þ;R0

�
.

(ii) For all n � 0, Vn ¼ N
�
rð½n; nþ L0
Þ;R0

�
.

(iii) V ¼ Nðrð½0;1½Þ;R0Þ.

Proof. For every integer n � 0, we let hn : X! R be a horofunction with asso-
ciated cocycle ’n : X� X! R, such that �n ¼ �ð’nÞ. We recall that we have a func-
tion fn : Vn ! R defined by

fnð
nxÞ ¼ �nðxÞ � n; 8x 2 Vð�nÞ:

We recall also that for every integer k 2 ½0;L0
, we have 
nþkþ1 ¼ 
nþkwnþk,
where wnþk is the smallest a 2 A satisfying �nþkðaÞ ¼ �1. Thus, wnþk is the smallest
a 2 A satisfying fnþkð
nþkaÞ � ðnþ kÞ ¼ �1.

Let us fix an integer n � 0 and let gn : ½0;1½! X be the smallest ’n-gradient ray
starting at Id. We prove by induction on k, 0 � k � L0, the following property :

ðPkÞ : gnð½0; k
Þ ¼ 
�1n rð½n; nþ k
Þ.

Assertion (i) of the Lemma follows then by taking L ¼ L0.
Property ðP0Þ is true since rðnÞ ¼ 
n and gnð0Þ ¼ Id.
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Suppose that ðPkÞ is true for some k < L0, and let us prove ðPkþ1Þ. For that, it
suffices to prove that gnðkþ 1Þ ¼ 
�1n rðnþ kþ 1Þ, that is, gnðkþ 1Þ ¼ 
�1n 
nþkþ1.
Using property ðPkÞ and the fact that 
nþkþ1 ¼ 
nþkwnþk, it suffices to prove now
that gnðkþ 1Þ ¼ gnðkÞwnþk.

From the definition of the ’n-gradient ray gn, we have gnðkþ 1Þ ¼ gnðkÞa, where
a is the smallest element in A satisfying hn

�
gnðkÞa

�
¼ hn

�
gnðkÞ

�
� 1.

Since k � L0 and since Vð�nÞ ¼ N
�
gnð½0;L0
Þ;R0

�
, gnðkÞ and gnðkÞa belong to

Vð�nÞ. Thus, a is the smallest element in A such that �n
�
gnðkÞa

�
¼ �n

�
gnðkÞ

�
� 1.

Equivalently, a is the smallest element in A such that fn
�

ngnðkÞa

�
¼ fn

�

ngnðkÞ

�
� 1,

or equivalently (using property ðPkÞ), fn
�
rðnþ kÞa

�
¼ fn

�
rðnþ kÞ

�
� 1.

The elements rðnþ kÞ ¼ 
nþk and rðnþ kÞa ¼ 
nþka belong to 
nþkBðId; 1Þ �

nþkVð�nþkÞ ¼ Vnþk, and the functions fn and fnþk have the same restriction on
Vn \ Vnþk. Thus, a is the smallest element in A satisfying fnþk

�
rðnþ kÞa

�
¼

fnþk
�
rðnþ kÞ

�
� 1, or equivalently fnþk

�

nþka

�
¼ �ðnþ kÞ � 1.

That is, a is the smallest element in A satisfying �nþkðaÞ ¼ �1, which implies that
a ¼ wnþk. This proves (i).

Property (ii) follows from (i) since Vn ¼ 
nVð�nÞ.
We prove now Property (iii). For all n � 0, we have, from Property (ii),

Vn¼N
�
rð½n; nþ L0
Þ;R0

�
�Nðrð½0;1½Þ;R0Þ. Therefore, we have V�Nðrð½0;1½Þ;R0Þ.

Conversely, let x 2 Nðrð½0;1½Þ;R0Þ. If x =2 rð½0;1½Þ, then since X is a simplicial
complex of dimension 1, the projection of x on this ray is necessarily a vertex rðnÞ.
Then, we have x 2 B

�
rðnÞ;R0

�
, which implies that x 2 Vn. This shows that

Nðrð½0;1½Þ;R0Þ � V, which completes the proof of Lemma 7.1.

We have the following:

Lemma 7.2. Let x and y 2 V, and suppose that there exists a geodesic segment
½x; y
 contained in V. Then, we have j fðxÞ � fðyÞj � jx� yj.

Proof. There exists an integer n such that ½x; y
 � V0 [ ::: [ Vn and by Lemma
7.1 (ii), each Vn is a set of the form Vn ¼ N

�
rð½n; nþ L0
Þ;R0

�
. Therefore, by Lemma

6.10, there exists a sequence x0 ¼ z0; z1; :::; zk ¼ y of consecutive points on ½x; y

such that for every i ¼ 0; 1; :::; k� 1, the geodesic sub-segment ½zi; ziþ1
 � ½x; y
 is
contained in a set Vj for some j ¼ jðiÞ 2 N. We have, using Proposition 2.2,

j fðziÞ � fðziþ1Þj ¼ j fjðziÞ � fjðziþ1Þj � jzi � ziþ1j:

By taking the sum, we obtain jfðxÞ � fðyÞj � jx� yj:

Lemma 7.3. For every t � 0, we have f
�
rðtÞ

�
¼ �t.

Proof. For every integer n � 0, we have f
�
rðnÞ

�
¼ fnð
nÞ ¼ �n. For t � 0, we let

n be an integer satisfying n � t < nþ 1. We recall that since R0 � 1, the domain Vn

of fn contains the closed ball of radius one centered at 
n ¼ rðnÞ. Therefore, Vn con-
tains the segment ½rðnÞ; rðnþ 1Þ
 and we have fj½rðnÞ;rðnþ1Þ
 ¼ fnj½rðnÞ;rðnþ1Þ
.

The function fn is the restriction of a horofunction hn : X! R in such a way
that rj½n;nþ1
 is an hn-gradient arc. Since hn takes the values �n and �ðnþ 1Þ respec-
tively at rðnÞ and rðnþ 1Þ, we have hn

�
rðtÞ

�
¼ �t.
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For each t � 0, we define the set

St ¼ f �1ð�tÞ \N
�
rð½0;1½

�
; 8�Þ:

Lemma 7.4. For every t � 0, St is a nonempty closed subset of X and we have
St � B

�
rðtÞ; 16�

�
.

Proof. Let t � 0. Lemma 7.3 shows that St is nonempty. Since the function f,
restricted to any of the closed sets Vn, is equal to fn, f is continuous. This implies that
f �1ð�tÞ is closed in V, which in turn implies that St ¼ f �1ð�tÞ \N

�
rð½0;1½

�
; 8�Þ is

closed in V. Now V is a closed subset of X (see for instance Lemma 7.1(iii)). This
implies that St is a nonempty closed subset of X.

It remains to prove the inclusion St � B
�
rðtÞ; 16�

�
. Let y 2 St. Then, we have

fðyÞ ¼ �t, and jy� rðt0Þj � 8� for some t0 � 0. Furthermore, any geodesic segment
½y; rðt0Þ
 is contained in V. Using Lemma 7.2, we have

jrðt0Þ � rðtÞj ¼ jt0 � tj ¼ jfðyÞ � f
�
rðt0Þ

�
j � jy� rðt0Þj � 8�;

which implies jy� rðtÞj � jy� rðt0Þj þ jrðt0Þ � rðtÞj � 16�. This proves Lemma 7.4.

We introduce now the following definition:
Let I � R be an interval. A rectifiable path g : I! V is called an f-gradient arc if g

is parametrized by arclength and if for all t and t0 2 I, we have f
�
gðtÞ

�
� f

�
gðt0Þ

�
¼ t0 � t.

If I ¼ ½0;1½, then g is also called an f-gradient ray.

Lemma 7.5. The geodesic ray r : ½0;1½! X is an f-gradient ray.

Proof. This is an easy consequence of Lemma 7.3.

Lemma 7.6. An f-gradient arc whose image is contained in Nðrð½0;1½Þ; 16�Þ is a
geodesic arc.

Proof. Let g : I! Nðrð½0;1½Þ; 16�Þ be an f-gradient arc. Consider two real
numbers t and t0 satisfying 0 � t � t0. Consider a geodesic segment ½gðtÞ; gðt0Þ
. Since
gðtÞ and gðt0Þ 2 Nðr½0;1½Þ; 16�Þ, we can find points u and u0 2 ½0;1½ such that
jgðtÞ � rðuÞj � 16� and jgðt0Þ � rðu0Þj � 16�. Consider geodesic segments ½gðtÞ; rðuÞ

and ½gðt0Þ; rðu0Þ
 and the geodesic quadrilateral whose sides are ½gðtÞ; rðuÞ
, ½rðuÞ; rðu0Þ
,
½gðt0Þ; rðu0Þ
 and ½gðtÞ; gðt0Þ
. Since X is �-hyperbolic, every point on ½gðtÞ; gðt0Þ
 is at
distance � 8� from ½gðtÞ; rðuÞ
 [ ½rðuÞ; rðu0Þ
 [ ½gðt0Þ; rðu0Þ
. Thus, ½gðtÞ; gðt0Þ
 �
Nðrð½0;1½Þ; 24�Þ � Nðrð½0;1½Þ;R0Þ ¼ V, since R0 � 24�. Using Lemma 7.2, we have

lengthðgj½t;t0
Þ ¼ jt
0 � tj ¼ j f

�
gðtÞ

�
� f

�
gðt0Þ

�
j � jgðtÞ � gðt0Þj:

This proves Proposition 7.6.

Lemma 7.7. Let x 2 V. Then, there exists an integer n � 0, a real number
t 2 ½n; nþ L0
 and a point y 2 Vn such that the following three properties hold:

(i) jx� rðnÞj � R0

(ii) jy� rðtÞj � 8�
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(iii) fðxÞ � fðyÞ ¼ jx� yj ¼ R0 þ 8�þ 1.
Furthermore, if x 2 Nðrð½0;1½Þ; 8�Þ � V, then we can find n, t and y satisfying the

three properties above and such that every geodesic segment ½x; y
 is contained in Vn.

Proof. Let x 2 V. Then, dist
�
x; rð½0;1½Þ

�
� R0. Either the point x is on rð½0;1½Þ,

and in this case x is at distance � 1=2 from a vertex on rð½0;1½Þ, or a projection of x
on rð½0;1½Þ is a vertex of X, that is, an element of the form rðnÞ for some n 2 N. In
any case, there exists an integer n such that jx� rðnÞj � R0. Let hn : X! R be a
horofunction whose restriction to Vn is equal to fn. The map g0 : ½0;L0
 ! X defined
by setting g0ðtÞ ¼ rðnþ tÞ for every t 2 ½0;L0
 is an hn-gradient arc. Using Proposi-
tion 2.13 and Proposition 2.9, we extend g0 to a map g : ½0;1½! X which is an hn-
gradient ray starting at rðnÞ.

Let g0 : ½0;1½! X be an hn-gradient ray starting at x and let y ¼ g0ðR0 þ 8�þ 1Þ.
Then, we have hnðxÞ � hnðyÞ ¼ jx� yj ¼ R0 þ 8�þ 1. By Proposition 3.1, the two
rays g and g0 converge to the point at infinity of hn. Consider a geodesic segment
½x; rðnÞ
, and the geodesic triangle with one point at infinity whose sides are ½x; rðnÞ
,
gð½0;1½Þ and g0ð½0;1½Þ.

By �-hyperbolicity, there exists a point z 2 ½x; rðnÞ
 [ gð½0;1½Þ such that
jy� zj � 8�. Such a point z cannot be on ½x; rðnÞ
. Indeed, if z 2 ½x; rðnÞ
, then we
would have

jx� yj � jx� rðnÞj þ jz� yj � R0 þ 8� < R0 þ 8�þ 1;

a contradiction. Therefore, we have z 2 gð½0;1½Þ. Thus,

jrðnÞ � zj � jrðnÞ � xj þ jx� yj þ jy� zj � 2R0 þ 8�þ 1 � L0:

Therefore, z 2 gð½0;L0
Þ ¼ rð½n; nþ L0
Þ: Let z ¼ rðtÞ (see Figure 5). Since
jy� rðtÞj � 8�, we conclude that y 2 Vn.

It remains to prove now the last part of the lemma.
Suppose first that x 62 rð½0;1½Þ. In this case, there is an integer n such that

jx� rðnÞj � 8�. We consider this integer n, and we use the same t and y provided by
the above construction.

Consider a geodesic quadrilateral whose sides are ½x; y
, ½x; rðnÞ
, ½rðnÞ; rðtÞ
 and
½rðtÞ; y
. Let v 2 ½x; y
 and let us prove that v 2 Vn. By the �-hyperbolicity of X, there
exists a point w 2 ½x; rðnÞ
 [ rð½n; t
Þ [ ½rðtÞ; y
 such that jv� wj � 8�.

Figure 5.
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Since ½x; rðnÞ
 [ rð½n; t
Þ [ ½rðtÞ; y
 � N
�
rð½n; nþ L0
Þ8�

�
, we have v 2 N

�
rð½n; nþ

L0
Þ16�
�
� Vn.

In the case where x 2 rð½0;1½Þ, x ¼ rðt0Þ for some t0 � 0. Then, the required
properties are satisfied with n equal to the integral part of t0, y ¼ rðt0 þ R0 þ 8�þ 1Þ
and t ¼ t0 þ R0 þ 8�þ 1.

Lemma 7.8. Let x 2 Nðrð½0;1½Þ; 8�Þ. Then, there exists an f-gradient ray
g : ½0;1½! X starting at x and satisfying gð½0;1½Þ � Nðrð½0;1½Þ; 16�Þ. Furthermore,
if g : ½0;1½! X is such an f-gradient ray and if t > 16�� fðxÞ, then we have
g
�
tþ fðxÞ

�
2 St.

Proof. Using Lemma 7.7, we construct, by induction, a sequence ðxiÞi�0 of points
in X with x0 ¼ x and such that for each i � 0, the following three properties hold:

(i) xi 2 Nðrð½0;1½Þ; 8�Þ
(ii) there exists an integer n ¼ nðiÞ such that every geodesic segment ½xi; xiþ1
 is

contained in Vn

(iii) fðxiÞ � fðxiþ1Þ ¼ jxi � xiþ1j ¼ R0 þ 8�þ 1.
For each i � 0, consider a geodesic segment ½xi; xiþ1
.
We have ½xi; xiþ1
 � Nðrð½0;1½Þ; 16�Þ. Indeed, let pi 2 rð½0;1½Þ satisfy jxi � pij �

8� and consider a geodesic segment ½xi; pi
. By �-hyperbolicity, every point on
½xi; xiþ1
 is at distance � 8� from the union ½xi; pi
 [ ½pi; piþ1
 [ ½piþ1; xiþ1
. The tri-
angle inequality implies now ½xi; xiþ1
 � Nðrð½0;1½; 16�Þ.

Let g : ½0;1½! X be the ray starting at x obtained by concatenating the geo-
desic segments ½xi; xiþ1
. We have gð½0;1½Þ � Nðrð½0;1½; 16�Þ and, for all i � 0,
xi ¼ gðtiÞ, with ti ¼ ðR0 þ 8�þ 1Þi.

By Property (ii), we have gð½ti; tiþ1
Þ � Vn. By Property (iii), we have

fn
�
gðtiÞ

�
� fn

�
gðtiþ1Þ

�
¼ tiþ1 � ti:

The function fn : Vn ! R is the restriction to Vn of a horofunction hn : X! R.
By Proposition 2.10(ii), g is an hn-gradient arc. Since f coincides with hn on Vn, this
shows that for every i � 0, gj½ti;tiþ1
 is an f-gradient arc. Thus, g is an f-gradient ray.

By Lemma 7.6, g is geodesic. The two geodesic rays g and r have the same point
at infinity, since gð½0;1½Þ � N

�
rð½0;1½; 16�

�
. Let t0 ¼ �fðxÞ and let t > 16�þ t0. We

take a geodesic segment ½x; rðt0Þ
, and we consider the geodesic triangle with one
vertex at infinity, whose sides are ½x; rðt0Þ
, rð½t0;1½Þ and gð½0;1½Þ. By �-hyperboli-
city, each point on gð½0;1½Þ is situated at distance � 8� from ½x; rðt0Þ
 [ rð½t0;1½Þ.

Let q ¼ g
�
tþ fðxÞ

�
¼ gðt� t0Þ and let us prove that q 2 St. Since t > t0 þ 16�, we

have

distðq; ½x; rðt0Þ
Þ � jq� xj � jx� rðt0Þj ¼ t� t0 � jx� rðt0Þj > 16�� 8� ¼ 8�:

Therefore, q 2 Nðrð½0;1½Þ; 8�Þ. To prove that q 2 St, it remains to prove that
fðqÞ ¼ �t. Now since g is an f-gradient ray, we have f

�
gð0Þ

�
� fðqÞ ¼ t� t0 � 0 ¼

t� t0. On the other hand, we have f
�
gð0Þ

�
¼ fðxÞ ¼ �t0, which implies f

�
q
�
¼ �t.

Thus, q 2 St. This completes the proof of Lemma 7.8.

For each x 2 X, we define the function $x : ½0;1½! R by

$xðtÞ ¼ dist
�
x;St

�
� t:
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Lemma 7.9. Let x 2 X. Then, there exists t0 � 0 such that for every t � t0, we
have $xðtÞ ¼ $xðt0Þ.

Proof. The proof is given in two steps.
Step 1. Let t1 ¼ 2jx� rð0Þj þ 24�. We prove that for all t > t1 and for all

t0 � tþ jx� rð0Þj þ 40�, we have $xðt
0Þ � $xðtÞ:

Consider t and t0 satisfying these conditions and let q0 be a projection of x on St0 .
This projection exists since St0 is a nonempty closed subset of X (Lemma 7.4). Con-
sider now a geodesic segment ½x; q0
.

We claim that ½x; q0
 \ St 6¼ ;.
To prove the claim, we take geodesic segments ½x; rð0Þ
 and ½q0; rðt0Þ
. Since the

space X is �-hyperbolic, every point on ½x; q0
 is at distance � 8� from some point on
½x; rð0Þ
 [ rð½0; t0
Þ [ ½q0; rðt0Þ
. Since St0 � B

�
rðt0Þ; 16�

�
, we have

jx� q0j � jrð0Þ � rðt0Þj � jx� rð0Þj � jq0 � rðt0Þj � t0 � jx� rð0Þj � 16�:

Thus,

jx� q0j � tþ jx� rð0Þj þ 40�� jx� rð0Þj � 16� ¼ tþ 24� > 2jx� rð0Þj þ 48�:

We can take therefore two points y1 and y2 on ½x; q0
 satisfying
jx� y1j ¼ jx� rð0Þjþ 24� and jy2 � q0j ¼ 24�.

Since jx� q0j > 2jx� rð0Þj þ 48�, the points y1 and y2 are distinct (see Figure 6).
Let ½y1; y2
 be the geodesic segment joining y1 and y2 and contained in ½x; q0
.
If y is a point in the interior of ½y1; y2
, then

distðy; ½x; rð0Þ
Þ > jy1 � xj � jx� rð0Þj ¼ jx� rð0Þj þ 24�� jx� rð0Þj ¼ 24�:

Likewise, we have

distðy; ½q0; rðt0Þ
Þ > jy2 � q0j � jq0 � rðt0Þj � 24�� 16� ¼ 8�:

We conclude that for every y 2 ½y1; y2
, we have distðy; rð½0; t
0
ÞÞ � 8�.

Thus, to prove that ½x; q0
 \ St 6¼ ;, it suffices to prove that there exists a point
y 2 ½y1; y2
 such that fðyÞ ¼ �t. For that purpose, we begin by proving the two
inequalities fðy2Þ � �t and fðy1Þ � �t.

Figure 6.
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We note first that since dist
�
y2; rð½0;1½Þ

�
� 8� and dist

�
q0; rð½0;1½Þ

�
� 8�, we

have ½y2; q
0
 � V. Since jy2 � q0j ¼ 24�, Lemma 7.2 implies fðy2Þ � 24�þ fðq0Þ ¼

24�� t0. Therefore, fðy2Þ � 24�� t� jx� rð0Þj � 40� ¼ �t� ðjx� rð0Þj þ 16�Þ � �t,
which is the first inequality we wanted.

To prove now that fðy1Þ � �t, we write

jy1 � rð0Þj � jy1 � xj þ jx� rð0Þj ¼ jx� rð0Þj þ 24�þ jx� rð0Þj ¼ 2jx� rð0Þj þ 24�:

Let us choose a segment ½y1; rð0Þ
. Since dist
�
y1; rð½0;1½Þ

�
� 8�, we have

½y1; rð0Þ
 � V.
By Lemma 7.2, we have

j fðy1Þ � f
�
rð0Þ

�
j � jy1 � rð0Þj � 2jx� rð0Þj þ 24�;

which implies

fðy1Þ � f
�
rð0Þ

�
� �2jx� rð0Þj � 24�;

that is,

fðy1Þ � f
�
rð0Þ

�
� 2jx� rð0Þj � 24� ¼ �2jx� rð0Þj � 24�:

Since t > 2jx� rð0Þj þ 24�, we obtain fðy1Þ � �t.
Consider now the restriction of f to the geodesic segment ½y1; y2
. Since

fðy2Þ � �t � fðy1Þ and since the function f is continuous on V, the intermediate value
theorem implies that there exists a point y 2 ½y1; y2
 such that fðyÞ ¼ �t. This proves
that ½x; q0
 \ St 6¼ ;.

We continue now the proof of Step 1.
Let q1 2 ½x; q

0
 \ St. Consider the geodesic segment ½q1; q
0
 � ½x; q0
 and let q be a

projection of x on St. We have therefore jx� q1j � jx� qj.
We have ½q1; q

0
 � V. Therefore, Lemma 7.2 implies jq1 � q0j � j fðq1Þ � fðq0Þj ¼
t0 � t.

We obtain therefore jx� q0j ¼ jx� q1j þ jq1 � q0j � jx� qj þ t0 � t, which gives
jx� q0j � t0 � jx� qj � t. Therefore, we have, for all t > t1 and for all t0 � t,
dist

�
x;St0

�
� t0 � dist

�
x;St

�
� t, that is, $xðt

0Þ � $xðtÞ. This finishes the proof of
Step 1.

Step 2. We prove that for all t � 0 and for all t0 > tþ 16�, we have
$xðtÞ � $xðt

0Þ.
To prove Step 2, let t � 0 and let q be a projection of x on St. Then,

q 2 Nðrð½0;1½; 8�½Þ and Lemma 7.8 implies that there exists an f-gradient ray
g : ½0;1½! X starting at q and satisfying gð½0;1½Þ � Nðrð½0;1½Þ; 16�Þ and such that
for all t0 > tþ 16�, we have gðt0 � tÞ 2 St0 .

Since g is geodesic, we have jq� q0j ¼ jgðt0 � tÞ � gð0Þj ¼ t0 � t. Since q0 2 St0 , we
have jx� q0j � dist

�
x;St0

�
. Using the triangle inequality, we obtain jx� qj �

distðx;St0 Þ � t0 þ t.
Therefore, for all t � 0 and for all t0 > tþ 16�, we have dist

�
x;St

�
� t �

dist
�
x;St0

�
� t0, that is, $xðtÞ � $xðt

0Þ.
This finishes the proof of Step 2.
Let t1 ¼ 2jx� rð0Þj þ 24� be the constant provided by Step 1. Step 1 implies in

particular that for all t0 > t1 þ jx� rð0Þj þ 40�, we have $xðt
0Þ � $xðt1Þ. Step 2
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implies that for all t0 � t1 þ 16�, we have $xðt
0Þ � $xðt1Þ. Therefore, $xðtÞ is con-

stant for all t > t1 þ jx� rð0Þj þ 40�. This proves Lemma 7.9.

Consider now the function F : X! R defined by FðxÞ ¼ limt!1$xðtÞ. (The
limit exists and is finite, by Lemma 7.9.) We have the following

Lemma 7.10. For every x 2 V, we have FðxÞ ¼ fðxÞ.

Proof. Let x 2 V and let us prove first that FðxÞ � fðxÞ. By Lemma 7.7, there
exists y 2 Nðrð½0;1½Þ; 8�Þ such that jx� yj ¼ fðxÞ � fðyÞ. By Lemma 7.8, there exists
an f-gradient ray g : ½0;1½! X starting at y and satisfying
gð½0;1½Þ � Nðrð½0;1½Þ; 16�Þ. By Lemma 7.6, the gradient ray g is geodesic. Lemma
7.8 implies also that for all t > 16�� fðyÞ, we have St \ gð½0;1½Þ 6¼ ;

Let t > 16�� fðyÞ and let z 2 St \ gð½0;1½Þ. We have

jx� zj � jx� yj þ jy� zj ¼ fðxÞ � fðyÞ þ fðyÞ � fðzÞ ¼ fðxÞ þ t:

Therefore, we have, for all t > 16�� fðyÞ, distðx;StÞ � fðxÞ þ t, which implies
$xðtÞ � fðxÞ. This proves FðxÞ � fðxÞ.

We now prove that FðxÞ � fðxÞ by showing that for all t large enough, we have
$xðtÞ � fðxÞ.

Since x 2 V, there exists an integer n � 0 such that jx� rðnÞj � R0. Let us take
t � n and t large enough so that distðx;StÞ > R0 þ 8�þ 1 and let p be a projection of
x on St. Choose a geodesic segment ½x; p
 and let x0 be a point on this segment
satisfying jx� x0j ¼ R0 þ 8�þ 1. Choose geodesic segments ½x; rðnÞ
 and ½p; rðtÞ
 and
consider the geodesic quadrilateral ½x; rðnÞ
 [ rð½n; t
Þ [ ½p; rðtÞ
 [ ½x; p
 (Figure 7). By
�-hyperbolicity, the point x0 is at distance � 8� from ½x; rðnÞ
 [ rð½n; t
Þ [ ½p; rðtÞ
.

We have distðx0; ½x; rðnÞ
Þ � jx0 � xj � jx� rðnÞj � R0 þ 8�þ 1 > 8�, which
implies that x0 is at distance � 8� from the union rð½n; t
Þ [ ½p; rðtÞ
.

Since p 2 St � B
�
rðtÞ; 16�

�
(Proposition 7.4), x0 is at distance � 14� from some

point x00 2 rð½n; t
Þ.

Figure 7.
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We have

jrðnÞ � x00j � jrðnÞ � xj þ jx� x0j þ jx0 � x00j � R0 þ R0 þ 8�þ 1þ 24�

¼ 2R0 þ 32�þ 1 � L0:

We conclude that x0 2 Nðrð½n; nþ L0
Þ; 24�Þ � Nðrð½n; nþ L0
Þ;R0Þ ¼ Vn.
Let hn : X! R be a horofunction whose restriction to Vn is equal to fn. Then,

since x and x0 2 Vn, we have

fðxÞ � fðx0Þ ¼ hnðxÞ � hnðx
0Þ � jx� x0j:

Consider now the geodesic segment ½x0; p
. Since x0 and p are in Nðrð½0;1½Þ; 24�Þ,
the fact that X is �-hyperbolic implies that ½x0; p
 � Nðrð½0;1
Þ; 32�Þ �
Nðrð½0;1
Þ;R0Þ � V, and Lemma 7.2 implies that

fðx0Þ � fðpÞ � jx0 � pj:

We conclude that

fðxÞ � fðpÞ ¼ fðxÞ � fðx0Þ þ fðx0Þ � fðpÞ � jx� x0j þ jx0 � pj ¼ jx� pj:

Since p is a projection of x on St, we have jx� pj ¼ distðx;StÞ and fðpÞ ¼ �t.
Thus, we obtain

fðxÞ þ t � distðx;StÞ;

that is, $xðtÞ � fðxÞ for t large enough. This proves Lemma 7.10.

Lemma 7.11. The function F is 1-Lipschitz.

Proof. Let x and y 2 X. For every t � 0, we have $xðtÞ �$yðtÞ ¼ distðx;StÞ�

distðy;StÞ.
Since the function ‘‘distance to a nonempty set’’ is 1-Lipschitz, we obtain, for all

t � 0, j$xðtÞ �$yðtÞj � jx� yj.
By making t!1, we obtain jFðxÞ � FðyÞj � jx� yj, which proves Lemma

7.11.

Lemma 7.12. Let x 2 X and let � 2 R satisfy FðxÞ � �. Then there exists a point
p 2 X such that jx� pj ¼ FðxÞ � � and FðpÞ ¼ �.

Proof. For t � 0, let qt be a projection of x on St and consider a geodesic seg-
ment ½x; qt
. As distðx;StÞ ! 1 as t!1, there exists t � t0 such that for all t � t0,
we have jx� qtj � FðxÞ � �.

In what follows, we take t � t0. There exists a (unique) point pt 2 ½x; qt
 satisfy-
ing jx� ptj ¼ FðxÞ � �.

We have jx� qtj ¼ jx� ptj þ jpt � qtj, which implies

jx� qtj � t ¼ FðxÞ � �þ
�
jpt � qtj � t

�
: ð7:12:1Þ
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We note now that qt is a projection of pt on St. Indeed, for every z 2 St, we have

jx� qtj � jx� zj � jx� ptj þ jpt � zj;

which implies

jpt � qtj ¼ jx� qtj � jx� ptj � jpt � zj;

which proves that qt is a projection of pt on St.
Thus, we have distðpt;StÞ ¼ jpt � qtj and we obtain from (7.12.1):

distðx;StÞ � t ¼ FðxÞ � �þ
�
distðpt;StÞ � t

�
: ð7:12:2Þ

As t varies, the points pt are all contained in the closed ball of radius FðxÞ � �
centered at x. Since the closed balls in X are compact, there exists a sequence ðtiÞi�0,
with ti !1 as i!1, such that pti converges to a point p 2 X. Since jx� pti j ¼
FðxÞ � � for every i, we have jx� pj ¼ FðxÞ � �. It remains to prove that FðpÞ ¼ �.

We have, using (7.12.2), distðpt;StÞ � t ¼
�
distðx;StÞ � t

�
� ðFðxÞ � �Þ. Hence,

we obtain

lim
t!1

�
distðpt;StÞ � t

�
¼ FðxÞ � ðFðxÞ � �Þ ¼ �: ð7:12:3Þ

On the other hand, since the function ‘‘distance to a nonempty set’’ is 1-Lipschitz,
we have

jðdistðp;StÞ � tÞ � ðdistðpt;StÞ � tÞj ¼ jdistðp;StÞ � distðpt;StÞj � jp� ptj:

Since jp� pti j ! 0 as i!1, we conclude, using (7.12.3), that limi!1

�
distðp;StiÞ

�ti
�
¼ �. Hence, FðpÞ ¼ �. This completes the proof of Lemma 7.12.

Lemma 7.13. Let x 2 X and let � 2 R satisfy FðxÞ � �. Then, we have

FðxÞ ¼ �þ dist
�
x;F�1ð�Þ

�
:

Proof. Let y 2 F�1ð�Þ. By Lemma 7.11, we have FðxÞ � FðyÞ ¼ jFðxÞ � FðyÞj �
jx� yj. Therefore, we have FðxÞ � FðyÞ þ jx� yj � �þ jx� yj. Taking the infimum
over y 2 F�1ð�Þ, we obtain FðxÞ � �þ dist

�
x;F�1ð�Þ

�
. On the other hand, Lemma

7.12 gives FðxÞ � �þ dist
�
x;F�1ð�Þ

�
.

Lemma 7.14. The function F is 68�-convex.

Proof. Let x and y 2 X, let t � 0 and let p (respectively q) be a projection of x
(respectively y) on St. Consider a geodesic segment ½x; y
, let u 2 ½0; 1
 and let z be
the point on ½x; y
 satisfying jx� zj ¼ ujx� yj.

By [7], Chapter 3, Lemma 3.2, we have jz� pj � ð1� uÞjx� pj þ ujy� pj þ 4�.
By Lemma 7.4, the diameter of the set St is bounded by 32�. Therefore, we have

jy� pj � jy� qj þ 32�.
Letting m be a projection of z on St, we can write now
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distðz;StÞ ¼ jz�mj

� jz� pj þ 32�

� ð1� uÞjx� pj þ ujy� pj þ 4�þ 32�

� ð1� uÞdist
�
x;St

�
þ u

�
dist

�
y;St

�
þ 32�

�
þ 4�þ 32�

� ð1� uÞdist
�
x;St

�
þ udist

�
y;St

�
þ 68�:

Thus, we have

distðz;StÞ � t � ð1� uÞðdistðx;StÞ � tÞ þ uðdistðy;StÞ � tÞ þ 68�:

Letting t tend to infinity, we obtain

FðzÞ � ð1� uÞFðxÞ þ uFðyÞ þ 68�;

which proves Lemma 7.14.

Lemma 7.15. The function F : X! R is a 68�-horofunction.

Proof. This follows from Lemmas 7.13 and 7.14.

Let ’ be the cocycle associated to the horofunction F.

Lemma 7.16. The geodesic ray r is the smallest ’-gradient ray starting at Id.

Proof. We recall that for all n � 0, we have rðnÞ ¼ 
n and that
rðnþ 1Þ ¼ rðnÞwð�nÞ, with wð�nÞ being the smallest a 2 A satisfying �nðaÞ ¼ �1.

The functions �n : Vð�nÞ ! R and fn : Vn ! R are related by

�nðxÞ ¼ fnð
nxÞ þ n;

for all x 2 Vð�nÞ.
Therefore, wð�nÞ is the smallest a 2 A satisfying fnð
naÞ þ n ¼ �1. Since

n ¼ �fnð
nÞ, we see now that wð�nÞ is the smallest a 2 A satisfying
fnð
naÞ � fnð
nÞ ¼ �1, that is, ’ð
na; 
nÞ ¼ �1. This proves Lemma 7.16.

Lemma 7.17. We have Pð’Þ ¼ �.

Proof. Let Pð’Þ ¼ ð�0nÞn�0 and let us show that �0n ¼ �n for all n � 0.
Let n � 0. From the definitions, we have �0n ¼ �

�
�nð’Þ

�
. Using Proposition 5.7

(i) and Lemma 7.16, we obtain �0n ¼ �ð
�1n ’Þ. Thus, �0n is the function with domain
Vð
�1n ’Þ, defined by �0nðxÞ ¼ 
�1n ’ðx; IdÞ for all x 2 Vð
�1n ’Þ, that is,

�0nðxÞ ¼ Fð
nxÞ þ n; 8x 2 Vð
�1n ’Þ: ð7:17:1Þ

Let us study now the domain Vð
�1n ’Þ. We have Vð
�1n ’Þ ¼ Nðg0ð½0;L0
Þ;R0Þ,
where g0 : ½0;1½! X is the smallest 
�1n ’-gradient ray starting at Id. By Proposition
5.4, we have g0 ¼ 
�1n gn, where gn : ½0;1½! X is the smallest ’-gradient ray starting
at 
n. Proposition 5.3 and Lemma 7.16 imply now gnðtÞ ¼ rðtþ nÞ for all n � 0. This
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shows that Vð
�1n ’Þ ¼ 
�1n Nðrð½n; nþ L0
Þ;R0Þ, that is, Vð
�1n ’Þ ¼ 
�1n Vn ¼ Vð�nÞ.
Thus, for all x 2 Vð
�1n ’Þ, we have 
nx 2 Vn and formula (7.17.1) becomes
�0nðxÞfnð
nxÞ þ n ¼ �nðxÞ; 8x 2 Vn. This proves Lemma 7.17.

Now we obtain the following

Theorem 7.18. The set �ð1Þ � � of consistent sequences is a subshift of finite
type and the map P : �0 ! �ð1Þ is a homeomorphism satisfying P � � ¼ T � P.

Proof. By Theorem 6.13, �ð1Þ is a subshift of finite type. By Lemma 6.4, the
map P : �0 ! � is continuous. By Lemma 6.6, P : �0 ! � is injective. By Lemma
7.17, P is surjective. Since �0 is compact, this shows that P is a homeomorphism. By
Lemma 6.3, we have P � � ¼ T � P. This proves the theorem.

Finally, let us note that the map � is related to the action of � on @X in the
following manner:

For s 2 S, let SðsÞ � � be the cylinder set defined as

SðsÞ ¼ f� 2 � : �ð0Þ ¼ sg:

For every ’ 2 P�1
�
CðsÞ

�
\�ð1Þ, we have

�ð’Þ ¼ wðsÞ�1’;

and therefore

� � �ð’Þ ¼ wðsÞ�1�ð’Þ:
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