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Abstract

For Fredholm equations of the first kind with continuous kernels we investigate the uniform
convergence of a general class of regularization methods. Applications are made to Tikhonov
regularization and Landweber’s iteration method.
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1. Introduction

It is well known that a Fredholm integral equation of the first kind, that is, an
equation of the form

b
(1) [ k(s 0x()di=g(s),  a<s<b,

a

where k(-, ) is a square integrable kernel is ill-posed [5], i.e., the solution x does
not depend continuously (in the L?-sense) on the data g. Equation (1) may be
written abstractly as the operator equation
(2 Kx=g
where K is the compact linear integral operator on the Hilbert space L?[a, b]
generated by the kernel k(-, -).

In practical situations the data g results from measurement and consequently
only an approximate version g% satisfying

(3) le — &%l < 8.
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where & is a known error level, is available (|| - || refers to the L?*norm). By a
regularization method for (2) is meant a family { %}, o of continuous operators
and a parameter choice @ = a(8) such that

a(8) =0, R, 5Hg°—>x asd—0

where x is the (unique) minimal norm solution of (2) (actually our results hold
true if (2) is least squares soluble and x is the minimal norm least squares
solution). A general class of regularization methods for operator equations in
Hilbert space may be constructed by setting #, = R _(K)K* where K * is the
adjoint of K, K = K*K and { R_)} is a family of continuous real valued functions
on [0, || K ||?] satisfying

(4) R (1) -1 asa — 0 foreachs > 0
and
(5) [iIR(t)]< C foralla>0,t>0.

Some general results, framed entirely within the context of Hilbert space, on the
convergence of such methods are presented in [1]. In this note we consider the
case of a continuous kernel and establish some corresponding results on uniform,
rather than mean, convergence.

2. General results

For notational convenience, we set
x,=R,(K)K* and x%=R_(K)K*g’
The convergence traits of these approximations depend upon the functions
r(a) = sup{|R (1)|: 1 € [0, K]}
and
w(a,v) =sup{r’[l — R (1)|: e € [0,1K)1?]}, »>o.

We state two basic results; proofs may be found in [1] (or [2]). Below, R(T") and
N(T) will designate the range and nullspace, respectively, of the operator 7.

THEOREM 1. ||x — x,/l > 0 as a > 0 and if x € R(K”), then ||x — x,|| =
O(w(a, v)).

THEOREM 2. ||x, — x}|| < 8/Cr(a) .
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In each of the theorems above the norm is that induced by the Hilbert space
inner product, e.g., the L%-norm. In what follows we will denote the uniform norm
by |l - ||, but continue to view K as an operator on L?[a, b].

THEOREM 3. Suppose the kernel k is continuous on [a, b] X [a, b]. If x € R(K *),
then ||x — x )|, — 0 as a — 0. Moreover, if x € R(K’K *) for some v > 0, then
lx = Xl = O(w(a, v)).

PROOF. Let k (t) = k(t, s) and suppose x = K *w, where w € N(K *)*.

Note that since the functions R, are continuous, and hence are uniform limits
of polynomials, we have R (K)K* = K*R_(K), where K = KK*. For any
s € [a, b], we then have

xa(s) = x(s) = R,(K)K*g(s) — K*w(s)
= K*[R(R)Kx — w](s) = (k. w, — w)
where (-, -) is the L? inner product and w, = R (K )Kx.

By Theorem 1 (applied to K * rather than K'), w, converges in mean to w, the
minimal norm solution of K *w = x. Remembering that & is continuous, we find
that {|x, — x||, < M|jw, — w|| = 0 as a — 0 for a suitable constant M.

If x € R(K’K*), then x = K *w where w € R(K”). Therefore by Theorem 1
[lw, — wll = O(w(a, »)) and hence ||x, — x||, = O(w(a, v)) as above.

We now deal with the case in which only approximate data g° satisfying (3) are
available and we suppose that the regularization parameter is a function of the
error level, say a = a(8) > O0asé — 0.

THEOREM 4. If k is continuous and x € R(K *), then ||x, — x}||, = O(r(«)8).

PROOF. As in the previous proof, (x, ~ x5)(s) = (k,, z, — z8) where z, =
Ra(IE' Ygand z2 = R ( K)g®. Therefore by (3) and the definition of r(a), we have
e = X3l < Mr(e)d.

THEOREM 5. If k is continuous, x € R(K *) and 8 = O(1/r(a)), then||x — x|,
—0aséd > 0.

PrOOF. By Theorem 3 we know that ||x — x|, = 0 as a = a(8) — 0. There-
fore it suffices to consider x, — x3. By Theorem 4, ||x, — x3||, is bounded. Also,
fors, s’ € [a, b)

xa(s) = x2(s) = x,(s") + x2(s)| =|(k, = k., RL(K)(8 — 8°))]
<lk, = k,lir(a)s
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and, as k(-,-) is uniformly continuous, {x, — x} is a uniformly bounded
equicontinuous family.

Moreover, 8yr(a) = 8r(a)/ Jr(a) — 0 as 8 - 0, since r(a) = o0 as a = 0
(see [1), [2]). Therefore by Theorem 2, ||x, — x|l » 0 as § — 0, and it follows
that f|x, — x$||, > 0as& — 0.

It should be stressed that the theorems above require that the approximate data
g° lies near g only in the L%-sense, but not in uniform norm.

3. Two examples

The most familiar example of a regularization method is Tikhonov regulariza-
tion in which R (¢) = (a + 1)}, i, x, = (al + K)7'K *g. In this case Theo-
rem S specializes to give a result of Khudak [3].

COROLLARY 1. If k is continuous, x € R(K*) and a = O(8), then ||x — x{||,,
—0aséd - 0.

For this method we have w(a, ») = a’ for 0 < » < 1, and r(a) = 1/a (see [1],
[2]). Using Theorems 3 and 4 we obtain

COROLLARY 2. If k is continuous and x € R(K*K *) for some v with 0 < » < 1,
then ||x — x,J|,, = O(a”). Moreover, if a = C8Y**V  then ||x — x}||, =
0(8»/(v+1)).

As a second instance of the theory we consider Landweber’s iteration method
[4]. In this method we assume ||K|| < v2, which is no restriction as (2) may be
multiplied by a constant to make it so. The iteration is given by

xo=K*, x,,,=(I—-K)x,+K*g

and the role of a is assumed by the iteration number n (more precisely 1/n). In
this case we have

R, (1))=Y (1 -1), r(n) =n+1, w(n,y)=(n+1)" (v > 1).
j=0
We then obtain the following generalization of a result of Landweber.

COROLLARY 3. If k is continuous and x € R(K*), then j|x — x,||, = 0 as
n = oo. Moreover, if x € R(K*K) for some v > 1, then ||x — Xplle = O(n77).
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For the case of imprecise data we have

COROLLARY 4. If k is continuous, x € R(K*) and n = n(8) and satisfies
8 = O(1/n), then||x — x%||, = 0 as 8 — 0. Moreover, if x € R(K*K *) for some
v>landn = [§714*D], then ||x — x8||, = O(8"/*D).

In particular we see that if x is “regular” enough, i.e., x € R(K*K *) for » large
enough, then a uniform order of accuracy arbitrarily near to the optimal order
O(8) can be attained by Landweber’s iteration. Such regularity generally implies
a certain order of smoothness for x and, in the case of Volterra kernels,
satisfaction of certain boundary conditions. Finally we note that saturation
results for Tikhonov regularization show that nearly optimal orders of conver-
gence are not possible for that method (see [1]).
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