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Abstract

Genetics has been an important tool for discovering new aspects of biology across life. In
humans, there is growing momentum behind the application of this knowledge to drive
innovation in clinical care, most notably through developments in precisionmedicine. Nowhere
has the impact of genetics on clinical practice been more striking than in the field of rare
disorders. For most of these conditions, individual disease susceptibility is influenced by DNA
sequence variation in a single or a small number of genes. In contrast, most common disorders
are multifactorial and are caused by a complex interplay of multiple genetic, environmental and
stochastic factors. The longstanding division of human disease genetics into rare and common
components has obscured the continuum of human traits and echoes aspects of the century-old
debate between theMendelian and biometric views of human genetics. In this article, we discuss
the differences in data and concepts between rare and common disease genetics. Opportunities
to unify these two areas are noted and the importance of adopting a holistic perspective that
integrates diverse genetic and environmental factors is discussed.

Human health, well-being and behaviour are probabilistically shaped by the dynamic interplay
between genetic and environmental factors. The landscape of genetic contributions to a given
phenotype is referred to as its genetic architecture. This comprises the number of genetic variants
that influence the phenotype; the magnitude of the variant effects; the variant frequencies in
populations; and their interactions with one another and with the environment (Timpson et al.,
2018; Benton et al., 2021; Visscher et al., 2021).

Rare monogenic⟷common polygenic

The terms ‘monogenic’, ‘oligogenic’ or ‘polygenic’ have been classically used to describe the genetic
architecture of traits and disorders (Figure 1 and Table 1). The phenotypes at the monogenic
(or Mendelian) end of the spectrum are rare and driven by a small number of low-frequency
variants with large effects (Figures 1 and 2). Particularly relevant to these phenotypes are the
concepts of recessiveness and/or dominance (which relate to the functional link between hetero-
zygous genetic variants and the resulting phenotype).Mendel defined these concepts specifically for
discrete, discontinuous traits without intermediate forms. He and others distinguished the char-
acteristic inheritance patterns that bear his name (in which hybrids and one original strain have
identical phenotypes) from additive patterns (in which hybrids have an intermediate appearance
with noticeable contribution of both alleles to the phenotype) (Zschocke et al., 2022). It is worth
noting that a significant proportion of the conditions described as dominant or recessive in the
biomedical literature do not fulfil Mendel’s original criteria; many monogenic disorders, for
example, exhibit semi-dominant or imperfect recessive inheritance with heterozygous carriers
having a mild phenotype (Barton et al., 2022; Brandes et al., 2022; Zschocke et al., 2022).

The polygenic end of the genetic architecture spectrum includes a range of multifactorial
conditions that are common and predominantly influenced by intermediate- and high-frequency
variants across numerous genomic loci (each with a small effect size) (Figures 1 and 2;
Claussnitzer et al., 2020). Genetic methods that can be used to study this group of conditions
include genome-wide association studies (GWAS) and polygenic scores. These approaches
assume additivity in the effects of genetic variants and generally have a ‘blind spot’ to phenomena
like compound heterozygosity and recessiveness (Brandes et al., 2022). Empirical and theoretical
evidence support this key additivity assumption, and linear (additive) genetic models appear to
provide a sufficient approximation of the underlying biological complexity for many phenotypes
(Hivert et al., 2021a,b; Brandes et al., 2022). It is however unclear if this picture emerges because
of undue focus on a relatively narrow set of traits and disorders (and/or a requirement to use
additive models for the discovery of genomic loci associated with these phenotypes).
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It can be argued that dichotomising phenotypic spectra into rare
monogenic forms (that are mediated by low-frequency variants)
and common polygenic subtypes (that are mediated by high-
frequency variants) is no longer productive and, to an extent,
obstructs the discovery of new aspects of biology (Figures 3 and
4). In our work specifically on human eye development, we can see
the convergence of the rare and common components of genetics.
We have for example found that multifactorial traits like visual
function and retinal structure are associated with the same high-
frequency genetic variants that play a major role in albinism, a rare
recessive condition (Currant et al., 2021; Michaud et al., 2022). We
have also observed that combinations of common genetic changes
in TYR, a major albinism-related gene that encodes the enzyme
tyrosinase, can give rise to similar phenotypic manifestations to
extremely rare loss-of-function variants in this gene. Notably, we

have found evidence suggesting that the expressivity of loss-of-
function alleles is altered by local and/or distal genetic interactions
with other genetic changes (Michaud et al., 2022). Similar inter-
actions between low- and high-frequency genetic variation have
been reported in a number of rare and common phenotypes
including Hirschsprung disease (Tilghman et al., 2019), Hunting-
ton disease (Lee et al., 2022) and blood cell indices (Astle et al.,
2016).

Family studies⟷population studies

The genetic architecture of traits and disorders can be studied using
gene mapping approaches. During the 1980s and 1990s, efforts to
map causal variants focused on rare monogenic phenotypes and
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Figure 1. Key features of forms of human disease at themonogenic and polygenic ends of the genetic architecture spectrum. Notably, although the termsmonogenic and polygenic
formally refer to the number of genes involved in the genetic component of a disorder, they have come tomean broader styles of genetic inheritance anchored on the distribution of
variant effect sizes (concept from Loos and Yeo, 2022).

Table 1. Selected examples of genetic architecture contexts

Genetic architecture context

Example

Disorder1 Genetic pattern

Extremely low-frequency variants with very large
effect (including near-deterministic dominant
disease related genetic changes)

Achondroplasia, a condition associated
with altered bone growth and
characteristic skeletal findings

Typically monogenic and fully penetrant; associated with
heterozygous pathogenic (gain-of-function) variants in FGFR3

Low-frequency variants with a large effect that
can be modified by other genetic factors

Autosomal dominant retinitis
pigmentosa, a retinal condition
associated with visual loss

Typically monogenic but clinically and genetically
heterogeneous; heterozygous pathogenic (loss-of-function)
variants in PRPF31 are associated with incompletely penetrant
forms (McLenachan et al., 2021)

Low-frequency variants with a moderately large
effect that can be associated with digenic/
oligogenic patterns

Left ventricular non-compaction, a
congenital cardiomyopathy that can be
associated with heart failure

Most cases are not monogenic; an oligogenic pattern involving
variants in the MKL2, MYH7 and NKX2–5 genes has been
described (Gifford et al., 2019)

Intermediate-frequency variants with a
moderately large effect that can be associated
with common, multifactorial disorders

Glaucoma, an optic neuropathy leading
to a high risk of visual loss

Most cases are polygenic but heterozygosity for the MYOC
c.1102C> T, (p.Gln368Ter) variant accounts for ~2% of cases
(Zebardast et al., 2021)

1It is noted that disease definition has an impact on the observed genetic architecture. For example, in certain disorders that are diagnosed after reproductive years (such as age-relatedmacular
degeneration [which can be associated with variants in the CFH gene] and Alzheimer’s disease [which can be associated with variants in the APOE gene]), large effect variants may lead to earlier
and/or more severe clinical presentations.
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mostly involved linkage studies in large pedigrees (Claussnitzer et al.,
2020). In the 2000s, advances in genotyping array technologies (and
the characterisation of the extensive linkage disequilibrium proper-
ties of human variation) enabled testing for associations between

common phenotypes and genetic variation at a genome-wide scale.
Early GWAS demonstrated the potential of these agnostic genomic
surveys to highlight novel biological insights (e.g.,CFH in age-related
macular degeneration [Klein et al., 2005] or IL23R in inflammatory
bowel disease [Duerr et al., 2006]), with the Wellcome Trust Case
Control Consortium (https://www.wtccc.org.uk/) showing the broad
applicability of these techniques (Claussnitzer et al., 2020; Crouch
and Bodmer, 2020).

These successes have catalysed a shift from using family/pedi-
gree data to studying whole populations at the genome-wide scale.
More recently, however, there has been a renewed interest in
conducting within-family studies (Uricchio, 2020; Visscher et al.,
2021). These experimental designs are known to be efficient at
dissecting ‘near monogenic’ phenotypes (including through the
identification of de novomutational events) but another key advan-
tage is their ability to separate direct from indirect genetic effects.
Indirect genetic effects include the influence of parental and sibling
genotypes on the proband through alterations to the family envir-
onment (e.g., parents or older siblings can influence the school
achievement or smoking behaviour of younger siblings) (Howe
et al., 2022). Taking these indirectly causal factors into account is
particularly important for understanding phenotypes with behav-
ioural components (Kong et al., 2018). Overall, it is becoming
increasingly evident that certain questions in human genetics are
best answered using within-family studies and specially tailored
experimental designs.

Genotyping arrays⟷whole-genome sequencing

For the past two decades, genotyping of individuals participating in
GWASmainly involved using DNA arrays. These assays test a large
number of intermediate- and high-frequency variants but generally
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Figure 2. Schematic outlining the distribution of variant frequencies and effect sizes for key groups of genetic changes associated with human phenotypes. The minor allele
frequency spectrum for these variants ranges from extremely rare to very common. In the context of conditions related to reproductive fitness, rare causal variants generally have
larger effect sizes than common changes.
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Figure 3. Challenging the ‘rare disease – rare variant’ and ‘common disease – common
variant’ paradigms. The rare disease – rare variant hypothesis, predicts that if a disease
with a significant genetic component is rare in the population, then the underlying
genetic abnormalities will also be found to be rare. In the past decade, a number of
studies have challenged this paradigm and have highlighted the role of common
genetic variation in rare phenotypes (e.g., Niemi et al., 2018; Michaud et al., 2022). A
related hypothesis has been made for common disorders; this proposed that if a
disease with a significant genetic component is common in the population, then the
genetic contributors will also be common. This common disease – common variant
hypothesis has dominated the field for a number of years but has now been refuted;
many examples of rare genetic changes contributing substantially to special cases of
common disorders have now been described (e.g., Loos and Yeo, 2022).
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overlook low-frequency changes, especially if these are in low
linkage disequilibrium with neighbouring variants. Notably, it is
now possible and increasingly cost-effective to comprehensively
assay variation across the allele frequency spectrum using whole-
genome sequencing. This approach is gradually replacing genotyp-
ing arrays as the method of choice for genetic association analyses
(Uffelmann et al., 2022; Wainschtein et al., 2022).

A convergence has begun between what has been two distinct
fields, one focusing on families and studying rare, monogenic
phenotypes and one focusing on populations and analysing com-
mon traits and disorders. Methodological challenges remain (e.g.,
around addressing bias due to stratification or around incorporat-
ing phase information and structural variation) but large-scale
sampling of families with whole-genome sequencing data is
expected to help us build a more complete picture of the role of
heritable variation in human phenotypes (Wainschtein et al., 2022;
Young AI, 2022).

Towards precision medicine

The drive behind studying the genetic architecture of human
phenotypes follows a desire to explain and understand all the
genetic contributions to human disorders. This knowledge directly
informs the goals of medical genetics which include assisting in
disease diagnostics and facilitating the identification of novel thera-
peutics. Furthermore, genetic studies are one of the building blocks
of precision medicine which examines how an individual’s unique
genetic and environmental/lifestyle characteristics come together
to inform their health (Jameson and Longo, 2015; Ashley, 2016;
Martschenko and Young, 2022). Below we provide a few examples
of how genetic investigations can help us move away from ‘one-
size-fits-all’ approaches to medical decisions and treatments.

First, genetic insights from gene mapping efforts can be used to
obtain accurate molecular diagnoses. For many clinical presenta-
tions, there is great value in trying to refine the clinical diagnosis
through genetic testing (which may involve DNA sequencing of

disease-related genes, polygenic score estimation or a hybrid
approach). The utility of genetic testing extends beyond rare
phenotypes that are highly suggestive of a monogenic disorder
(e.g., bilateral cataracts in a newborn). A notable clinical scenario
is that of an individual with a common disorder (e.g., diabetes,
obesity or cancer) who is found through genetic testing to carry a
low-frequency genetic variant with a large effect. In a subset of
cases, identifying such monogenic forms of common disorders can
drive evidence-based changes in care management and result in
improved outcomes (Loos and Yeo, 2022; Murray et al., 2022;
Williams, 2022). It is worth noting however that, for most patients,
obtaining a genetic diagnosis does not lead to a large therapeutic
change. Nonetheless, an accurate diagnosis can improve planning
and remove the need for inappropriate additional investigations
which can be unpleasant and costly. Furthermore, it can have a big
impact on affected families by providing a sense of closure/under-
standing or by allowing for better advice to be given regarding
future reproductive choices. Overall, the use of diagnostic genetic
testing in selected clinical presentations canmake a difference to the
affected individual (by better planning and sometimes better care),
to their family (by providing closure and helping plan for other
children if desired) and to the healthcare system (better planning,
more targeted management).

Second, genetic discoveries can be used to develop tests that help
identify subjects who are at a high risk of developing a specific
disorder. Such predictive tests have been part of the care of families
affected by certain monogenic conditions for a while, with non-
invasive prenatal testing being a notable application (Zhong and
Chiu, 2022). More recently, GWAS data have been used to create
polygenic scores that aim to enhance disease risk prediction for
common disorders (e.g., cardiovascular disease, glaucoma or breast
cancer). The clinical utility of these tools for population-level
screening will, to a large extent, depend on how they will be
combined with other information including lifestyle factors, estab-
lished biomarkers and/or the results of genetic tests that focus on
low-frequency variant detection (Torkamani et al., 2018;Mars et al.,
2020; Polygenic Risk Score Task Force of the International
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Common Disease Alliance, 2021; Szustakowski et al., 2021; Kullo
et al., 2022).

Third, the identification of genetic variants contributing to
human disease can inform therapeutic development and planning.
Highly publicised examples of genotype-informed treatments
include anti-PCSK9 cholesterol-lowering medications (Sabatine
et al., 2017; Schwartz et al., 2018), BRAF/MEK-targeted therapy
for metastatic melanoma (Vellano et al., 2022), triple-combination
CFTRmodulator therapy for cystic fibrosis (Middleton et al., 2019)
and voretigene neparvovec intravitreal gene therapy for RPE65-
related retinal dystrophy (Russell et al., 2017). These examples
highlight that gene mapping studies can not only increase our
understanding of the biology of human disease but also improve
our practical ability to contribute meaningfully to their treatment.

Inclusive genetics and the environment

The past 20 years have witnessed a rapid acceleration in our
understanding of the genetic basis of many human disorders. With
this greater understanding, it became possible to redefine disease at
higher resolution and to target many disorders with precise ther-
apies (Ashley, 2016).

In the near future, as whole-genome sequencing becomes the
default assay, the artificial distinction between variants at the
common and rare ends of the allele frequency spectrum will erode
and it will become easier to consider the entire spectrum of genetic
risk for an individual at once (McCarthy and Birney, 2021). How-
ever, the transition from array-based to sequence-based GWAS
(McMahon et al., 2021) will require a sharper focus both on the
development of appropriate methodology and on the collection of
data from individuals/families with diverse ancestries.

Genetic factors are one of the many aspects to consider when
studying disease risk or contemplating precision medicine
approaches. Environmental factors, a reductionist label referring
to a range of non-genetic parameters, heavily influence most traits
and disorders. Such factors include generic external exposures (e.g.,
social capital, education, financial status), specific external expos-
ure (e.g., infectious agents, chemical pollutants, radiation), and
internal exposures (e.g., metabolism, hormones, physical activity)
(Peters et al., 2021; Canali and Leonelli, 2022). Another important
parameter is time. Time and timing are critical to understanding
how genes and environments operate together to shape probabil-
istically the trajectories of our lives (Figure 5). Experiences and
exposures in early life for example are crucial elements of potential
for success, failure, health or misfortune (Boyce et al., 2020).

Understanding the environmental contributors to specific dis-
orders can highlight opportunities for treatment and prevention. It
is known that, in certain scenaria, lifestyle changes can negate the
development or progression of a disorder andmay be as effective as
any specific treatment; examples range from dietary interventions
for rare inborn errors of metabolism such as galactosaemia to
tailored lifestyle changes for chronic diseases such as hypertension
and COPD (chronic obstructive pulmonary disease). To under-
stand the role of targeted or broad interventions in various dis-
orders and settings, the study of population-scale cohorts is
required (as planned in the UK [Our Future Health], the USA
[All of Us], Denmark, Iceland, Estonia, Finland and many other
countries in Europe, Africa [H3Africa] and elsewhere). Addition-
ally, there is a pressing need to improve the measurement and
recording of environmental variables. Some of these factors can
be imputed from the household location over a person’s lifetime

and then cross-referenced to location-based environmental meas-
ures. However, many of the most important environmental param-
eters, such as the social environment around an individual, require
individual measurement, ideally on a longitudinal basis. Here, the
collaboration of geneticists with epidemiologists and sociologists
will be critical, with each discipline bringing its insight into the
holistic question of individual difference in phenotypes.

Ultimately, a deeper understanding of the interaction between
genetic and non-genetic contributors to human disorders will allow
a broader framing of disease risk, and will provide insights into
how to develop optimal environments for each genetically unique
individual.
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