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Abstract

In this paper, we establish an extension of the matrix form of the Brunn-Minkowski inequality. As
applications, we give generalizations on the metric addition inequality of Alexander.
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1. Introduction

The Brunn-Minkowski inequality is one of the most important geometric inequalities.
There is a vast amount of work on its generalizations and on its connections with other
areas, (see [2,5-13,21,22]). An excellent survey on this inequality is provided by
Gardner (see [12]). The matrix form of the Brunn-Minkowski inequality (see [14,15])
asserts that if A and B are two positive definite matrices of order n, then

(1.1) \A + B\l/n >\A\l/n + \B\1/n,

with equality if and only if A = cB(c > 0), where \A\ denotes the determinant of A.
In [4], Bergstrom proved the following interesting inequality, which is analogous

to (1.1).
If A and B are positive definite matrices of order n, and A(0, B{i) denote the

sub-matrices obtained by deleting the /-th row and column, then
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In [9], Ky Fan gave a simultaneous generalization of (1.1) and (1.2). He established
the following elegant inequality.

Let Ak denote the principal sub-matrix of A formed by taking the first k rows and
columns of A. If C = A + B, where A and B are positive definite matrices of order n,
then

,
\Ck\) - \\Ak\) \\Bk\

In this paper, a new generalization of the matrix form of the Brunn-Minkowski
inequality is presented, which is an extension of (1.3) also.

Let In_k denote the unit matrix of order n — k, (0 < k < n). One of our main
results is the following theorem.

THEOREM 1.1. Let A and B be positive definite matrices of order n, and let a and b
be two nonnegative real numbers such that A > aln and B > bln. If C = A -\- B,
then

(1.4) ( M _ l ( 0 + „ ) , . . , , ) '" -"

-(^-'^'"""^(IIT-""-'1)1""""'
with equality if and only if a~l A = b~lB.

The other aim of this paper is to provide a generalization of the metric addition
inequality of Alexander. The concept of metric addition began with Oppenheim in
[20], and was first explicitly defined and named by Alexander in [1].

Let Sli = {PQ{) />n
(1)} and Q2 = { P 0

( 2 ) , . . . . p
n

(2)} denote two simplices in the
^-dimensional Euclidean space R" with vertices P 0

0 ) , . . . , Pn
(1) and P 0

( 2 ) , . . . , P™,
respectively. If there exists a set of points fi3 = {p

0
( 3 ) , . . . . p

n
( 3 ) ) , such that

a I CW *̂a\ 12 I (t\ /• I \ 12 I o\ cy\ 12

c\ I p\JJ O\J) I __ nlU P * ' I i I D*• ' n W I

then £23 is called metric addition of Q.\ and ^2. and is denoted by

(1.6) S23= fij + Q2-

It can be proved that the set of points fi3 exists and is an n -dimensional simplex
(see [1]). Alexander conjectured the following inequality:

(1.7) \
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However in [23], Yang and Zhang proved that (1.7) is not true, and gave the
following correct form

(1.8) V2/n(fi3) > V2/"(£2i) + V2/n{Q2),

with equality if and only if £2i and Q2 are similar.
As an application of Theorem 1.1, we establish the following theorem, which is a

special case of Theorem 4.1 of this paper.

THEOREM 1.2. Let simplex Q3 be a metric addition of simplex Q.\ and simplex £l2.
Let D\ and D2 be compact domains in R" and D\ C £2i, D2 c fi2- Then

(1.9) [V2(fi3) - (V2/n(Di) + V1"'(D2))
n]yn

1/ - V2(D2)]
l/".

The equality holds if and only if fii and £22 are similar and (V (Q\), V(£22)) =
/j,(V(Di), V(D2)), where \x is a constant.

REMARK 1.3. Taking D, = D2 = 0 or taking D1=QuD2 = Q2in Theorem 1.2,
we can obtain (1.8). Hence (1.9) is a generalization of (1.8).

2. Definitions and lemmas

Let Sn(R) denote the set of n x n real symmetric matrices. Let /„ denote the n x n
unit matrix. We use the notation A > 0 (A > 0) if A is a positive definite (positive
semi-definite) matrix, and AT denotes the transpose of A. Let A, B s Sn(R). Then
A > B (A > B) if and only if A - B > 0 (A - B > 0). Let kn denote the volume of
the unit ball in R".

DEFINITION 2.1. Let A = [£* ^ ] be a matrix of order n, and let Ak denote the
principal sub-matrix of A formed by taking the first k rows and columns of A. If Ak

is nonsingular, then A22 — A21A^'Ai2 is called a Schur complement of A, with respect
to Ak, which is denoted by A/Ak.

Obviously, if Ak is a matrix of order 0, then A/Ak — A.

LEMMA 2.2. Let A € Sn (/?), A > 0, and Ak be its k-th order principal minor. Then

\A\
(2.1) A/A*>0 and \A/Ak\ =

The proof of Lemma 2.2 can be found in [17, page 22].
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LEMMA 2.3 ([10,16]). Let A, B € Sn(R), A > 0, B > 0, and Ak and Bk be k-th
order principal minors of A and B, respectively. Then

(2.2) (A + B)/(Ak + Bk) > A/Ak + B/Bk.

LEMMA 2.4. Let A, B e Sn(R), A > B > 0. Then

(2.3) \A\ > |B|.

The proof of Lemma 2.4 can be found in [17, page 472].

LEMMA 2.5 ([19]). Let A,B e Sn{R), A > B > 0, Ak, Bk be k-th order principal
minors of A and B, respectively. Then

(2.4) \A/Ak\ > \B/Bk\.

LEMMA 2.6. Let A, B e Sn(R), A > 0, B > 0. Then there exists an invertible
matrix P satisfying \PTP\ = 1 such that PTAP = diagfa], . . . , an) and PTBP =

LEMMA 2.7. Let ^, > 0, j , > 0 (/ = 1, . . . , n). Then

( " \1/n / " \i/n I "
0*7 +\0y7 •\0(x'

with equality if and only ifxt = vyt, where v is a constant.

This is a special case of Maclaurin's inequality.

LEMMA 2.8 (Bellman's inequality). Suppose that a = {ax,...,an} and b =
[b\, ..., bn] are two n-tuples of positive real numbers, and p > 1 such that

f>(i and

i=2 i=2
Then

with equality if and only if a = vb, where v is a constant.

The proof of Lemma 2.8 can be found in [3, page 38].

(a, + bxy-Y^a, + b,yj > U- J2an + K - T , b
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3. Proof of Theorem 1.1

PROOF. According to Lemma 2.2 and Lemma 2.3, we have

and
(3-!) ' / t o ' , = 1^ + B)/(A* + 5*>l 2: \(A/Ak) + (B/Bk)\.

\Ak + £>k\
So

J__L _ Kfl

> (|(A/At) + (B/2fc)| - I (a + 6)/.-*!)'701-*' •

Let A = A/Ak > 0 and B = B/Bk > 0. Then to prove (1.4), we need only to
prove the following inequality

(3.3) {\A + B\-\{fi U{*k)

Notice that A and B are matrices of order n — k. By condition A > aln, B > bln and
Lemma 2.5, we have A > a/n_*, 5 > bln_k. By Lemma 2.6, there is an invertible
matrix P such that \PTP\ = 1, and

/>rA/> = diag(a,,. . . , «„_*), P r 5 P = diagfo, . . . , bn.k).

So
n—* n—k n—k

|A| = |PrAP|=f]f l / , \B\ = \PTBP\ = \\bit and
i=\ i=l

It is straightforward to see that (3.3) holds if and only if

(3.4) jj
( — * ) + ( n )

Now we prove (3.4). Put Xn~k = F]"!,* a* - a""* and I"-* = n"=* h - *""*. Then

n—k

Xn-k +a--k = Y[ a,,
n—k n—k

n-k
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Applying Minkowski inequality, we have

((X + Y)"~k + (a + b)"~k) /("~ < (X"~k + a"~k) "~ + (Yn~k + b"~k)
/,-t \ •/(«-») /„_!• \ !/(»-*)

Applying Lemma 2.7 to the right of the above inequality, we obtain

/n-k \ »/<»-*>

which implies that (X + Y)n~k < f l y t a i + &,•) - (a + 6)""*. It follows that

( n-k

0( n-t

which is just inequality (3.4). D

REMARK 3.1. Let a = b = 0 in Theorem 1.1. Then we get the Ky Fan inequality
(1.3). Let k = 0 in Theorem 1.1, and we obtain

(3.5) (\A + B\- |(a + b)In\)
l/n > (]A\ - \aln\)

1/n + (\B\ - |Wn|)1/n ,

with equality if and only if a'1 A = b'xB.

This is [18, Equation (23)], so Theorem 1.1 is a generalization of the Ky Fan
inequality (1.3) and (3.5).

Replacing A and B by KA and /x B, and at the same time replacing a and b by ka
and lib in Theorem 1.1, yields the following corollary.

COROLLARY 3.2. LetA,Be Sn(R), and Ak and Bk be k-th order principal minors
of A and B respectively. LetC = kA + \xB, a > 0, b > 0. If A > aln, B > bln, then

(3.6) ^ j

( M )

/or all k > 0, fj, > 0, w/r/t equality if and only if a'1 A = fc""1/?.

By induction, we infer the following.
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COROLLARY 3.3. Let A, e Sn(R), a, > 0, A., > 0, A, > a,/n, and Am be k-th
order principal minors of Ah i = 1, . . . , m. Then

(3.7)
1=1

1/("-*)

with equality if and only if a, ' A\ = • • • = am
x Am.

Applying the generalized arithmetic-geometric mean inequality to the right side of
(3.7), we get the following inequality.

COROLLARY 3.4. Let A, e Sn(R), a, > 0, A., > 0, and 2~X, A.,- = 1, A, > fl,/n,
and A,(t) be £-f/i order principal minors of Ah i = 1, . . . , m. Then

(3.8)

When a\ = • • • = am = 0, the equality holds in (3.8) if and only if Au ..., Am are
equal.

Taking i = 2, k = 0 in Corollary 3.4, we obtain a generalization of the Ky Fan
concave theorem as follows.

COROLLARY 3.5. Let A, € Sn(fl), a, > 0, A, > a,/n 0 = 1, 2). Then

(1 - X)a2]" > (|A,| - a?)x(|A2| - an
2)

l~\(3.9) \kAt + (1 - X)A2\ -

where 0 < A < 1.

4. Inequalities for metric addition

Let Q, = {P0
(0 />„<'>} (1 < / < m) be a simplex in Rn. For any A., > 0

(1 < / < m), there exists a unique simplex £2m+, = {P0
( m + 1 ) , . . . , P^m+l)] such that

(4.1) |pi(«.+l)_pjm+l)|

Then Qm+i is called the weighted metric addition of ft),..., £2ffl, denoted by

(4.2) fim+1 =

(see [1,23]). On the weighted metric addition, we have the following theorem.
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THEOREM 4.1. Let £2, be an n-dimensional simplex in Rn (1 < i < m). If
Qm+} = Yl?=\ k&i and compact domains D, C £2,, then

r 2Q _ / f - x v v . ( D ) V l
L ( ffl+1 V t r ' ' / J

77ie equality holds if and only if Q\,..., £2m are similar and (V(f2j), . . . , V(£2m))
= / i i (V(Di) , . . . , V(Dm)), vv/iere /x « a constant.

PROOF. Let a?/ be the distance between P-n and PJ'\ Let

A; = (ai0 ) + {a0j) ~ {aij ) ' (0 — '» 7 — ")•

Then the matrix A(/) = (p\lj)nxn is a positive definite matrix.
It is straightforward to verify that

(4.4) A(m+1) =

then by the volume formula of a simplex, we have

(4.5) |A(0| = 2"n\2V2(Q

where 1 < / < m + 1.
Let

(4.6) ai = ?n?V\D,), (1 < i < TO).

Since D, C S2,, 1 < i < m, then |A/| > a?, 1 < / < m. Setting A: = 0 in
Corollary 3.3, we have

(4.7) [
n-,l/n

with equality if and only if a, lAm = • • • = a^
By (4.4), we have

1(4.8)
L \i=i / J i=i

Substituting (4.5) and (4.6) into (4.7) and rearranging, we obtain (4.3). •
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Let D\ and D2 be two closed balls with radii r\ and r2, respectively. We infer the
following.

COROLLARY 4.2. Let fi3 = £2, + Q2, and r(nx) andr(Q2) be the radii of simplex
^! and £22, respectively. If 0 < rx <r(£l\),0<r2 < r(Q2), then

(4.9) (V2(ft3) - (r,2 + r\)nkyn > (V2(fi,) - r2"*2)1'" + (V2(fi2) - /fife*)1'".

rx = r2 = 0, tfiere is equality if and only if Q.\ and Q2 are similar, when
0 and r2 ^ 0, equality holds if and only if£lx and Q2 are similar and r\/r\ =

PROOF. From (1.8) and applying Bellman's inequality (2.6), we have

2 - (r\ + rlYkyi" > ((V^(n.) + V2'"(n2))" - (r2 + r*)

The proof is complete. •
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