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Seasonality of food intake in ruminants: recent
developments in understanding
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Domestic ruminants are used to exploit many vegetation resources that
would otherwise be unproductive. For maximal effectiveness, there is a need
to understand underlying mechanisms controlling animal performance,
including seasonal variations in appetite and food intake. Potentially useful
experimental approaches, recent findings and aspects for future study are
discussed. Seasonal variation in intake is expressed through changes in the
pattern of meals (duration, frequency, inter-meal interval and ingestion rate).
These changes are signalled through alterations in both structure and func-
tion of the gastrointestinal tract and physiological signals. Studies suggest
that multiple, interactive signals are involved, including hormones such as
cholecystokinin, insulin, leptin and triiodothyronine. However, baseline con-
centrations in the peripheral circulation are not appropriate measurements of
some of these hormones since there can be seasonal differences in postpran-
dial profiles or changes in rate of dilution in the bloodstream or in the rate of
degradation in the liver. Interactions between these circulating signals, liver
function and neural signals to the brain need clarification. Systemic nutri-
tional signals also act directly in the brain where they are integrated with
seasonal photoperiod (melatonin) signalling within the hypothalamus.
Melatonin target sites critical to appetite regulation have still to be identified,
but leptin receptors and downstream neuropeptides have been localised
within the ovine hypothalamus. These orexigenic and anorexigenic ‘com-
pensatory’ pathways are sensitive to imposed changes in nutritional status
but, with the exception perhaps of cocaine- and amphetamine-regulated
transcript, do not appear to drive seasonal ‘anticipatory’ changes in intake.
Mechanisms underlying seasonal changes in hypothalamic sensitivity to
nutritional feedback clearly deserve further study.

Photoperiod: Appetite regulation: Hormones: Neuropeptides:
Hypothalamus

Abbreviations: ARC, arcuate nucleus; BBB, blood-brain barrier; CART, cocaine- and amphetamine-
regulated transcript; CCK, cholecystokinin; GH, growth hormone; ICV, intracerebroventricularly; IGF-
1, insulin-like growth factor-1; LD, long day; NPY, neuropeptide Y; OB-Rb, signalling form of leptin
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Introduction

Ruminants represent a large proportion of the animal species used to exploit areas of land and their
associated plant resources that cannot be used more directly by man. The seasonality of food intake
of relatively few species or breeds has been studied intensively; most of these are domesticated or
semi-domesticated and inhabit relatively high latitudes or altitudes. However, of those that have
been studied, most have been found to exhibit marked seasonal variations in appetite and voluntary
food intake, which are a function of physiological changes and do not simply reflect a seasonal
reduction in food availability (Kay, 1979; Kay & Staines, 1981; Barry et al. 1991; lason et al.
2000). This phenomenon is considered to have evolved as an adaptation to regular seasonal reduc-
tions in food availability, so that the animal’s drive to search for food is reduced when supply is
reduced and less energy is expended in foraging (Kay & Staines, 1981). The pattern of variation is
subject to modification by many peripheral factors including the energy content of the food
(Webster et al. 2000), the species or breed under investigation (Semiadi et al. 1995; Iason et al.
2000) and physiological state (pregnant, lactating, rutting, high or low body condition, etc.) (Barry
et al. 1991; Sibbald, 1997). In domesticated ruminants, the variation is less marked and seasonal
changes in intake may depend on the breed and food type (Iason ez al. 2000), but it is still a signifi-
cant determinant of animal performance and therefore an important topic for research.

The purpose of the present review is to address the relative merits of different experimental
approaches to the study of seasonality of intake, to summarise some of the most important recent
findings concerning seasonality of appetite and intake in ruminants, and also to speculate on poten-
tially important areas for future research.

Patterns of seasonal variation in intake

Patterns of seasonal change in intake have been reported previously for several species of deer
(Bandy et al. 1970; Milne et al. 1978; Loudon et al. 1989; Barry et al. 1991; Semiadi et al. 1995;
Rhind et al. 1998), Soay sheep (Kay, 1979; Rhind et al. 2000) and various conventional sheep
breeds (Iason & Mantecon, 1991; Tason et al. 1994; 2000) and so they will not be reported in detail
here. Briefly, animals of all of the species and breeds studied exhibit higher intakes during periods
of long-day photoperiod; the magnitude of the difference with photoperiod or season is more
marked in non-domesticated species and is greater in intact males than females (Bandy et al. 1970;
Kay, 1979). There is little or no information concerning seasonal variation in intake in tropical
environments in which photoperiod is relatively constant. The observations of Loudon & Curlewis
(1988) indicated the existence of an endogenous rhythm in the body weight of tropical Axis deer
(Axix axis) maintained at 52°N, but these variations were not entrained to photoperiod.

Efficient livestock production in environments where food supply is abundant depends on rel-
atively high levels of food intake being sustained throughout the production cycle; seasonal reduc-
tions in appetite are not consistent with this requirement. Thus, an understanding of the factors
controlling this phenomenon is desirable. Furthermore, knowledge of these may lead to an
enhanced capacity to ameliorate the adverse effects on animal growth or reproductive performance.

Investigative approaches

Investigations of the pattern and underlying causes of this variation in intake are complicated by
the fact that intake is dependent on a large number of interacting factors. Seasonal variation in
intake may be a function of an endogenous circannual thythm (Barry et al. 1991), the expression of
which is regulated by photoperiod, via the hypothalamic—pituitary system (Lincoln e al. 2001).
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The mechanisms through which the rhythms are expressed are complex. The central appetite cir-
cuits and the peripheral organs, such as liver, pancreas and gastrointestinal tract and adipose tissue
are linked by neural and endocrine signals to the brain where the patterns of neuropeptide secre-
tions drive the neural circuits that determine appetite and food intake. However, the sequence of
neuroendocrine signals through which a change in photoperiod can alter food intake is poorly
understood. Elucidation of the complex mechanisms is likely to require several types of experi-
mental approach:

1. Descriptive studies under controlled conditions, designed to characterise intake patterns and
associated metabolic signals, may be required to provide basic data on which hypotheses can
be built regarding the underlying control mechanisms. Such experiments frequently involve
maintenance of animals indoors and on artificial diets (Rhind et al. 1998, 2000). However,
care is required in the extrapolation from data obtained in such studies to other circumstances
because different breeds or species may exhibit different responses to different conditions
(Iason et al. 2000).

2. Descriptive studies under field conditions in which the diet and animal behaviours are not con-
strained may have the disadvantages of seasonal changes in the animal’s physiological state
which are not directly related to food intake, for example, changes in pelage or in breeding
activity. Furthermore, in studies of this type, intake patterns can be affected by seasonal
changes in the amount of feed (Heydon er al. 1993) or the type of feed (and associated
changes in palatability, selection and digestibility) that is available (Kay & Staines, 1981).
However, the magnitude of the effects of these factors on intake is generally small when com-
pared with the variation in level of intake associated with season. Studies of this type make an
important contribution to the understanding of the ecological and physiological consequences
of seasonal variation in intake. Thus, a combination of approaches 1 and 2 is likely to lead to a
more complete understanding of the subject than either approach in isolation.

3. Exogenous manipulations can be used to develop further the hypotheses generated from
approaches 1 and 2 and particularly to investigate the underlying signals that determine sea-
sonal changes in appetite and intake. These signals are generally linked to changes in day
length, which is transduced humorally by the daily pattern of melatonin secretion (Morgan et
al. 1994). The control mechanisms downstream from melatonin involve multiple endocrine
and neural systems that are integrated and co-ordinated within the hypothalamus. Further
understanding of the mechanisms requires investigation of physiological responses to changes
in circulating hormone profiles, neural inputs to the brain and associated changes in the activi-
ties of hypothalamic neuronal networks. These changes in endogenous signals can be achieved
through controlled changes in food intake, body condition, or photoperiod, but they can also
be more precisely manipulated by injection or infusion of selected drugs, hormones or
metabolites. The manipulations can be conducted at the level of the digestive tract (Forbes et
al. 1992), circulating blood (Figlewicz et al. 1985), within nerves (Farningham et al. 1993) or
within precisely defined areas of the brain (Figlewicz et al. 1989).

4. Extrapolation from studies of non-ruminant species can offer new insights into potential mech-
anisms of appetite regulation. For example, studies of selected rodent species which fast com-
pletely during hibernation have shown that seasonal changes in glucocorticoids (Kenagy &
Place, 2000) and in the permeability of the blood—brain barrier (BBB) to insulin (Florant et al.
1991) could be involved in appetite regulation. In addition, hypothalamic appetite control
pathways have been studied in some depth in a rodent model exhibiting seasonal
appetite—body weight cycles, the Siberian hamster (Phodopus sungorus) (Morgan & Mercer,
2001). The potential involvement of these appetite regulatory mechanisms in ruminants has
not been widely explored to date.
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Control mechanisms: peripheral

The division of appetite control mechanisms into categories is arbitrary, since they clearly inter-
act to induce the observed patterns of food intake. For example, long-term (seasonal) changes
are a function of short-term changes in expression of the factors that determine total daily food
intake. However, they can be divided into two major groups for the purpose of review.

One group of control mechanisms is physical rather than metabolic and includes changes
in meal size, number, frequency and speed of food ingestion. There may also be changes in the
physical structure of the gastrointestinal tract. The second group of mechanisms controls the
first and includes the physiological components, i.e. neural, metabolic and hormonal signals
and their behavioural correlates. Investigation of these mechanisms has a long history. The
likely involvement of both gut fill and of metabolic signals (Balch & Campling, 1962; de Jong,
1986) has long been recognised but as each new theory concerning appetite regulation has been
developed, limitations of those theories have also been identified (Ketelaars & Tolkamp, 1992;
Forbes, 1995). However, while each individual concept has provided an inadequate explanation
of appetite regulation by itself, it has become clear that at least some components of each of the
proposed mechanisms are involved.

Meal patterns and intake rates

Food intake comprises a series of feeding bouts or meals; there is no precise generally agreed
definition of a meal and definitions may differ between studies. However, this lack of agree-
ment does not detract from the value of this form of description when studying food intake. In
general terms, a meal is a period in which the animal is continuously ingesting food and which
is marked at each end by a period in which the animal is not ingesting. In studies of castrated
male red deer (Cervus elaphus), Rhind et al. (1998) found that the higher rates of food intake
during the summer were associated with longer meals and shorter inter-meal intervals so that
they had larger meals and spent a greater proportion of their time eating (Fig. 1). However,
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Fig. 1. (A) Mean rates of food ingestion (sep for month 0-58, seb for period 0-27); (B) meal sizes (Seb for
month 11-81, sep for period 5-80); (C) number of meals/h (sep for month 0-081, sep for period 0-035) at
monthly intervals in deer (Cervus elaphus) fed ad libitum. Results are shown separately for each period of
the day: (———), early daylight, i.e. the daylight period between dawn and refilling of the feed bins; (—),
dark, i.e. the period between dusk and dawn; (...... ) late daylight, i.e. the daylight period between refilling of
the feed bins and dusk. Data are missing from months in which the interval between dawn and refeeding

was too short for meaningful measurement. (From Rhind et al. 1998.)
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during the course of each meal, the animals were also found to be ingesting the food faster dur-
ing the summer months than during the winter (Fig. 1). Similar results were obtained in a study
of castrated male Soay sheep (Rhind et al. 2000).

Additional observations of red deer by Sibbald (1994) and Rhind et al. (1998) showed that
these components of feeding behaviour differed not only with photoperiod but with periods of
daylight and darkness within a 24-h period; thus meals were longer and more frequent during
daylight than darkness (Fig. 1). This finding has important implications for experimental
design, first because it indicates that measures of food intake should be made throughout 24-h
periods, and not only at one part of the day, to ensure that the pattern of meals is determined
accurately. Second, it shows that the pattern of food intake is controlled not only by medium- to
long-term changes in underlying physiological signals but also by the short-term changes in
ambient lighting. Such changes in response to light per se (as opposed to physiological changes
associated with seasonal changes in photoperiod) may be an important component of the mech-
anism through which effects of season are expressed.

The observations of Iason et al. (2000) showed that, in addition to seasonal differences in
meal pattern, sheep also exhibit changes in their bite pattern. The bite rate was found to be
lower in summer, when the sheep ate more, than in winter when they ate less. However, the bite
size was larger in summer even though sward heights were similar. These observations high-
light the complexity of the mechanisms that determine patterns of intake and this in turn may
explain why these authors found that breed differences in seasonal patterns of intake and forag-
ing behaviour were poorly related to their inherent differences in voluntary food intake.

These physical, intake-regulating mechanisms may each be subject to different underlying
control mechanisms. For example, the physiological signals that control the rate of eating
(amount of food consumed per unit of time) or bite size may be different from those that deter-
mine the meal length or inter-meal interval. At the same time, the short-term appetite drive may
be modified or inhibited altogether by other factors such as daylight or darkness, social factors or
climatic conditions, and the expression of each of these factors may involve further mechanisms.

Seasonality of gastrointestinal structure and function

Another group of physical factors that determines the meal pattern pertains to the structure and
function of the gastrointestinal tract. While the digestibility does not appear to differ with sea-
son in red deer (Barry et al. 1991; Sibbald & Milne, 1993; Freudenberger et al. 1994) it may be
reduced during the summer in goats (Barry et al. 1991). The reduction in digestibility in goats,
unlike in deer, appears to be a function of increased levels of food intake associated with a
lesser seasonal increase in rumen capacity than in deer and an increased rate of outflow from
the rumen (Barry ef al. 1991).

Reports of changes in rumen pool size and retention time in deer are contradictory. Rumen
capacity is higher during spring and summer than in winter (Barry er al. 1991; Sibbald &
Milne, 1993; Freudenberger et al. 1994) but reported effects of season on retention times are
inconsistent, with Freudenberger et al. (1994) reporting an increase in summer while Sibbald &
Milne (1993) observed no seasonal difference. Rumen motility in red deer was found not to dif-
fer with season (Stafford er al. 1993).

Changes with season in the gastrointestinal structure and function and associated patterns
of nutrient absorption are likely to contribute to changes in the metabolic and hormonal signals
to the appetite centre of the brain. Attempts to relate physical and hormonal signalling mecha-
nisms already have a fairly long history (Tindal e al. 1982, 1985) but the mechanisms respon-
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sible for the putative translation of a photoperiodic signal into seasonal changes in the capacity
of the rumen remain unresolved.

Metabolic signals

Circulating concentrations of metabolites, such as volatile fatty acids, non-esterified fatty acids,
ketones and glucose have long been considered to be candidates for the role of signalling
agents from the peripheral organs and circulation to the appetite centre in the brain. This led to
the formulation of the glucostatic and lipostatic theories, around which much research into
appetite has centred (van Itallie, 1990; Forbes, 1995), and to the related ischymetric control the-
ory (Nicolaidis & Even, 1990). This latter concept suggests that circulating concentrations are
likely to be modified not only by seasonal changes in the level of food intake and gastrointesti-
nal function, and associated patterns of nutrient absorption, but also by basal metabolic rate and
basal energy expenditure rate. Further support for the concept is provided by the observation of
liver receptors responsive to propionate (Anil & Forbes, 1980) and receptors responsive to
acetate in the rumen wall (Baile, 1971); nutrient supply could be signalled neurally to the brain
via these sensors.

It is noteworthy that intrajugular administration of metabolites, such as volatile fatty acids,
has been reported to have no obvious effects on food intake, while the effects of infusions into
the hepatic portal vein were variable (de Jong, 1986). This observation suggests that metabo-
lites may provide a regulatory signal mediated via neural signals from the liver. Collectively,
studies of the effect on meal patterns of manipulations of circulating concentrations have led to
the conclusion that volatile fatty acids, non-esterified fatty acids and glucose may have some
involvement in the regulation of meals. However, it is unlikely that any of these metabolites has
a pivotal role in controlling overall intake (de Jong, 1986; Forbes, 1995) and therefore in the
control of seasonal changes in appetite.

Seasonality of metabolic rate

Circulating levels of metabolites are a function of rates of entry and exit from the pool and
changes in these factors could be driven by changes in metabolic rate. Some studies have
shown that metabolic rate is lower during winter than summer in Soay sheep (Argo et al. 1999)
and white-tailed deer (Odocoileus virginianus) (Silver et al. 1969). On the other hand, signifi-
cant seasonal differences have not been found in red deer (Sibbald et al. 1993) and the differ-
ence in commercial sheep breeds is minimal (Iason et al. 1994).

It has been proposed that seasonal differences in metabolic rate and nutrient requirements
may drive the seasonal changes in appetite and intake (Barry er al. 1991) but it has also been
suggested that the reported seasonal changes in metabolic rate may be a function of changes in
temperature and animal activity (Pekins et al. 1992). Clearly, the biological significance of such
changes is in doubt.

Putative hormonal signals

Hormonal signals can serve to integrate effects of changes in photoperiod, nutritional state and
other aspects of physiological state (pregnancy, lactation, thermal status, etc.), thereby providing
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a signal to the brain which is appropriate to both season and physiological state. Thus, an
appropriate appetite response can be triggered, which takes account of both long- and short-
term signals. Rodent studies indicate that these are likely to involve different physiological
mechanisms (Weigle, 1994).

It might appear that in order to be a candidate for the role of controlling seasonal changes
in intake, the profile of a hormone should also exhibit a seasonal pattern of change. However,
this view is arguably simplistic as it is possible that hormones can have a role in the mediation
of seasonal changes in intake without large changes in circulating concentrations. This may be
possible through changes in (a) the rate of delivery of the hormone to the target tissue or (b) the
pattern of secretion at particular periods of the day, for example, postprandially. In addition,
changes in the expression of receptors for the hormone or in expression of downstream intracel-
lular signalling could also result in seasonal changes in response. Each of these phenomena is
likely to be influenced by the actions of other hormones acting in concert.

Changes of season are associated with photoperiod-driven changes in physiological signals.
However, the physiological signals are also determined indirectly by the changes in nutritional
state associated with seasonal changes in food intake. Thus the signals that provide feedback to
the appetite centre not only regulate the pattern of intake but are inevitably also a function of the
pattern of intake. The observed changes with season in hormone profiles may therefore be inter-
preted either as a secondary consequence or as playing a primary role in driving seasonal intake.
Careful experimental design is therefore necessary to tease apart these two components.

Studies of several species have shown the elevated food intake levels of summer to be
closely associated with higher circulating concentrations of prolactin, insulin-like growth fac-
tor-1 (IGF-1) and leptin (Rhind & McMillen, 1995; Bocquier et al. 1998; Rhind et al. 1998,
2000; Marie et al. 2001). The thyroid hormones, thyroxine (T,) and triiodothyronine (T5), also
exhibit seasonal changes with highest concentrations generally occurring in spring and lowest
in early autumn (Loudon et al. 1989; Rhind & McMillen, 1995; Rhind et al. 1998, 2000). Thus,
the timings of maximum and minimum concentrations of these hormones are less closely
linked to the times of the solstices than for the other hormones. In the seasonal Siberian ham-
ster, circulating T, concentrations are higher during long days (LD), but peripheral T, adminis-
tration during short days (SD) does not prevent the seasonal decrease in food intake (O’Jile &
Bartness, 1992).

While this observation might seem to be at odds with a role for the thyroid hormones in
seasonal changes in intake, it is noteworthy that Nicholls et al. (1988) have reported evidence
to support a unifying theory suggesting the involvement of the thyroid hormones in the
expression of seasonal changes in reproductive function in groups as diverse as birds and
ruminants. It is possible that they are similarly involved in the expression of seasonal changes
in food intake.

Other metabolic hormones such as insulin (Rhind & McMillen, 1995; Rhind ef al. 1998,
2000) and cortisol (Rhind & McMillen, 1995; Rhind ef al. 1998, 2000) generally do not show
large seasonal variation in circulating concentrations. There is limited evidence that growth
hormone (GH) concentrations may be slightly elevated during the summer (Rhind & McMillen,
1995; Rhind et al. 2000).

In order to dissociate the effects of photoperiod and intake on hormone profiles, year-round
studies have been conducted with red deer (Rhind ez al. 1998) and Soay sheep (Rhind et al.
2000) fed ad libitum or fed a ration equivalent to their mid-winter level of intake. Prolactin pro-
files exhibited large seasonal variations that were independent of food intake. However, thyroid
hormone profiles were affected by increases in nutrient intake during the summer so that pho-
toperiod-induced changes were evident only when the food intake was held constant.
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Although the patterns of secretion of the hormones that exhibit seasonal changes are in the
same direction as the seasonal patterns of food intake, daily food intakes and profiles of GH,
insulin, T, and T, have all been found to be poorly correlated in both sheep and red deer and
whereas prolactin and IGF-1 were significantly positively correlated with intake in deer, there
was no such relationship in Soay sheep (Rhind ez al. 1998, 2000). Collectively, these observa-
tions suggest that there may not be a direct link between these hormones and food intake.
Furthermore the hypothalamo—pituitary disconnected rams of Lincoln er al. (2001) showed
clear photoperiod-driven prolactin cycles but showed no corresponding changes in appetite.

The absence of a clear, direct hormonal effect has led to some more detailed studies of
selected hormone profiles and in particular of the within-day profiles of hormones such as
insulin and GH that exhibit substantial postprandial changes in secretion. While circulating lev-
els of insulin in ruminants are apparently not affected by photoperiod (Rhind et al. 1998, 2000),
this hormone is secreted in response to the postprandial increase in supply of energy-providing
substrates such as glucose, propionate and amino acids, and it favours their assimilation into
tissue (Trenkle, 1981). The role of insulin as an appetite-regulating mechanism merits further
research not only because it is involved in the regulation of energy metabolism, but also
because it has recently been shown that the pattern of postprandial change in insulin concentra-
tions changes with season in Soay sheep maintained on a constant level of food intake. The
peak postprandial values were significantly greater in long or declining daylength (June and
September) than at the time of the vernal equinox (March) (Rhind et al. 2000). It is postulated
that such changes with season could be a function of the seasonal changes in circulating levels
of prolactin which, in studies with rats, has been shown to stimulate insulin production
(Moldrup et al. 1993; Petryk et al. 2000). Furthermore, insulin is known to influence activity in
hypothalamic appetitive pathways (Schwartz et al. 1992). In contrast to the differences
observed in insulin profiles, postprandial GH profiles exhibited no such differences with season
(Rhind et al. 2000).

Do hormones act directly on the brain?

The low level of correlation between circulating hormone profiles and food intake suggests that
intake is not regulated simply by these hormones acting directly on the appetite centres of the
brain. Although the ventromedial hypothalamic region where many of the appetite regulatory neu-
rones reside may be exposed directly to circulating blood (i.e. hormones would not have to cross
the BBB), it is assumed that signalling hormones require transportation across the BBB to reach
other hypothalamic nuclei and brain regions. Studies of rodents and other species have shown that
some hormones are actively transported across the BBB, including insulin (Baura et al. 1993),
leptin (Banks er al. 1996) and prolactin (Martensz & Herbert, 1982). These active transport
processes represent a potential mechanism for the control of hormone delivery to the brain and
therefore for control of peripheral feedback and of the intake response. Such regulatory mecha-
nisms could explain the absence of a clear relationship between circulating hormone profiles and
seasonal changes in appetite because they could determine the supply of hormone to the appetite
centre, irrespective of circulating profiles. Such mechanisms have the advantage of allowing regu-
lation of the peripheral metabolism according to short-term need while not allowing the associ-
ated short-term changes in hormone profiles to perturb the long-term regulation of appetite. The
factors that control the rate of transfer across the BBB are unknown but may include seasonal
changes in circulating hormone profiles and changes in membrane permeability induced by hor-
monal changes or as a result of endogenous rhythms within the cells of the barrier membranes.
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Work on yellow-bellied marmots (Marmota flaviventris) (Florant et al. 1991), rodents that
exhibit extreme seasonal changes in food intake, has shown that the rate of transfer of insulin
across the BBB into the cerebrospinal fluid is lower during winter than summer. While Rhind et
al. (2000) were unable to demonstrate any such seasonal change in the efficiency of insulin
transfer across the BBB in Soay sheep, the potential involvement of such a mechanism in the
seasonal regulation of intake in ruminants deserves further study.

Are there indirect hormonal effects on the brain?

An alternative mechanism through which seasonal changes in peripheral circulating hormone
profiles could impinge on the appetite centre is via neural feedback from the liver or alimentary
tract. The function of these organs could be altered by hormonal signals thereby resulting in
altered neural feedback. The potential importance of such neural feedback from the liver has
been demonstrated through denervation studies in sheep (Anil & Forbes, 1988).

An example of a possible hormonal-liver—neural interaction can be deduced from the find-
ings of a number of studies. T, concentrations are higher in spring and early summer and lowest in
late summer and early autumn (Rhind & McMillen, 1995; Rhind et al. 1998, 2000). A reduction
in T, concentrations in ruminants can induce an increase in insulin secretion and a reduction in the
rate of degradation (Achmadi & Terashima, 1995). This may increase insulin concentrations in
the hepatic-portal vein, into which the insulin is secreted (Harmon, 1992), without necessarily
altering concentrations in the peripheral circulation where portal blood is significantly diluted.
Thus, the rate of delivery of insulin to the liver may be increased in response to a seasonal decline
in T, concentrations. Similarly, IGF-1 inhibits insulin secretion (Leahy & Vandekerkhove, 1990)
and so a seasonal reduction in concentrations of this hormone could also affect insulin secretion.
Since studies of rodents have shown that small amounts of insulin infused into the portal vein can
act, via a vagus nerve signal to the brain, to induce a reduction in meal size (Vanderweele, 1994),
it is postulated that the seasonal changes in circulating T, could be one of the factors driving sea-
sonal changes in the eating pattern; this could operate through a combination of an altered insulin
signal to the liver and associated change in the neural feedback from the liver.

Neural signals from the rumen or other parts of the alimentary tract could also be altered
by hormonal signals. A direct influence on appetite of the seasonally-variable hormone, pro-
lactin, has been ruled out (Lincoln et al. 2001). However, there is evidence from rodent studies
that it can induce gut hypertrophy (Bates ef al. 1963) and both prolactin and GH receptors have
been shown to be present in parts of the intestine and in the pancreatic islets of Langerhans
(Lobie et al. 1993; Moldrup et al. 1993); IGF-1 receptors are also present in the gut (Laburthe
et al. 1988; Termanini et al. 1990). These observations suggest that a number of hormones are
likely to exert effects on both the gut and on the organ producing insulin. Thus, there is poten-
tial for interaction and feedback between the gastrointestinal tract, the peripheral circulation
and the appetite centre of the brain, via both neural and endocrine routes. Consequently, sea-
sonal changes in any or all of these hormones could affect appetite and food intake through
changes in gut function, hormone secretion and neural feedback to the brain. At present, much
of the information pertaining to the roles of hormones in appetite regulation is derived from
studies of non-ruminant species but these studies can be used to identify potentially important
mechanisms to be studied in ruminants.

One potential effect on gut function of hormonal or other signals is altered synthesis and
secretion of hormones secreted by the gut, such as cholecystokinin (CCK), somatostatin,
bombesin and galanin and others (Baile ez al. 1986; Morley, 1987; Walsh, 1987). These hormones
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have been implicated in the processes of satiety and therefore could be involved in the regulation
of meal pattern and intake. However, they probably do not act in isolation but in concert with
other hormones such as insulin which can enhance CCK activity within the brain (Riedy et al.
1995). Similarly, leptin, for which there are receptors on neurones of the vagus nerve (Buyse et al.
2001), acts synergistically with CCK to induce short-term inhibition of food intake (Barrachina et
al. 1997) and long-term reduction in body weight in rodents (Matson & Ritter, 1999).

While there is virtually no information concerning the roles of these hormones in the
expression of seasonality of intake in ruminants, CCK, which is secreted in response to inges-
tion of food and interacts with sensors in the gut wall (Praissman et al. 1983) and pancreas
(Steigerwalt & Williams, 1981), was found to act as a satiety factor in ruminants (Farningham
et al. 1993), with its effects being potentiated by central administration of insulin (Riedy et al.
1995; Woods et al. 1996). Thus, CCK may be involved in the determination of meal pattern
and therefore level of intake. Although it has been suggested (Stricker & Verbalis, 1990) that
the observed effects of peripheral CCK administration may simply be a response to CCK-
induced nausea, there is strong evidence from CCK immunisation studies of pigs (Pekas &
Trout, 1990; Pekas, 1991) that this hormone is directly involved in the control of food intake.
The evidence of its involvement in ruminants is less convincing since immunisation is not
associated with an increased level of intake (Trout et al. 1989; Rhind et al. 2001).
Nevertheless, a small, indirect role in the seasonal regulation of intake is suggested by a recent
immunisation study in red deer, which showed that the amplitude of the seasonal cycle was
reduced by CCK immunisation (Rhind et al. 2001). This finding is consistent with observa-
tions of seasonal variation in sensitivity to the satiety effects of CCK in hamsters (Mercer,
1998).

Regulation of hormone action

Plasma hormone concentrations do not necessarily equate with the observed biological
response, not only because the response may depend on the action of multiple hormones acting
in concert but also because the action of the hormones depends on the numbers and activity of
their receptors and on downstream changes in cell function. In addition, binding proteins may
modify the action of hormones. Receptor activities are known to vary in response to hormonal
signals (Bick et al. 1992) and may be subject to seasonal variation but this has not been studied.
When interpreting the effects of thyroid hormone profiles it is also important to note that the
majority of the biologically active form, T, is derived from T, and the conversion process,
which involves deiodinase enzymes, occurs in many tissues, including the brain (Beckett &
Arthur, 1994). Consequently, tissue concentrations are not necessarily directly related to circu-
lating concentrations and the signal provided to the target tissue is not necessarily the same as
that indicated by circulating concentrations. The potential for seasonal variation in the activity
of deiodinase enzymes has been demonstrated in ruminants but so far only in goat skin (SM
Rhind and CE Kyle, unpublished results).

Control mechanisms: central
Hypothalamic regulation of seasonal appetite cycles

Systemic signals such as those discussed earlier exert their effects on appetite and feed intake
through action on the so-called ‘appetite centre(s)’ of the brain. The critical role of the hypo-
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thalamus in mammalian appetite regulation was recognised from lesion experiments as long
ago as the 1940s and 1950s which led to the concept of hypothalamic ‘hunger’ and ‘satiety’
centres (Stellar, 1954). More recent work has begun to elucidate the hypothalamic neural path-
ways involved in orexigenic and anorexigenic drives. Such research, largely based on non-
seasonal rodent models, has been stimulated by the accelerated impetus to understand the
molecular basis of impaired body-weight regulation in obesity (Kalra et al. 1999).
Theoretically, nutritional status must be signalled from the periphery to the brain, and the dis-
covery of the adipose tissue product, leptin, was seen as a major breakthrough in this regard.
Leptin was found to impact directly on many hypothalamic pathways, particularly on neurons
of the arcuate nucleus (ARC) in the mediobasal hypothalamus (Ahima et al. 2000).

However, the brains of seasonal animals must receive and respond to photoperiodic as well
as nutritional feedback, and the area of the brain in which these inputs are integrated and the
extent to which they both influence the same neural pathways have yet to be determined.
Changes in photoperiod are transduced humorally through changes in the diurnal pattern of
pineal melatonin secretion (Morgan et al. 1994). However, sites of melatonin action on the
appetite-body-weight axis have yet to be fully elucidated (Morgan & Mercer, 2001).

Early lesion experiments in seasonal ruminants demonstrated the involvement of the ven-
tromedial hypothalamus and lateral hypothalamus in appetite and energy balance regulation
(Baile & Forbes, 1974). More recently, it was elegantly demonstrated that sheep with complete
lesions of the basal hypothalamus, including at least the ARC and median eminence, show no
photoperiod-induced alterations in food intake and body weight (Lincoln et al. 2001). This con-
trasts with findings based on seasonal Siberian hamsters which showed normal appetite and
body-weight responses to photoperiod despite monosodium glutamate-induced lesions of at
least 80 % of ARC neurones (Ebling et al. 1998). On the basis of these studies, it appears that
the ARC is a key site for appetite control, but other hypothalamic nuclei are also involved in
seasonal appetite regulation.

The extent to which photoperiod entrains an endogenous circannual rhythm or provides
independent appetite drive remains open to conjecture. Long-term cycles of intake and body
weight persist in seasonal ruminants that are pinealectomised (Lincoln et al. 1989) or kept in
constant conditions (Forbes, 1982), but not in the ARC- and median eminence-lesioned rams
of Lincoln et al. (2001). However, a critical concept associated with photoperiodic entrain-
ment is the provision of anticipatory regulation or drive (i.e. induction of changes in physiol-
ogy before they are required) to the appetite—body-weight axis, as distinct from the
compensatory regulation (i.e. induction of changes after they are required), which occurs as a
result of nutritional feedback. It can be theorised that photoperiod, via melatonin, sets a sea-
sonally appropriate body weight, perhaps encoded within the hypothalamus or higher brain
centre, against which nutritional feedback is assessed and appropriate afferent adjustments are
made to intake and/or metabolism. This is the basis of the sliding set point of seasonal body-
weight regulation, a concept which was originally propounded by Steinlechner et al. (1983)
and has been reviewed elsewhere (Mercer ef al. 2000a; Adam & Mercer, 2001). Although
based on the Siberian hamster model, many features are likely to be relevant to the seasonal
ruminant, with both animals showing hypophagia and weight loss in response to SD and
hyperphagia and weight gain in response to LD. Briefly, if food restriction is imposed on ham-
sters undergoing SD weight loss, the rate of weight loss accelerates; then, when allowed to
feed freely again, the hamsters regain weight only to match that of controls kept in SD
throughout (Mercer et al. 2001). In other words the seasonal mammal defends a body weight
appropriate to its photoperiod experience.
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Melatonin target sites

Using ligand binding and gene expression studies, melatonin receptors have been shown to be
localised in the ventromedial hypothalamus and premamillary area of the ovine hypothalamus
(Chabot et al. 1998; Malpaux et al. 1998), and in the suprachiasmatic and dorsomedial hypo-
thalamic nuclei of Siberian hamsters (Morgan et al. 1994; Ellis et al. 2000). The importance of
each of these target areas with regard to melatonin actions on seasonal intake and body weight
awaits clarification. The latter two sites, in particular, deserve further study since they are
known to project afferents to the paraventricular hypothalamic nucleus, which also receives
afferent input from the ARC and is an important integrative site for energy balance regulation
(Morgan & Mercer, 2001). Identification of the phenotype(s) of melatonin receptor-expressing
neurones in these nuclei will clearly represent a major step towards the elucidation of seasonal
intake regulation. While this approach will increase our understanding of transduction of pho-
toperiodic information within the hypothalamus, it is pertinent also to address mechanisms of
nutritional feedback to this region of the brain.

Leptin and leptin receptors

The activities of known hypothalamic orexigenic and anorexigenic receptors and neuropeptide
pathways have been the subject of recent studies in seasonal animals. Many of these neuropep-
tides are known to be leptin-sensitive (Ahima et al. 2000) and circulating leptin profiles appear
to be photoperiod-dependent. As in Siberian hamsters (Atcha et al. 2000; Klingenspor et al.
2000; Mercer et al. 2001), plasma leptin concentrations in sheep are higher in LD, reflecting the
higher food intake and adiposity in this photoperiod, than in SD when intake and adiposity are
low (Marie et al. 2001). In addition, as in all species studied to date, plasma leptin concentra-
tions in sheep decline during periods of food restriction (Marie et al. 2001) and fasting (Adam
et al. 2000a, 2002).

The signalling form of the leptin receptor (OB-Rb) has been localised in the ovine hypo-
thalamus, with gene expression being detected, notably, in the ARC, ventromedial hypothala-
mus and paraventricular hypothalamic nucleus (Dyer et al. 1997; Williams et al. 1999). Leptin
generally has clear anorexigenic actions and, as in laboratory rodents, leptin administered
intracerebroventricularly (ICV) decreases appetite in sheep (Henry et al. 1999). Thus seasonal
changes in circulating leptin concentrations are unlikely to be driving photoperiod-induced
changes in food intake since these concentrations are high when appetite is high in LD and low
when appetite is low in SD. Indeed it is paradoxical that the high levels of leptin in LD do not
act to depress appetite, and the low levels of leptin in SD do not stimulate appetite, thereby
counteracting the seasonal cycle. It therefore appears unlikely that leptin plays a role in regulat-
ing the central operation of ‘anticipatory’ sliding body-weight set point in seasonal animals
(Klingenspor et al. 2000). However, seasonal animals retain the ability to exhibit ‘compen-
satory’ responses to seasonally inappropriate amounts of circulating leptin. There is growing
evidence of seasonal adjustments in hypothalamic sensitivity to leptin feedback that may be
fundamental to the seasonal intake cycle. In the Siberian hamster model, down-regulation of
ARC OB-RbD gene expression accompanies the decline in circulating leptin concentrations dur-
ing SD weight loss. This contributes to the ‘anticipatory’ regulation and contrasts with the ele-
vated OB-Rb gene expression seen during ‘compensatory’ regulation when circulating leptin is
reduced by imposed food restriction (Mercer et al. 2001). However, no difference in ARC OB-
Rb gene expression has been seen in LD v. SD sheep (Archer et al. 1999), although it is ele-
vated in sheep with reduced circulating leptin during food restriction or fasting (Archer et al.
1999; Adam et al. 2000a, 2002).
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Further evidence of seasonal changes in sensitivity to leptin comes from studies of
Siberian hamsters. Adult males and females given leptin continuously for 2 weeks had acceler-
ated weight loss in SD compared with LD, with no effect on food intake (Atcha er al. 2000).
However, adult males given a slightly larger dose of leptin daily for 2 weeks showed increased
intake in SD but not in LD, leading these authors to conclude that leptin given to SD hamsters
caused them to respond like LD hamsters (Drazen et al. 2001). In contrast, single intraperi-
toneal injections of a much larger, pharmacological dose of leptin decreased intake in adult
males in both SD and LD (Reddy et al. 1999). Thus responses to leptin appear both season-
and dose-dependent in Siberian hamsters. Data from sheep suggest an additional influence of
gender. Evidence from one sheep study involving castrated males with steroid replacement
suggested that a pharmacological dose of leptin ICV in a single injection decreased food
intake in autumn but not in spring (Miller et al. 2000). However pharmacological ICV leptin
infusions into gonadectomised sheep (i.e. with minimal steroid influence) for 12 d did not
reduce intake in autumn but did reduce intake in early spring, with the reduction being greater
in females than males (Clarke et al. 2001). To date, the physiological relevance of many leptin
administration experiments has been doubtful since dose rates have clearly been in the phar-
macological range. However, use of physiological dosing regimens is now more likely since
sensitive assays for leptin concentrations in blood and cerebrospinal fluid have been developed
for sheep (Crabtree et al. 2001; Marie et al. 2001). Further elucidation will come from experi-
ments that address the effects of direction of photoperiod change and duration of photoperiod
exposure. In view of the preliminary evidence of seasonal changes in hypothalamic sensitivity
to nutritional (leptin) feedback, which is probably important for the maintenance of seasonal
appetite-body-weight cycles, it is critical to elucidate the underlying mechanisms. These are
likely to involve changes in the activities and/or nutritional responses of known hypothalamic
appetite-related neuropeptides and the following section considers the evidence for seasonal
changes in their expression.

Orexigenic neuropeptides

Neuropeptide Y (NPY) is one of the most potent orexigenic neuropeptides known; it stimulates
appetite when administered ICV to sheep (Miner, 1992). Also, as observed in laboratory rodents,
NPY gene expression in the ovine ARC is increased by negative energy balance induced by food
restriction (McShane et al. 1993; Adam et al. 1997) or fasting (Adam et al. 2000a; 2002). ARC
NPY gene expression is similar between LD and SD Siberian hamsters, despite large differences
in voluntary food intake and body weight; however, it is up-regulated in either photoperiod by an
imposed food restriction producing similarly large differences in intake and body weight (Reddy
et al. 1999; Mercer et al. 20000, 2001). Furthermore Siberian hamsters exhibit no seasonal
changes in the appetite response to ICV-administered NPY (Boss-Williams & Bartness, 1996).
These findings suggest that animals undergoing photoperiodically-induced weight change, as
opposed to an imposed weight loss regimen, remain in energy homeostasis; in other words, they
remain at a body weight that is perceived centrally as appropriate to their photoperiodic experi-
ence (Mercer et al. 2000b). Equivalent data for sheep are equivocal at present. Although levels
of ARC NPY mRNA were increased in both photoperiods in food-restricted castrated males with
steroid replacement, relative to ad libitum-fed animals, there was no difference in expression
between artificial SD and LD (Archer et al. 1999; Fig. 2). However, others have reported sea-
sonal alterations in NPY activity in freely-grazing ovariectomised ewes. In these animals, the
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Fig. 2. Coronal hypothalamic sections showing neuropeptide Y gene expression in the arcuate nucleus
(ARC) of sheep with low (A, C) or high (B, D) food intake and kept in short day (A, B) or long day (C, D)
photoperiod. 3V, third ventricle; ME, median eminence; —, scale bar, 3 mm. (From ZA Archer, SM Rhind, PA
Findlay, S McMillen and CL Adam, unpublished results.)

number of ARC cells expressing NPY immunoreactivity and NPY mRNA was higher in late
summer, when voluntary food intake is usually high, than in spring, when intake is usually low
(Barker-Gibb & Clarke, 2000; Clarke ef al. 2000). However, these experiments were conducted
in natural photoperiod in field conditions; body fatness and satiety of the ewes and food avail-
ability were not recorded. Since ARC NPY gene expression is increased in both food-restricted
sheep and those on similar levels of food intake but in low body condition (Adam et al. 1997;
Archer et al. 2000), it is clear that more highly controlled testing is required to elucidate the
potential involvement of NPY in the seasonal intake cycle of sheep.

Agouti-related peptide co-localises with NPY in the ARC of rodents and exhibits similar
distribution in sheep (Archer et al. 2000; Mercer et al. 2000b). Its orexigenic effects are medi-
ated through its antagonism to the anorexigenic melanocortin pathway by actions at the hypo-
thalamic melanocortin-3 and -4 receptors (Ollmann et al. 1997). There is no convincing
evidence that it is significantly modulated by photoperiod, although gene expression is highly
up-regulated by food restriction, in both sheep (Archer et al. 1999) and Siberian hamsters
(Mercer et al. 2001).

Gene expression for the leptin-sensitive orexins (or hypocretins) exhibits similar lateral
hypothalamic localisation in sheep (Archer et al. 2002) and rodents (Mercer et al. 2000b). ICV
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administration clearly stimulates appetite in rodents (Sakurai et al. 1998) and sheep (Sartin et
al. 2001) and yet there are no differences in gene expression between Siberian hamsters in SD
(low appetite) and LD (high appetite) (Reddy et al. 1999; Mercer et al. 2000b). Moreover, pre-
pro-orexin gene expression has been shown to be up-regulated in SD relative to LD in sheep
(Archer et al. 2002). Although initially this finding appears counterintuitive, appetite control
may not be the primary role of this neuropeptide. Apart from their involvement in arousal
behaviour (Samson & Resch, 2000), orexins also impact on the reproductive—neuroendocrine
axis, notably stimulating gonadotrophin-releasing hormone—luteinising hormone surge release
in steroid-primed rats (Pu et al. 1998; Kohsaka et al. 2001). The up-regulation of orexin expres-
sion in sheep during SD could therefore be related to the reproductive stimulation in this pho-
toperiod (Archer et al. 2000). Indeed, evidence is accumulating for an involvement of orexins
in nutritional modulation of reproductive neuroendocrine output (Blache et al. 2002).

Anorexigenic neuropeptides

Gene expression in the ARC for pro-opiomelanocortin (POMC), the precursor for a variety of
peptides including the anorexigenic melanocortins, is consistently elevated in Siberian hamsters
kept in LD v. SD (Adam et al. 2000b; Mercer et al. 2000b, 2001). Again, this appears counter-
intuitive with regard to the seasonal pattern of appetite drive. The apparent anomaly may reflect
the fact that the difference is a secondary consequence of the increased appetite and adiposity in
this photoperiod. However, there is an alternative explanation based on seasonal reproductive
activity and the equivocal data from sheep add weight to this argument. No difference was
found in hypothalamic POMC mRNA expression in castrated males with a constant level of
oestradiol replacement kept in LD and SD (Archer et al. 1999). However, another study has
shown that POMC gene expression was similar in LD and SD in castrated males with no
steroid replacement, but higher in SD than LD in castrated males treated with testosterone
(Hileman er al. 1998). Conversely, POMC gene expression in ovariectomised ewes in natural
photoperiod was higher in spring and summer (increasing daylength and LD, respectively) than
in autumn (decreasing daylength) (Clarke et al. 2000). Similarly, immunoreactivity for [3-
endorphin (another POMC product) was increased in entire ewes in LD (Skinner & Herbison,
1997). Clearly there are insufficient data to indicate that changes in POMC gene expression
either parallel or drive seasonal changes in intake. However, POMC appears to be highly sensi-
tive to gonadal steroid feedback in a species- and gender-dependent manner. Thus, in the LD
breeding season of Siberian hamsters, sex steroids in males and females putatively stimulate
POMC expression (Adam et al. 2000b; Mercer et al. 2001) while the opposite appears to be the
case in the SD breeding sheep. POMC expression is similar in SD and LD in castrated males
with no steroid replacement or with constant oestradiol concentrations (Hileman et al. 1998;
Archer et al. 1999) but is decreased in SDs in castrated females with no steroid replacement
and in entire females with their seasonally-increased circulating progesterone and oestradiol
(Skinner & Herbison, 1997; Clarke et al. 2000). Furthermore, testosterone inhibits POMC gene
expression in castrated males (Hileman ez al. 1998), but this effect is seen only in LD and not in
SD. Clearly, further studies are required to elucidate seasonal alterations in steroid feedback
modulation of POMC. The available evidence indicates that POMC expression does not play a
role in seasonal appetite regulation but illustrates the interplay between seasonal reproductive
cycles and hypothalamic energy balance circuitry.

Another anorexigenic neuropeptide which exhibits similar patterns of hypothalamic locali-
sation and sensitivity (down-regulation) in response to negative energy balance in sheep and
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laboratory rodents is cocaine- and amphetamine-regulated transcript (CART) (Adam et al.
2000a, 2002). There are no data for sheep kept in different photoperiods, but CART gene
expression in the ARC of Siberian hamsters is consistently up-regulated in SD in both genders
(Adam et al. 2000b; Mercer et al. 2001). The importance of this finding lies in the timing of the
up-regulation, which occurs within 2 weeks of photoperiod change, before divergence of body-
weight trajectories and unlike any other energy balance neuropeptides studied (Adam et al.
2000b). CART may therefore have a role in driving seasonal appetite change. Interestingly,
since CART mRNA co-localises extensively with POMC mRNA in the ARC (Elias ef al. 1998),
the opposite responses to photoperiod of these mRNA in Siberian hamsters provides evidence
of transcript-specific regulation within individual neurones (Adam et al. 2000b; Mercer et al.
2001). Unlike the changes in POMC, the photoperiod-induced changes in CART precede sig-
nificant reproductive responses and are unlikely to be attributable to changes in gonadal steroid
concentration.

Conclusion

Current understanding of seasonality of appetite in ruminants is based primarily on descriptive
observations, but in the future it will be based increasingly on more complex experimental par-
adigms involving perturbations or challenges to the normal physiology.

Historically, in ruminants, certain types of food intake regulatory mechanisms have been
considered to be more important than others. For example, rumen fill and blood metabolites
have each been considered to be the key signal. However it is now clear that multiple signals
contribute to the integrated mechanism of seasonal appetite control, including hormonal signals
from the circulation, neural signals originating in the gut, liver and fat depots and neural cross-
talk between different brain regions. It is also apparent that it is likely that there are many sig-
nalling factors that have yet to be discovered and investigated. For example, the role in
ruminants of the recently discovered appetite-stimulating hormone ghrelin (Hayashida ez al.
2001) and the suggestion that a neural pathway exists which signals body mass to the appetite
centre (Adams et al. 2001) both merit investigation.

Most investigations of the physiological mechanisms that determine the pattern of food
intake focus on only one or two components of a highly complex, integrated system. While
there is clearly an ongoing requirement for experiments of this type, there is also a need for
experimental designs that enable many systems to be studied together and the results to be inte-
grated. In the investigation of the roles of circulating hormones in the pattern of food intake,
most studies to date have involved relatively infrequent sampling intervals (say once every 7 or
14 d). While these data provide a measure of gross seasonal changes, the sampling frequency is
insufficient for the assessment of changes with season in postprandial or circadian profiles and
24-h hormone profiles may be necessary for the proper characterisation of seasonal changes in
their actions.

There is a need to investigate seasonal changes in hormone receptor activities both periph-
erally and within the brain. There are seasonal changes in hypothalamic sensitivity to nutri-
tional feedback, and it remains to be established whether this is a causal factor in seasonal
intake regulation or a secondary phenomenon. Thus, LD photoperiod increases appetite drive
and food intake, body weight and adiposity resulting in increased nutritional feedback from the
periphery to the hypothalamus (via leptin and insulin, for example). Conversely, SD photope-
riod depresses food intake, body weight and adiposity resulting in reduced feedback.
Importantly, these gradual and sustained changes in nutritional feedback do not trigger the com-
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pensatory alterations in hypothalamic appetite-related neuropeptide activity that occur in
response to acute changes in nutritional feedback of similar magnitude imposed experimentally.

The physiological signals that stimulate appetite in LD and depress it in SD remain open to
conjecture, although a role for hypothalamic CART in SD appetite suppression cannot be ruled
out. To date, there is no convincing evidence for the involvement of other ARC neuropeptides
that are classically implicated in appetite control in non-seasonal rodents. Nonetheless it
appears fundamental to the maintenance of seasonal appetite cycles that these neuropeptides are
resistant to photoperiod-induced changes in nutritional feedback. In other words, the improved
nutritional feedback in LD (summer) does not act to suppress appetite, and the reduced nutri-
tional feedback in SD (winter) does not stimulate appetite, thereby counteracting the seasonal
changes in intake. The key to elucidating these mechanisms lies in determining the site(s) and
mode(s) of action of melatonin in both driving changes in appetite and disengaging or altering
hypothalamic sensitivity to changing nutritional feedback. An additional factor that must be
considered when addressing central seasonal intake regulation is the steroid sensitivity of many
of the hypothalamic pathways involved and the close relationship between appetite and repro-
ductive cycles.

Finally, it is clear that there are many different and equally valid experimental approaches
to the study of seasonality of intake in ruminants, ranging from the whole animal down to the
cellular level. These diverse methodologies will also provide the basis for much future research
to elucidate further this complex regulatory system.
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