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Abstract. Let X be a proper geodesic metric space which is §-hyperbolic in the
sense of Gromov. We study a class of functions on X, called horofunctions, which
generalize Busemann functions. To each horofunction is associated a point in the
boundary at infinity of X. Horofunctions are used to give a description of the
boundary. In the case where X is the Cayley graph of a hyperbolic group I", we
show, following ideas of Gromov sketched in his paper Hyperbolic groups, that the
space of cocycles associated to horofunctions which take integral values on the ver-
tices is a one-sided subshift of finite type.
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37D40, 37B10.

1. Introduction. Let X be a proper geodesic metric space which is §-hyperbolic
in the sense of Gromov [10]. By a horofunction on X, we mean a function /1 : X — R
which is quasi-convex and which satisfies the following “‘distance-like property’’: for
all x € X and for every real number A < A(x), the point x is at distance /i(x) — A from
the level set h~'(A) C X.

Given a horofunction /& on X, there are (descending) gradient rays starting at
every point in X. All these gradient rays converge to a common point on the
boundary at infinity X of X. This point is called the point at infinity of h.

Two horofunctions which differ by a constant define the same point at infinity.
Let ® be the set of all horofunctions on X up to the equivalence relation which
identifies two horofunctions when they differ by a constant. We equip ® with the
quotient of the topology of uniform convergence on compact sets. By taking the
point at infinity associated to a horofunction, we obtain a map 7 : ® — 90X. The
space ® is compact and metrizable, and the map 7 : ® — 90X is continuous and
surjective. Furthermore, 7 is Isom(X)-equivariant with respect to the natural actions
of Isom(X) on the spaces ® and d0X.

Now assume that X is the Cayley graph of a word hyperbolic group I' with
respect to some finite symmetric generating set 4 C I'. A horofunction /1 : X — R is
called an integral horofunction if h(X°) C Z, where X° =T denotes the set of ver-
tices of X. Let &, C ® denote the set of equivalence classes of integral horofunc-
tions. The restriction map 7 : &y — 90X is surjective, [-equivariant and uniformly
finite-to-one. We fix an arbitrary total order relation on 4. Consider the map
o1 ®y — &y defined by a(p) =a ¢ for ¢ =[h] € &y and where a = a(p) is the
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smallest element in A4 satisfying i(/d) — h(a) = 1. The main result in this paper is the
following.

THEOREM. The dynamical system (g, «) is topologically conjugate to a subshift of
finite type.

In [8], we use the ideas developed in this paper to obtain a symbolic coding for
the geodesic flow associated to a word hyperbolic group.

The plan of this paper is the following.

In Section 2, we define horofunctions on a §-hyperbolic space X and we study
gradient arcs associated to horofunctions.

In Section 3, we use gradient rays to define the point at infinity associated to a
horofunction. We establish the main properties of the map 7 : & — dX. We prove
that any horofunction is entirely determined by its restriction to a 168-neighborhood
of the image of any geodesic ray converging to its point at infinity. We prove also
that every horofunction on X is 68-delta convex.

From Section 4 on, we take X to be the Cayley graph of a hyperbolic group I"
with respect to some finite symmetric generating system.

In Section 4, we prove the main properties of the map = : &y — aI.

In Section 5, we equip 4 with a total order relation. This allows us to define the
map o : &g — Dy.

In Sections 6 and 7, we construct the subshift of finite type X(co) and the
homeomorphism P : &y — X(o0) conjugating o with the shift map on X(c0). Sec-
tion 8 (the surjectivity of P) is the main difficult part of the proof of the theorem.

We are indebted to M. Gromov for the ideas that we found in [10]. This work
started with an attempt to understand Section 8.5.Q of [10], where a result similar to
the theorem above is stated.

Applications of symbolic dynamics to geometry started with the work of
Hadamard and then of Morse (see [11] and [12]). There is an approach, developed
by various authors, for the study the symbolic dynamics of hyperbolic groups using
Cannon’s cone types, and the theory of automatatic structures (see [5] and [9]). The
work of Bourdon (see [3] and [4]) contains also a study of the symbolic dynamics of
boundaries of hyperbolic groups. In the particular case of surface groups, much has
been done by R. Bowen and C. Series, and later on by C. Series (see for instance [1]
and [13]).

2. Horofunctions and cocycles. For basic facts about Gromov hyperbolic spaces,
we refer the reader to [10] and [6]. In all this paper, X is a metric space which is
proper, geodesic and §-hyperbolic for some § > 0.

A function f: X — R is said to be quasi-convex if there exists € > 0 such that for
all geodesic segment [xp, x;] € X and for every ¢ € [0, 1], we have

Sx) = (1 = Df(xo) + 1f(x1) + €,

where x; is the point on [xy, x;] satisfying |xo — x,| = t|xo — x1|. If we want to specify
the constant € occuring in this definition, then we say that f'is e-convex.
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DErFINITION 2.1. Let € > 0. An e-horofunction (or a horofunction) on X is a
function 4 : X — R satisfying the following two properties:

(1) “Quasi-convexity property’’: & is e-convex.

(i) “Distance-like property”: For every x € X and for every A satisfying
h(x) > A, we have

h(x) = A+ dist(x, 7' (1)).

We note that this definition is slightly different from that given in [10], and
which is the one we used in [7], in which the set #~!()) in Property (ii) is replaced by
the set A~'(] — oo, A]).

We call the level set 4~ '(X) the horosphere of radius X associated to the horo-
function /.

The following is an easy consequence of the distance-like property.

PROPOSITION 2.2. If h: X — R is a horofunction, then h is 1-Lipschitz

An important class of horofunctions is the class of Busemann functions. We
recall the definition.

DEFINITION 2.4. Let r : [0, oo[— X be a geodesic ray. The associated Busemann
function h, : X — R is defined by

hy(x) = lim (|x = r(0)] = 2).

Using the triangle inequality, one can see easily that this limit exists and is finite. The
proof of the following proposition is contained in [7], Chapter 3, with a slight
modification to take into account the new definition of a horofunction.

PROPOSITION 2.5. A Busemann function on X is a 48-horofunction.

DEFINITION 2.6. A function ¢ : X x X — R is called an e-cocycle if there exists
an e-horofunction /2 : X — R such that ¢(x, y) = h(x) — h(y) for every x and y in X.
We call such a function 4 a primitive for ¢, and we say that ¢ is the cocycle of h.

As in the case of horofunctions, we shall use the term cocycle instead of e-
cocycle, unless it is necessary to specify the value of e.

We note that if ¢ is a cocycle and if % is a primitive for ¢, then the set of all
primitives of ¢ consists exactly in the functions on X which are of the form 4 + C,
with C being an arbitrary constant.

PROPOSITION 2.7. Let ¢ be a cocycle. For every x, y, z and t € X, we have
(1) ¢(x,x) =0,

(i) ¢(x, ) = —¢(y, x),

(i) @(x, y) = ¢(x, z) + @(z, y) (the “cocycle property”),

(1) lo(x, Y| < |x =yl

W) lp(x, ») — @z, D] < |x —z| + |y — 1.

Proof. The proof follows immediately from Proposition 2.2.
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If ¢ is a cocycle, then the relation ~ on X defined by x ~ y <= ¢(x,y) =0 is
an equivalence relation. The equivalence classes of ~ are called the horospheres of
@. If h is a primitive of ¢, then the horospheres of ¢ coincide with the horospheres
of h.

Let y be an isometry of X and let # : X — R is an e-horofunction. The function
yh: X — R defined by

yh(x) = h(y~"x)

is clearly an e-horofunction. In the same way, if ¢ : X x X — R is an e-cocycle, then
the function y¢ : X x X — R defined by

yo(x,y) = oy 'x, v 'y)

is an e-cocycle. In fact, if ¢ is the cocycle of &, then y¢ is the cocycle of yh.

Let @ be the set of cocycles on X, that is, the set of all e-cocycles, with all pos-
sible values of €. We equip ® with the quotient topology of the topology of uniform
convergence on compact sets.

Let Isom(X) denote the group of isometries of X. We see easily from the defi-
nitions that the action of Isom(X) on ® defined by (y, ¢)— y¢ is continuous.

DEFINITION 2.8. Let ¢ be a cocycle on X. A gradient arc for ¢, or a ¢-gradient
arcis a path g : I — X parametrized by arclength and satisfying ¢(g(¢), g(¢)) =1t — ¢
for every ¢ and ¢ in I. In the case where I = R, we say that g is a gradient line. In the
case where 7 = [0, oo[, we say that g is a gradient ray. If g is a gradient ray and if
x = g(0), then we say that g starts at x. If h: X — R is a horofunction, then a gra-
dient arc for h, or an h-gradient arc is a gradient arc for the cocycle of /.

The proof of the following lemma follows easily from the definitions.

LEMMA 2.9 (Concatenation of gradient arcs). Let ¢ be a cocycle on X and let
I C R be an interval, witha e I, [, =IN]—oo,aland I, =1 N[a,o00[. If g: I - X is
a path whose restrictions to I and I, are ¢-gradient arcs, then g is itself a ¢-gradient
arc.

The next proposition establishes relations between gradient arcs and geodesics.

PROPOSITION 2.10. Let ¢ be a cocycle on X. Then

(1) Any ¢-gradient arc g : I — X is a geodesic.

(i1) If x and y are points in X satisfying ¢(x,y) = |x —y|, and if g : [a,b] — X is
a geodesic joining x and y, then g is a p-gradient arc.

Proof. The proof follows from Properties (iii) and (iv) of Proposition 2.7.

If YC X, and x € X, then a projection of x on Y is a point y, € Y satisfying
dist(x, Y) = |x — yol, where dist(x, ¥) = inf,cy [x — yI.

PROPOSITION 2.11. Let h be a horofunction on X and let g : [ — X be an h-gra-

dient arc. Then, for every t and ' in I satisfying t < t', g(t') is a projection of g(t) on

h=t(h(g(1))).
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Proof. Since g is geodesic, we have |g(7) — g(¢)] = ¢ —¢. Since ¢ < ¢, we have
h(g(1)) = h(g(¢)), which implies h(g(1)) = h(g(1')) + dist(g(z), =" (h(g(1')))). There-
fore, we obtain |g(z) — g(¥)| = ' — 1 = h(g(1)) — h(g()) = dist(g(z), h~' (h(g(?)))).

PROPOSITION 2.12. Let h be a horofunction on X, let x € X and let ). < h(x). Then,
there exists a projection of x on h='(1). Furthermore, if y is a projection of x on h='()),
then h(y) = X and every geodesic joining x and y is an h-gradient arc.

Proof. By property (ii) of Definition 2.1, we have dist(x, 2~'(%)) < co. There-
fore, h='(1) # ¥. The set h~'(%) is closed, and since X is proper, we can find a pro-
jection y of x on this set. We have dist(x, 7~'(1)) = |x — y| = h(x) — A, and since
y € h~'(1), we obtain A(y) = A.

If g:[la,b] > X is now a geodesic arc joining x and y, we have
h(g(a)) — h(g(b)) = |x — y|. By Proposition 2.10 (ii), g is an /-gradient arc.

PROPOSITION 2.13. For every cocycle ¢ and for every x in X, there exists a ¢-
gradient ray g : [0, co[— X starting at x.

Proof. Let h be a primitive for ¢ and let us fix an arbitrary real number A > 0.
We let xo = x and for every integer i > 0, we take x;;; to be a projection of x; on
h='(h(x;) — ) (such a point x;,; exists by Proposition 2.12). There is a unique path
g : [0, oo[— X starting at x;, parametrized by arclength and whose image is obtained
by concatenating the segments [x;, x;+1]. By Proposition 2.12, each subpath of g
whose image is one of the geodesic segments [x;, x;;1] is an A-gradient arc. Lemma
2.9 implies now that g is an A-gradient ray.

PROPOSITION 2.14. Let ¢ be a cocycle on X, let g : I — X be a g-gradient arc and
let y € Isom(X). Then yg : I — X is a gradient arc for the cocycle yg.

Proof. The proof follows easily from the definitions.

3. The point at infinity associated to a cocycle. Given a cocycle ¢ on X, any ¢-
gradient ray g: [0, oco[— X, being a geodesic, converges to a well-defined point
g(o0) € 9X.

PRroOPOSITION 3.1. Let ¢ be a cocycle on X and let g:[0,00[— X and
g [0, oo[— X be two @-gradient rays. Then g(co) = g'(00).

To prove Proposition 3.1, we shall use the following lemma, which is an exten-
sion of Lemma 3.2 in [2]:

LEmMMA 3.2. Let x,y,p,q € X and let m be the middle of some geodesic seg-
ment [p, ql. Assume that L and € are real numbers satisfying the following three
properties:

() L<|x—pland L < |y —ql,

(i) Ix—pl < lx—m| +eand |y —ql < |y —ml +e,

(i) |x —y| < 2L —2¢e — 164.

Then, we have |p — q| < 328 + 2e.
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Proof. Let us draw three geodesic segments [p, x], [x, y] and [y, ¢]. By §-hyper-
bolicity, there is a point u on [p, x] U [x, y] U [y, ¢g] such that |m — u| < 85. We cannot
have u € [x, y] since otherwise we can assume by symmetry that u lies between x and
the middle m’ of the geodesic segment [x, y], and we would get then

I =yl = 2px — |
> 2|x —u|
> 2(]Jx —m| — |m —u|) by the triangle inequality,
> 2(|x — m| — 85)
> 2(lx —pl —e—88) by (i),
> 2L —2e— 168 by (i),

which contradicts (iii). Therefore, we have u € [p, x] U [y, ¢]. By symmetry, we can
assume u € [p, x] (see Figure 1).
We have

p—ul+lu—xl=lp—x|<m—-x|l+e<|m—ul+lu—x|+e<8+|u—x|+e

which yields |p — u| < 85 + €. Therefore, we obtain

P —ql =2Ip —m| < 2(|p — ul + |u — ml) < 326 + 2e.

Proof of Proposition 3.1. Suppose that ¢ is an e-cocycle. We can assume, without
loss of generality, that a = ¢(g(0), ¢'(0)) > 0. Let x = g(a) and y = g'(0). The cocycle
property implies then ¢(x, y) = 0. Let / be the primitive of ¢ satisfying 4(x) = h(y) = 0.
Consider a real number L > 0 and let p = g(a + L) and ¢ = ¢’(L). Since g and g’ are
gradient rays for /i, we have h(p) = h(g) = —L.

Let m be the midpoint of some geodesic segment [ p, ¢] (see Figure 2).

By the e-convexity of /4, we have i(m) < $h(p) +$h(q) + € = —L + €. We obtain
therefore [x —p| =L < —h(m) + € = h(x) —h(m) + € < |x —m| + €.

p m q
Figure 1.
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Similarly, we have |y — ¢q| < |y — m| + €.

Using Lemma 3.2, we deduce that |p —¢q| < 328§+ 2¢, provided L satisfies
|x —y| < 2L —2e — 164.

Therefore, we have |g(a + L) — g'(L)| < 328 + 2¢ for all L large enough, which
proves Proposition 3.1.

We can define now the a map 7 : ® — dX which associates to each cocycle
¢ € ® the endpoint of an arbitrary ¢-gradient ray.

ProOPOSITION 3.3. The map w: ® — 90X is continuous, surjective and equivariant
with respect to the actions of Isom(X) on the spaces ® and 3X.

Proof. For the surjectivity, let £ € 9X and let r: [0, co[— X be a geodesic ray
converging to &. Let £, be the associated Busemann function and let ¢, be the cocycle
of h,. For every t > 0, we have h,.(r(t)) = —t, from which it is easy to see that r is a
or-gradient ray. Therefore, we have n(g,) = r(oco) = &.

To prove the continuity of 7, let (¢,),-o be a sequence of elements of & con-
verging to ¢ € ®, and for each n > 0, let &, be a primitive of ¢,, normalized so as to
take the same value on a fixed point x € X for all n > 0. In this way, the sequence
(h,) converges to a primitive / of ¢. For each n > 0, we can construct, as in the proof
of Proposition 2.13, a ¢,-gradient ray g, starting at x by taking a sequence of suc-
cessive projections on the horospheres of /,. As the values of the horofunctions £,
are close to those of & uniformly on compact sets of X, we can manage so that the
sequences of projections that we use to construct the rays g, are uniformly close to
the sequence of projections which are associated to ¢. Thus, as n — oo, the geodesic
rays g, are uniformly close on every compact set from the ¢-gradient ray. Therefore
we have n(g,) — 7m(p). This proves the continuity of w. The equivariance follows
easily from the definitions.

For each cocycle ¢, for each geodesic ray r : [0, co[— X satisfying r(co) = n(¢)
and for each ¢ > 0, we set

R, ={zeX : go(r(t), z) =0}Nn B(r(t), 168).

(0)
p=gla+L)
m -
/0’/' q=g'(L)
y=g'0)

Figure 2.
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PROPOSITION 3.4. Let ¢ be a cocycle on X and let r : [0, oo[— X be a geodesic ray
such that r(co) = n(p). For all x in X and for all t satisfying t > |x — r(0)] + 165, we
have ¢(x, (1)) = dist(x, Ry,

Proof. Let x € X and let ¢ > |x — r(0)| + 165. Let g : [0, co[— X be a ¢-gradient
ray starting at x. By Proposition 3.1, the geodesic rays g and r converge to the same
point at infinity. By §-hyperbolicity, since we have ¢t > |x — r(0)| + 165, we can find
¢ > 0 such that |r(¢) — g(¢')| < 85. We have

1'=|x = g() = |r(0) — r()] —lx = r(O)| = |r(1) — g(t)| =t—|x — r(0)|—r(t) — g(¢')| = 8S.

Let us set u = ¢(x, r()).We have u = ¢(x, g(1')) + ¢(g(?), r(1)) = ' — (r(1), g(1)).

Using Proposition 2.7 (iv), we obtain ¢(r(7), g(t')) < |r(r) — g(¢')| < 83. This
shows that u > 0.

Using the cocycle property, we have ¢(r(7), g(u)) = ¢(g(0), g(u)) —u = 0. On the
other hand, we have [r(z) — g(u)| < [r(?) — g()] + |g(¢') — g(w)| < 83 + |g(7) — g(u)|.
Since [g(1') — g(w)| = l9(g(1), gw))| = le(g(t), r(1))| < 1g(r) — r(r)] < 85, we deduce
that |r(f) — g(u)] < 168. Thus, g(u) € R,,. By Proposition 2.11, the point g(u) is a
projection of x on R,,. Therefore, we have dist(x,R,,) = |x—gu)l =
1g(0) — g(u)| = u, that is, dist(x, Ry,) = ¢(x, (¢)). This proves Proposition 3.4.

COROLLARY 3.5. Let r: [0, co[— X be a geodesic ray, let r(co) = & € dX and let
(tn),>0 be a sequence of nonnegative real numbers tending to infinity. For each n > 0,
let B, be the closed ball of radius 168 centered at 1(t,). Let ¢ and ¢ be two elements of
@ satisfying () = n(¢') = & and such that for every n >0, ¢ and ¢' have the same
restriction on B, X B,. Then ¢ = ¢'.

Proof. Let x and y be two arbitrary points in X. Since t, — oo, we can find
an integer n > 0 satisfying ¢, > max(|x — r(0)|, |y — r(0)|) + 165. We fix such an
integer n.

The hypotheses imply that R,,, = Ry ,,, and we have, by Proposition 3.4,

o(x, r(1y)) = dist(x, Ry,,) = ¢ (x, (1))
and
o, (1)) = dist(y, Ry.1,) = ¢ (v, (1))

Using the cocycle property, we obtain ¢(x, y) = ¢/(x, y). This proves Corollary
3.5.

COROLLARY 3.6. Let h: X — Rand I’ : X — R be horofunctions on X having the
same point at infinity & € 0X. Let r: [0, 00[— X be a geodesic ray with r(co) = &.
Assume that h and W' have the same restrictions to the closed 168-neighborhood of
r([0, oo[). Then h =1'.

Proof. Consider a sequence (1,),-, of nonnegative real numbers tending to
infinity and for every n >0, let B, = B(r(ln), 168). By hypothesis, the cocycles
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associated to 4 and /' coincide on B, x B, for every n > 0. By Corollary 3.5, these
cocycles are equal. Since 4(r(0)) = //(r(0)), this shows that h = /.

COROLLARY 3.7. Every horofunction on X is 688-convex.

Proof. Let h: X — R be a horofunction and let ¢ denote the cocycle of 4. We
use the notations of Proposition 3.4. Let x and y € X and for ¢ > 0, let p and ¢ be
respectively projections of x and y on R, ;. Consider a geodesic segment [x, y] and let
z be a point on this segment satisfying |x — z| = u|x — y| for some u € [0, 1].

By the quasi-convexity of the distance-function (see [7], Chapter 3, Lemma 3.2.),
we have |z — p| < (1 — u)|x — p| + uly — p| + 44. Since the diameter of R, is bounded
by 328, we have |y — p| < |y — q| + 326.

Letting s be a projection of z on R, ,, we can write now

lz—s| <|z—p|+328 <(1 —uw)|x—p|+uly—p|l+45+ 325
= (1 —w)|x — p| +uly — q| + 686.

Let ¢t > max(|x — r(0)|, |y — r(0)|) + |x — y| + 165. By the triangle inequality, this
implies that for every z € [x, y], we have ¢ > |z — r(0)| + 168. Proposition 3.4 implies
now that A(x) = h(r(1)) + |x — pl, h(y) = h(r(1)) + |y — ¢l and h(z) = h(r(1)) + |z — s].
Therefore, we obtain

h(z) < (1 — wh(x) + uh(y) + 688.

This proves Corollary 3.7.
For F: X x X — R, we define || Fllo = sup, yjexxx [F(x, )|

COROLLARY 3.8. Let ¢ and ¢' € ®. Then, the following three perperties are
equivalent .
(i) 7(p) = n(¢)
(i) [l — ¢l < 645
(i) llo — @'l < 0.

Proof. Suppose first that () = n(¢/) = & and let r: [0, oco[— X be a geodesic
ray satisfying r(0) = Id and r(co) = &. Let x and y be arbitrary points in X and let
t > max({|x — r(0)], [y — r(0)[} + 165. Proposition 3.4 implies then ¢(x,r(r)) =
dist(x, Ry,/) and ¢(y, r(t)) = dist(y, Ry,).

By the cocycle property, we obtain therefore

o(x,y) = (p(x, r(t)) — <p(y, r(t)) = dist(x, Ry,;) — dist(y, Ry, /).

In the same way, we have ¢/(x, y) = dist(x, Ry ;) — dist(y, Ry ;).
Therefore, we have

lo(x, y) — ¢(x, )| = |dist(x, Rgﬂ,t) — dist(y, Rw,t) - (diSt(x’ R(p’,r) — dist(y, ch’,r))|
< |dist(x, R, ) — dist(x, Ry )| + |dist(y, Ry ;) — dist(y, Ry ;)|

Since the sets R, and R, , are both contained in the closed ball B(r(f), 165)
whose diameter is bounded above by 325, we have |dist(x, R, ;) — dist(x, Ry /)| < 326
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8(1)

g'(t)

Figure 3.

and |dist(y, R, ;) — dist(y, Ry ;)| < 328. Therefore, we obtain |¢(x,y) —¢'(x,y)| <
328 4 328 = 648, which proves that (i)=(ii).

The implication (ii)=(iii) is clear. We prove now (ii))=(i).

Let ¢ and ¢’ € @ satisfy n(¢) =& and 7n(¢/) = &, with § A&, and let £ : R —> X
be a geodesic line such that £(—o0) = & and £(o0) = &. We set x = £(0) and for ¢ > 0,
we set y = £(7). Let g : [0, oo[— X be a ¢-gradient ray starting at x. We have there-
fore g(oco) = &. By §-hyperbolicity, we have |y — g(¢)| < 45. Proposition 2.7 (iv) gives
lo(v, g(1))| < 48. By the cocycle property, we obtain |g(x, y) — 7| < 46.

Let g’ : [0, oco[— X be a ¢/-gradient ray starting at y (see Figure 3). In the same
way, we obtain |¢/'(y, x) — t] < 44.

We conclude that |p(x, y) — ¢/(x,y) — 2t] < 83. Since ¢ >0 is arbitrary, we
obtain |¢ — ¢/|l = 0o. This proves that (iii)=>(i), which concludes the proof of
Corollary 3.8.

PROPOSITION 3.9. The space ® is compact.

Proof. Let us fix a point xy € X and let H denote the space of horofunctions on
X which vanish at xy. The map which associates to each element of H its cocycle is
clearly a homeomorphism between H and ®. Let us prove that H is compact.

Every function # € H is 1-Lipschitz (Proposition 2.2) and satisfies |i(x)| <
|x — x| for all x € X. Therefore, to prove that H is compact, it is sufficient by
Ascoli’s theorem to show that H is a closed subset of the space of continuous func-
tions on X (for the topology of uniform convergence on compact sets).

Consider a function fon X which is the limit of a sequence (/,) of elements in H
and let us show that /'€ H. The function f'is 685-convex since every /, is 685-convex
(Corollary 3.7). Let us show that f'satisfies the distance-like property. Let x € X and
let A < f(x). The function f'is 1-Lipschitz since every #, is 1-Lipschitz. This implies
that

Sx) < &+ dist(x, /7 (). (3.9.1)
Let (1,) be a sequence of real numbers which converges to A and such that

A < XA, < fix) for all n. Since the distance-like property is satisfied by 4,, we can find,
for n large enough, a point p, € X such that

hn(x) =\ + |)C _pn| (392)

and
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In(Pn) = Ao (3.9.3)

After possibly replacing the sequence (p,) by a subsequence, we can assume that (p,)
converges to a point p € X. By taking limits, we deduce from (3.9.2) that

Sx) =1+ Ix—pl. (3.9.4)
Since |7, (py) — ha(p)| < |px — pl, we have, using (3.9.3),
flp) = ,}EEO ha(p) = ”lLIEQ hn(py) = A (3.9.5)
It follows from (3.9.4) and (3.9.5) that
fix) = & +dist(x, f71(0)). (3.9.6)

We deduce from (3.9.1) and (3.9.6) that f{x) = A + dist(x, /~'(1)). Thus f'satisfies the
distance-like property. We have shown that f'is a horofonction. Since /,(x¢) = 0 for
all n, we have f(xo) = 0. Therefore f € H. This completes the proof of Proposition
3.9.

THEOREM 3.10. Let ~ be the equivalence relation on ® defined by

p~¢ =g —¢llo < 0.

Then the map w: ® — 09X induces an Isom(X)-equivariant homeomorphism from the
quotient space ®/ ~ onto dX.

Proof. This quotient map is Isom(X)-equivariant, continous and bijective, by
Proposition 3.3 and Corollary 3.8. Since ® is compact and since dX is Hausdorff, the
quotient map is a homeomorphism.

4. Integral cocycles on hyperbolic groups. In all what follows, I is a group which
is §-hyperbolic with respect to some fixed finite set of generators A, and X is the
Cayley graph associated to the pair (I', 4). We denote by X° = I' the set of vertices
and by X! the set of edges of X.

DEFINITION 4.1. An integral horofunction on X is a horofunction & : X — R
satisfying h(X°) C Z. An integral cocycle is a cocycle having an integral horofunc-
tion as a primitive. Equivalently, an integral cocycle is a cocycle taking integral
values on X x X°.

PROPOSITION 4.2. Let r: [0, 00[— X be a geodesic ray starting at a point in
X% =T. Then, the associated Busemann function h, is an integral 48-horofunction.

Proof. The proof is easy, using Proposition 2.5.

PROPOSITION 4.3. Let h: X — R be an integral horofunction and let x and y be
adjacent vertices of X. Then h(y) is equal either to h(x), to h(x) —1 or to h(x)+ 1.
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Furthermore, the restriction of h to the segment [x, y] is entirely determined by the
values h(x) and h(y).

Proof. The proof is easy, using Proposition 2.2, Proposition 2.10 (ii) and Pro-
position 2.13.

COROLLARY 4.4. An integral cocycle ¢ is completely determined by its values on
the set X' x X0 =T xT.

Thus, we can regard an integral cocycle ¢ on X as a function from I' x I" to Z.
Let &, C W be the space of integral cocycles on X. The topology induced by ® on
@, is the topology of pointwise convergence on I' x T'.

For simplicity, we still denote by n: ®; — 9I' the restriction of the map
7 : ® — Il defined in Section 3.

PROPOSITION 4.5. The map n: &y — U is continuous, T'-equivariant, onto and
uniformly finite to one. In fact, we have, for every & € T,

card{p € ® : n(p) = £} < 2Ny + DV,

where Ny is the integral part of 168 + 1 and where N, is the number of elements in T
contained in the closed ball of radius Ny centered at the identity.

Proof. The continuity and the I'-equivariance of the map =z follow from Propo-
sition 3.3, and the surjectivity follows from Proposition 4.2. To prove the last state-
ment in the proposition, we need the following lemma, which will also be useful in
Section 7 below.

LEMMA 4.6. Let B = B(xg, Ny) be a closed ball in X centered at xy € T and whose
radius is an integer Ny > 0. Then the number of distinct restrictions to B x B of ele-
ments ¢ € ® is bounded above by 2Ny + 1), where Ny is the number of elements of
I at distance < Ny from the identity.

Proof. By Proposition 4.3 and the cocycle property, the restriction of ¢ to B x B
is determined by the function f: BNT — Z defined by f(x) = ¢(x¢, x). We have, for
every x in B, using Proposition 2.7(iv), [f(x)| = |¢(xo, X)| < |x — xo| < Ny. Since the
cardinality of BN T is Vi, the assertion follows easily.

Consider now an arbitrary finite subset F C 77 1(£) and let N’ = card(F). Let
r: [0, oo[— X be a geodesic ray starting at a vertex of X, with r(oo) = &, let (2,),, be
a sequence of nonnegative real numbers and for every n > 0, let B, be the closed ball
in X of radius Ny centered at (z,). We choose the sequence (#,) in such a way that
for every n > 0, t,0 — t, = |1(t,) — r(ty1)| > Ny + 164.

Let ¢ and ¢’ be two distinct elements of F. By Corollary 3.5, we can find an
integer m > 0 such that the restrictions of ¢ and ¢’ to B,, x B,, are distinct.

We claim now that if » > 1 is an integer such that ¢ and ¢’ have the same
restrictions on B, x B, then ¢ and ¢’ have also the same restrictions on B,_; x B,_1.
Indeed, for x € B,_;, we have
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ty = |r(0) — r(z,)l
= [r(0) = r(ta0)l + [r(ta1) — r(t)|
= (1r0) — x| = |x = r(ta-1)D) + [r(tu—1) — (1)
> (1r(0) — x| — No) + (No + 165)
= [r(0) — x| + 168.

Therefore, Proposition 3.4 gives ¢(x, r(1,)) = dist(x, Ry,;,).

For x and y arbitrary in B,_;, we obtain ¢(x,y) = ¢(x, r(ty)) — (v, r(ty)) =
dist(x, Ry,;,) — dist(y, Ry,1,)-

Thus, the value of ¢(x, y) depends only on the restriction of the cocycle ¢ on B,.
This proves the claim.

Therefore, there exists an integer ny > 0 such that for every n > ny, we have
©\B,xB, 7 ©|B,xB,- Since F is finite, we can find, by taking » large enough, a ball B,
with the property that the restriction to B, x B, of all of the N' cocycles in F
are distinct. By Lemma 4.6, we obtain therefore N’ < (2Ny + 1)'. This proves
Proposition 4.5.

5. The map « : &y — ®,. We start with the following

LEMMA 5.1. For every element ¢ € ®q and for every x € I' = X°, there exists an
element a € A satisfying o(x, xa) = 1.

Proof. By Proposition 2.13, we can find a ¢-gradient ray g : [0, oo[— X starting
at x. In particular, we have (p(x, g(l)) = 1. Furthermore, since g is a geodesic, we
have |x — g(1)| = 1, which implies that g(1) = xa for some «a in A.

We fix now, and for the rest of this paper, a total order relation on the gen-
erating set 4. Let x € X. The lexicographic order on 4N induces a total order on the
set of g-gradient rays starting at x.

PROPOSITION 5.2. Let x € I'. The set of ¢-gradient rays starting at x has a smal-
lest element.

Proof. We define first by induction a sequence (x,),-, of vertices of X. We start
by letting xo = x. Assuming that x, has been defined, we let @ € A be the smallest
element of A4 such that ¢(x,,x,a)=1 and we take then x,; =x,a. Let
g 1[0, oo[— X be the uniquely defined ray, parametrized by arclength and satisfying
g(n) = x, for every n € N. By Lemma 2.9, g is a ¢-gradient ray. It is clear that this
ray g is smallest among all the gradient rays staring at x.

We call the gradient ray provided by Proposition 5.2 the smallest -gradient ray
starting at x.

ProPOSITION 5.3. Let 9 € ®g, x € X and y € T. If g : [0, oo[— X is the smallest

p-gradient ray starting at x, then for every n > 0, the smallest p-gradient ray starting
at g(n) is the ray g, : [0, oo[— X defined by g,(t) = g(t + n), for every t > 0.
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Proof. The proof follows from the construction of the smallest ¢-gradient ray
given in the proof of Proposition 5.2.

PROPOSITION 5.4. Let ¢ € @, let x € T and let g : [0, co[— X be the smallest ¢-
gradient ray starting at x. Then for all y € T, the map yg : [0, oo[— X is the smallest
y-gradient ray starting at yx.

Proof. The proof is easy, using the construction of the smallest gradient ray
described in the proof of Proposition 5.2.

DEFINITION 5.5. We define the map o : &y — P, by letting, for every ¢ € Py,
a(p) = a~ ', where a is the smallest element in A satisfying o(Id, a) = 1.

PROPOSITION 5.6. The map o : &y — D is continuous.

Proof. Let ¢, be a sequence of elements in ®( converging to ¢ € ®(. There exists
ny € N such that for all n > ny, the cocycles ¢ and ¢, coincide on B(/d, 1) x B(Id, 1).
Therefore, there exists a € A4 such that Vn > ng, a(p) =a '¢ and a(p,) = a '@,
Since T acts continuously on @, this shows that a(p,) = a(p) as n — oo.

PROPOSITION 5.7. Let ¢ € ¢ and let g : [0, oo[— X be the smallest p-gradient ray
starting at the identity. For every n € N, let a, € A be the label of the oriented edge
going from g(n) to g(n+ 1) and let g, : [0, oco[— X be the smallest &"(p)-gradient ray
starting at the identity. Then, we have

() o'(¢) = gm) .

(ii) For every t >0, g,(t) = g(n)"'g(t + n).

(iii) For every k € N, the label of the oriented edge going from g,(k) to g,(k + 1)
LS Qje4n-

Proof. Let us first prove (i) by induction on n. For n =0, the statement is
obviously true. Suppose now that o’(¢)=g(n) '¢ for some neN. Then,
() = a(a(9)) = a(g(n)~'¢). By definition, we have a(g(n) ') =a'gn) 'y
where « is the smallest element in A satisfying g(n) '¢(Id, a) = 1, or equivalently
go(g(n), g(n)a) = 1. By the construction of the ¢-gradient ray given in Proposition
52, we see that a=a, Therefore we have a(g(n)'¢) =a,'(g(n) o) =
(g(n)a,,)flgo = g(n+ 1)"'p, which completes the induction and the proof of (i).

Proposition 5.4 implies that for every n > 0, g(n)g, is the smallest ¢-gradient ray
starting at g(n). By Proposition 5.3, wo obtain g(n)g,(f) = g(t + n) for every ¢t > 0, or
equivalently g,(r) = g(n)~'g(n + 1), which proves (ii). Now (i) clearly implies (iii).
This completes the proof of Proposition 5.7.

6. Consistent sequences. Let S be a finite set. We denote by ¥ the set SV of
sequences (0y),-9 With o, € S for every n > 0. The sets N and S are equipped with
the discrete topology, and ¥ with the product topology, i.e. the topology of point-
wise convergence. The shift map is the continuous map 7: ¥ — X defined, for
0 = (0y),=0 € =, by T(0) = o’ where ¢’ is the sequence (o)), such that o, = 0,4
for every_n > 0. -

The dynamical system (X, 7) is usually called the one-sided Bernoulli shift on S.
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DEFINITION 6.1. Let k > 1 be an integer and let W be a subset of S**!. The set

Yw={o=(0,)eX : VneN, (0,,, onJrk) e W}

is a closed T-invariant subset of of X. The dynamical system (X, T) is called the
subshift of finite type associated to the pair (S, W).

In this section, we define a subshift of finite type (X(c0), 7) and a map
P: dy — X(c0). We show that P is continuous, injective, and that it satisfies the
relation Poa = T o P. In Section 8, we shall prove that P is surjective. Thus, P is a
topological conjugacy between the dynamical systems (g, @) and (2(o0), 7).

We continue using the notations of the preceding section. We take a real num-
ber Ry > 1008 + 1 and an integer Ly > 2Ry + 328 + 1.

For every subset ¥ C X and for every € > 0, we set

N(Y,e) ={x € X : dist(x, Y) < €}.

Let ¢ € @y and let g : [0, co[— X be the smallest p-gradient ray starting at Id.
We set

V(g) = N(g([0, Lol Ro).

Note that we have V(p) C B(Id, Ly + Ry).
For each ¢ € @, let p(p) : V(¢) — R be the function defined by

p(@)(x) = ¢(x, Id),

for each x € V(). We note that p(p) is the restriction to V() of the primitive /4 of ¢
satisfying h(Id) = 0.

Let S be the set of functions p(¢), with ¢ ranging over ®,. Thus, we have a
surjective map p : &y — S which associates to each ¢ € @ the function p(¢p). Given
an element s € S, we denote by V(s) the domain of definition of this function s.

LEMMA 6.2. The set S is finite.

Proof. Consider an integer Ny > Ly + Ry and let B = B(Ild, Ny). The cardinality
of S is bounded by the number of distinct restrictions of elements ¢ € &, to B x B.
By Lemma 4.6, this number is bounded above by (2N, + 1)V, where N; is the
number of elements of I" at distance < N, from the identity.

Let P: ®y) — ¥ be the map which associates to each ¢ € ®, the element
0 = (04),=0 € T defined by o, = p((¢)) for all n > 0.

LEMMA 6.3. We have Poa = T o P.

Proof. Let P(p) = (0,),>0 and let P o a(p) = (0,),-0.- Then, we have, for every
n>0,

G;z = p(an(a(go))) = p(an+l(§0)) = Op+1-
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LEMMA 6.4. The map P : &y — X is continuous.

Proof. Let (p4),~o be a sequence in &, converging to ¢ € ®y and consider an
integer k > 0. By Proposition 5.7, the map o : &y — @, is continuous. Therefore,
we have o(¢,) — of(¢) as n — oo. Hence, for all n large enough, the cocycles o(¢,)
and o*(p) have the same restriction on the product B(Id, Ly + Ry) x B(Id, Ly + Ry).
This implies that p(o*(¢,)) = p(e¥(¢)). Therefore, for all n large enough, the
sequences P(g,) and P(p) have the same (k + 1)-th coordinate. This shows that P(g,)
converges to P(g).

We note now that since Ry > 1, then for every s € S, its domain V(s) contains
the closed ball B(Id, 1). Therefore the value s(a) is well-defined for all a € A. Since
the set A4 is equipped with a total order relation, we can define w(s) € 4 to be the
smallest element a € A satisfying s(a) = —1.

Let 0 = (0,),50 € X. We associate to o the sequence (yn(a))n>0 of elements in
X% =T, defined by setting yy(0) = Id and for every n > 1, -

)/,1(0') = W(JO)'"W(O—nfl)-

For every n > 0, let

Vn(a) = Vn(G)V(Un) = {)/,1(0'))( PX € V(Un)}~

We note that the set V,(0) depends only on the first n + 1 coordinates of o.
For every n > 0, we define the function f,(0) : V,(0) —> R by

fn(O')(X) = Un()/n(U)_IX) — n.

We note that f,(o) is the restriction to V,(o) of a horofunction. In fact, if
h:X — Ris a horofunction whose restriction to V,(o) is o,, then y,(0c)h —n is a
horofunction whose restriction to V(o) is f,(o).

LEMMA 6.5. Let ¢ € O, let 0 = P(p) and let g : [0, co[— X be the smallest ¢-
gradient ray starting at Id. Then, for every n > 0, we have the following:
(1) yu(o) = g(n)
(i) V(o) = N(g([n, n + Lo)), Ro)
(ii1) f,(0) is the restriction to V,(o) of the primitive h of ¢ satisfying h(Id) = 0.

Proof. By Proposition 5.7 (iii), w(o,) is the label of the oriented edge going from
g(n) to g(n + 1). Therefore, we have y, (o) = g(n). This proves (i).

To prove (ii), we note that Proposition 5.7 (ii) implies that the «"(¢)-gradient
say starting at the identity is defined, for ¢ > 0, by ni—g(n)~'g(¢ + n). Therefore, we
have

V(o) = N(g(n) ™" g([n, n + Lo)), Ro).
Thus, we obtain

V11(U) = )’n(U) V(GI1) = g(n) V(Gn) = N(g([l’l, n+ LO])» RO)

https://doi.org/10.1017/50017089501030063 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501030063

GROMOV HYPERBOLIC GROUPS 441

To prove (iii), let x € V(o). Then, we have

f;,(G)(X) = On (Vn(a)_lx) —n
= (@) (yu(0) "' x) —n
= al1(§0)()/11(0)71xa ]d) —n

= o"(¢)(g(n) "' x, Id) — n
= ¢(x, g(n)) — n (Proposition 5.7(i))

= h(x) — h(g(n)) —n
= h(x).

LEMMA 6.6. The map P : &y — X is injective.

Proof. Let ¢ and ¢ be two elements of ®; such that P(p) = P(¢') and let
g :[0,00[— X and g’ : [0, oo[— X be the smallest gradient rays starting at the iden-
tity and associated respectively to ¢ and ¢’. By Lemma 6.5 (i), we have g(n) = g'(n)
for every n > 0. This implies that g = g’. Using proposition 5.7 (i), we have, for
every n>0, o'(p)=gn) '¢. Since gn)'¢ and g1n)'¢ coincide on
B(Id, Ry) x B(Id, Ry) then ¢ and ¢ coincide on B(g(n), Ry) x B(g(n), Ry). As
Ry > 166, Proposition 3.5 implies that ¢ = ¢'. This proves Lemma 6.6.

DEFINITION 6.7. Let 0 € ¥ and consider an integer k > 1. We say that o is con-
sistent up to order k if for all i and j € N satisfying i <j < i+ k, we have

filo)(x) = fi(o)(x) Vx € Vi(o) N V(o).

We say that o is consistent if it is consistent up to order k for all k > 1, i.e. if we have
fi(o)(x) = fi(o)(x) for all i, j € N and for all x € Vi(o) N V(o).

For every integer k > 1, we let X(k) C X denote the set of sequences which are
consistent up to order k, and we let X(co) C X denote the set of consistent sequences.

LEMMA 6.8. We have P(®() C X(00).
Proof. Let ¢ € &) and let 0 = P(¢). By Lemma 6.5 (iii), we have, for every
x € Vy(0), fu(o)(x) = h(x), where #h is the primitive of ¢ which vanishes at the iden-

tity. The right hand side does not depend on n, which proves the assertion.

PROPOSITION 6.9. For every integer k > 1, the set X(k) C X is a subshift of finite
type.

Proof. An element o € ¥ is consistent up to order & if and only if we have
0i(yi(0)~'x) — i = o(y(0) %) — ). (6.9.1)

for every i and j € N such that i <j < i+ k and for every x € V(o) N V(o).
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Let y = y:(0)"'x and let vij(o) = y,-(a)_ly,-(a). Then, equation (6.9.1) is equiva-
lent to Uj(y) = )/,,(O')O',(y) — (] — l), for all y e V(O’,‘) N )/[,_/(O') V(O/)

We have yi(0) = w(oi1) ... w(o0) " w(0p)...w(0;_1) = w(o7)...w(o;_1).  Let
W C "1 be the set of words (so, ..., 5¢) satisfying so(y) = (W(so)-..w(Sm—1))sm(¥) — m
for every m such that 1 < m < k and for every y € V(sg) N w(so)...w(S;u—1)V(sn). Then
(k) = Zw. Thus, X(k) is a subshift of finite type. This proves Lemma 6.9.

For A ¢ X and R > 0, we define

S(4,R) ={x e X : dist(x, A) = R}.

It is easy to see that if if 4 C X is a bounded set, then, for every R > 0, the set
S(4, R) is finite.

LEMMA 6.10. Let Ay, ..., A, be a collection of bounded subsets of X, let R, ..., R,
be a collection of positive real numbers and let T C U}_| N(A;, R;) be a topological
segment (that is, T is a subset of X which is homeomorphic to a compact interval).
Then, we can find a sequence of consecutive points zy, ...,z € T such that for every
i=1,..,k—1, there exists an integer j = j(i) € {1, ...,n} such that the topological
segment [z;, zir1] C I is contained in N(4;, R;).

Proof. Let Q = U S(A;, R;). Thus, Q is a finite set. Let zo, ..., z, be the sequence
of points in Z N €, appearing in this order. For each i =1, ..., n — 1, let z/ be a point
in the interior of the topological segment [z;, z;+1] C Z. The point z} belongs there-
fore to a set N(4;, R;) for some j = j(i). The intermediate value theorem implies then
that the segment [z;, z;41] is contained in N(4;, R;). This proves Lemma 6.10.

Let 0= (04),50 € . Since y,41(0) = yu(0) w(o,) for every n>0, we have
|¥4(0) — Yut1(0)] = 1. Therefore, there is a unique path r(o):[0, co[— X para-
metrized by arclength and satisfying r(o)(n) = y,(o) for every n > 0.

LeEmMA 6.11. Let k > 2(Lo + Ro) be an integer and let o = (0,),-¢ € T be con-
sistent up to order k. Then, r(o) is a geodesic ray and o is a consistent sequence.

Proof. To fix our notations, let us record the fact that the sequence (0y,),-( 1S
consistent up to order k implies the following: -

(6.11.1) For every i and j € N satisfying i <j < i+ 2(L¢ + Ry) and for every x in
Vi(o) N Vi(o), we have fi(o)(x) = fi(o)(x).

We use induction on # to prove simultaneously the following two properties for
every n > 0:

(P,) The restriction of r(o) to [0, n] is geodesic.

(Qy) For every 0 <i <j < n and for every x € Vi(o) N V(0), we have fi(o)(x) =
£(©0)).

This will clearly prove the lemma.

Py and Qy are trivially satisfied. Let us suppose that P, and 9, are satisfied for
some n € N and let us prove P, and Q4.

By property Q,, there exists a function H,(o): Vy(o) U ...U V,(c) > R whose
restriction to each V(o) is equal to fi(o) for every i < n.

From the definitions, we have
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Jor1(@)(1(@)(n + 1)) = fo11(0) (Yut1(0)) = Op1 () — (n+ 1) = —(n + 1).

Condition (6.11.1) implies in particular that f,, (o) coincides with f,(o) on
V(o) N Vyp1(0). We have r(o)(n + 1) € V(o) N V,11(0). Therefore

H,(0)(r(@)(n + 1)) = fy(0)(r(0)(n + 1)) = —(n+ 1).

Consider a geodesic segment [r(0)(0), r(o)(n + 1)] and let T be the geodesic triangle
in X whose vertices are r(0)(0), r(o)(n) and r(o)(n+ 1), and whose sides are
[r(0)(0), (o) + 1)], the edge joining r(o)(n) to r(o)(m+ 1) and the segment
r(o)([0, n]).

By 8-hyperbolicity, if z is an arbitrary point on [r(c)(0), r(o)(n + 1)], there exists
an integer i satisfying 0 < i < n such that |z — r(o)(i)| < 45+ 1. Since the set V;(0)
contains the closed ball of radius Ry > 100§ + 1 centered at r(o)(i), we have
z € V(o). Therefore, [r(0)(0), r(c)(n + 1)] C V(o) U ... U V,(0).

By Lemma 6.10, there exists a sequence Id = zy, z1, ..., zx = r(o)(n + 1) of con-
secutive points on [r(0)(0), r(c)(n+ 1)] such that for every i=0,1,..,k—1,
[zi, zix1] C Vi(o), for some j = j(i) € {0, ..., n} (see Figure 4).

We can write, for every i =0,1, ...,k — 1,

| Hu(0)(zi) — Hu(0)(zix )| = | fj(0)(zi) — fi(0)(zis ).

Since fj(0) is the restriction to V(o) of a horofunction, and since horofunctions
are 1-Lipschitz (Proposition 2.2), we obtain |H,(0)(z;) — Hu(0)(zi+1)| < |zi — zit1]-
We have therefore

k—1

|H,(0)(r(0)(0)) — Hy(0)(r(0)(n + D)| = | iHn(o)(Zi) — Hy(0)(zi11) |
i=0
k-1
<Y lzi—zil
i=0
= |r(0)(0) = r(o)(n + D).

Thus, we obtain
length(r(0) o 117) = 1+ 1 = [Hy(0)(Id) — H,(0)(r(n + 1))| < [r(0)(0) — r(o)(n + 1),

which proves that r(0), 417 1s @ geodesic. This proves property P1.

Y

Figure 4.
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We prove now property Q,,1. Let0 <i<j<n+ 1.If |i —j| <2(Ly + Ry), then
Jilo)(x) = fi(o)(x) for all x € Vi(o)N Vi(o), since o is consistent up to order k.
Assume now that |i —j| > 2(Lo + Rg). We have V(o) C B(r(o)(i), Lo + Ro) and
Vi(o) C B(r(o)( s Lo+ Ro). By property Ppi1, 1(0) [0 41) 18 @ geodesic, which implies
[r(0)(@)—r(o)(j)|=li—j| > 2(Lo+Ry). Therefore, B(r(a)(i), Lo—i-Ro)ﬂB(r(a)(j), L0+R0)
=¢. Thus, we have V(o) N V(o) =9. This proves property Q,.;. This proves
Lemma 6.11.

LEMMA 6.12. Let k > 2(Ly + Ry) be an integer. Then, %(k) = X(00).
Proof. This is a consequence of Lemma 6.11.
We obtain finally the following

THEOREM 6.13. The set of consistent sequences %(00) C X is a subshift of finite
type.

Proof. This follows from Lemmas 6.9 and 6.12.

7. The horofunction associated to a consistent sequence. Let o = (0,),-¢ € X(00)
be a consistent sequence. Our aim is to construct an element ¢ € ®, such that
P(¢) = o, in order to prove the surjectivity of the map P: ®y — X(o0). This will
require several lemmas.

We fix an element o € X(oc0) and we set, in order to simplify the notations,
r(o) = r and for every n > 0, V(o) = Vy, fu(o) = f1, yu(0) = v, and w(o,) = w,,.

We let V' =U,>0V,, and we define /: V' — R to be the function whose restric-
tion to each V, is equal to f,.

LemMA 7.1. We have

(1) For alln >0, V(o,) = N(yn’lr([n, n+ Lo)), Ro).
(i1) Foralln>0,V, = N(r([n, n+ Lo)), Ro).
(iii) ¥ = N(r([0, o9[), Ry).

Proof. For every integer n > 0, we let i, : X — R be a horofunction with asso-
ciated cocycle ¢, : X x X — R, such that o, = p(¢,). We recall that we have a func-
tion f,, : V,, — R defined by

fn(ynx) = Un(x) —n, Vx € V(Gil)'

We recall also that for every integer k € [0, L], we have y,i1ii1 = ViurkWniko
where w,, is the smallest a € A4 satisfying o,,x(a) = —1. Thus, w,, is the smallest
a € A satisfying f,, 1 (Yura) — (n + k) = —1.

Let us fix an integer n > 0 and let g, : [0, co[— X be the smallest ¢,-gradient ray
starting at Id. We prove by induction on k, 0 < k < L, the following property :

(Pi) : gu([0, K1) = v, ' r([n. n + k).

Assertion (i) of the Lemma follows then by taking L = L.
Property (Py) is true since r(n) = y, and g,(0) = Id.
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Suppose that (Py) is true for some k < Ly, and let us prove (Px.1). For that, it
suffices to prove that g,(k +1) =y, 'r(n+k + 1), that is, g.(k+1) =y, ' Vurks1-
Using property (Pi) and the fact that y,ix+1 = YutkWnrk, it suffices to prove now
that g,(k + 1) = gn(k)wn+k-

From the definition of the ¢,-gradient ray g,, we have g,(k + 1) = g,(k)a, where
a is the smallest element in A satisfying h,(g,(k)a) = h,(ga(k)) — 1.

Since k < Ly and since V(o,) = N(ga([0, Lo]), Ro), gn(k) and g,(k)a belong to
V(o,). Thus, a is the smallest element in A such that o,(g.(k)a) = 0,(g.(k)) — 1.
Equivalently, a is the smallest element in A such that f,(v.ga(k)a) = f,(vagn(k)) — 1,
or equivalently (using property (Py)), fu(r(n + k)a) = f,(r(n + k)) — 1.

The elements r(n + k) = yux and r(n + k)a = y,yra belong to y, 1 B(d, 1) C
Vauirk V(Onir) = Viark, and the functions f, and f,,; have the same restriction on
VyN V. Thus, a is the smallest element in A satisfying [k (r(n+ k)a) =
Jurk(r(n + k) — 1, or equivalently f,,1(yuria) = —(n + k) — 1.

That is, a is the smallest element in A satisfying o, ,(¢) = —1, which implies that
a = wy.x. This proves (i).

Property (ii) follows from (i) since V,, = y, V(0,).

We prove now Property (iii). For all n > 0, we have, from Property (ii),
V= N(r([n, n + Lo]), Ro) C N(r([0, oo[), Ro). Therefore, we have V'C N(r([0, o<[), Ro).

Conversely, let x € N(r([0, oo[), Ro). If x¢ r([0, oo[), then since X is a simplicial
complex of dimension 1, the projection of x on this ray is necessarily a vertex r(n).
Then, we have x € B(r(n), Ry), which implies that x € V,. This shows that
N(r([0, o0[), Rg) C V, which completes the proof of Lemma 7.1.

We have the following:

LEMMA 7.2. Let x and y €V, and suppose that there exists a geodesic segment
[x, ] contained in V. Then, we have | f(x) — f(¥)| < |x — y|.

Proof. There exists an integer n such that [x,y] C Vo U...U V, and by Lemma
7.1 (ii), each V), is a set of the form V,, = N(r([n, n + L)), Ro). Therefore, by Lemma
6.10, there exists a sequence xy = zo, z1, ..., Zx = ¥ of consecutive points on [x, y]
such that for every i =0, 1, ..., k — 1, the geodesic sub-segment [z;, z;11] C [x, V] is
contained in a set V; for some j = j(i) € N. We have, using Proposition 2.2,

|f(zi) = fzix)| = | fi(z) = fizig )] < |zi — zia |-

By taking the sum, we obtain [f{x) — f(¥)| < |x — y|.
LeMMA 7.3. For every t > 0, we havef(r(t)) = —1.

Proof. For every integer n > 0, we have f(r(n)) = fu(y,) = —n. For t > 0, we let
n be an integer satisfying n < t < n+ 1. We recall that since Ry > 1, the domain V,
of f, contains the closed ball of radius one centered at y,, = r(n). Therefore, V, con-
tains the segment [r(n), r(n 4+ 1)] and we have fj. rt-1)] = Sulfron),snt1)-

The function f, is the restriction of a horofunction /%, : X — R in such a way
that ry, ,41) is an h,-gradient arc. Since /£, takes the values —n and —(n + 1) respec-
tively at r(n) and r(n + 1), we have h,(r(r)) = —t.
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For each ¢ > 0, we define the set
S =f_l(—l) n N(V([O, OO[), 85)

LEMMA 7.4. For every t >0, S; is a nonempty closed subset of X and we have
S, C B(r(1), 169).

Proof. Let t > 0. Lemma 7.3 shows that S; is nonempty. Since the function f,
restricted to any of the closed sets V,,, is equal to f,,, fis continuous. This implies that
f7!(=1) is closed in ¥, which in turn implies that S, = /~'(—7) N N(r([0, oc[), 83) is
closed in V. Now V is a closed subset of X (see for instance Lemma 7.1(iii)). This
implies that S; is a nonempty closed subset of X.

It remains to prove the inclusion S, C B(r(l), 168). Let y € S;. Then, we have
f(y) = —t, and |y — r(¢)] < 86§ for some ¢ > 0. Furthermore, any geodesic segment
[y, r(¢)] is contained in V. Using Lemma 7.2, we have

(1) = r(D] =11 — 1] = |fy) = (1) < Iy = ()] < 88,
which implies [y — r(?)| < |y — r(¥')| + |r(¥) — r(?)| < 164. This proves Lemma 7.4.

We introduce now the following definition:

Let I C R be an interval. A rectifiable path g : I — Viscalled an f-gradient arc if g
is parametrized by arclength and if for all rand ¢ € I, we have f(g(1)) — f(g(t)) = 7 — ¢.

If 7 =0, oo[, then g is also called an f-gradient ray.

LEMMA 7.5. The geodesic ray r : [0, oo[— X is an f-gradient ray.
Proof. This is an easy consequence of Lemma 7.3.

LEMMA 7.6. An f-gradient arc whose image is contained in N(r([0, oo[), 168) is a
geodesic arc.

Proof. Let g:I— N(([0, 00[), 168) be an f-gradient arc. Consider two real
numbers ¢ and ¢ satisfying 0 < ¢ < ¢. Consider a geodesic segment [g(?), g(#')]. Since
g(t) and g(¢') € N(r[0, o), 168), we can find points u# and u' € [0, oo[ such that
lg(?) — r(u)] < 168 and |g(¢) — r(u')] < 165. Consider geodesic segments [g(¢), r(u)]
and [g(?), r(«')] and the geodesic quadrilateral whose sides are [g(7), r(u)], [r(u), r(i/)],
[g(?), r(i/)] and [g(7), g(¢)]. Since X is 8-hyperbolic, every point on [g(¢), g(¢')] is at
distance <88 from [g(?), r(w)] U [r(w), r(@)] U [g(?), r(/)]. Thus, [g(2),g(t)] C
N(r([0, o), 248) € N(r([0, o), Ry) = V, since Ry > 2445. Using Lemma 7.2, we have

length(gy.r) = |1 — 1| = | fe(1)) —fe())] < Ig(1) — ().
This proves Proposition 7.6.
LEMMA 7.7. Let x € V. Then, there exists an integer n >0, a real number
t € [n,n+ Ly] and a point y € V,, such that the following three properties hold:

(1) |x—r(m] = Ro
(i) [y —r()] = 83
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(iii)) fix)—f)=Ix—y|=Ro+85+ 1.
Furthermore, if x € N(r([0, oo[), 88) C V, then we can find n, t and y satisfying the
three properties above and such that every geodesic segment [x, y] is contained in V.

Proof. Let x € V. Then, dist(x, ([0, 0o[)) < Ry. Either the point x is on ([0, oc[),
and in this case x is at distance < 1/2 from a vertex on r([0, oo[), or a projection of x
on ([0, oo[) is a vertex of X, that is, an element of the form r(n) for some n € N. In
any case, there exists an integer n such that |x —r(n)] < Ry. Let &, : X — R be a
horofunction whose restriction to V,, is equal to f,. The map gy : [0, Lo] — X defined
by setting go(¢) = r(n + t) for every ¢ € [0, Lo] is an h,-gradient arc. Using Proposi-
tion 2.13 and Proposition 2.9, we extend gy to a map g : [0, oco[— X which is an /,,-
gradient ray starting at r(n).

Let g’ : [0, oo[— X be an A,-gradient ray starting at x and let y = g'(Ry + 88 + 1).
Then, we have h,(x) — h,(y) = |x — y| = Ry + 85+ 1. By Proposition 3.1, the two
rays g and g’ converge to the point at infinity of /4,. Consider a geodesic segment
[x, r(n)], and the geodesic triangle with one point at infinity whose sides are [x, r(n)],
£([0, oo[) and g'([0, oo).

By é-hyperbolicity, there exists a point z € [x, r(n)] U g([0, oo[) such that
|y — z| < 88. Such a point z cannot be on [x, r(n)]. Indeed, if z € [x, r(n)], then we
would have

X =yl <Ix—r(m)|+|z—y < Ry +85 < Ry + 85+ 1,

a contradiction. Therefore, we have z € g([0, oo[). Thus,

[r(n) —z| < |lr(n) — x|+ |x—y|+ 1y —z| 2Ry + 85+ 1 < Ly.

Therefore, z € g([0, Lo]) = r([n,n + Ly]). Let z=r(t) (see Figure 5). Since
ly — r(?)| < 85, we conclude that y € V,.

It remains to prove now the last part of the lemma.

Suppose first that x & r(J0, oo[). In this case, there is an integer n such that
|x — r(n)] < 85. We consider this integer n, and we use the same ¢ and y provided by
the above construction.

Consider a geodesic quadrilateral whose sides are [x, ], [x, r(n)], [r(n), r(f)] and
[r(?), y]. Let v € [x, y] and let us prove that v € V. By the §-hyperbolicity of X, there
exists a point w € [x, r(n)] U r([n, {]) U [r(¢), y] such that |v — w| < 83.

r(n) H1)
Figure 5.
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Since [x, r(m)] U r([n, 1) U [r(2), ¥] C N(r([n, n + Lo])83), we have v € N(r([n, n+
Lo])1638) C V.

In the case where x € r([0, oo[), x = r(ty) for some #; > 0. Then, the required
properties are satisfied with n equal to the integral part of #y, y = r(tg + Ry + 85 + 1)
and 1 =1t + Ry + 85+ 1.

LEmMma 7.8. Let x € N(r([0, o0[), 85). Then, there exists an f-gradient ray
g 1[0, oo[— X starting at x and satisfying g([0, oo[) C N(r([0, oo[), 1668). Furthermore,
if g:10,00[— X is such an f-gradient ray and if t > 168 — f(x), then we have
g(t+fix) € S,.

Proof. Using Lemma 7.7, we construct, by induction, a sequence (x;),., of points
in X with xo = x and such that for each i > 0, the following three properties hold:

(1) x; € N(r(]0, o0]), 85)

(i1) there exists an integer n = n(i) such that every geodesic segment [x;, x;11] is
contained in V),

(iii) f{x;) — fAxis1) = |X;i — Xip1] = Ro + 85 + 1.

For each i > 0, consider a geodesic segment [x;, X;11].

We have [x;, x;11] € N(([0, o), 168). Indeed, let p; € r([0, oo) satisfy |x; — p;| <
86 and consider a geodesic segment [x;, p;]. By S-hyperbolicity, every point on
[x:, x;1] 1s at distance < 838 from the union [x;, p;] U [pi, piz1] U [pis1, Xix1]. The tri-
angle inequality implies now [x;, x;+1] C N(r([0, oo[, 166).

Let g : [0, co[— X be the ray starting at x obtained by concatenating the geo-
desic segments [x;, x;+1]. We have g([0, oo[) C N(r([0, oo, 168) and, for all i > 0,
X, = g(l,'), with ¢; = (R() + 85 + l)l

By Property (ii), we have g([¢;, t;+1]) C V. By Property (iii), we have

Tu(g(t)) = fulg(tivn)) = tip1 — .

The function f, : V,, — R is the restriction to V), of a horofunction /%, : X — R.
By Proposition 2.10(ii), g is an h,-gradient arc. Since f coincides with /4, on V,,, this
shows that for every i > 0, gy;,.,.,,] is an f-gradient arc. Thus, g is an f-gradient ray.

By Lemma 7.6, g is geodesic. The two geodesic rays g and r have the same point
at infinity, since g([0, oo[) C N(r([0, oo[, 163). Let 7 = —f(x) and let 7 > 165 + /. We
take a geodesic segment [x, r(#')], and we consider the geodesic triangle with one
vertex at infinity, whose sides are [x, r(¢')], r([¢, oo[) and g([0, oo[). By 8-hyperboli-
city, each point on g(J0, o) is situated at distance < 88 from [x, r(¢')] U r([¢, oo]).

Let ¢ = g(1 + f(x)) = g(t — ') and let us prove that g € S. Since ¢ > ' + 168, we
have

dist(q, [x,r)]) = lg—x| — |x —r({)| =1t —1 — |x — r({)] > 165 — 85 = &S.

Therefore, g € N(r([0, o), 85). To prove that ¢ € S,, it remains to prove that
flqg) = —t. Now since g is an f-gradient ray, we have f(g(O)) —flgp=t—1 —-0=
t—1. On the other hand, we have f(g(0)) = f(x) = —, which implies f{¢) = —1.
Thus, ¢ € S;. This completes the proof of Lemma 7.8.

For each x € X, we define the function A, : [0, oco[— R by

Ax(f) = dist(x, S)) — 1.
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LEMMA 7.9. Let x € X. Then, there exists ty > 0 such that for every t > ty, we
have Ax(t) = Ax(t).

Proof. The proof is given in two steps.

Step 1. Let t; = 2|x — r(0)| + 245. We prove that for all r > ¢, and for all
' > t+ |x —r(0)] + 408, we have A (') > A(1).

Consider ¢ and ¢ satisfying these conditions and let ¢’ be a projection of x on S,.

This projection exists since S, is a nonempty closed subset of X (Lemma 7.4). Con-
sider now a geodesic segment [x, ¢'].

We claim that [x, ¢'| N S; # 0.

To prove the claim, we take geodesic segments [x, r(0)] and [¢, r(¢')]. Since the
space X is 8-hyperbolic, every point on [x, ¢'] is at distance < 8§ from some point on
[x, (O] U ([0, /) U[g', 1(?)]. Since S, C B(r(7'), 163), we have

Ix = q'1 = [r(0) = r()] = Ix = r(0) = I¢" = r()] = ¢ = |x = r(0)] — 163

Thus,
|x —¢'| = t+ |x —r(0)] + 408 — |x — r(0)] — 166 = 1 + 248 > 2|x — r(0)| + 485.

We can take therefore two points

|x — y1] = |x — 1(0)|+ 248 and |y, — ¢'| = 246.
Since |x — ¢'| > 2|x — r(0)| 4 483, the points y; and y; are distinct (see Figure 6).
Let [y1, y2] be the geodesic segment joining y; and y, and contained in [x, ¢'].
If y is a point in the interior of [yy, y;], then

y1 and y, on |[x,¢] satisfying

dist(y, [x, 7(0)]) > |y1 — x| — |x — r(0)] = |x — r(0)| + 248 — |x — r(0)| = 244.

Likewise, we have

dist(y, [¢/, r(1)]) > |y2 — 4| = I¢' — r(t')| = 248 — 165 = 83.

We conclude that for every y € [y, y2], we have dist(y, ([0, £])) < 85.
Thus, to prove that [x, ¢'] NS, # @, it suffices to prove that there exists a point

¥ € [¥1,»2] such that f(y) = —t. For that purpose, we begin by proving the two
inequalities f{y,) < —¢ and f(y;) > —¢.

X

r0) r(r')
Figure 6.
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We note first that since dist(y2, ([0, oo[)) < 88 and dist(q’, ([0, oo])) < 88, we
have [y2,¢'] C V. Since |y, — ¢'| =248, Lemma 7.2 implies f(1;) <245+ f(¢)) =
248 — ¢'. Therefore, f(y2) < 248 — t — |x — r(0)] — 408 = —t — (|]x — r(0)| + 168) < —1,
which is the first inequality we wanted.

To prove now that f{y;) > —t, we write

1 =) < Iy1 — x|+ 1x = r(0)] = [x = r(0)] + 245 + |x — r(0)] = 2|x — r(0)] 4 24.

Let us choose a segment [y, (0)]. Since dist(y1, ([0, o0[)) < 83, we have

i, O] C V.
By Lemma 7.2, we have

Lfr1) = A(r(0)] < [y1 — r(0)] < 2|x — r(0)] + 248,

which implies
1) = f(1(0)) = =2|x — r(0)| — 243,
that s,
S1) = A(r(0)) = 2[x — r(0)] — 245 = =2|x — r(0)] — 243.

Since ¢t > 2|x — r(0)| + 243, we obtain f{y;) > —t.

Consider now the restriction of f to the geodesic segment [y, y;]. Since
f(r2) < —t < f(y1) and since the function f'is continuous on V, the intermediate value
theorem implies that there exists a point y € [y, y2] such that f{y) = —t. This proves
that [x, ¢'1N S; # @.

We continue now the proof of Step 1.

Let ¢1 € [x, 1N S,. Consider the geodesic segment [¢1, ¢'] C [x, ¢'] and let ¢ be a
projection of x on S,. We have therefore |[x — ¢1]| > |x — ¢].

We have [¢q1, ¢'] C V. Therefore, Lemma 7.2 implies |q; — ¢'| > | flq1) — f(¢)| =
' —t.

We obtain therefore |x — ¢'| = |x — g1 + |¢1 — ¢'| = |x — g| + ¢ — t, which gives
|x —¢'| — ¢ > |x —q| —t. Therefore, we have, for all > ¢ and for all ¢ > 1,
dist(x, Sy) — 7 > dist(x, S;) — 1, that is, A(¢) > A(¢). This finishes the proof of
Step 1.

Step 2. We prove that for all +>0 and for all ¢ > r+ 165, we have
A(t) = A(t).

To prove Step 2, let t>0 and let ¢ be a projection of x on S,. Then,
q € N(([0, oo, 8[) and Lemma 7.8 implies that there exists an f-gradient ray
g 1[0, oo[— X starting at ¢ and satisfying g([0, oo[) € N(r([0, oo[), 168) and such that
for all 7 > t 4+ 163, we have g(¢ — 1) € Sy.

Since g is geodesic, we have |g — ¢'| = |g(¢ — 1) — g(0)| = ¢ — t. Since ¢’ € Sy, we
have |x—¢'| > dist(x,Sy). Using the triangle inequality, we obtain |x —g| >
dist(x, Sy) — ¢ +¢.

Therefore, for all 7>0 and for all ¢ > 7+ 165, we have dist(x,S,)—¢>
dist(x, Sy) — 7, that is, A(1) = A(7).

This finishes the proof of Step 2.

Let #; = 2|x — r(0)| + 246 be the constant provided by Step 1. Step 1 implies in
particular that for all ¢/ > ¢ 4+ |x —r(0)| + 405, we have A() > A(#;). Step 2
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implies that for all ¢ > ¢; + 168, we have A, () < A,(t;). Therefore, A,(¢) is con-
stant for all ¢ > #; 4+ |x — r(0)| + 404. This proves Lemma 7.9.

Consider now the function F: X — R defined by F(x) = lim,_ o A(¢). (The
limit exists and is finite, by Lemma 7.9.) We have the following

LeEmMA 7.10. For every x € V, we have F(x) = f(x).

Proof. Let x € V and let us prove first that F(x) < f{x). By Lemma 7.7, there
exists y € N(r([0, oof), 83) such that |x — y| = f(x) — f{y). By Lemma 7.8, there exists
an  f-gradient ray g:[0,00[—> X starting at y and  satisfying
g([0, oo]) € N(r([0, o), 168). By Lemma 7.6, the gradient ray g is geodesic. Lemma
7.8 implies also that for all 1 > 168 — f{(y), we have S, N g([0, oo]) # @

Let 1 > 168 — f(y) and let z € S, N g([0, oo[). We have

X —zl = Ix =yl + 1y — 2l = /%) = f¥) + /) = f2) =A%) + 1.

Therefore, we have, for all ¢ > 166 — f(y), dist(x, S;) < f(x) + ¢, which implies
Ax(t) < f{x). This proves F(x) < f(x).

We now prove that F(x) > f(x) by showing that for all ¢ large enough, we have
Ax() = flx).

Since x € V, there exists an integer n > 0 such that |x — r(n)| < Ry. Let us take
t > n and t large enough so that dist(x, S;) > Ry + 83 + 1 and let p be a projection of
x on S;. Choose a geodesic segment [x, p] and let X’ be a point on this segment
satisfying |x — x’| = Ry 4+ 83 + 1. Choose geodesic segments [x, r(n)] and [p, (7)] and
consider the geodesic quadrilateral [x, r(n)] U r([n, t]) U [p, r(t)] U [x, p] (Figure 7). By
8-hyperbolicity, the point x’ is at distance < 88 from [x, r(n)] U r([n, £]) U [p, r(?)].

We have dist(xX/, [x,r(n)]) > |X' — x| — |x —r(n)] > Ry + 85+ 1 > 83, which
implies that x’ is at distance < 8§ from the union r([n, £]) U [p, r(?)].

Since p € S, C B(r(?), 168) (Proposition 7.4), x’ is at distance < 148 from some
point x” € r([n, 1]).

r(n) rt)
Figure 7.
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We have

lr(n) — x"| < |r(n) — x|+ |x =X |+ |xX' —x"| < Ry + Ry + 85 + 1 + 245
— 2Ry 4328 +1 < L.

We conclude that X' € N(r([n, n + Ly)), 248) C N(r([n, n + Lo]), Ro) = V.
Let &, : X — R be a horofunction whose restriction to ¥, is equal to f,. Then,
since x and x’ € V,,, we have

f(X) _f(x/) = hn(x) - hn(x,) =< |X — X/|.

Consider now the geodesic segment [x/, p]. Since x" and p are in N(r([0, oo]), 246),
the fact that X is d§-hyperbolic implies that [x/, p] C N(([0, o0]), 328) C
N(r([0, o<]), Ry) C V, and Lemma 7.2 implies that

SX) = fip) < |¥' = pl.

We conclude that
Sx) = f(p) = x) = X)) + f(x') = flp) < Ix = x|+ ¥ = pl = |x = pl.

Since p is a projection of x on S;, we have |x — p| = dist(x, S;) and f(p) = —¢.
Thus, we obtain

fx) 4+t < dist(x, S)),

that is, Ay(?) > f(x) for t large enough. This proves Lemma 7.10.
LeEmMA 7.11. The function F is 1-Lipschitz.

Proof. Let x and y € X. For every t > 0, we have A(¢) — A,(¢) = dist(x, S))—
dist(y, Sy).

Since the function ‘“‘distance to a nonempty set’ is 1-Lipschitz, we obtain, for all
1>0, |A(t) — Ay(t)| <I|x-yl

By making ¢ — oo, we obtain |F(x) — F(y)| < |x — y|, which proves Lemma
7.11.

LEmMMA 7.12. Let x € X and let ) € R satisfy F(x) > A. Then there exists a point
p € X such that |x — p| = F(x) — X and F(p) = .

Proof. For t > 0, let g, be a projection of x on S; and consider a geodesic seg-
ment [x, ¢,]. As dist(x, S;) — oo as t — o0, there exists ¢ > £, such that for all r > ¢y,
we have |x — ¢;| > F(x) — A.

In what follows, we take ¢ > ty. There exists a (unique) point p, € [x, ¢,] satisfy-
ing |x — p/| = F(x) — A.

We have |x — ¢,| = |x — pi| + |p: — ¢:|, which implies

X —qi| — 1 = F(x) — A+ (Ips — ail — 1). (7.12.1)
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We note now that ¢, is a projection of p; on S;. Indeed, for every z € S;, we have

|x—q/ < |x—z| < |x—pi +Ip: —zl,

which implies
pr — gl = 1x—qi| — |x —pi| < |p: — =,

which proves that ¢, is a projection of p; on S,.
Thus, we have dist(p,, S;) = |p; — ¢,| and we obtain from (7.12.1):

dist(x, S;) — 1 = F(x) — A + (dist(p;, S,) — 1). (7.12.2)

As t varies, the points p, are all contained in the closed ball of radius F(x) — A
centered at x. Since the closed balls in X are compact, there exists a sequence (#;);-¢,
with #; — oo as i — oo, such that p, converges to a point p € X. Since |x — p;, | =
F(x) — A for every i, we have |x — p| = F(x) — A. It remains to prove that F(p) = A.

We have, using (7.12.2), dist(p;, S;) — t = (dist(x, S;) — 1) — (F(x) — A). Hence,
we obtain

lim (dist(pr, $)) — 1) = F(x) = (F(x) = 3) = 1. (7.12.3)

On the other hand, since the function “distance to a nonempty set” is 1-Lipschitz,
we have

(dist(p, Si) — 1) — (dist(py, S;) — D) = |dist(p, S) — dist(p,, S| < |p — pal.

Since [p — p,,| = 0 as i — oo, we conclude, using (7.12.3), that lim;_, (dist(p, Si)
—ti) = X. Hence, F(p) = . This completes the proof of Lemma 7.12.

LEMMA 7.13. Let x € X and let ) € R satisfy F(x) > A. Then, we have
F(x) = A +dist(x, F'(1)).

Proof. Let y € F7'(1). By Lemma 7.11, we have F(x) — F(y) = |F(x) — F(y)| <
|x — y|. Therefore, we have F(x) < F(y) + |x — y| < A + |x — y|. Taking the infimum
over y € F!(1), we obtain F(x) < A + dist(x, F~'(2)). On the other hand, Lemma
7.12 gives F(x) > A + dist(x, F~'(1)).

LeMMA 7.14. The function F is 688-convex.

Proof. Let x and y € X, let t > 0 and let p (respectively ¢) be a projection of x
(respectively y) on S,;. Consider a geodesic segment [x, y], let u € [0, 1] and let z be
the point on [x, y] satisfying |x — z| = u|x — y|.

By [7], Chapter 3, Lemma 3.2, we have |z — p| < (1 —u)|x — p| + uly — p| + 43.

By Lemma 7.4, the diameter of the set .S, is bounded by 328. Therefore, we have
ly—=pl <y —ql+ 325

Letting m be a projection of z on S;, we can write now
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dist(z, Sy) = |z — m|
<|z—p|+328
< —u)|x—p|l+uly—pl+456+ 32§
< (1 — wydist(x, S;) + u(dist(y, S;) + 328) + 48 + 325
< (1 — wydist(x, S;) + udist(y, S;) + 68.

Thus, we have

dist(z, S)) — ¢ < (1 — u)(dist(x, S,) — #) + u(dist(y, S;) — ) + 68.

Letting ¢ tend to infinity, we obtain
F(z) < (1 — u)F(x) + uF(y) + 683,

which proves Lemma 7.14.

LeMMA 7.15. The function F: X — R is a 683-horofunction.

Proof. This follows from Lemmas 7.13 and 7.14.

Let ¢ be the cocycle associated to the horofunction F.

LEMMA 7.16. The geodesic ray r is the smallest p-gradient ray starting at Id.

Proof. We recall that for all n>0, we have r(n)=1y, and that
r(n + 1) = r(n)w(o,), with w(o,) being the smallest « € A4 satisfying ,(a) = —1.

The functions o, : V(0,) — Rand f,, : V,, — R are related by

0u(x) = fulynx) +n,

for all x € V(o).

Therefore, w(o,) is the smallest a € A satisfying f,(y,a) +n = —1. Since
n=—fu(y,), we see now that w(o,) is the smallest ae€ A satisfying
Jao(vna) — fu(yn) = —1, that is, ¢(ysa, y,) = —1. This proves Lemma 7.16.

LEMMA 7.17. We have P(p) = o.

Proof. Let P(¢) = (07,),>0 and let us show that o}, = o, for all n > 0.

Let n > 0. From the definitions, we have o}, = p(a"(¢)). Using Proposition 5.7
(i) and Lemma 7.16, we obtain o/, = p(y, '¢). Thus, o/, is the function with domain
V(y, '), defined by o/(x) = v, 'e(x, Id) for all x € V(y, '¢), that is,

ol (x) = F(yox) +n, Vxe V(y,'p). (7.17.1)

Let us study now the domain V(y, '¢). We have V(y, 'p) = N(g'([0, Lo]), Ro),
where g’ : [0, oo[— X is the smallest y, '¢-gradient ray starting at Id. By Proposition
5.4, we have ¢ = y;'g,, where g, : [0, oo[— X is the smallest ¢-gradient ray starting
at y,. Proposition 5.3 and Lemma 7.16 imply now g,(¢) = r(¢ + n) for all n > 0. This
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shows that V(y,'¢) =y, ' N(r([n, n+ Lo)). Ro), that is, V(y, @) =y, 'V, = V(o).
Thus, for all x e V(y,'¢), we have y,x €V, and formula (7.17.1) becomes
0, (xX)fu(yuX) +n = 0,(x), Vx € V,. This proves Lemma 7.17.

Now we obtain the following

THEOREM 7.18. The set ¥(00) C ¥ of consistent sequences is a subshift of finite
type and the map P : &y — X(00) is a homeomorphism satisfying Poo = To P.

Proof. By Theorem 6.13, X(o0) is a subshift of finite type. By Lemma 6.4, the
map P: &y — X is continuous. By Lemma 6.6, P : &y — X is injective. By Lemma
7.17, P is surjective. Since @, is compact, this shows that P is a homeomorphism. By
Lemma 6.3, we have Poa = T o P. This proves the theorem.

Finally, let us note that the map « is related to the action of I' on 34X in the
following manner:
For s € S, let S(s) C X be the cylinder set defined as

S(is)={oc € X : 0(0)=s}.
For every ¢ € P~'(C(s)) N E(c0), we have
() =w(s) g,
and therefore

7o a(g) = w(s) ™ 7(@).
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