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Abstract

In this paper, we establish an extension of the matrix form of the Brunn-Minkowski inequality. As
applications, we give generalizations on the metric addition inequality of Alexander.
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1. Introduction

The Brunn-Minkowski inequality is one of the most important geometric inequalities. |
There is a vast amount of work on its generalizations and on its connections with other
areas, (see [2,5~13,21,22]). An excellent survey on this inequality is provided by
Gardner (see [12]). The matrix form of the Brunn-Minkowski inequality (see [14, 15])
asserts that if A and B are two positive definite matrices of order n, then

(LD |A + BI'" > A" +|B|'/",

with equality if and only if A = c¢B(c > 0), where |A| denotes the determinant of A.
In [4], Bergstrom proved the following interesting inequality, which is analogous
to (1.1).
If A and B are positive definite matrices of order n, and A, B denote the
sub-matrices obtained by deleting the i-th row and column, then

|A + B| S [A] |B|
[Agy + Byl ~ |1Anl 1Byl

(1.2)
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In [9], Ky Fan gave a simultaneous generalization of (1.1) and (1.2). He established
the following elegant inequality.

Let A, denote the principal sub-matrix of A formed by taking the first k rows and
:columns of A. If C = A+ B, where A and B are positive definite matrices of order n,
then

(1 3) (I_Cl)l/(n—k) . (ﬂ)l/(n—k) N (ﬂ)l/(n—k)
' |Cil ~ \|Axl | Bl

In this paper, a new generalization of the matrix form of the Brunn-Minkowski
inequality is presented, which is an extension of (1.3) also.

Let I,_, denote the unit matrix of order n — k, (0 < k < n). One of our main
results is the following theorem.

THEOREM 1.1. Let A and B be positive definite matrices of order n, and let a and b
be two nonnegative real numbers such that A > al, and B > bl,. IfC = A+ B,

then
|C| 1/(n—k)
(1.4 (— — |(a + b)I,_i|
|Cil )
IAI )ll(n—k) ( IBl 1/(n—k)
> __[aln— I + __Ibln— |
(|Ak| ¢ | Byl ¢

with equality if and only if a™'A = b™'B.

The other aim of this paper is to provide a generalization of the metric addition
inequality of Alexander. The concept of metric addition began with Oppenheim in
[20], and was first explicitly defined and named by Alexander in [1].

Let 2, = {P",..., PM}and Q, = {P?, ..., PP} denote two simplices in the
n-dimensional Euclidean space R" with vertices P\, ..., P™ and P, ..., P®,
respectively. If there exists a set of points Q3 = {Py”, ..., P®}, such that

(1.5) lI)‘G) _ Pj(3)|2 — |P'(l) _ i,j(])l2 + |P‘(2) _ Pj(2)|2 ’
then £2; is called metric addition of Q, and €2,, and is denoted by
(1.6) Q=+ Q2.

It can be proved that the set of points 23 exists and is an n-dimensional simplex
(see [1]). Alexander conjectured the following inequality:

(1.7) VA(3) 2 V() + V().
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However in [23], Yang and Zhang proved that (1.7) is not true, and gave the
following correct form

(1.8) V() = V() + V),

with equality if and only if ©; and 2, are similar.
As an application of Theorem 1.1, we establish the following theorem, which is a
special case of Theorem 4.1 of this paper.

THEOREM 1.2. Let simplex Q3 be a metric addition of simplex Q2 and simplex $2,.
Let D, and D, be compact domains in R* and D, C Q,, D; C Q,. Then
n n nql/n
(1.9) [V3(Q3) — (V™(D)) + VY™(D2))]
> [vi@) — viDn]"" + [Vi@) - viD]"".
The equality holds if and only if 2, and 2, are similar and (V(,), V(§2,)) =
w(V(Dy), V(Dy)), where u is a constant.

REMARK 1.3. Taking D, = D, = @ or taking D, = €2,, D, = £, in Theorem 1.2,
we can obtain (1.8). Hence (1.9) is a generalization of (1.8).

2. Definitions and lemmas

Let S, (R) denote the set of n x n real symmetric matrices. Let /, denote the n x n
unit matrix. We use the notation A > 0 (A > 0) if A is a positive definite (positive
semi-definite) matrix, and A7 denotes the transpose of A. Let A, B € S,(R). Then
A> B(A > B)ifandonlyif A~ B > 0(A — B > 0). Let k, denote the volume of
the unit ball in R”.

DEFINITION 2.1. Let A = [ f* 4] be a matrix of order n, and let A, denote the
principal sub-matrix of A formed by taking the first k rows and columns of A. If A,
is nonsingular, then Ay — Ay Ay ' Ay, is called a Schur complement of A, with respect
to A;, which is denoted by A/ A;.

Obviously, if A; is a matrix of order O, then A/A, = A.

LEMMA 2.2. Let A € S,(R), A > 0, and A, be its k-th order principal minor. Then

A
@.1 AJ/A. >0 and |A/Ak|=|—|A—II.
k

The proof of Lemma 2.2 can be found in [17, page 22].
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LEMMA 2.3 ([10, 16]). Let A, B € S,(R), A > 0, B > 0, and A, and By be k-th
order principal minors of A and B, respectively. Then

2.2) (A+ B)/(Ac+ By) > A/A¢ + B/Bq.
LEMMA2.4. Let A,B € S,(R), A> B > 0. Then

(2.3) |A] > |B|.
The proof of Lemma 2.4 can be found in [17, page 472].

LEMMA 2.5 ([19)). Let A, B € S,(R), A> B > 0, A, B, be k-th order principal
minors of A and B, respectively. Then

24 |A/Al = |B/ Bl

LEMMA 2.6. Let A,B € S,(R), A > 0, B > 0. Then there exists an invertible
matrix P satisfying |PT P| = 1 such that PTAP = diag(a,, ...,a,) and PTBP =
diag(by, ..., by).

LEMMA2.7. Letx; >0, y,>20(@(=1,...,n). Then
n 1/n n 1/n n 1/n
2.5) (]’[ x.-) + (]‘[ y.-) < (]"[(x.- + »«)) :
i=1 i=l1 i=1
with equality if and only if x; = vy;, where v is a constant.

This is a special case of Maclaurin’s inequality.

LEMMA 2.8 (Beliman’s inequality). Suppose that a = {a;,...,a,} and b =
{b1, ..., b,}) are two n-tuples of positive real numbers, and p > 1 such that

al”—Za,.”>0 and bf—Zb,.”>0.
=2 =2

Then

n \/p n 1/p n 1/p
(26) (((11 + bl)p - Z(a,— + b,')p) > (a{’ - Za,”) + (bf - Zb,p) )
i=2 i=2

i=2
with equality if and only if a = vb, where v is a constant.

The proof of Lemma 2.8 can be found in [3, page 38].
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3. Proof of Theorem 1.1

PROOF. According to Lemma 2.2 and Lemma 2.3, we have

1Al \B]

AlA | = —, B/B,| = —,

IA/Ad = 1o 1B/ = 12k
and

' A+ B
3.1) ﬁ — (A + B)/(Ax + B)| > (A/A) + (B/B).
So
|A + B| Y-k

(32) (| - |(a+b)1n-k|)

> ((A/A) + (B/B)| = (@ + b)) /"70 .
Let A = A/A, > 0 and B = B/B, > 0. Then to prove (1.4), we need only to
prove the following inequality

(3.3) (1A + Bl - l(a + by I,_il) "7

> (141 = lakuil) "™ + (1BI = 04oil) "7

Notice that A and B are matrices of order n — k. By condition A > al,, B > bl, and
Lemma 2.5, we have A > al,_;, B > bl,_;,. By Lemma 2.6, there is an invertible
matrix P such that |PTP| =1, and

PTAP =diag(ay, ..., a,—), PTBP =diag(,,...,b,s).
So

n—k n—k n—k
|A|=|PTAP|=]]a, |B|=|P"BP|=]]b: and |A+B|=]](@+b).

i=1 i=l1 i=1

It is straightforward to see that (3.3) holds if and only if

n—k 1/(n=k)
(3.4) (]’[(ai +b) - (a+ b)"“)

i=1
nk Ya-0 1/(n—k)
> (]'[ a — a""‘) + (]’] b; — b"“")
i=1

i=1
Now we prove (3.4). Put X"~ = [[/= a; —a"* and Y"~* = []/=/ b — b"~*. Then

n—k n—k
xn-k + a" = I‘[a,_, y -k + bk = l—[bi-

i=1 i=1
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Applying Minkowski inequality, we have

((X + Y)n—k + (a +b)n-k)|/(’l-k) f (Xn—k+an—k)l/(""k) + (Yn—k +bn—k)1/(""‘)

aek N\ V—R) nek  \ V@D
i=1 i=1

Applying Lemma 2.7 to the right of the above inequality, we obtain

ek 1=k
(X + Y)Y+ @+by™*)""° < (]—[(ai + b,-)) ,
i=1

which implies that (X + ¥)"* < [T'-f(a + b;) — (a + b)"~*. It follows that

n—k 1/(n—=k)

X+Y< (H(ai+ b)) —(a+ b)"_k) )
i=1

which is just inequality (3.4). O

REMARK 3.1. Leta = b = 0 in Theorem 1.1. Then we get the Ky Fan inequality
(1.3). Letk = 0 in Theorem 1.1, and we obtain

(35  (A+Bl-Il@+b) L)' > (Al - laLD"" + (IB| — IbL)"",

with equality if and only if a~'A = b™!B.

This is [18, Equation (23)], so Theorem 1.1 is a generalization of the Ky Fan
inequality (1.3) and (3.5).

Replacing A and B by LA and w B, and at the same time replacing a and b by Aa
and ub in Theorem 1.1, yields the following corollary.

COROLLARY 3.2. Let A, B € S,(R), and A, and B, be k-th order principal minors
of A and B respectively. LetC = LA+ uB,a>0,b>0. IfA > al,, B > bl,, then

IC‘ 1/(n—k)
(3.6) <— — {(Aa + P’vb)ln—kl)
[Cil

IAI )1/("—’5) ( IBl 1/(n-k)
ZA' —_laln—l +ll' __lbln—l
(Mkl ‘ |Bel ‘

forall A > 0, u > 0, with equality ifand only ifa™'A = b™'B.

By induction, we infer the following.
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COROLLARY 3.3. Let A,‘ € S,,(R), a > 0, A.,' > O, A,’ > a,~1,,, and A,'(k) be k-th

order principal minors of A;, i = 1,...,m. Then
1/(n—k}
3.7 IZ:,,,'_I—I - Aiail, i = Z}»i < 4] - |ai1n-k|) )
| > i )"'Ai(k)| i=1 i=1 |Aiw]
with equality if and only if a;'A, = --- = a;'An.

Applying the generalized arithmetic-geometric mean inequality to the right side of
(3.7), we get the following inequality.

COROLLARY 3.4. Let A; € S,(R), a; 20, A; > 0, and 3\ A = 1, A; > a;l,,

and Ay, be k-th order principal minors of A;, i = 1,...,m. Then
D - ( Al
(3.8) T————— — Aaidy | = ~lail,l ) .
| Yo )»iAi(k)l ; [‘[ [Aiw!
When ay = --- = a, = 0, the equality holds in (3.8) if and only if A,, ..., A, are

equal.

Taking i = 2, k = 0 in Corollary 3.4, we obtain a generalization of the Ky Fan
concave theorem as follows.

COROLLARY 3.5. Let A; € S,(R),a; >0, A; > a;1, (i = 1,2). Then
(39 A+ (1 — M) Ag| — [Aay + (1 — Mag]* = (|A] — a))* (14| — a3)' ™,

where) < A < 1.

4. Inequalities for metric addition

Let @ = {P{,..., P9} (1 < < m) be a simplex in R*. For any A, > O

(1 <1 < m), there exists a unique simplex 2,,,; = {P{"*", ..., P+Y} such that
1 2
.1 |PD — PR =30 PP — PP
I=1
Then ., is called the weighted metric addition of 2, . .., Q., denoted by
(4.2) it = ) M
I=1

(see [1,23]). On the weighted metric addition, we have the following theorem.
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THEOREM 4.1. Let ; be an n-dimensional simplex in R" (1 < i < m). If
Qi1 = Y 1oy A8 and compact domains D; C ;, then

m n=1/n m
(4.3) [v2(9m+1)) - (Z A.-Vz’"(Di)> ] > > n[vE@)) - vion]".
=1

i=1

The equality holds if and only if Q,, ..., Q, are similar and (V(,), ..., V(2,))
= u(V(D)), ..., V(D,)), where u is a constant.

PROOF. Let ag-) be the distance between P and Pj(”. Let
0] 2 N2 _ (,0)2 0<i i<
pip = (aig) + (a) — (@), ©=ij=n).

Then the matrix AY = (p,.(j'.)),.x,, is a positive definite matrix.
It is straightforward to verify that

4.4 AlHD — Z MAD,

then by the volume formula of a simplex, we have

4.5) [AD| = 2"n2 VYY),
where 1 <i <m+ 1.

Let
(4.6) a’ =2"n?V¥(D;), (1<i<m).

Since D; C ;, 1 < i < m, then|A;| > al, 1 <i < m. Setting k = 0in

Corollary 3.3, we have

.7 l:
i=1

m n=1/n m
Sl - (Sra) |2 Sntai-a™
i=1

with equality if and only if a;'A® = ... = g71A™.
By (4.4), we have
m nql/n m
(4.8) [IA""“’I - (Z A.-a.-) ] Z (14©1 = ap)"".
i=1 i=1
Substituting (4.5) and (4.6) into (4.7) and rearranging, we obtain (4.3). a

https://doi.org/10.1017/51446788700036429 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700036429

9] On the Brunn-Minkowski inequality 133

Let D, and D, be two closed balls with radii r; and r,, respectively. We infer the
following.

COROLLARY 4.2. Let Q23 = Q2 + §25, and r(2,) and r(2,) be the radii of simplex
Q) and ,, respectively. If 0 <r, <r(;), 0 <r, <r(,), then

49) (VA(%) = (rF + kD" = (VA(Q) = rkD V™ + (VA(@) = kD).

When ry = r, = 0, there is equality if and only if Q, and 2, are similar; when
ri # 0and r, # 0, equality holds if and only if Q, and Q, are similar and r{ /r] =
V(Q)/V(2,).

PROOF. From (1.8) and applying Bellman’s inequality (2.6), we have

(V2() — (7 + 22" KDV" > (V") + VI (Q))" — (2 + k)"
> (VA€ — r2k2)" + (V) — r2k2)""

The proof is complete. O

Acknowledgment

The authors are most grateful to the referee for his valuable suggestions.

References

[1] R. Alexander, The geometry of metric and linear space (Springer-Verlag, Berlin, 1975) pp. 57-65.

[2] I J. Bakelman, Convex analysis and nonlinear geometric elliptic equations (Springer, Berlin,
1994).

[3] E.F. Beckenbach and R. Bellman, Inequalities (Springer, Berlin, 1961).

[4] H. Bergstrom, A triangle inequality for matrices (Den Elfte Skandiaviski Matematiker-kongress,
Trondheim, 1949).

[5] C. Borell, ‘The Brunn-Minkowski inequality in Gauss space’, Invent Math. 30 (1975), 202-216.

[6] , ‘Capacitary inequality of the Brunn-Minkowski inequality type’, Math. Ann. 263 (1993),
179-184.

{71 Y. D. Burago and V. A. Zalgaller, Geometric inequalities, (Translated from Russian: Springer
Series in Soviet Mathematics) (Springer, New York, 1988).

{8] K. Fan, ‘Problem 4786’, Amer. Math. Monthly 65 (1958), 289.

9 , ‘Some inequalities concerning positive-definite Hermitian matrices’, Proc. Cambridge
Phil. Soc. 51 (1958), 414-421.

(10] M. Fiedler and T. Markham, ‘Some results on the Bergstrém and Minkowski inequalities’, Linear

Algebra Appl. 232 (1996), 199-211.

https://doi.org/10.1017/51446788700036429 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700036429

134
[11]

(12]
[13]

[14)
(15]

[16]

(17]
{18]

(19]

[20]
(21]

(22}

(23]

Jun Yuan and Gangsong Leng [10]

R. J. Gardner, Geometric tomography, Encyclop®dia of Mathematics and its Applications 58
(Cambridge University Press, Cambridge, 1995).

, ‘“The Brunn-Minkowski inequality’, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 355-405.

R. J. Gardner and P. Gronchi, ‘A Brunn-Minkowski inequality for the integer lattice’, Trans. Amer.
Math. Soc. 353 (2001), 3995-4024.

E. V. Haynesworth, ‘Note on bounds for certain determinants’, Duke Math. J. 24 (1957), 313-320.
———, ‘Bounds for determinants with positive diagonals’, Trans. Amer. Math. Soc. 96 (1960),
395-413.

E. V. Haynsworth, ‘Applications of an inequality for the Schur complement’, Proc. Amer. Math.
Soc. 24 (1970), 512-516.

R. Horn and C. R. Johnson, Matrix analysis (Cambridge University Press, Cambridge, 1985).

G. S. Leng, ‘The Brunn-Minkowski inequality for volume differences’, Adv. in Appl. Math. 32
(2004), 615-624. )

C. K. Li and R. Mathias, ‘Extremal characterizations of Schur complement and resulting inequal-
ities’, SIAM Rev. 42 (2000), 233-246.

A. Oppenheim, ‘Advanced problems 5092°, Amer. Math. Monthly 701 (1963), 444.

R. Osserman, ‘“The Brunn-Minkowski inequality for multiplictities’, Invent. Math. 125 (1996),
405-411.

R. Schneider, Convex bodies: The Brunn-Minkowski theory (Cambridge University Press, Cam-
bridge, 1993).

L. Yang and J. Z. Zhang, ‘On Alexander’s conjecture’, Chinese Sci. Bull. 27 (1982), 1-3.

School of Mathematics and Computer Science Department of Mathematics
Nanjing Normal University Shanghai University
Nanjing 210097 Shanghai 200444
PR. China P.R. China
e-mail: yuanjun@ graduate.shu.edu.cn e-mail: gleng@staff.shu.edu.cn

https://doi.org/10.1017/51446788700036429 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700036429

