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ON THE POINTS OF INFLECTION OF 
BESSEL FUNCTIONS OF POSITIVE ORDER, II 

Dedicated to the 75th birthday of Professor L. Lorch. 

R. WONG AND T. LANG 

1. Introduction. Let 7V, i, 7V,2» • • • denote the positive zeros of the Bessel function 
Ju(x), and similarly, let 7̂  ,, j'v 2, . . . denote the positive zeros of J'v{x), which are the 
positive critical points of Jv(x). It is well-known that when v is positive, b0th7V.it and 
fu k are increasing functions of v\ see, e.g., [12, pp. 246 and 248]. Recently, Lorch and 
Szego [6] have attempted to show that the same is true for the positive zeros/J x ,7" 2 , . . . 
of/"(JC), which are the positive inflection points of Jv (x). They have succeeded in proving 
that this statement holds for k = 1, but for k = 2, 3, . . . , they have proved only that it 
is true when 0 < v < 3838. Their method is based on an integral representation for 
djn

vkj dv, and they have shown that the monotonicity of// k is determined by the sign of 

(i.i) G(X)=jy-Mdt-jiix) 

when* = 7 ^ . 
The purpose of this paper is to demonstrate that G(j" k) > 0 for v > 10 and k = 2, 

3 , . . . . This, together with the result obtained by Lorch and Szego, will establish the fact 
that fvk increases in the entire interval 0 < v < 00 for k — 1,2,. . . . Our method is 
based on asymptotic approximations with delicate error estimates. We first prove that for 
v > 10, 

(1.2) 0<J2
u(J:k)<^ £ = 2 , 3 , . . . , 

where {/i*} is a decreasing sequence. From (1.1) and (1.2), it is evident that for our 
purpose, it suffices to show 

(1.3) [j^Jl^ldt-^>o for*/ > 10. 
Jo t v1 
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POINTS OF INFLECTION OF BESSEL FUNCTIONS 629 

Next we derive an asymptotic expansion for the integral 

(1.4) I(\) = Jo°°f(t)Ai2(-\t)dt 

complete with error bounds, where the large positive parameter is À = i/2/3 and/(f) is 
a C°°-function in 0 < t < oo. Finally, we consider the function 

(1.5) F(x) = f -^-du 
Jx t 

and we use the result for I(X ) to obtain the asymptotic approximation 

(1.6) Ftfi) = T- " 
1 0.813 e(i/) 

2V j /4 /3 

where \e{y)\ < 2.08 for v > 10. Since /i2 = 0.056 and 

r°° J2(t) 1 
(1.7) / -^-dt=^-, 

Jo t 2v 
the validity of (1.3) follows immediately. Here and throughout the paper, the last signif­
icant figure in decimal numbers is the result of rounding to the nearest digit except for 
numbers in inequalities, which are rounded to obtain the weakest inequality. 

2. Some results of Olver. It is well-known that the Bessel function Ju(x) has the 
uniform asymptotic expansion 

Jv{vx)~^\Ai(y2lX) 

(2.1) 
I/V3 1 + M2 + M2 + . 

Ai'{v2l\) 
j /4/3 «*>•*£)-

valid when v > 0 and x > 0, where £ and x are related in a one-to-one manner by the 
equations 

(2.2) <-{u 3 r\ ( 1 - J C 2 ) 1 / 2 

dx 

2/3 

| l n i ± H ^ ! _ | ( 1 _ ^ 2 , ! 
0<x^ 1, 

(2.3) 
3 p (x2 - l)1 /2 

• { I * dx 
2/3 

= _ | £ ( x 2 _ 1 ) - / 2 _ ^ s e c - l x 

2/3 

^ 1, 
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and where 

' /4 
(2.4) <p(0 "(A) 
The coefficients As(( ) and #5(£ ) satisfy a set of recurrence relations, and are holomorphic 
functions in a region containing the real axis. This result is due to Olver, and can be found 
in [8] and [12, Chapter 11]. Precise bounds for the remainder terms in (2.1) have also 
been constructed by him; see [9] and [11]. To state this result, we first recall from [9] the 
modulus function M(x) and the weight function E(x) associated with the Airy functions: 

(2.5) 
E(x) = exp(|x3/2) x> 0, 

E(x) = 1, x S 0; E~\x) = 1/E(x), 

(2.6) M{x) = { E2(x)Ai2(x) + ET2(x)Bi2(x)} 1/2 

(2.7) A = max {n\x\l'2M2(x)} = 1.430... , 
(—00,00) 

(2.8) fi = max{ir\x\x'2M2(x)} = 1 (f 10, p. 751]). 
(-oo,0) 

Olver's result then states that 

(2.9) 

where 

MVX) = -rr 
l+82n+\ Z/1 /3 *o2'3o±y£ 

s=0 

Ai'{v2l\)n^Bs(v) 
+ - ^ 7 ^ - s Ç 0 T 2 T + £ 2 " + l ( i / ' ° ) ' 

(2.10) \e2n+^,0\< £ ( , 2 / 3 C )
e x P 

2M(v2/3Q f 2A nt „ / | I / 2 D , | ^ .oodCl ' / 2 ^) 
'H.oodCl'^So) 

V •• •-• 1 u2n+l 

and 

(2.H) |«2»+i| <2e"»/v-2"-1^_0û,0O(|cr/2en). 

In (2.10) and (2.11) we have used lSaj,(f) to denote the total variation of a function/(£) 
on an interval (a,b). The following values are computed in [9, p. 9] and [11, p. 207]: 

(2.12) V-ocooiK^BoiO} =0.1051, 

(2.13) i/o - 2A l^-ocoodC 11/2#o) = 0.30. 

For our purpose, it suffices to take n = 0 in (2.9). Thus 

(2.14) Jv(vx)= y ^ ^ [ A ^ 2 / 3 C ) + £i(^C)]-
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In view of (2.12) and (2.13), (2.11) simplifies to 

(2.15) l f l „ o™/„ 0.1051 0.217 
\Si\ < 2e030/u < if v > 10. v v 

If £ is negative, as it will be in our case, we also have from (2.10) and (2.8) 

0.2102 
(2.16) |ei(^C)| < 0F(-I / 2 /3£) l /V 

0.30/ v 

Squaring both sides of (2.14) gives 

(2.17) Jl(vx)= ^ / z ^ ^ C l + g V C ) ] , 
(1 +5i) ^ ' 

where 

(2.18) £*(z/,C) = 2A/(i/2/3C)e1(z/,C) + £f(i/,C). 

By (2.6) and (2.8), 

(2.19) \Ai(x)\ < M(x) < 
1 

y/*(-x) 1/4 
if JC < 0. 

Hence it follows from (2.16) that 

kV.Ol ^ 
(2.20) 

0.134 e0-30/'-

^4/3(-C) , /2 

0.1396 

1 + 
0.105 le 0 3 0 / " 

- ^ / 3 ( ^ ) l / 2 

Equation (2.17) can be further simplified to 

if v ^ 10. 

(2.21) 

with 

(2.22) 

^ ^ o d i v n » + £(«/,<) 

?(",<)•• 
<^2(C) f£*(z/,C)-<5i(2 + «51M/V2/3C) 

,2 /3 

631 

d+«5i)2 

Since | 1 + 5 , | > 1 — 0.0217 if î  > 10 by (2.15), a combination of (2.15), (2.19) and 
(2.20) gives 

0.2918 
(2.23) |e>,C)l <f\0- if v > 10. 

i / 2 ( -C) ' / 2 

A uniform asymptotic approximation of J'v(yx), corresponding to (2.9) with n = 0, is 

1 VKOI 
• / > * ) 

(2.24) 
1 + 5 , i/2/3 ^ ^ { C o ( 0 - C £ o ( 0 } 

+A/V/3C) + 7,,0/,C) + x (O £ i %P 
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where </>(£) and ei(//,() are as given in (2.4) and (2.16), respectively, V(() 
2/{jc¥>«)},x(C)=¥' ,(C)/¥'(C),Co(C)=x(C) + CB6(C)and 

(2.25) \m(v,O\<2^0/vv'1 ^^(|C| l /2Bo)£" ,(«'2/3C)Ar(«'2/3C); 

see [11, p. 208]. In view of (2.5), (2.12) and (2.13), (2.25) can be simplified to 

(2.26) \m(v,0\ < ^V 3 0 /"^ 2 /^ ) 

for negative £. The modulus function N(x) is denned by 

(2.27) #(*) - { £2(JC)AI/2 W + ET2(x)Bif2(x)} xl2\ 

see [10, p. 750]. For x < —1, we also have from [10, p. 752], 

(2.28) 0 < |jc|_1/4Ar(jc) < 0.60. 

3. The negative zeros of Ai(x) and Ai\x). Let an and oln denote the nth negative 
zero of Ai(x) and Ai'(x), respectively. In [3], Hethcote has shown that 

(3.1) 

where 

(3.2) 

an = — ^ ( 4 n - l ) 
2/3 

(!+*«), 

\an\ < 0.130 
3TT 

-{An- 1.051) 

forn > 1. For our purpose, we need a corresponding error estimate for a'n. Our argument 
here parallels that of Hethcote. First we recall the following result from [3], which was 
derived from a method of Gatteschi [2]. 

LEMMA 1. In the interval [nir — \jj — p,mx — x/j + p], where p < TT/ 2, suppose 
f(x) = sin(jc + i/0 + £(x), f(x) is continuous and E = max |e(jc)| < sin p. Then there 
exists a zero d off(x) in the interval such that \ d — (nir — i/> )| = Ej c o s P-

Also we recall the asymptotic expansion [12, p. 392] 

(3.3) Ai'(-x) = T T - W / 4 {sin(£ - I T T ) P ( 0 - C O S ( C - ^ ) G ( 0 } , 

where £ = fx3/2, 

(3.4) P ( 0 - 1 + 

and 

(3.5) G ( 0 - — 

13 5 -7 -9 -11 25 9- 11 • 13-15- 17-19-21 -23 
11 (216)22!£2 23 (216)44!£4 

3-5 19 7-9-11 • 13-15-17 
(216)4 + 17 (216)33!£3 
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It is known that if the expansions of P(£ ) and g(£ ) are truncated at their nth terms, then 

the error terms are bounded in absolute value by the first neglected terms, provided that 

n > 1 and 0, respectively. To apply the above lemma, we l e t / ( £ ) = 7rl/2x~l/4Aif(— x) 

and %l) — —\TT. Then 

| e ( 0 | < 0.0973£ " ] + 0.0439£ ~2 + 0.0627£ ~\ 

Withp = 0.03 and £ > 3.88, we have E = max |e (0 | < 0.02825 and sin p > 
0.029. Since E < sinp, by the above lemma there is a zero dn of/(£) in the interval 
[nir + \n - 0.03, nir + \-x + 0.03] such that 

(3.6) \dn-(nn + W)| <E/ cosp < 0.1097/(/ZTT + W -0 .03 ) 

if rc > 1. Here, use has been made of the fact that | e(£ )| < 0.1096/ £ for £ > 3.88. Note 
that di lies in the interval [3.873,3.932], and that a\ = -1.01879 and a'2 = -3.24820. 

Thus dn — | (—af
n+i ) for n = 1, 2 , . . . , and the assumption that £ > 3. 88 is justified. 

From (3.6), we have 

*n+\ 
37T 

(4w+l) 
2/3 

( l+ f„ + 1 ) 2 / \ 

where 

|fn+i| < 0.2469, 
3TT ^2 

—(4rc + 0.9618) 

If n > 1 then |rw+i | < 0.00723. Applying the Mean-Value Theorem to (1 + JC)2/3 , we 

obtain 

(3.7) 

where 

(3.8) 

3TT 
-(4/2-3) 

2/3 
( l+r„) , 

|rw| < 0.165 ^ (4 /2 -3 .0382) 

for n > 2. The bound on rw is reasonable, since 0.165 is only slightly greater than the 
magnitude of the coefficient —7/ 48 of the next term in the asymptotic expansion of dn\ 
see [12, p. 405]. 

The approximation (3.1) and (3.7) will now be used to estimate the numbers p„, an 

and (3n defined by 

(3.9) pn = \{an-a'n+x\ 

From (3.7) and the inequality [4] 

an — Pn, fin = an + Pn-

an<~ Ï(4n-D 
2/3 
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we have 

4p„< 
3TT 

-(An) 
2/3 M 2 / 3 , M 2 / 3 | 

By using the Mean-Value Theorem, it can easily be shown that 

l V / 3 - 1 

An) 

and 

' • ^ ' * • • * ; • 

for n > 1. Consequently 

f i - i - f 3 ^ - - — 
V 4nJ - 3 4 / j - l 

^m I^+KH 4 P " - ' ^ ' ' 3 4 „ - l 

Replacing rn+] by its upper bound (3.8), we obtain 

4A 
' 3 T T > A 2 / 3 J 4 1 0.121 

kS(^f{; 2 ) I 3 4n — 1 ' ( 4 n - l)2 

for n > 10, from which it follows that 

(3.10) 0 < pn < 0 . 2 4 1 M " 1 / 3 i fw>10. 

To estimate a„, we note that 

(3.11) 

Let£n = [3TT(4AZ- 1)/8]2/3 . Then substitution of (3.1) and (3.7) in (3.11) gives 

-an = Bn\ \ (1 + on) + \ {1 + 7 7 ^ - Y ) 0 + W > • 

°^n — an Pn — ^an + 4an+l-

An- 1 

2 V / 3 4 1 
' + ~ ~ r + n̂ 

By Taylor's theorem, 

V +
 4AI - 1J ~~ " 3 4n - 1 

where |en | < 4 / [9(4n - l)2} for « > 1. Thus 

(3.12) . a n = 1 |B^i + »_i_ + T7*j 

with 
* 3 1 I f 4 1 

+ r + en I rn+i. 3 4 n - 1 
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Using (3.2) and (3.8), it can be shown that if n > 1, 

*| < 0.212 0.040 0.014 
l ^ 1 - (4n- 1.051)2 + (4n-1.051)3 + {An- 1.051)4' 

Consequently, 

(313) 1 ^ ^ for^10-
By Taylor's theorem again, we have 

2 
3 

where 
«-^-l^Hsb"-)-

0.3626 
| T ? " ' = ( 4 n - 1 . 0 5 1 ) ^ f ° r n - 1 0 -

Since \B]!2 = | (4n - 1), it follows that 

(3. 14) ? (-<*n)3/2 = «7T + j - y + fl„ 

with 0„ = \Bll2r]n. Using the fact that (4n - 1) < 1.0014(4« - 1.051), we obtain 

0 2852 
( 3 1 5 ) " » l * 4 ^ L Q 5 f f ° r ^ 1 0 -

In exactly the same manner, one can show that 

(3.16) 2 ( _ ^ ) 3 / 2 = n 7 r _3^r + 3 ^ + ^ 

where 

(3-17) i*«^*êrk «*n>io. 
We conclude this section with the following result. 

LEMMA2. Forn ^ 10, a'n+l < an < an < (3n < a'n. 

Proof. From the graph of Ai(—x) given in [1, p. 446], it is evident that a'n+l < an < a'n 

for all n ^ 1. Since pn = \{an — af
n+l) > 0, it is also clear that af

n+l < ctn < an < f3n. 
Hence we need show only that fin < a'n for n ^ 10. Now recall that dn~\ — l~(—a'n)

3l2. 
Consequently, it follows from (3.6) that if n ^ 2, 

(3.18) ? ( - < ) 3 / 2 = / 2 7 T - ^ + ^ , 

where 
0.1097 ^ 0.140 

Coupling (3.16) and (3.18) gives 

( 3 - 1 9 ) ' ^ - ^ - 0 . 0 3 ^ 4 n - 3 . 0 1 -

A„ = li-dnf'2 ~ | ( - < ) 3 / 2 = f + <f>n - VV 
From (3.17) and (3.19), we have <f>„ > -0.0097 and ipn < 0.0038 forn > 10. Hence, 
A„ > x - 0.0097 - 0.0039 > 0 and the lemma is proved. 
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4. Estimates for Ai(an), A/(/3„), Ai'(an) and Ai'(j3n). From the asymptotic expan­
sion of Ai(— x), we have 

(4.1) y/iïxl/*Ai(-x) = cos(£ - J) + e ( 0 , 

where £ = fx3/2 and 

(4.2) e ( 0 < — £ - + f ; 
v ; l v^i _ 72<, 10368^ 

see [12, pp. 392 and 394]. Let £„ = \(-(3n)
3/2. By (3.16) 

, „ ~x > 37T 37T , 

(4.3) £B = / I7r_ + + 0 ^ 

where |0„| < 0.375/(4rc — 1.051) if n > 10. The addition formula for the cosine func­
tion gives 

cos(£„ - J) = cos{ (n - l)?r + ^ + <j>n} = ± cos(^ + <£„). 

If n > lOthen|0n | < 0.0097, 

tn ^ 1 0 T T - ^ - 0 . 0 0 9 7 ^ 30, 

and from (4.2) it also follows that | £(£n)| < 0- 0024. Furthermore, we have 

37T 37T 

(4.4) 1.1683 < 0.0097< —+<t>n< 1.1877, 
o 8 

and 
0.3737^ cos(l. 1877) ^ cos(^ + </>„) ^ 1 

for n > 10. The approximation in (4.1) then gives 

V^(-/Jn)1/4|Ai(/3„)| ^ | c o s « „ - J ) | - |e(Ç„) | S 0.3737-0.0024 

or equivalently 

0 2094 
(4.5) | A / ( / 3 n ) | > _ _ ^ for* > 10. 

In exactly the same manner, it can be proved that 

|Ai(a„)| ^ °^2l0
l
6

/4 f o r « ^ 10. 
v **n) 

Since a„ = /?„ — 2p„, it follows that 

0.2084 \ 2pn p 1 / 4 
0.2084 (1 , 2p„ T 
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For n > 10, we have 0 < pn < 0.24\n~1/3 < 0.1119 and (3n < /?,0 = aw + Pio < 
-12.8287 + 0.1119 < -12.716. Consequently, 

(4.6) \Ai(an)\ > ° ^ 4 f o r«>10 . 
\ Pn) ' 

To derive similar estimates for Ai'(an) and Ai'((3n), we use, instead of (4.1), the asymp­
totic expansion (3.3), which gives in particular 

(4.7) y/Wx-l'4Ai'(-x) = sin(£ - ±7r) + e ( 0 , 

where £ = fx3/2 and 

(4.8) | £ ( O | < l r l + J ^ r 2 +
4 0 4 1 5 3 7 5

r 4 , v J \y^J\-12^ 10368^ 644972544q 

If £ > 30, then | e ( 0 | < 0.0033. We again let £n = §(-/?„)3/2. Then from (4.3), it 
follows that sin(£n — | ) = i s i n ^ + <j>„). Furthermore, from (4.4) we have 0.92 < 
sin(1.1683) < sin(^ + <£„) < 1 if n > 10. Since £n >30 i f rc> 10, (4.7) gives 

^(-(3nT
l/4\Aif(0n)\ ^ | sinCC - f) | -\e(£n)\ ^ 0 .92-0.0033, 

or equivalently 

(4.9) \Ai'(0n)\ > 0 .517U-A)1 /4 if n > 10. 

A similar argument leads to 

\Ai'(an)\ ^ 0.5177(-a„)1 / 4 if n ̂  10. 

Since — an > —/3n > 0 for all n, we also have 

(4.10) \Ai\an)\ > 0.5177(-/3„)1/4 whenever n > 10. 

5. A uniform asymptotic approximation of J"(i/x). A uniform asymptotic ap­
proximation of J'l(yx) can be derived from (2.14), (2.24) and the Bessel differential 
equation 

(5.1) x2/^) +xJl(x) + (x2- v2)JAx) = 0. 

Since C0(C)-C^o(C) = X(C)in (3.24), replacingxby i/xin (5.1) and substituting(2.14) 
and (2.24) in the resulting equation gives 

(5.2) +t^l[Ai{vVX) + £x] 

i/4/ 3x 
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With H(Q = 2¥>2«) and G(() = ff«)x(0> equation (5.2) becomes 

(5.3) '>^J§k-^ + (f)m»2/3° + £>] 

+ ^ [ A ( > 2 / 3 C ) ^ , ] 

where0(C) = 4 / { x V ( C ) } -
It can be verified that </>(£) is a nonnegative and increasing function on (—oo, 0]; see 

[5]. Hence 0 < y>(Q < y>(0) = 21/3 forÇ < 0. Furthermore, it is known from [9, p. 10] 
that | ip'iC, ) / > « )| < 0.160 for - o o < ( < oo. Thus we have 

(5.4) \H(0\ < 0.79391, |G«) | < 0.127 

for negative Ç,. 
Equation (5.3) can be simplified to 

(5.5) 

with 

(5.6) 

I / 1 / J ( l +0]) L J 

^,o=^|Vn)+ i + 
G(0 
v \ \ 

e,+^l[Ai'(^\) + m]. 

In (5.6), we first replace A/(JC), e\ and 771 by their upper bounds given in (2.19), (2.16) and 
(2.26), respectively. From (2.27), we can also replace Ai'(x) by its associated modulus 
function N(x). The result is 

0.2102 
\H",0\ 0F(-i/2/3Qi/V 

0.30/!/ 

" 2 l C l 
1 , 0-2102 ^ 3 0 / y 1 

0F(-I / 2 /3Ql/4 

^ / 3 | C | 
1 + 

0.2102 ,0.30/1/ N(y2/\). 

Next, we replace G, H and N by their estimates given in (5.4) and (2.28), and obtain 

ISO'.OI ̂  
1 

(5.7) 

0.2102 
I / 2 / 3 ( _ I / 2 / 3 Q l / 4 

0.2102 
1 + pO.30/1/ 

,0.30/ v 

0.072 0.477 

VV\^VV\) (-v2l\) 

If 1/ > 10, then (5.7) reduces to 

(5.8) |«(i/,C)| < 
1 

0.0568 + 
0.5032 

(-I/2/3C) ^ 2 / 3 ( ^ 2 / 3 ^ 1 / 4 

Recall that x and £ in (5.5) are related in a one-to-one manner by equations (2.2) and 
(2.3). Let xvjk = j"vkj v and £,,* = £ (*„,*)• We now use (5.5) and the following result [3] 
to derive an asymptotic approximation for (#£. 
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THEOREM. In the interval [a — p,a + p], suppose/(r) = g(r) + e(j\ wheref(r) 
is continuous, g(r) is differentiable, g(a) = 0, m — min \gf(r)\ > 0, and 

(5.9) £ = m a x | e ( r ) | < min{ \g(a - p)\, \g(a + p)\} . 

Then there exists a zero c off(r) in the interval such that \ c — a\ ^ Ej m. 

We apply this theorem to (5.5) with r = i/2/3C as the independent variable, 
f{v2i\) = ( l + ^ 0 ^ 1 / 3 ^ ( ^ ) / { C ^ ( C ) } ^ ( ^ 2 / 3 C ) = Ai(y2'30,a = ak,ak being the 
kth negative zero of the Airy function, and the error e(r) given by e(r) = <S(i/,£). For 
each k between 2 and 9, we shall choose a positive number ̂  so that a'k+l < ak — Pk < 
&k < ak + Pk < a'k anc* (5-9) h°lds with a and p replaced by ak and p*. As in § 3, we 
let ak — ak — Pk and ft — ak + Pk> For convenience, we also introduce the notations 
mk = min{|A/'(T)| ' &k < T < /3k] and Mk — min{|A/(cr*)|> |^ '(ft) | }• Since a'k+l and 
ak are two consecutive zeros of Ai'{T) and ak is a critical point of Ai'{r) in the interval 
[a'k+l, «£], the minimum value mk is attained at the endpoints ak or ft. Table 1 below lists 
the values of — ak, —ak+l » Ab w* and M* for & = 2, 3 , . . . , 9; cf. [1, pp. 476-478]. On the 
interval [a*, ft], -v2l\ = - r > - f t > - f t > 3.90. Thus it follows from (5.8) that 

(5.10) Mr)| = |fi(i/,Ol <4^> 

where c* = 0.1859/ (—ft)1/4. The values of Q are also given in Table 1. 

k -fl* ~<n Pk mk Mk Ck 

2 4.08795 4.82010 0.18304 0.74713 0.14359 0.13224 
3 5.52056 6.16331 0.16069 0.80309 0.13570 0.12218 
4 6.78671 7.37218 0.14637 0.84450 0.13007 0.11581 
5 7.94413 8.48849 0.13609 0.87771 0.12575 0.11121 
6 9.02265 9.53545 0.12820 0.90563 0.12227 0.10765 
7 10.04017 10.52766 0.12187 0.92981 0.11936 0.10475 
8 11.00852 11.47506 0.11663 0.95120 0.11688 0.10233 
9 11.93602 12.38479 0.11219 0.97043 0.11472 0.10025 

TABLE 1 

From (5.10) and Table 1, it is now evident that the conditions of the above theorem are 
all satisfied. Hence, there exists a zero rk — ^ 2 / 3 C* in the interval [a*, ft] for each 
k = 2 , . . . , 9 such that 

(5 .11) \"2/3Çjc-ak\ <^j-
vLi 3nik 

or equivalently 

(5.12) v2,%* = ak + v2'3rik, 

where 

(5-13) N < 4 T 
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and dk — Q / mk. The values of dk, for k = 2 , . . . , 9, are listed below. 

d2 = 0.17700, rf3 = 0.15214, d4 = 0.13713, d5 = 0.12670, 
(5.14) 

4 - 0 . 1 1 8 8 7 , d7 = 0.11266, J8 = 0.10758, d9 = 0.10330. 
We now consider the case k > 10. Here we choose p^ = | (a'k — ^ + 1 ) , and again 

let ak = ak — p* and fik = ak + pk\ cf. (3.9). Since <^+1 < a* < ak < j3k < a'k 

for k > 10 (see §3), it follows from (4.9) and (4.10) that in the interval [ak,(3k], mk = 
min lMr ) ! > 0.5171(-ft) ' /4 > 0 ïf k > 10. To show that condition (5.9) holds, we 
note that a io = -12.82877675 and pk < 0.241/ it1/3 for k > lO.Thusforr in [a*, ft], 
we haver < f3k < (3W < -12.716 if* > 10, and (5.8) gives 

, l r , ^ 0.0964 ^ 0.0208 „ ^ ^ 
' * W | ' S " ^ 2 / 3 ( _ A ) l / 4 ( - A ) l / 4 

Also, from (4.5) and (4.6), we have 

Af* = min{|A/(a,)|,|A/(ft)|} ^ 0. 2094/ ( - f t ) 1 / 4 , * ^ 10. 

Consequently, condition (5.9) is satisfied. By the above theorem, if v > 10 and k > 10, 
there exists a zero rk — v2^3Çx in the interval [ock^k] such that 

, ? n , , 0.1865 
(5.15) k 2 / 3 C ^ - f l * l < 

or equivalently 

(5.16) v2/3Ç* = ak + i/2'3fik, 

where | ^ | < dkj vAl3 and 

(5.17) 4 - 0 .1865/( - f t ) 1 / 2 f o r*>10 . 

From (5.14) and (5.17), it is evident that { dk} is a monotonically decreasing sequence. 

6. A Bound for Ju(j" k). In the asymptotic approximation (2.14), we replace x by 
xk =ÏIMIV s o t n a t 

(6.1) Jv(fU)= n ^ffu, [Ai{v2l%M) + ex(v,Ç,k)}, 
(1 + 0 i ) z / 1 / - w J 

where v2/3Ç,k belongs to the interval [ak,(3k] and satisfies (5.12) or (5.16), and 

(6-2) |£I(„,C,,)| < r( °f3f „/4 e^lr 

Since (^,k is negative and (£((,) is increasing in (—oo,0], 0 < (f(Ç,k) < (f(0) — 21/3. 
Furthermore, since Ai(ak) = 0, the Mean-Value Theorem gives 

Ai{v2l%,k) = Ai(ak + v2'3^) = Ai*(&)i/2/V 
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where £k G [ak, ft] C [a'k+l, ^ ] . From the Airy equation, it is easily seen that Ai'(x) has 
only one critical point in [a'k+x, a^], which is located at ak. Thus, | A/7(^)| < | A/'(^)| and 

(6.3) \Ai(v2l%±)\ < \Aif(ak)\v
2'\ < -L\AÏ(ak)\dk. 

From (2.15), we also have 1+S\ > 0.9783. A combination of these results yields 

. ,, 1.2879 f 0.2102 e0-30/" 

^ r ' v^(-^2 / 3w i / 4 ^i/3 

The values of Ai'(ak), k — 2 , . . . , 9, are given in [1, p. 478]. Since —i/2/3Ç,k > — ft > 
—ft > 3.90, simple computation gives 

(6.4) \Jv(j",k)\ < ^ for i /> 10, 

where 
e2 = 0.23506, e3 = 0.22151, e4 = 0.21285, e5 = 0.20657, 

(6.5) 
e6 = 0.20170, é>7 = 0.19771, es = 0.19438, e9 = 0.19151. 

If k > 10, then by (6.3) and (5.17) 

Since (3k = ak + pk, the last inequality can be written as 

0.0403 (^ M ~ 1 / 4 \Ai\ak)\ 9/a , ^ 0.0403 f PifeV 

k l 1 / 4 ' 
Recall thatp* < 0 . 2 4 U " 1 / 3 < 0 . 1 1 1 9 i f £ > 1 0 , a i 0 = —12.82878 and |Ai'(jc)j / 1 ^ | J / 4 

< N(x)/\x\]f4 < 0 .60 if x < - 1 (see (2.27) and (2.28)). Hence, [l + pk/ak]~]/4 < 
1.0022 and 

if i/ > 10 and A; > 10. From (6.1), it follows that 

. , ,.„ x. . 1.2879 \ 0.0243 0.2102 e030/" 

Since — i / 2 / 3 ^ > —ft, we obtain 

(6.7) 17,(^)1 < J fori/ > 10, 

where 

(6.8) e * = — T77 if it > 10. 
(-ft)1/4 

From (6.5), (6.8) and the fact that —ft > — ft0 > —ÛI 0 for & > 10, it is evident that 
ek+\ < ek for all k>2. This completes the proof of (1.2) with \ik = e\. 
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7. Asymptotic expansion of /(A ). It is well-known that 

1 fx~ 
Ai(-X) = - er/WUo + e-vWho ' 1 /3 1/31-

where £ = fx3/2 and /#'>(*), « = 1,2, are the Hankel functions; see [1, p. 447]. Hence 
we may write 

Ai\-x) = hx{x) + h2(x)+h(x) 

«to' 

(7.1) A 

with 

AiW = l > / 3 
12 '1/3 

^^ / 3{[J? / 3(0-i'?/3(0] + 2i/,/3(Oi'i/3(0}, 

/ ! 2 ( x ) = ^ e " w 3 "f/VOJ 
= ^«" f tr /3{[^/3(o-y?/3(0]-2i71/3(oi'1/3(o}, 

and 

*3W = \ «Î/3« > "Î/3« > = £ H/3« ) + YU3« >] • 

The asymptotic expansion of h^{x) can be obtained from that of / 2 + F2. More precisely, 
we have 

(7.2) 

where AQ(I/) = 1 and 

1 oo / 3 \ 25 

h*(x) ~ — £ 1 • 3 • 5 • • .(2. - 1) - M\)x-35-1'2, 
2TT J = 0 V27 

A » ^ 
( 4 i / 2 - l 2 ) ( 4 z / 2 - 3 2 ) - - - { 4 i / 2 - ( 2 s - l)2} 

cf. [12, p. 3421. Furthermore, it is known that the remainder after n terms is of the same 
sign as, and numerically less than, the (n + l) th term. From the asymptotic expansions of 
the Hankel functions H^ and Hf\ we also have 

(7.3) 

and 

(7.4) 

where 

h\(x) ~ — exp 
47T 

hiix) ~ — exp 
47T 

x(3s+l)/2 

x(3s+\)/2 

Cs(v) = Ë AK^MJ-K^)» V = 
£=0 
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Bounds for the remainders associated with the expansions (7.3) and (7.4) can be con­
structed from those of the Hankel functions; see [12, pp. 266-269]. 

Inserting (7.1) in (1.4) gives 

(7.5) /(A) = /1(A) + /2(A) + /3(A), 

where 
roo 

(7.6) It(X ) = J f(t)hi(X t) du i = 1,2,3. 

Throughout this section we shall assume that/(0 is an infinitely differentiable function 
on (0, oo) with an asymptotic expansion of the form 

oo 

(7.7) / W - E ^ " 1 . a s f ^ 0 + , 
s=0 

where 0 < a < 1. We further assume that the asymptotic expansion of the derivatives 
of f(t) can be obtained by termwise differentiation of (7.7), and that for each j = 0, 1, 
2 , . . . , 

(7.8) f®(t) = 0 ( r 1 _ e ) , as t -* oo, 

where e is some fixed nonnegative number. 
From (7.7) it follows that the Mellin transform of/(f) defined by 

/•OO -

(7.9) M\f\ z] = J f~Xf(t) du 1 - a < Re z < 1 + e, 

can be analytically continued to a meromorphic function in the half-plane Re z < 1 + e, 
with simple poles a t z = 1 — s — a of residue as,s = 0,l,2,...', see [14, p. 742] or [15, 
p. 425]. In this paper, the notation M\f\ z] is used to denote not only the integral in (7.9) 
but also its analytic continuation. 

The Mellin transforms of ht(t) can be obtained from integral tables [3, p. 199, 
Eq. 23(1); p. 203, Eq. 32(1); p. 209, Eq. 45(1)], and we have 

(,10) „ [ t e l . _g^ j_^ + . ) ^_ . ) r t i ) , 

(7 . .2 , ^.^«(ijlM^HoLi-. 

where s — | (z+ 1). 
We are now ready to apply the results in [14, 15]. For each n > 1, we set 

(7.13) / ( 0 = E ^ + a _ 1 + / " « . 
5=0 
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By our assumption, 
fj/\t) = 0(f+a-j-x ), as t -+ 0+, 

for j = 0, 1, 2 , . . . . Similarly, we write (7.2) in the form 

(7.14) fc3(0 = Ë ^ " 1 / 2 + f c 3 , n ( 0 
5=0 

with bis+i = bis+2 — 0 and 

1 • 3 -5 - ( 2 ^ - 1) (3Y\ /U 
(7.15) b3s= ^ 7 ^2J A ^ X ^ = 0,1,2,... . 

By an earlier remark, we also have 

(7.16) \hXn(t)\ < \bn\r
n~l/2 for* > 0, ifn = 0,3,6, . . . . 

If a ^ \ then it follows from Theorem 1 in [14] that 

(7.17) 73(A) = £ asM[h3;s + a]\-s~a + £ bsM\f\ \ - s - 1/21A"5"1/2 + ^ ( A ) , 

whereas if a = | then we obtain from Theorem 2 in [14] 

(7.18) 7 3 (A)=X:c ,A-^ 1 / 2 + ( l n A ) X : « A A ^ - 1 / 2 + ^ ( A ) , 
5=0 5=0 

where 
cs(a) = asb* +a*bs 

a*= lim ( M | / ; 1 - Z ] + - ) 

z—5+1/2 1 Z — S - 1 / 2 J 

b* = lim {M[/r,z] + 
z-^5+l/2l Z — ^ — 1/2 J 

cf. [16, pp. 158-159]. In both cases the remainder is given by 

/•OO 

(7.19) S3/l(X) = Jo fn{t)hXn(\t)dt. 

Bounds for #3,n(A) can also be found in [14] and [15]. In particular, if a > ^ then we 
have from (7.16) 

(7.20) \S3/l(X)\ <j^f0°°\fn(t)\rn-l/2dt, ifn = 0,3,6, . . . . 

To the oscillatory integrals 7i(A) and /2(A), we apply the result in [15, §5], which 
gives 

(7.21) /;(A) = Ç^^MIAr, j + a ]A- 5 - a + M A ) 
5=0 
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for / = 1,2, where 

(7.22) èin{x)=K—Lj^ tf\t)h(rn\\t)dt, 

and h^n\t) denotes an nth iterated integral of h((t). In the case of h\ (f), we can write 

(n—\)\Jt 

On the path of integration, w = t + pel7r/3 and p varies from 0 to oo. 

It is readily verified that 

3 / 2 

Im(w3/2);> (V_M p3/2 > / ^ 

In view of the well-known result [13, p. 219] 

KVoi * Vc 
it follows that 

Consequently 

\hi(w)\ ^ — f 1 / 2 exp 

\h\-"\t)\ ^ 

0 ^ arg£ ^ 7T, 

l r ' / ^ W ^ " " 
( n - 1)! 6TT 

( -1 ) " 

•<m 
Similarly, we can write 

L (n— 1)! •" 

Using the estimate [13, p. 220] 

K/Voi ^ vc 
-< 

we have 

—7T ^ arg( ^ 0, 

M / 3 

(7.23) |MA)I < ^ /f r'/^Wl du 

Cn=(^WT(Hm 

Thus, if i < a < 1 then (7.22) gives 

where 

(7.24) 

/ = 1,2, 

n/3 
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8. A special case. We shall apply the results of the previous section to the integral 

(8.1) Fl(u) = f™ v\-OAi\-v2l\)dÇ, 

where y?(£ ) is given in (2.4). In the notations of § 7, we have À = z/2/3, 

(8.2) f{t) = <p\-t) = 24/3 - \t + f^ 22/ V - • • • , 

and a = 1. The condition in (7.8) is readily verifiable. In fact, we have /^O = 0(t~2~j) 
as f —» +oo for y = 0, 1, 2 , . . . .In (7.13) and (7.14), we shall take n — 2 and note that 

(8.3) a0 = 2 4 / \ ax = - f , fc0 = ^ - , *i = 0. 
5 27T 

Using (7.10), (7.11) and (7.12), it is easily shown that 

M[hù 1] + M[h2'91] + Af[/*3; 1] = -A* (0), 
(8.4) 1 

M[/n;2] + M[/*2;2] + M[/z3;2] = --AzXO)Az'(O). 

It is also easily verified that 

(8.5) M[f;l/2]= rC _ 1 / V 4 ( -C)^ =4r-—=L=dx=27T. 
JO J\ XV X2 — 1 

Hence a combination of (7.6), (7.17) and (7.21) gives 

(8.6) Fx(y) = z/"1/3 - 24/3A//2(0)i/"2/3 + — A/(0)A/'(0)i/~4/3 + <5(z/). 

The remainder 5 (i/) is given by 

(8.7) «(i/) = fii,2(A)+«2,2(A) +«3.2(A), 

where A = z/2/3, and 63,2 and ^2» * = 1,2, are as defined by (7.19) and (7.22) respec­
tively. 

By Taylor's theorem, 

(8.8) / W = 2 4 / 3 - ^ + / 2 ( 0 

where 

(8.9) f2(t) = ^fiOt2 = ^ ( ^ ( - O ^ , 0 < £ < t. 

It can be verified that (^4)"(—C) is a positive and decreasing function on 0 < £ < 00; 
see [5]. Hence, 0 < ( ( / ) " ( -£ ) < (</)"(0) = ff 22/3 = 1.09. Also, since b2 = 0 in 
(7.14), we have h^^O) — h^it). In view of the remark following (7.2), hi^if) is negative 
in 0 < t < 00 and 

047T 047T 
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Furthermore, since h3{t) is positive, we deduce from above that 

(8.10) 

and 

r l / A 

J0 h{t)hxl{\t)dt\û — jo r2 1.09 yi/A 
2 ^ 

< 
0.545 /-I/A 

2TT 

r l / X ~ 

/ f 2 ^ 

-h3(Xt) 

0.029 

Jf 

(8.11) 

From (8.9) we have 

rf2(t)h3,2(xt)dt\ ^ T^A-5/2 r\f2(t)r
5'2dt 

J\ x (Air Ji/x 
/A 

= ^-A"5/2f/2(0r5/^, 
647T ^0 

1.09 ri 
fof2(t)r

s'2dti* ±^.Jo
lrl'2dt= 1.09, 

and from (8.5) we have 

(8.12) J°°f(t)r5/2dt < J°°f(t)rl/2dt < 2TT. 

Also, a straightforward calculation gives 

s: ^ - - t r5/2dt=h4^-^ = -1.520. 
3 5 

Hence 

y f2(t)h3a(\t)dt\ < 
0.222 

. . 0.029 0.022 

0 < f0Of2(t)r
5/2dt< 1.09 + (2TT + 1 . 5 2 0 ) ^ 8.894 

and 

(8.13) 

Combining (7.19), (8.10) and (8.13), we obtain 

(8.14) 

From (7.23), we have 

(8.15) I M A ) | < ^ j f r ' / ^ ) ( o | A . 

Since / f ( 0 =f(2\t) and 0 </<2)(f) = ( ? V ( - 0 < 1 2 2 / 3 , 

(8.16) / ' r ' /2 | /2
( 2 )(0| A < 2.178. 

On the other hand, integration by parts gives 

r<-i/2\f?xt)\dt= rt^Y2\t)dt 
(8.17) M 3 ^ , 

= 4 / r 5 / 2 / ( , )^ - / ' ( ! ) - - / ( ! ) . 
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From (2.3) and (2.4), it is easily seen that dxj dC, = *<£2(C )/ 2. Straightforward differ­
entiation yields 

d 4 - 4 (x 2 - l ) -4Cx 2 (^ 2 (C) 
^ ( C ) = ôc^TÏ ' 

Since ip(-l) = 1.0821991971 andx(- l ) = 1.9789626178 (see [9, pp. 38 and 41]), 
/ ( l ) = < / ( - l ) = 1.371604273 and/ '(l) = - ( ( / ) ' ( - ! ) = -0.785580091. Conse­
quently, it follows from (8.17) and (8.12) that 

3TT 

2 

Coupling (8.16) and (8.18), we obtain 

(8.18) /°V 1 / 2L/2 2 )(0 | dt < ^ +0.0998 < 4.813. 

(8.19) |^,2(A)| < ^ , i = l , 2 . 

A combination of (8.7), (8.14) and (8.19) gives 

0.856 
(8.20) \6(i/)\ < —T7T fori/ > 10. 

9. Proof of (1.6). We now turn to the integral in ( 1.5), and write 

(9.D w*)=jrjj? 
K 2 t 

dt. 

In (9.1), we first make the change of variable t — vx and replace Jv iyx) by its asymptotic 
approximation (2.21). Next, we make £ the variable of integration. Since/J 2 > fv , > v 
(see[6, (2.4)] and [12, p. 246]), the point xv^ — fvll

v is greater than 1 and its image 
Ç2 under the transformation (2.3) is negative. The final result is 

(9.2) F(/",2) = ^ £° <p\-OAi2(-v2/30<K + Pi("). 

where £„ = —Ç,2, v(C) l s the function defined by (2.4) and 

(9.3) Pi(v)=\£°ë('',-<)<P2(-<)<K-

Since £u > 0, it follows from (2.23) and (8.5) that 

(9.4) | P l H < ^ f V c - C K - ' ^ C < °-^, V> io. 
VL JO I / z 

For convenience, we set 

(9.5) F*{v) = - £ " <p4(-C)Ai2(-^3OdC 

so that we may write (9.2) as 

(9. 6) F(j'l2) = ^ - ^ [Fi(y) + F*(v)} + Pl(y), 
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where F\(v) is defined by (8.1). 
In what follows we shall consider the integral in (9.5). From (5.12), we have 

(9.7) ^ = - _ _ l / 2 , where \m\ < - ^ . 

Hence we can write F*(v) in the form 

(9.8) F*(v) = F2{v) + p2{v), 

where 

(9.9) F2(v) = — ^ f°<p\v-2'3T)Ai2(T)dT 

and 

(9.10) 02(1/) = - ^ - r ( / ( I / - 2 / 3 T ) A / 2 ( T ) d r . 

Since 0 < <p(0 < <p(0) = 21/3 and |A/(C)| < 0.53566 for -oo < C < 0 (see §5 and 
[1, pp. 446 and 478]), we have from (9.7) 

0 290 
(9.11) \pi(iy)\<-^T fori/ > 10. 

To evaluate the integral in (9.9), we use the Taylor expansion 

(9.12) ¥>4(0 = 24/3 + | c + t f 2 ( 0 

where 

£ f.A\"{ (9.13) fl2(0 = | j - (¥>T(0. C < ^ < 0 . 

Since (<^4)"(0 is an increasing functionin (-oo, 0](see[5]),0 < (</?4)"(0 < (<f4)"(0) = 
f| 22/3 = 1.09 for -oo < C < 0. Thus, it follows that 

(9.14) \R2(0\ <0.55C2 , - o o < C < 0 . 

Using the fact that Ai(z) satisfies the differential equation w" — zw = 0, we have by 
integration by parts 

jAi2(z)dz = zAi\z) - Ai'2(z) = M0(z), 

JzAi2(z)dz = l-[zM0{z) +Ai(z)Ai'(z)] = A/,(z), 

J z2Ai\z) dz=- \?zM\ (z) + zAi(z)Ai'(z) - Ai2(z)] = M2(z), 
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from which it follows that 

M0(0) = -A/,2(0), Mote) = -Aia{a2\ 

M{(0) = -A/(0)A/'(0), Mi(a2) = --a2Ai'2(a2), 
3 v 7 v 7 v 7 3 

-iAi2(0), M2(a2) = - i < M2(0) = -^A/2(0), M2(a2) = -\a\Af-{a2\ 

Consequently we obtain 

24/3 

(9.15) ^ 2 / 3 

15i/4/3 

where 

[A/(0)A/'(0) + «2A//2(fl2)l + p3(i/), 

(9.16) |p3(i/)| < ^ [44/ ,2(a2) - Ai2(0)]. 

Numerical computation gives a\Ai,2(a2) — A/2(0) = 10.6526; see[l, pp. 476 and 478]. 
Hence 

1.172 
(9.17) \p3(y)\ <—2~-

Coupling (9.6) and (9.8), we have 

(9.18) F ( / ; ' 2 ) = _ ^ [ F l ( z / ) + F 2 ( l / ) + p 2 ( z / ) ] + p i ( î / ) . 

Inserting (8.6) and (9.15) in (9.18) gives 

where p(i/) = pi(i/) + [<5(*/) + p2(^) + Ps(^)] /2*/2 /3 . From (8.20), (9.4), (9.11) and 
(9.17), it follows that 

, ^ 1.376 
\p(y)\ £ —^-. 

The approximation formula (1.6) is obtained from (9.19) with 

^ = ~ a2Ai'2(a2) - i 4- p(y). 
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