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Abstract

An (n + 1, n2 + n + l)-packing is a collection of blocks, each of size n + 1, chosen from a set of size
n2 + n + 1, such that no pair of points is contained in more than one block. If any two blocks contain
a common point, then the packing can be extended to a projective plane of order n, provided the
number of blocks is sufficiently large. We study packings which have a pair of disjoint blocks (such a
packing clearly cannot be extended to a projective plane of order n). No such packing can contain
more than n2 + n/1 blocks. Also, if n is the order of a projective plane, then we can construct such a
packing with n2 + 1 blocks.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 25, 05 B 40.

1. Introduction

Let A' be a set of v elements called points. A (k, v)-packing (based on X) is a
collection of A>subsets of X {blocks or lines), such that every pair {*,, x2} C X is
contained in at most one block. Equivalently, we require that 12?, n 2?21< 1 for all
distinct blocks 5 , and B2. The packing number D(k, v) is defined to be the
largest number of blocks in any (k, unpacking.

We may define projective plane of order n to be any (w + l , / i 2 + « + l)-packing
with n2 + n + 1 blocks. It is well known that any two blocks in a projective plane
contain a common point, and, dually, every pair of points is contained in a block.
Hence D(n + 1, n2 + n + 1) < n2 + n + 1, with equality occurring if and only if
there exists a projective plane of order n.

Suppose P is any ( n + 1, n2 + n + l)-packing. We say that P is extendible if
one can construct a projective plane of order n by adding sufficiently many
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blocks to P. When is an (n + l,n2 + n + l)-packing extendible? An obvious
necessary condition is that any two blocks of P must contain a common point.
(We say that such a packing is a partial projective plane of order n.) This necessary
condition is also sufficient, provided P contains enough blocks. We state this
precisely as

THEOREM 1.1 (Dow [2]). A partial projective plane of order n with more than
n2 — 2\jn + 3 + 6 blocks is extendible.

On the other hand, suppose an (n + 1, n2 + n + l)-packing P contains a pair
of disjoint blocks. We say that P is apseudo -partial projective plane (of order n),
which we abbreviate to PPPP. Of course, no PPPP is extendible.

In this paper, we study the function PPPP(«), which denotes the maximum
number of blocks in a pseudo-partial projective plane of order n. We show that
PPPP(w) < n2 + n/2 for n > 2. Also, if there exists a projective plane of order n,
then PPPP(n) > n2 + 1. For 2 < n < 5, PPPP(«) - n2 + \. The first unknown
value is PPPP(6). Here we know only that 32 < PPPP(6) = Z>(7,43) < 38.

We also investigate the existence of PPPP's in which every point occurs in
either n or n + 1 blocks. We know of only two such packings. Various conditions
necessary for existence are obtained, and certain small possibilities are shown not
to exist. The smallest unknown case occurs when n = 5 and would have 17
blocks. This packing is equivalent to a resolvable group-divisible design on 20
points with group-size 2 and block-size 4.

2. An upper bound for PPPP( n )

Suppose we have an (n + \, n2 + n + l)-packing. A block is said to be
spanning if it meets every other block in a point. If every block is spanning, the
packing is a partial projective plane of order n. If however, there exists a
non-spanning block, then the packing is a pseudo-partial projective plane. The
number of blocks b — n2 + n + 1 —a for some a > 0; we will use the notation
(n, a)-PPPP to describe such a packing.

For a point x, the degree of x, is the number rx of blocks in which x occurs
(note that rx < n + 1 for all x).

LEMMA 2.1. Suppose B is a non-spanning block in an («, a)-PPPP. Then every
point on B has degree at most n. Hence B meets at most n2 blocks, and B is disjoint
from at least n + 1 — a blocks.
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131 Pair-packings and projective planes 29

PROOF. Suppose x e B has rx = n + 1. Let 5 , be a block disjoint from B. The
point x occurs on a block with every other point so there are n + 1 lines joining x
to points on B|. But x also occurs on B, so rx > « + 1, an impossibility.

COROLLARY 2.2. In an («, a)-PPPP, tfiere are at least j(n + 2 - a)(« + 1 - a)
unordered pairs of disjoint blocks.

We now obtain an upper bound for the number of pairs of disjoint blocks.

LEMMA 2.3. The number of pairs of disjoint lines in an(n, a)-PPPP is ( \) - lx (^).

PROOF. The number of pairs of lines meeting in a given point is (r
2
x). Summing

over x, we obtain the number of pairs of non-disjoint lines. This quantity is
subtracted from the total number of pairs of lines (*), to obtain the desired result.

LEMMA 2.4. In an («, a)-PPPP, 1XC2
X) ^ (n2+1)(«2 + n+ I - 2a), with equality

occurring if and only if every point has degree n or n + 1.

PROOF. We have 2X\ = n2 + n + \ and 2xrx = (n + \)b. We write (n + \)b
= (n2 + n + \)n + n2 + n + 1 — a(n + 1). By the convexity of binomial coeffi-
cients, 2(2*) is minimized when n1 + n + 1 — a(n + 1) points have degree n + 1
and the remainder have degree n. The result follows.

From Lemmata 2.3 and 2.4 we calculate

COROLLARY 2.5. In an (n, a)-PPPP, the number of pairs of disjoint lines is at
most ("), with equality occurring if and only if all points have degree n or n + 1.

THEOREM 2.6. In an (n, a)-PPPP, a > (n + 2)/2.

PROOF. From Corollaries 2.2 and 2.5, (n+l~a) < ("), which simplifies to the
desired inequality.

COROLLARY 2.7. / / there is no projective plane of order n, then D(n + 1,
n2 + n + 1 ) < / J 2 + n/2.

PROOF. Theorems 1.1 and 2.6.

We now examine the case a = (« + 2)/2 for PPPPs. All points must have
degree n or n + 1; there are C^ 2 ) points of degree n and (2) points of degree

https://doi.org/10.1017/S1446788700021728 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021728


30 D. R. Stinson [4]

n + 1, from the proof of Lemma 2.4. We have (n + l)/2 non-spanning lines,
which are mutually disjoint. Consider the dual incidence structure: it has n2 + n/2
points, and n2 + n + 1 blocks (of lengths n and n + 1). All pairs occur in a
unique block, except for (« + 2)/2 "independent" points. If we adjoin a block
consisting of these (« + 2)/2 points, then we have a pairwise balance design
(PBD) with n2 + n/2 points and n2 + n + 2 blocks. For n > 3, such a PBD does
not exist, by [5]. For n = 2 one can construct a (2,2)-PPPP. The blocks are: 123,
456, 147, 257, 267. This discussion implies

THEOREM 2.8. For n > 3, there is no («,(« + 2)/2)-PPPP. Abo, there exists
(2,2)-PPPP.

COROLLARY 2.9. / / there does not exist a projective plane of order n, then
D(n + 1, n2 + n + 1) < n2 + n/2.

PROOF. In view of Theorem 2.8 and Corollary 2.7, it suffices to note that there
is a projective plane of order 2.

3. Some values of PPPP(n)

Recall that PPPP(«) denotes the largest number of blocks in a pseudo-partial
projective plane of order n. From the previous section, we have

LEMMA 3.1. PPPP(2) = 5, and for all n > 3, PPPP(/i) < n2 + n/2.

We provide a lower bound for values of n where a projective plane of order n
exists.

LEMMA 3.2. If there is a projective plane of order n, then PPPP(w) > n2 + I.

PROOF. Let (2 be an affine plane of order n, with parallel classes 9l,...,9n+lf

and let {oo,, . . . , oon+,} be a set of n + 1 new points. For 1 < i < n adjoin the
point oo, to each line of the class 9,. Now replace the point oo, by oon+1 in some
block of <3>

v delete all lines in %+x, and add a new block {oo,, oo2, . . . , oon+,}.

EXAMPLE 3.3. A (3,3)-PPPP.

oo,123 oo2159 oo3147

00,456 oo2267 oo3258

oo4789 oo2348 oo3369
OO,O02OO3O04
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I s ] Pair-packings and projective planes 31

COROLLARY 3.4. PPPP(3) = 10 and PPPP(4) = 17.

PROOF. Lemmata 3.1 and 3.2.

For n - 5, we have 26 < PPPP(5) < 27 by Lemmata 3.1 and 3.2. We will show

that there is no (5,4)-PPPP; hence PPPP(5) = 26.

Suppose we have a (5,4)-PPPP. Let X denote the set of points and % the set of

blocks. A spanning block in "3J must contain at least two points of degree six.

Consider the incidence structure formed by the set of points Y of degree six. The

blocks are Q = {Y D B: B £ ® and B is spanning) . Every pair of points in Y

occurs in a unique block of 6 , and every point in Y occurs in six blocks in 6 .

Also, each block in G has size at least two. Let z E X\Y. Then 9Z = {B n Y:

z €E B G $ } is a set of blocks in Q which forms a partition of Y.

Let p=\Y\, q=\Q\. For % to contain a pair of (non-spanning) disjoint

blocks, q < 25 and p < 19.

LEMMA 3.5. Q contains only blocks of size 2,3,4.

PROOF. Suppose C e Q has size at least 5. Then C — B n Y where i e i The
number of blocks spanned by B is 27 = 1 + 2 x 6 B ( r x — 1), from which it follows
that B contains five points of degree 6 and one point z of degree 2. Thus \C\— 5.
Now % = {C, D), say, where C I) D = Y. Thus Q has blocks C, D and | C | • | D \
further blocks, each containing one point from C and one from D. Since each
point of Y has degree six, we must have | d \ = 5, whence q = 27 > 25, a contradic-
tion.

Let bt, for / = 2,3,4, denote the number of blocks of size i'in Q. Elementary
counting yields

/ q X

P(P-D
2

6p

The coefficient matrix is non-singular, so we may solve for b2, b2, and b4

obtaining

LEMMA 3.6.

2
6p
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32 D. R. Stinson (6)

LEMMA 3.7. 7 < / ? < 10.

PROOF. First, note that p s= 7, since any point in Y occurs with at least one
other point in F in each block containing it. Also, we have noted that/? *s 19.

The condition b2 > 0 gives 0 < 6q + p(p — 37)/2 (from Lemma 3.6). Since
q < 25, we have / ? ( / ? - 37) =£ 30. Thus p < 12 or p > 25. Similarly b4 3* 0 yields
/? < 10or/>> 15.

Combining all those inequalities, the desired result is obtained.

LEMMA 3.8. p ^ 7 or 8.

PROOF. If /? = 7 then all blocks are of size 2. But then there is no way to find a
set of blocks of Q that forms a partition of Y.

If p = 8, then every point of 7 occurs (in Q) in one block of size 3 and five
blocks of size 2. Then b3 = 8/3, which is absurd.

LEMMA 3.9. p ¥= 9.

PROOF. If /> = 0, we would have b2 + 3b3 + 6b4 = 36 and 2b3 + 3b3 + 4b4 =
54. This implies 3b3 + $b4 = 18. Since Z>3 and b4 are non-negative integers, 63 = 6
and 64 = 0; whence b2— 18.

Let z S A'Xy. Then <eP2 must contain at least one block of size 3. The six blocks
in Q of size 3 contain at most eighteen points of X\Y. But | X\Y|= 31 — p = 22
> 18. This is a contradiction.

LEMMA 3.10. p ¥= 10.

PROOF. We have b2 + 3b3 + 6b4 = 45 and 2b2 + 3b3 + 4b4 = 60; hence 3b3 +
8/>4 = 30. Thus (b3,b4) = (2,3) or (10,0).

In the first case, b2 = 21 and q = 26, an impossibility.
In the second case b2 = 15 and q = 25. Now X must contain a point z of

degree at most 4, for (27 • 6 - 10 • 6)/21 < 5. Let C C B G <S. 5 is spanning, so
2 x 6 a / " x = 32. Suppose 5 contains two points of degree 6, so the remaining four
points in B have degree 5. It follows that z & B. Thus % contains no blocks of
size 2. But this is impossible, since 3 does not divide 10.

As a result of Lemmata 3.7-3.10, we have

LEMMA 3.11. There is no (5,4)-PPPP. Hence PPPP(5) = 26.
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For n = 6, we know much less. In [4], it is shown that the largest partial
projective plane of order 6 has at most 27 blocks. We can construct a (6,11)-
PPPP. This implies 32 < PPPP(6) = Z>(7,43).

LEMMA 3.12. There exists a (6,11)-PPPP.

PROOF. In [1], Baker shows that Z>(7,45) > 45. Every point in this packing
occurs in seven blocks. Let B be a block, and let x, y be points in B. Then the 32
blocks which contain neither x nor y form a (7,43)-packing.

It can easily be seen that this new packing has many pairs of disjoint lines, so
we have a (6,11)-PPPP.

From Lemma 3.1, PPPP(7) < 38. Thus we have

LEMMA 3.13. 32 < £>(7,43) = PPPP(7) < 38.

4. Quasi-regular PPPPs

Suppose we have a pseudo-partial projective plane in which every point has
degree n or n + 1. We call such a packing a quasi-regular PPPP, which we
abbreviate to QRPPPP. We can determine several necessary conditions for the
existence of QRPPPP. Indeed, at the time of this writing, only a few examples are
known. From a previous section, we have

LEMMA 4.1. / / an («,a)-QRPPPP exists, then a>>(n + 2)/2. Further, a =
(n + 2)/2 can hold only for n = 2.

The following upper bound is easily proved.

LEMMA 4.2. If an (n, a)-QRPPPP exists, then a < n.

PROOF. Suppose a > n + 1. Any block B meets at least n2 blocks. But the
number of blocks b < n2, so B is spanning. Since B is an arbitrary block, we have
a partial projective plane, a contradiction.

We now derive several results concerning QRPPPP. All these follow from
simple counting arguments.
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LEMMA 4.3. In an («, a)-QRPPPP, a non-spanning block contains only points of
degree n, whereas a spanning block contains n + 1 — a points of degree n + 1 and a
points of degree n.

LEMMA 4.4. In an (n, a)-QRPPPP, a non-spanning block is disjoint from precisely
n + 1 — a blocks.

LEMMA 4.5. In an (n, a)-QRPPPP, there are a(n + 1) points of degree n and
n2 + n + 1 — a(n + 1) points of degree n + 1.

PROOF. Let there be x points of degree n + 1. Counting incident point-block
pairs, we obtain (n2 4- n + 1 — a)(n + 1) = n(n2 + n + 1) + x.

LEMMA 4.6. In an («, a)-QRPPPP, there are (a2 — a)/(n + 1 — a) non-span-
ning blocks and (n + 1) (n2 + n + 1 — a(n + l))/(« + 1 — a) spanning blocks.

Let the number of non-spanning blocks be denoted by x. Count pairs of
disjoint blocks:

1 -a) _ ( b \ ^ l r x \ _a2-a
-\2) M2/~~2~-

x(n+ 1 -a) _ (b
2

LEMMA 4.7. In an («, a)-QRPPPP, a point of degree n + 1 occurs only in
spanning blocks, whereas a point of degree n occurs in (a — l)/(« + 1 — a)
non-spanning blocks and n — (a — l)/(« + 1 — a) spanning blocks.

PROOF. A non-spanning block contains only points of degree n, so no point of
degree n + 1 occurs on a non-spanning block.

Now, let x denote the number of spanning lines on which a point y of degree n
occurs. Every point of degree n + 1 occurs on a block containing^. Thus we have
x(n + 1 — a) = n2 + n + I — a(n + 1), which simplifies to the desired expres-
sion.

COROLLARY 4.8. / / an (n, a)-QRPPPP exists, then a = (t/(t + l))n + 1 for
some positive integer t.

PROOF. From Lemma 4.7, / = (a — l)/(« + 1 — a) is an integer. Solve for a.

COROLLARY 4.9. If an (n, a)-QRPPPP exists for n prime, then n = a.
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PROOF. From Corollary 4.8, a = (t/(t + 1)) n + 1 for an integer t. Since n is
prime, r = 0 or ( = n - 1. If r = 0, then a = 1 which contradicts Lemma 4.1.
Thus t = n — \ and a — n.

The case n = a is of particular interest. We can characterize («, «)-QRPPPPs
in terms of certain group-divisible designs.

THEOREM 4.10. There exists an(n,n )-QRPPPP if and only if there exists a resolv-
able GDD having n2 — n points, all groups of size 2, and all blocks of size n — 1.

PROOF. From the preceding lemmata, we obtain the following facts concerning
an (n, «)-QRPPPP. There are n + 1 spanning lines, and n2 — n non-spanning
lines, which occur in disjoint pairs. There is one point of degree n + 1 and n2 + n
points of degree n. Dualize, obtaining an incidence structure with n2 + 1 points
and n2 + n + 1 blocks. There is one block of length n + 1, which meets all other
blocks, and the remaining blocks have length n.

The n2 — n points not on the block of length n + 1 can be partitioned into
pairs. These pairs are the only ones which do not occur in some block. If we call
these pairs groups, and delete the points on the block of length n + 1, we obtain a
group-divisible design, with the desired parameters. Each point of the block of
length n + 1 induces a parallel class of blocks, so the resultant GDD is resolv-
able.

This entire process can be reversed, so one can obtain an (n, n)-QRPPPP from
such a resolvable GDD.

COROLLARY 4.11. There is a (3,3)-QRPPPP, whereas there is no (4,4)-QRPPPP.

PROOF. First, consider the case n = 3. A 1-factorization of the complete graph
K6 certainly exists. Call one of the 1-factors groups. The resulting GDD is
resolvable, with 6 = n2 — n points, 12 = n2 + n blocks, and blocks of size 2 =
n + 1. By Theorem 4.10, there exists a (3,3)-QRPPPP.

Next, let n = 4. The resolvable GDD here would have 12 points, and 20 blocks,
each of size 3. This GDD would be a near-Kirkman triple system NKTS (12),
which is known not to exist [3]. Thus no (4,4)-QRPPPP exists.

As far as the author knows, the existence of no other GDD in this class has
been determined.
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36 D. R. Stinson 110]

For n = 6, we have the additional possibility = 5. Suppose there is a (6,5)-
QRPPPP. From the previous counting lemmata we have

LEMMA 4.12. In a (6,5)-QRPPPP there are 28 spanning blocks, each of which
contains two points of degree seven. Also, there are 35 points of degree six, each of
which lies on four spanning blocks.

Let the eight points of degree seven be denoted 1,... ,8, and let the remaining
points be called a, b, Each of the 28 = (*) pairs of points of degree seven is
contained in one of the spanning blocks. Any point x of degree six induces a
one-factor Fx (perfect matching) of the graph /sT8 (on vertex set 1,..., 8).

The 35 one-factors thus produced satisfy the properties:
(l)torx¥=y,\FxnFy\<l,
(2) if x and y are distinct points which occur in a non-spanning block B, then

FxDFy= 0.
(3) every pair {/, j) is in five of these Fx's.
Now let Bx and B2 be disjoint non-spanning blocks. The points of Bx (resp. B2)

induce a one-factorization of K%, by property (2). These two 1-factorizations are
orthogonal (property (1) above). Thus we have Room square R(BU B2).

Pick any edge of Ks, say {/, j}. Of the five Fx containing {/', j}, two are
determined by the Room square. Then the remaining three are (uniquely)
determined by the fact that no edge other than {/, j} can be repeated in these five
one-factors.

This process can be carried out for any edge of Ks. If we obtain two one-factors
which contain precisely two common edges, we have a contradiction.

There are precisely six inequivalent Room squares of side 7 [6]. We begin with
each one, in turn, and obtain a contradiction, as described above. This establishes
the non-existence of a (5,5)-QRPPPP.

01
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56

37
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[li] Pair-packings and projective planes 37

Suppose we start with the Room square Ru of Figure 1. From the pair 12, we
get two one-factors 12 03 47 56 and 12 04 35 67. This forces 12 05 37 46, 12 06 34
57, and 12 07 36 45. Starting with 06, we have 06 13 25 47 and 06 17 24 35, which
forces 06 12 37 45, 06 14 23 57, and 06 15 27 34. The one-factors 12 06 34 57 and
06 12 37 45 contain precisely two common edges, a contradiction.

For each of the remaining five Room squares, a contradiction is obtained in a
similar fashion. This discussion implies

LEMMA 4.13. There does not exist a (6,5)-QRPPPP.

For n < 6, we list all positive integers of the form a = (t/(t + 1))« + 1 and
summarize known information concerning QRPPPP's in Table 1 below.

n

2
3
4
4
5
6
6
6

a

2
3
3
4
5
4
5
6

TABLE 1
Existence of QRPPPPs

Existence

yes
yes
no
no
?

no
no
7

5. Remarks

Authority

Lemma 4.1
Corollary 4.11
Lemma 4.1
Corollary 4.11

Lemma 4.1
Lemma 4.13

i

We mention several open problems.
(1) Find lower bounds for PPPP(w) (and D(n + 1, n2 + n + 1) in the case

where n is not the order of a projective plane).
(2) Determine the existence of non-existence of the GDDs of Theorem 4.10.

What if the resolvability condition is dropped?
(3)FindD(7,43).
(4) Define a n ( n + \,n2 + n + l)-packing to be maximal if it is not possible to

form a larger packing by adding one more block (that is, any (« + l)-subset of
points meets some block in more than one point). How many blocks can there be
in a maximal packing? (R. Mullin has conjectured that a maximal packing has at
least 2 « + l blocks.) Also, one can construct a PPPP with PPPP(n) blocks that is
not maximal?
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