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Abstract
Deep nets have done well with early adopters, but the future will soon depend on crossing the chasm. The
goal of this paper is to make deep nets more accessible to a broader audience including people with little
or no programming skills, and people with little interest in training new models. A github is provided
with simple implementations of image classification, optical character recognition, sentiment analysis,
named entity recognition, question answering (QA/SQuAD), machine translation, speech to text (SST),
and speech recognition (STT). The emphasis is on instant gratification. Non-programmers should be able
to install these programs and use them in 15 minutes or less (per program). Programs are short (10–100
lines each) and readable by users with modest programming skills. Much of the complexity is hidden
behind abstractions such as pipelines and auto classes, and pretrained models and datasets provided by
hubs: PaddleHub, PaddleNLP, HuggingFaceHub, and Fairseq. Hubs have different priorities than research.
Research is training models from corpora and fine-tuning them for tasks. Users are already overwhelmed
with an embarrassment of riches (13kmodels and 1k datasets). Do they wantmore?We believe the broader
market is more interested in inference (how to run pretrained models on novel inputs) and less interested
in training (how to create even more models).

Keywords: Deep nets; training; inference; hubs; pretrained models

1. Unix for poets→ deep nets for poets
The title of this paper is borrowed from Unix for Poets,a a slide deck that was prepared for a
Linguistics Summer School when empirical methods were just beginning to take off in the early
1990s. There were a few of us that were really excited about corpus-based methods and lexi-
cal resources such as dictionaries and ontologies (WordNet). Although there were relatively few
papers on empirical methods in those days, a few of us believed there would soon be more, and so
there were.

Unix for Poets emphasized pragmatism. Data were becoming available like never before. What
can we do with it all? It is better to do something simple than nothing at all. Because there was
too much low hanging fruit for us to pick by ourselves, we invested in a number of community-
building exercises. A number of us created new venues such as Empirical methods in Natural
Language Processing (EMNLP), and mechanisms for sharing data such as the Linguistic Data
Consortium (LDC).b

Unix for Poets was yet another community-building exercise. At the time, there were a number
of sympathetic potential users in linguistics, lexicography, and translation, but they needed help

ahttps://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf
bhttps://www.ldc.upenn.edu/

c© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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with technology. “Poets” is an imperfect metaphor to refer to some of our colleagues that were
more comfortable writing grammars than shell scripts. We argued that they can do simple things
themselves, and that DIY (do it yourself) is more satisfying than begging a programmer for “help.”

Unix for Poets emphasized instant gratification. Make sure that students are rewarded with
accomplishments in the first 15minutes. Students were impressedwhen they learned how to count
bigrams with a one-line shell script in the first 15 minutes.

The situation with Deep Nets today is similar to where we were with corpora in the 1990s.
Because there is too much low hanging fruit for us to pick by ourselves, we are investing in
community-building exercises such as this paper. We believe there is a large potential audience
of non-programmers that may not appreciate just how easy it is to apply pretrained models to
applications such as:

1. Image Classification:
Pictures → Labels

2. OCR (Optical Character Recognition):
Pictures → text (English and Chinese)

3. Sentiment Analysis:
Text (English and Chinese) → positive or negative

4. NER (Named Entity Recognition):
Text → named entities (spans with labels such as person and location)

5. QA (Question Answering and SQuAD (Rajpurkar et al. 2016)):
Questions and documents (text) → Answers (spans)

6. MT (Machine Translation):
Text in source language → Text in target language

7. TTS (Text to Speech (also known as speech synthesis)):
Text → Audio

8. STT (Speech to Text (also known as speech recognition and ASR)):
Audio → Text

Code is posted on github,c with an emphasis on instant gratification. In 15minutes or less, non-
programmers should be able to download any one of these examples and run it (as is) on novel
inputs, without the need to understand how it works. Most of the programs are short, typically
10–100 lines of code per example. The code should be easy to understand (and modify) by users
with modest programming skills.

Each solution is assigned a separate stand-alone subdirectory with no dependencies between
directories, so they can be understood one by one, in any order. The code is written in a way to
call out certain patterns and similarities between examples.

2. Crossing the chasm
Deep nets have done very well with early adapters, but deep nets will soon need to cross the
chasm (Moore andMcKenna 1991). Many technologies start out well, appealing to early adopters,
but soon thereafter, success depends on finding ways to appeal to a broader set of users. Many
promising technology companies failed because the early adopter market was too small, and their
technology was too challenging to appeal to mainstream users.

When the first author was a student at MIT,we had a twisted set of priorities.Wewere too heav-
ily invested in our beloved technologies (whatever was hot at the time). We were total elitists and

chttps://github.com/kwchurch/deepnet_examples
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held users in rather low regard because they were insufficiently invested in what was important to
us. We referred to our friends as winners and users as lusersd [sic].

When users get stuck, they often blame themselves:We’re not worthy.e However, it is not good
for business to blame the customer or to allow them to blame themselves. When the technology is
too challenging for users, it is the technology that suffers, not the so-called “lusers.”

3. Lessons from Unix
Unix stood up better to the test of time thanmany operating systems that you have probably never
heard of. The first author wrote his Ph.D. thesis on a computer using an operating system called
ITS (incompatible time-sharing system),f a reaction to (CTSS).g, h UNIX (Uniplexed Information
and Computing Services) was a reaction to MULTICS (Multiplexed Information and Computing
Services).i

What did Unix get right, and what did these other systems get wrong? According to Ken
Thompson, one of the two creators of Unix, Multics was

overdesigned and overbuilt and over everything. It was close to unusable. They [MIT] still claim
it’s a monstrous success, but it just clearly wasn’t (Seibel 2009).

Unix emphasized Less is More and Small is Beautiful.j Unix borrowed a few good ideas from
Multics, but left much of the complexity behind. The emphasis in Unix on simplicity applies
to both technology and spelling; the single letter “x” in Unix is shorter than the bigram “cs” in
Multics, according to Section 2.4 of (Kernighan 2019). Rumor has it that Unix was derived from
“castrated MULTICS,” but this rumor has been denied by Dennis Ritchie, the other creator of
Unix.k

Unix was successful because simplicityl sells to the market that matters. Editing is hard work,
but it is worth the effort:m

If I Had More Time, I Would Have Written a Shorter Letter.

We often find that writing helps us understand what is really important. We usually do not
start the writing process until we think we understand what is important, but as we write down
our thoughts, we begin to appreciate just how little we understood when we started the process,
as well as how much more we understand at the end of the process.

One needs to deeply understand what matters to make the user interface so simple that any-
one can use it. All too often, the user interface and the documentation is a mess because the
organization never made it a priority to understand what matters. We used to worship wizard
programmers that could perform magic, but we should have been more concerned with cleaning
up and making the mess more accessible to the masses.

dhttps://www.urbandictionary.com/define.php?term=luser
ehttps://www.youtube.com/watch?v=jjaqrPpdQYc
fhttps://github.com/PDP-10/its
ghttps://www.computerhistory.org/timeline/1961/
hhttps://en.wikipedia.org/wiki/Compatible_Time-Sharing_System
ihttps://en.wikipedia.org/wiki/Multics
jhttps://www.usenix.org/legacy/events/bsdcon/mashey_small/
khttp://article.olduse.net/4743@Aucbvax.UUCP
lhttps://www.youtube.com/watch?v=JoVQTPbD6UY
mhttps://quoteinvestigator.com/2012/04/28/shorter-letter/
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Table 1. A simple API for several deep net inference applications

App Input Output

Image classification Filenames (pictures) Labels
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OCR (optical character recognition) Filenames (pictures) Bounding boxes and text
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sentiment Text Labels (positive/negative)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NER (named entity recognition) Text Entities
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QA (question answering) Questions and Documents Answers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MT (machine translation) Text in source language Text in target language
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TTS (speech synthesis) Text Filenames (audio)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

STT (speech recognition) Filenames (audio) Text

Table 2. See footnoteag for short-cut links to code for each checkmark (
√
), with an emphasis on instant

gratification, simplicity, and readability. More examples will be added soon

App PaddleHub PaddleNLP HuggingFaceHub Fairseq

Image classification
√ √

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OCR
√

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sentiment
√ √

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NER
√ √

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QA (question answering)
√ √

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MT (translation)
√ √ √

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TTS (speech synthesis)
√ √

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

STT (speech recognition)
√

4. A simple API for deep net inference apps
Table 1 introduces a simple API based on top of deep nets. This API follows the Unix philosophy
(McIlroy et al. 1978):

This is the Unix philosophy: Write programs that do one thing and do it well. Write programs to
work together. Write programs to handle text streams, because that is a universal interface.n

The solutions in Table 2 emphasize instant gratification, simplicity, consistent terminology,
ease of use, etc.; these solutions may not be the best in terms of computational resources (space
and time) and performance on shared tasks.

The programs in Table 1

1. do one thing (and only one thing),
2. input and output text streams (universal interface), and
3. work together with Unix pipes.

nhttps://homepage.cs.uri.edu/thenry/resources/unix_art/ch01s06.html
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Figure 1. Example of combining OCR and translation with Unix pipes.

In most cases, inputs and outputs use standard IO in Unix (stdin and stdout, respectively).
Many of the APIs in Table 1 input text and output text, making it possible to combine many of the
programs with Unix pipes. Thus, for example, one can pipe the output from OCR into machine
translation (MT), as illustrated in Figure 1.

Some of the programs input pictures and audio. In these cases, the input is a sequence of file-
names. Standard utilities are used to read and write picture and audio files in standard formats
such as jpg, png, and wav.

There are a few additional arguments. MT takes arguments to specify the source and target
languages. Some implementations support more language pairs than others. All of these programs
accept –help as an argument.

Models and datasets will be downloaded as necessary and cached on the local filesystem.
Downloads sometimes encounter intermittent timeouts. If you encounter such a timeout, please
try again.

5. Publish or perish
Academics understand the importance of publishing, but many technologies failed because docu-
mentation was treated as an after-thought. Documentation is often delegated to technical writers
that are never given much respect. Technical writers are treated as second-class minions, only
slightly above customer service agents in the pecking order.

In contrast, Unix took documentation very seriously. Before Unix, it was hard to imagine that
a manual on an operating system could become a best seller, but Brian Kernighan wrote a number
of popular books, some of which have been translated into a number of languages (Kernighan
and Plauger 1974; Kernighan et al. 1978; Aho et al. 1979; Kernighan and Ritchie 1988; Kernighan
and Pike 1999; Kernighan 2019). Brian’s contributions made Unix accessible to the audience that
ultimately made Unix the success that it has become.o

Vic Vyssotsky, an executive in charge of the Unix group, told us in an off-site meeting that
we should not write man pages for our friends in the office down the hall. Rather, we should
be thinking of a broader audience of future users. One might hope that product teams will find
ways to make our mess more accessible to the masses, but realistically, that is unlikely to happen.
Simplicity and accessibility need to be designed into the final product from the very beginning,
but all too often users are treated as an after-thought.

In retrospect, it turned out to be super-important to the success of Unix to treat technical writ-
ing and Brian Kernighan with respect. Brian not only documented what they did, but he helped
them understand what they had accomplished, as well as what they needed to fix.

As for documentation on deep nets, there are textbooks on machine learning such as (Bishop
2006) and (Goodfellow et al. 2016), as well as more practical books such as (Chollet 2017)

ohttps://www.youtube.com/watch?v=xnCgoEyz31M
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and (Géron 2019), but we often find ourselves reading online documentation directly from
frameworks (PaddlePaddle,p TensorFlowq and PyTorch),r as well as online documentation from
HuggingFace (Wolf et al. 2019), Sklearn (Pedregosa et al. 2011), and Scipy.

Blogs are often useful for learning about deep nets. Bertviz, for example, is a good way to learn
about deep nets and transformer models such as BERT (Develin et al. 2019) and ERNIE (Sun et al.
2019). We would start with the blog.s More motivated users should then read the paper (Vig 2019)
and download code from github.t

While all of these resources are valuable, none of them provide the kind of crisp broad overview
tutorial like what Kernighan has done for Unix. And none of these resources are appropriate for
poets. Note that Kernighan teaches an undergraduate class for poets.u

6. Deep nets for the Unix group
The API in Table 1 was designed to appeal to non-programmers (poets), but it may also appeal to
highly skilled programmers such as the people that created Unix. The Unix group never warmed
to AI. The first author joined Bell Labs in 1983 as a token gesture to AI during a boom and began
to embrace the Unix philosophy only after his beloved technology (Lisp Machines) fell into the
chasm during the subsequent AI winter.

At the fiftieth reunion of Unix,v Mike Lesk, a member of the Unix group (Lesk 1976; Kernighan
et al. 1978), and early pioneer in information retrieval (Salton and Lesk 1968; Lesk 1969), lexical
resources (Lesk 1996) and what is now known as map search (Elliott and Lesk 1982), asked a
question about machine learning.w Al Aho answered the question by making it clear that he would
like to see an abstraction of machine learning that is more like automata theory. While this topic
is beyond the scope of this paper, a promising possible step in this direction was suggested in
Bronstein’s keynote at ICLR-2021x (Bronstein et al. 2021).

Al Aho likes theory. Others in the Unix group would like to see a description of deep nets with
more emphasis on brevity and clarity. Doug McIlroy, the inventor of Unix pipes, was also the
driving force behind accessible documentation and short man pages. When he was the boss of
the Unix group, he insisted that man pages be no longer than a single page. He was also a strong
advocate for the Unix philosophy (McIlroy et al. 1978). His influence was very much behind the
suggestion of piping apps together as discussed in Section 4.

7. Priorities: Different strokes for different folks
Much of the literature on deep nets emphasizes different priorities. This literature appeals to
early adopters, largely engineers that are deeply invested in machine learning, and have spent
many hours learning how to program and how to use various frameworks such as PaddlePaddle,
TensorFlow, and PyTorch. Many of these papers train new models from raw corpora or fine-tune
an existing model for a particular task. Papers are expected to provide an evaluation showing that
the proposed model performs better than a strong baseline on a standard task.

The literature on deep nets is considered extremely successful, as evidenced by the number of
publications. There are so many papers that there are now tools such as papers with codey to help

phttps://github.com/PaddlePaddle/Paddle
qhttps://www.tensorflow.org/
rhttps://pytorch.org/
shttps://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
thttps://github.com/jessevig/bertviz
uhttps://www.cs.princeton.edu/courses/archive/fall21/cos109/
vhttps://www.bell-labs.com/events-news/events/unix-50-event/#gref
whttps://youtu.be/kZd8e2pzZ7Q?t=1578
xhttps://towardsdatascience.com/geometric-foundations-of-deep-learning-94cdd45b451d
yhttps://paperswithcode.com/sota
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researchers find tasks and strong baselines to include in the evaluation section of their next paper.
Strong baselines are referred to as state of the art (SOTA).

The priorities in research may not be optimal.z Users (poets) are already overwhelmed with an
embarrassment of riches. We already have 13k models and 1k datasets in hubs to be discussed in
Section 9. Do we want more? Or should we do more with the ones we already have?

There are a number of hubs that encourage users to do more with what we have by making it
easy to download models and datasets:

1. PaddleHubaa,
2. PaddleNLPab,
3. HuggingFaceHubac, and
4. Fairseqad.

Venture Capital is investing in hubs.ae Hubs have different priorities than research. Hubs are
growing their customer base, whereas research is creating new models with better and better
performance.

While performance is less of a priority for hubs, they can easily catch up, using a quick-follow
approach borrowed from bicycle racing. In bicycle racing, it is hard work to be at the front of
the pack, breaking wind for everyone else. A winning strategy is to spend much of the race in the
peloton drafting behind others, avoiding the temptation to sprint to the front, except when it is
worth the effort to do so.af Hubs are taking a similar approach. They are resisting the temptation
to sprint up leaderboards. The best of those models will show up on hubs soon enough, given the
incentives in research to share results as widely as possible. In this way, hubs are likely to win the
race by drafting behind others that are doing much of the hard work for them.

8. Simple code for Table 1
Table 2 uses a number of hubs to provide one or more implementations of the apps in Table 1.
There is a READMEfile with short-cut linksag that point directly to separate stand-alone subdirec-
tories in the github for each check mark (

√
) in Table 2. To encourage users to study these examples

in whichever order they prefer, we have avoided dependencies across subdirectories. Each subdi-
rectory has its own READMEwith instructions for installation and usage.Most subdirectories can
be installed with the same one-line pip command that references requirements.txt.

As mentioned above, the solutions are short: 10–100 lines of code per example. Figure 2 shows
an implementation of sentiment analysis based on PaddleHub. Many of the programs in the
github are similar to Figure 2. One needs to know which model to load, and how to call it, and
how to retrieve the results. Since there are so many ways to do this, some hubs are introducing
abstractions such as pipelinesah and auto classesai to hide much of the complexity. Many of the
examples in the github make use of these abstractions.

zhttps://www.youtube.com/watch?v=YUUhDoCx8zc
aahttps://www.paddlepaddle.org.cn/hub
abhttps://github.com/PaddlePaddle/PaddleNLP
achttps://huggingface.co/
adhttps://github.com/pytorch/fairseq/blob/master/examples/translation
aehttps://techcrunch.com/2021/03/11/hugging-face-raises-40-million-for-its-natural-language-processing-library/
afhttps://www.pelotonadvisory.com/advisor-topics/lessons-from-the-peloton/
aghttps://github.com/kwchurch/deepnet_examples#short-cuts
ahhttps://huggingface.co/transformers/main_classes/pipelines.html
aihttps://huggingface.co/transformers/model_doc/auto.html
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Figure 2. Sentiment analysis using PaddleHub.

Figure 3. Translate betweenmany language pairs.

9. Priorities and hubs for deep nets
Different hubs for deep nets have different priorities:

1. PaddleHub and PaddleNLP emphasize the Chinese language,
2. Fairseq does well in competitions such as Workshop on Machine Translation,aj and
3. HuggingFaceHub has more models and datasets.

HuggingFace has more models than the others because their hub encourages contributions
from third parties. They offer a simple mechanism to push your model to their hub.ak The large
number of models makes it easy to translate between many pairs of languages, as illustrated
in Figure 3. There are currently 1329 models that start with the prefix: helsinki-NLP/opus-mt
(Tiedemann and Thottingal 2020). The names of these models typically end with the source and
target language. In this way, our code based on HuggingFaceHubal covers more language pairs
than alternatives based on PaddleHubam and Fairseq.an

ajhttp://www.statmt.org/wmt19/
akhttps://huggingface.co/transformers/model_sharing.html
alhttps://github.com/kwchurch/deepnet_examples/blob/main/pretrained/examples/HuggingFaceHub/inference/translate/

translate.py
amhttps://github.com/kwchurch/deepnet_examples/blob/main/pretrained/examples/PaddleHub/inference/translate/

translate.py
anhttps://github.com/kwchurch/deepnet_examples/blob/main/pretrained/examples/Fairseq/inference/translate/translate.py
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On the other hand, the alternatives may perform better for certain pairs since different hubs
have different priorities for different languages. And therefore, one should try to avoid writing
your code in a way that locks you into one hub and prevents you from using other hubs. Much
has been written on the trade-offs between buying from a single source and buying from multiple
vendors.ao So too, there is a similar trade-off between taking a dependency on single hub and
making the effort to take advantage of multiple hubs.

While hubs make it easy to make use of many models and datasets, there are opportunities to
make it even easier. Users hate connector hell.ap Before Universal Serial Bus (USB), most devices
came with their own incompatible connectors and power cords. USB is a promising step in the
right direction, but if USBs were truly universal, why do we need so many adaptors between USB-
A, USB-B, USB-B mini, USB-B macro, USB-C, and lightning?aq

Hubs are a bit-like USB; there are too many ways to connect models and datasets, and too
many inconsistencies in terminology (let alone semantics). Hubs are beginning to provide some
abstractions such as pipelines and auto classes to hide some of this complexity, though it should
be possible to hide even more complexity behind APIs such as Table 1. The next section discusses
a proposal for hiding some of the complexities between datasets.

10. cat_dataset
To use a dataset, users currently need to know quite a few details about json structures, names of
splits, and names of configurations. The hubs provide tools such as the dataset explorer andmodel
explorer to make it easier for users to figure this out,ar but given how many datasets there are, it
is too much work to figure this out for each dataset. All too often, users special case their code for
a small number of datasets, making it difficult to run someone else’s code on some other dataset
(on novel inputs). Non-programmers should be able to run code written by others on novel inputs
without the need to modify the code.

cat_datasetmakes it easier to use more datasets. This program outputs many datasets on stdout
in a standard format. Thus, one can combine cat_dataset with many of the inference apps in
Table 1 using Unix pipes, avoiding the need to special case one’s code for a small number of
datasets. In this way, one can mix and match most datasets with most inference apps.

One can list all datasets with:

cat_dataset –list 1

To output the bookcorpus, say:

cat_dataset –dataset bookcorpus

To output the test split of the wikitext, say:

python cat_dataset.py –dataset wikitext\
–dataset_config wikitext-2-raw-v1\
–split test

cat_dataset outputs the contents of a dataset as a text file, using tab-separated fields. Each line
is record. The first three columns are used for the name of the dataset, the configuration (often
“None”), and the split. The remaining fields are a flattened representation of a json dictionary,
where there is a tab-separated field for each key in dictionary. Each field is a pair of a key and a
value delimited by a vertical bar.

aohttps://spendmatters.com/2013/02/28/evaluating-supply-chain-risks-with-single-vs-multiple-vendor-sourcing-strategies/
aphttps://www.electronicdesign.com/blogs/article/21799752/cable-and-connector-hell
aqhttps://www.tripplite.com/products/usb-connectivity-types-standards
arhttps://huggingface.co/datasets/viewer/?dataset=wikitext
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If the –split argument is not specified, cat_dataset will output all splits in the dataset. The github
in footnotec provides two implementations of cat_dataset, one for datasets in HuggingFace and
another for datasets in PaddleHub. The github contains a fileas explaining which datasets require
which –dataset_config arguments. The documentationat lists which datasets have been tested, with
links into the dataset explorer.

11. Warning: Some datasets have been processed in horrible ways
Warning, when much of the content on hubs is provided by the community, it is hard to be as
careful as lexicographers are about what came from where. For example, the documentation for
the dataset, ptb_text_only, suggests that this dataset came from (Marcus et al. 1993), though it
is clear from the name of the dataset, that the main contribution of (Marcus et al. 1993), the
annotations, is no longer there. Moreover, if one reads the second sentence in the documenta-
tion (below) carefully, it becomes clear that many of the content words have been replaced with:
< unk>.

This is the Penn Treebank Project: Release 2 CDROM, featuring a million words of 1989 Wall
Street Journal material. The rare words in this version are already replaced with token. The numbers
are replaced with token.au

Since hubs are as convenient as they are, authors may not be aware of important differ-
ences between different versions of these datasets. The version of the Penn TreeBank distributed
by the Linguistic Data Corsortiumav has no < unk> processing, unlike the version from
HuggingFaceHub. After processing, some versions have a very small vocabulary of just 10k types.
Some versions have also been normalized in other ways to simplify numbers and punctuation.
Note that the Penn TreeBank is based on the Brown Corpus, and yet the Brown Corpus (Francis
and Kučera 1982) has a much larger vocabulary of 50k types.

Such processing has consequences for estimates of perplexity (and more).aw There are quite a
few papers that report perplexity on various versions of the Penn TreeBankax (and other corpora),
though it is not always clear which papers are referring to which version.

Moreover, it can be risky to compare such numbers since < unk> processing has dramatic
consequences for estimates of perplexity. Perplexity is an estimate of how hard it is to guess the
next word. If we replace many of the rare words with < unk >, then it is easier to guess < unk>

than the rare word that was originally there. In the limit, if we replace every word with < unk>,
then perplexity becomes trivial (and useless). It is not clear why the literature is so interested in
estimates of perplexity on corpora with artificially small vocabularies due to < unk> processing
(and normalization of numbers and punctuation).

12. Bertology
12.1 Unmasking
The previous sections have discussed how to use much of the code on the github to address tasks
in Table 1. The rest of this paper attempts to provide an intuitive sense of what these nets are
doing.

Much has been written on “bertology” (Rogers et al. 2020). What are transformers doing?
Transformers, deep nets such as BERT and ERNIE, can be used to predict the next word,
somewhat like auto-completion in a search engine, as shown in Figure 4. It may be helpful to

ashttps://github.com/kwchurch/deepnet_examples/blob/main/datasets/HuggingFace/dataset_config.txt
athttps://github.com/kwchurch/deepnet_examples/tree/main/datasets/HuggingFace
auhttps://huggingface.co/datasets/ptb_text_only
avhttps://catalog.ldc.upenn.edu/LDC99T42
awhttps://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
axhttps://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
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Table 3. Unmasking: replace each input word with [MASK] and predict fillers. Red is added to highlight
differences between the top prediction and the original input

Word Rank 0 Rank 1 Rank 2

This this:0.595 it:0.375 there:0.004
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is was:0.628 is:0.334 included:0.007
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a a:0.935 another:0.029 the:0.023
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

test part:0.253 subset:0.125 variation:0.082
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of of:0.886 for:0.070 on:0.017
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the the:0.883 an:0.088 our:0.005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

emergency ratio:0.257 television:0.048 satellite:0.031
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

broadcast braking:0.620 response:0.070 management:0.024
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

system system:0.244 technique:0.077 capability:0.059

. .:0.969 ;:0.029 !:0.001

Figure 4. Auto-completion from a search engine.

compare auto-completion with Table 3, produced by unmasking. A short program for unmasking
can be found on the github.ay Unmasking replaces each input word with [MASK] and predicts
the n best fillers. Note that the predictions in Table 3 are remarkably good, though not as good as
auto-completion (Figure 4), at least in this case.

Table 4 applies unmasking to a few cliches.az Each of these cliches has at least one incorrect
prediction, highlighted in red, except for better safe that sorry. Several out of vocabulary words
(OOVs) are replaced with function words.

It is surprising that BERT is not better than this at filling in the blank in highly predictable
contexts such as cliches. It seems like this should be an easy task. Alternatives based on nearest
neighbors and/or web search may be more effective than BERT, at filling in missing pieces of
cliches, at least in some cases.

12.2 Calibration
Unmasking outputs scores as well as fillers. Can we interpret these scores as probabilities?
Calibration results, shown in Figure 5, suggest the scores are too high.

ayhttps://github.com/kwchurch/deepnet_examples/tree/main/pretrained/examples/HuggingFaceHub/Bertology/unmask
azhttps://prowritingaid.com/art/21/List-of-Clich\%C3\%A9s.asp
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Table 4. Unmasking applied to cliches. Incorrect predictions are highlighted in red

MWEs are a pain in the neck for NLP .


there:0.5 is:0.4 a:0.4 pain:0.2 in:1.0 the:1.0 ass:0.9 in:0.6 me:0.1 .:1.0

better safe than sorry .


better:1.0 safe:1.0 than:1.0 sorry:1.0 .:1.0

read between the lines .


in:0.1 between:0.8 the:0.9 lines:0.9 .:1.0

play your cards right .


play:0.8 the:0.5 cards:0.8 right:0.4 .:1.0

it’s an uphill battle .


in:0.3 an:1.0 epic:0.5 battle:0.4 .:1.0

you can’t judge a book by its cover .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

you:0.9 can:0.6 judge:0.8 a:0.8 book:0.8 by:1.0 its:0.9 quality:0.1 .:0.9

ignorance is bliss .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 5. Calibration shows scores are too high (black points are below red line).

Calibration extracts the best filler (rank 0) and its score for each word in the WikiText test set.
Outputs from unmasking are posted on the github.ba This output consists of 238k rows, one row
for each word in the test set. In addition to the original word in column 1, there are predicted
fillers with scores in the other columns.

bahttps://github.com/kwchurch/deepnet_examples/blob/main/pretrained/examples/HuggingFaceHub/Bertology/unmask/
wikitext-103-raw-v1.test.unmasked.gz
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We compute a boolean value, correct, which is 1 iff the top ranking filler is the same as the
original word (ignoring differences between upper and lower case). There are 238k values for
correct, one for each row. Each row also has a score for the top ranking filler.

Calibration uses binning to compare scores with correct, that is, we create 100 bins for values
of score between 0 and 1. Use the score to assign each of the 238k rows to the 100 bins. For each
bin, estimate Pr(correct) by averaging correct over the rows in the bin.

Calibration results are shown in Figure 5. The black points are the result of the binning process
described above. If the scores were well calibrated, the points would be close to the dashed red
line. The fact that most of the black points are below the red line suggests the scores are often too
high: score> Pr(correct).

Logistic regression can be viewed as an alternative to binning, that is, use logistic regression
to fit, correct ∼ score. This will find coefficients β0 and β1 for z = β0 + β1score. z can be used to
estimate Pr(correct), that is, Pr(correct)≈ σ (z), where σ (z)= 1/(1+ e−z).

Results of calibration with logistic regression are shown in Figure 5, though we added an addi-
tional feature to take advantage of unigram word frequencies, freq. That is, instead of correct ∼
score, we used equation (1):

correct ∼ score+ log(1+ freq) (1)

The two features, score and freq, both depend on candidate fillers.Word frequencies are computed
from the training set. Thus,

z = β0 + β1score+ β2log(1+ freq) (2)

where Pr(correct)≈ σ (z).
Logistic regression is used to fit the three coefficients: β0, β1, β2. All three coefficients turn out

to be significant, suggesting that both features, score and freq, are useful.
The blue stars in Figure 5 show mean correct, averaged over bins based on σ (z). The fact that

the blue stars are closer to the dashed red line suggests that calibrated scores, σ (z), are better than
estimates of Pr(correct) raw scores directly from BERT without calibration.

Why did we include unigram frequencies in the calibration? We guessed that frequency might
be helpful because of a well-known word frequency effect in psycholinguistics.bb Eye balling some
of the output described in footnoteba suggested that BERT scores increase with word frequency.
Figure 6 confirms this relation. We hypothesized the relation might be helpful for calibrating
scores. Testing the coefficients, β0, β1, β2, for significance confirmed this hypothesis, that is, BERT
scores are too high, and the errors depend on the frequency of the candidate fillers.

Why are raw BERT scores too high? We suspect these scores are based on a softmax. The
denominator in the softmax should not only include values for the top candidates, but there
should also be some mass for none of the above (NOTA), since there are many less likely can-
didates. While each of these unlikely candidates may be unlikely, in aggregate, their mass can be
sizeable and may be too large to ignore.

Moreover, we suspect that freq is significant in the regression because the NOTAmass depends
on freq. The NOTAmass tends to be small for function words, where the first few candidates cover
most of the possibilities, whereas, for content words, there can be a much longer tail of plausible
fillers, including many OOVs. Thus, the NOTA mass tends to be larger for infrequent content
words than more frequent function words.

To summarize this section, we discussed the unmasking tool in the github. This tool predicts
fillers for each input word, by replacing each word with [MASK] and running BERT. We showed
some anecdotal examples suggesting that although these predictions are remarkably good, they
may not be as good as alternatives from web search, at least for auto-completion tasks. We also
looked at some examples of filling in missing words in cliches. The errors can help us understand

bbhttps://en.wikipedia.org/wiki/Word_frequency_effect
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Figure 6. BERT scores increase with frequency of candidate fillers. Frequencies are estimated from training set.

what BERT is doing, and what it is not doing. Nearest neighbor methods would probably be more
effective at filling in the blanks in highly predictable contexts such as cliches, and therefore, BERT
is probably doing something other than nearest neighbor search. Finally, we used calibration to
show that raw scores from BERT are probably too high, and that the errors depend on frequency,
suggesting that BERT is probably not taking advantage of frequency as much as it could. Despite
these concerns, transformer models such as BERT and ERNIE are the method of choice for many
tasks, and they are doing very well on many leaderboards.bc

13. Conclusions
Deep nets have done well with early adopters, but the future will soon depend on crossing the
chasm and engaging a broader market. The goal of this paper is to make deep nets more accessible
to users with little or no programming skills, and people with little interest in training newmodels.

We discussed a github (see footnotec) with simple implementations of the API in Table 1. The
emphasis is on simplicity, brevity, and instant gratification, as opposed to SOTA performance and
computational resources. We used to worship wizard programmers that could performmagic, but
we should have been more concerned with cleaning up and making the mess more accessible to
the masses. Simplicity and accessibility need to be designed into the final product from the very
beginning, but all too often users are treated as an after-thought.

Non-programmers should be able to install these programs and use them in 15 minutes or less
(per program). Users with modest programming skills should be able to read the code since it
is short: 10–100 lines per program. Much of the code is based on abstractions such as pipelines
and auto classes that hide much of the complexity. Models and datasets are provided by hubs:
PaddleHub, PaddleNLP, HuggingFaceHub, and Fairseq.

Hubs have different priorities than research. Research is training newmodels, with an emphasis
on SOTA performance and computational resources. But users are already overwhelmed with an
embarrassment of riches (13k models and 1k datasets). Do users want more? Or do they want to
do more with what we already have?

The last section, Section 12, provides some intuition about what deep nets are doing, and
what they are not doing. An unmasking tool was introduced that replaces each input word with
[MASK] and predicts the n best fillers. Many of the predictions are remarkably good, though it

bchttps://gluebenchmark.com/leaderboard
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is easy to find exceptions. We provided some anecdotal evidence, as well calibration results, sug-
gesting some opportunities for improvement. Nearest neighbor methods and auto-completion in
web search may be better than transformers, at least for filling in the blank in predictable contexts
such as cliches.
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Francis N. and Kučera H. (1982). Frequency Analysis of English Usage: Lexicon and Grammar. Houghton Mifflin.
Kernighan B.W. (2019), UNIX: A History and a Memoir, Kindle Direct Publishing.
Kernighan B.W., Lesk M.E. and Ossanna J.F. (1978) The Bell System Technical Journal, 57, 2115–2135.
Kernighan B.W. and Pike R. (1999). Addison-Wesley, USA.
Kernighan B.W. and Plauger P.J. (1974). Elements of programming style.McGraw-Hill.
Kernighan B.W. and Ritchie D.M. (1988). The C Programming Language. Englewood Cliffs, USA: Prentice Hall.
Lesk M. (1969). Word-word associations in document retrieval systems. American documentation 20, 27–38.
Lesk M. (1976). Lex: A Lexical Analyzer Generator. Murray Hill, NJ: Bell Laboratories.
Lesk M. (1986). Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice

cream cone. In Proceedings of the 5th Annual International Conference on Systems Documentation, pp. 24–26.
Marcus M., Santorini B. andMarcinkiewicz M.A. (1993). Building a large annotated corpus of English: The Penn Treebank.

Computational Linguistics 19, 263–311.
McIlroy M., Pinson E.N. and Tague B.A. (1978). UNIX time-sharing system. The Bell System Technical Journal 57,

1899–1904
Moore G.A. and McKenna R. (1999). Crossing the Chasm. Oxford, UK: Capstone.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R.,

Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M. and Duchesnay E. (2011). Coders at
work: Reflections on the craft of programming, Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12, 2825–2830.

Rajpurkar P., Zhang J., Lopyrev K. and Liang P. (2016). SQuAD: 100,000+ Questions for Machine Comprehension of Text.
EMNLP, pp. 2383–2392

Rogers A.,KovalevaO. and RumshiskyA. (2020). A primer in bertology:What we know about how bert works.Transactions
of the Association for Computational Linguistics 8, 842–866.

Salton G. and Lesk M.E. (1968). Computer evaluation of indexing and text processing. Journal of the ACM (JACM) 15, 8–36.
Seibel P. (2009). Coders at Work: Reflections on the Craft of Programming. New York: Springer-Verlag.
Sun Y., Wang S., Li Y., Feng S., Tian H., Wu H. and Wang H. (2019). Ernie 2.0: A Continual Pre-Training Framework for

Language Understanding. AAAI.
Tiedemann J. and Thottingal S. (2020). OPUS-MT–building open translation services for the world. In Proceedings of the

22nd Annual Conference of the European Association for Machine Translation, pp. 479–480.
Vig J. (2019). A Multiscale Visualization of Attention in the Transformer Model. ACL, pp. 37–42. https://www.aclweb.org/

anthology/P19-3007
Wolf T., Debut L., Sanh V., Chaumond J., Delangue C., Moi A., Cistac P., Rault T., Louf R., Funtowicz M., Davison J.,

Shleifer S., von Platen P.,Ma C., Jernite Y., Plu J., Xu C., Le Scao T., Gugger S., Drame M., Lhoest Q. and Rush A.M.
(2019).HuggingFace’s Transformers: State-of-the-art Natural Language Processing, arXiv:1910.03771

Cite this article: Church KW, Yuan X, Guo S, Wu Z, Yang Y and Chen Z (2021). Emerging trends: Deep nets for poets.
Natural Language Engineering 27, 631–645. https://doi.org/10.1017/S1351324921000231

https://doi.org/10.1017/S1351324921000231 Published online by Cambridge University Press

https://www.aclweb.org/anthology/P19-3007
https://www.aclweb.org/anthology/P19-3007
https://doi.org/10.1017/S1351324921000231
https://doi.org/10.1017/S1351324921000231

	
	Unix for poets "026E30F rightarrow deep nets for poet

	Crossing the chasm
	Lessons from Unix
	A simple API for deep net inference apps
	Publish or perish
	Deep nets for the Unix group
	Priorities: Different strokes for different folks
	Simple code for Table 1

	Priorities and hubs for deep nets
	cat_dataset
	Warning: Some datasets have been processed in horrible ways
	Bertology
	Unmasking
	Calibration
	Conclusions

