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Laminar flow over I-shaped dual-step cylinders
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The three-dimensional flow field past an I-shaped dual-step cylinder has been obtained
by numerical integration of the Navier–Stokes equations at Reynolds number (ReD) 150.
The I-shaped cylinder consisted of two large-diameter (D) cylinders with a small-diameter
(d) cylinder in between. With a view to exploring the vortex dynamics and structural
loads, simulations were performed for eight different lengths l of the small cylinder,
varied from l/D = 10 to 0.2 for a fixed diameter ratio D/d = 2. When the length of the
small cylinder is sufficiently large, the wake behind the I-shaped cylinder is similar to the
wake behind the single-step cylinder (Tian et al., J. Fluid Mech., vol. 891, 2020, A24).
As the small cylinder length decreases, the enhanced interactions between the two steps
make the present wake deviate from the wake of the single-step cylinder, leading to four
different wake modes distinguished by different combinations of vortex cells. The physical
formation mechanisms were analysed in terms of the vortex dynamics. Besides the wake
flow, the streamwise vortices around the I-shaped step cylinder were also investigated.
A pair of edge vortices and a junction vortex were identified for l/D ≥ 1. When the gap
between the two steps becomes too small, l/D ≤ 0.2, the junction vortex disappears, and
only a pair of edge vortices exists. Varying the distance between the two steps strongly
affects the structural loads (drag and lift) along the I-shaped cylinder. The dependence of
the loads on l/D was readily explained by the different wake modes.

Key words: vortex dynamics, wakes, vortex shedding

1. Introduction

A cylindrical geometry with abrupt changes in its diameter (sketched in figure 1a and
referred to as the multi-step cylinder) has attracted attention recently due to its many
practical applications, such as steel lazy wave risers (Yin, Lie & Wu 2020), heat exchangers
(Jayavel & Tiwari 2009) and bridge cables (Matsumoto, Shiraishi & Shirato 1992), as
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Figure 1. (a) A sketch of the multi-step cylinder. The red and green rectangles mark the single-step and the
dual-step cylinders, respectively. (b) The configuration investigated in the present manuscript: the I-shaped step
cylinder. The diameters of the small and large cylinders are d and D, respectively, l is the length of the small
cylinder and L is the length of the large cylinder. The origin is located in the middle of the small cylinder.
The uniform incoming flow U is in the positive x-direction. The three directions are named the streamwise
(x-direction), cross-flow (y-direction) and spanwise (z-direction) directions. (c) Instantaneous wake behind a
step cylinder with D/d = 2 at ReD = 150, taken at the moment when vortex dislocations occur. The wake
structures are shown by the isosurfaces of λ2 = −0.05 (Jeong & Hussain 1995) from Tian et al. (2023). The
coloured curves on the isosurfaces indicate the different vortex structures.

well as its potential application in structural load optimizations (Nakamura & Igarashi
2008). The flow characteristics around a multi-step cylinder are complicated and depend
on the diameter ratio (D/d) between the large-diameter (D) and the small-diameter (d)
cylinders, the Reynolds numbers (ReD = UD/ν, where U is the free-stream velocity and
ν is the kinematic viscosity of the fluid), the length of the large cylinder(s) L and the
length of the small cylinder(s) l. Previous research has studied the effects of D/d and L
on the flow characteristics separately based on the single-step cylinder (Lewis & Gharib
1992; Dunn & Tavoularis 2006; Morton & Yarusevych 2010, 2014b; Massaro, Peplinski
& Schlatter 2023b; Tian et al. 2023; Zhao & Zhang 2023), marked by the red rectangle
in figure 1(a), and the dual-step cylinder (Morton & Yarusevych 2014a; Ji et al. 2020;
Morton & Yarusevych 2020; Yu, Ji & Srinil 2020; Bulbule, Kumar & Singh 2024; Theja
et al. 2024), marked by the green rectangle in figure 1(a). However, how the gap between
two steps affects the flow (i.e. how the flow changes over I-shaped step cylinders with
varying lengths of the small cylinder) has rarely been investigated in detail. The purpose
of the present paper is to fill in some of this knowledge gap by investigating the flow over
an I-shaped dual-step cylinder (sketched in figure 1b) for different l, which can serve as a
stepping stone for understanding the flow over a multi-step cylinder.

As shown in figure 1(b,c), an I-shaped step cylinder can be treated as a combination
of two single-step cylinders. Although the potential interactions between the two
steps can complicate the wake flow, it is worth reviewing previous literature on the
single-step cylinder first. In 1992, Lewis & Gharib (1992) identified two wake modes by
experimentally investigating the flow over a single-step cylinder with 1.14 < D/d < 1.76
at 67 < ReD < 200; an indirect mode for D/d > 1.55 and a direct mode for D/d < 1.25
were observed. In the direct mode, two dominant vortices shed from the small and
large cylinders, exhibiting two shedding frequencies: fS behind the small cylinder and fL
behind the large cylinder. These two vortices directly interact with each other. For the
indirect mode, the direct interaction between the vortices with fS and fL disappears due
to another vortex occurring between them with a shedding frequency f3 (also referred to
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as fN in Dunn & Tavoularis 2006). The majority of the following studies have focused
on the indirect mode. Dunn & Tavoularis (2006) conducted experiments for flow over a
single-step cylinder with D/d ≈ 2 at 63 < Re < 1100, where three spanwise vortex cells
(i.e. the vortex cells with the dominant vorticity component in the spanwise direction) were
identified for the indirect mode: (i) the S-cell vortex shedding from the small cylinder
with the largest shedding frequency fS, (ii) the L-cell vortex behind the large cylinder
with the smallest shedding frequency fL and (iii) the N-cell vortex shedding from the
large cylinder with the shedding frequency fN , located between the S- and L-cell vortices.
An example of these three vortices are shown in figure 1(c). Dunn & Tavoularis (2006),
Morton & Yarusevych (2010) and Tian et al. (2020a) found that the formation of the N-cell
vortex is closely related to the joint effects of both the axial velocity induced by the step
along the large cylinder and the increased base pressure on the large cylinder near the
step. Massaro & Schlatter (2024) conducted the first global stability analysis of the flow
over single-step cylinder with 1.1 ≤ D/d ≤ 4 at ReD = 40, 50 and 80, revealing three
supercritical Hopf bifurcations responsible for the three dominant vortex cells (i.e. the N, S
and L cells).

Most of the vortex interactions in the step cylinder wake flow are closely related to
a flow phenomenon denoted vortex dislocation, which will be described as follows. The
concept of ‘vortex dislocation’ was first introduced by Williamson (1989), adopting the
idea from solid mechanics. In an experiment of the wake behind a circular cylinder with
two end plates, Williamson (1989) used the phrase ‘vortex dislocation’ to describe the
neighbouring vortices periodically moving out of phase due to their different shedding
frequencies. Behind the single-step cylinder, vortex dislocations form both at the boundary
between the S- and N-cell vortices and at the boundary between the N- and L-cell vortices.
Lewis & Gharib (1992) first found that the vortex dislocations between the S- and N-cell
vortices occur within a time-invariant narrow region, slightly deflecting spanwise into
the large cylinder side just behind the step. This observation was confirmed by Dunn
& Tavoularis (2006) and Morton & Yarusevych (2010). Morton & Yarusevych (2010)
conducted numerical simulations of flow over a single-step cylinder with D/d = 2 at
ReD = 150 and 300. They discovered that the connections between the S- and N-cell
vortices depend on the frequency ratio fS/fN , and that the S-N dislocation exhibits a
beat frequency fS − fN with the formation of the SS-half loop vortex structure (shown
in figure 1c). The interactions between the N- and L-cell vortices were numerically
investigated by Morton & Yarusevych (2010) and Tian et al. (2017a,b, 2019, 2020b) for
a single-step cylinder with 2 < D/d < 3 at ReD =150. The authors found that the shape
and the spanwise length of the N-cell vortices, as well as the position of the N-L cell
boundary, change periodically as the vortex dislocation between the N- and L-cell vortices
occurs at the beat frequency fL − fN . The NL-loop, NN-loop and LL-half loop vortex
structures (shown in figure 1c) were identified during the N-L dislocation process. These
vortex-loop structures were mainly discovered in the laminar flow regime; however, they
seem to persist as ReD increases. Recently, Massaro et al. (2023b) captured the SS-,
NL- and LL-loop structures in direct numerical simulations of flow over a single-step
cylinder with D/d = 2 at ReD = 1000 by reconstructing wake flows via proper orthogonal
decomposition on the most energetic modes. Besides the dominant vortices in the wake,
the vortices generated around the step were investigated numerically by Tian et al. (2021),
Massaro, Peplinski & Schlatter (2023a), Massaro et al. (2023b) and experimentally by
Dunn & Tavoularis (2006), where the horseshoe-like junction vortices and tip vortices
were identified. The flow around a rotating single-step cylinder in the laminar regime was
recently first investigated by Zhao & Zhang (2023).
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The structural load characteristics of the single-step cylinder were first experimentally
investigated by Ko & Chan (1984) for D/d = 2 at ReD = 80 000. The authors found that
the drag force coefficient gradually decreases along the small cylinder while increasing
along the large cylinder as the step is approached due to the disturbance of the step. Similar
results were observed by Tian et al. (2023) and Morton, Yarusevych & Carvajal-Mariscal
(2009) by numerical simulation of a single-step cylinder with D/d = 2 at ReD = 150 and
2000. Tian et al. (2023) provided a detailed discussion of how vortex interactions in the
wake affect the spanwise variation of the structural loads along the single-step cylinder.
They found that the formation of vortex dislocations can cause a major reduction (90 %)
of the local lift amplitude and a relatively modest reduction (5.7 %) of the local drag
amplitude (the corresponding formula can be found in § 5). Three minima on the drag
and lift distributions were identified and ascribed to the effects of the vortex dislocation
and the disturbance from the step.

The primary goal of the present numerical study is to (i) investigate how the flow
develops over an I-shaped step cylinder; (ii) study how the length of the small cylinder (l)
affects the development of the wake flow; (iii) investigate the structural loads distribution
along the I-shaped step cylinder. To achieve this, we analyse the results obtained from
direct numerical simulations (DNS) of the flow past eight different I-shaped step cylinders
with D/d = 2 and l/D = 10, 5, 3, 2.5, 2, 1.5, 1 and 0.2. The Reynolds number for
the large cylinder (ReD) is set to 150 to avoid interference of three-dimensional wake
instabilities, such as the elliptical instability and the natural vortex dislocation, which occur
at ReD ≈ 180 in the wake of a uniform circular cylinder.

The paper is organized as follows: § 2 describes the flow configuration and the numerical
settings. In § 3, four distinct wake patterns are identified behind the I-shaped step cylinder
as the length of the small cylinder l changes from 10D to 0.2D. Section 4 describes
the streamwise vortices around the I-shaped step cylinder. In § 5, the structural load
distribution along the I-shaped step cylinder is analysed for different wake patterns.

2. Governing equations, boundary conditions and convergence study

A sketch of the I-shaped step cylinder is plotted in figure 1(b), showing that the origin of
the coordinate system is in the middle of the small cylinder. The uniform incoming flow U
is in the positive x-direction. The diameter ratio D/d of the I-shaped step cylinder is fixed
at 2.0. The length of the small cylinder is given as l/D = 10, 5, 3, 2.5, 2, 1.5, 1 and 0.2.
The governing equations for the incompressible flow are the continuity equation and the
time-dependent three-dimensional incompressible Navier–Stokes equation

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = 1
Re

∇2u − ∇p, (2.2)

where u is the velocity vector and p is the pressure, while ρ and t denote the fluid density
and time, respectively. The velocity, pressure, time and length are scaled by U, ρU2, D/U
and D.

Direct numerical simulations were conducted by using the finite-volume numerical code
MGLET (Manhart 2004). Previous studies have thoroughly validated this code for various
applications, for example, the flow around step cylinders (Tian et al. 2020b, 2021, 2023),
the flow around a prolate spheroid (Jiang et al. 2018), the flow around a cylinder–wall
junction (Schanderl et al. 2017) and the oscillatory flow through a hexagonal sphere pack
(Unglehrt & Manhart 2022). A staggered numerical grid is used, where the pressure
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Figure 2. An illustration of the multi-level grids in the xz-plane at y = 0 for l/D = 2. Each square represents
a slice of the corresponding cubic Cartesian grid box that contains N × N × N grid cells. Here, there are six
levels of grid boxes as indicated by the numbers.

is evaluated in the middle of the grid boundaries and the velocities are located in the
middle of the grid face. The midpoint rule is applied to approximate the surface integral,
leading to second-order accuracy. A third-order Runge–Kutta scheme (Williamson 1980)
is applied for the time integration. The time step �t is equal to 0.003, ensuring a
Courant–Friedrichs–Lewy number smaller than 0.5 for all simulations in the present study.
The elliptic pressure correction equation is solved by Stone’s implicit procedure (Stone
1968). The I-shaped step cylinder geometry is handled by an immersed boundary method
(Peller et al. 2006; Peller 2010).

Figure 2 schematically illustrates the grid structure in the symmetry plane (the xz-plane
at y = 0) for the I-shaped step cylinder with l/D = 2. The zonally embedded grid method
(Manhart 2004) is applied for building the grid. The computational domain is first equally
divided into cubic grid boxes, called the level-1 box. Each grid box contains N × N × N
equally sized cubic grid cells. The local grid refinement is achieved by continuously
dividing the grid box (the level-1 box) into eight smaller grid boxes, denoted the level-2
box. Each level-2 box also contains N × N × N equally sized cubic grid cells. This
grid-refinement process continues until the finest specified grid level is reached (all
simulations in this study have six grid levels). The size of the grid-refinement region was
checked to ensure that it is sufficiently large for reliable DNS simulations in the present
study. The treatment and validation of the zonally multi-grid hierarchical solution can be
found in Manhart (2004).

Figure 3 shows the side and top-down views of the flow domain. The streamwise
length of the flow domain is Lx, where Lx1 and Lx2 are the distance from the inlet and
outlet planes to the centre of the step cylinder, respectively. The cross-flow length of
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Figure 3. Computational domain and coordinate system are illustrated from (a) side view and
(b) top-down view.

Wake mode F3SNL F2MNL F3MNL F1L

l/D 10, 5, 3 2.5, 2 1.5, 1 0.2
Vortex cell S cell M cell M cell L cell

N cell N cell N cell
L cell L cell L cell

Dominant frequency StS > StL > StN StL > StM = StN StM > StL > StN StL

Table 1. An overview of four wake modes, the dominant vortex cells and the relative magnitude between
the corresponding Strouhal numbers (St): S cell, StS = fSD/U; M cell, StM = fMD/U; N cell, StN = fND/U;
L cell, StL = fLD/U.

the flow domain is Ly, where the I-shaped step cylinder is located in the middle. The
spanwise height of the domain is Lz, where the length of the small and large cylinders
is l and L, respectively. A constant and uniform velocity profile (u = U and v = w = 0)
is applied at the inlet. No numerical noise is applied at the inlet. A Neumann condition
(∂u/∂x = ∂v/∂x = ∂w/∂x = 0) is applied at the outlet. For the other four sides of the
computational domain, a free-slip boundary condition is applied (for the two vertical sides
v = 0, ∂u/∂y = ∂w/∂y = 0; for the two horizontal sides: w = 0, ∂u/∂z = ∂v/∂z = 0).
A no-slip and no-penetration condition (u = v = w = 0) is imposed at the step cylinder
surface. Neumann conditions are applied for the pressure, except at the outlet where the
pressure is set equal to zero.

Table 1 shows an overview over all the simulations conducted in the present work. The
length of the small cylinder varies from 0.2D to 10D. More detailed information of the
flow domain and a grid convergence study are described in Appendix A.

3. Wake topology

The I-shaped step cylinder depicted in figure 1(b) contains two steps. When the distance
between these two steps varies from 10D to 0.2D, four distinctly different wake modes
are newly identified behind the I-shaped step cylinder with D/d = 2 at ReD = 150.
An overview of these four wake modes is summarized in table 1; the corresponding
vortex structures and the frequency spectra are shown in figures 4 and 5, respectively.
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Figure 4. Instantaneous isosurfaces of λ2 = −0.01 for (a) l/D = 10, (b) l/D = 2, (c) l/D = 1.5 and (d) l/D =
0.2. The coloured curves on the isosurfaces indicate the different vortex structures. The parts of the I-shaped
step cylinder at z > 0 and z < 0 are referred to as the top and bottom parts, respectively.

The topology of vortices is visualized by isosurfaces of λ2 = −0.01 (Jeong & Hussain
1995). The wake vortex cells for the single-step cylinder flow were classified by distinct
vortex shedding frequencies (Dunn & Tavoularis 2006). However, the flow interactions
triggered by the two steps of the present I-shaped step cylinder induce a more complex
wake flow compared with the single-step cylinder wake. As a result, the classification of
the wake cells in the present I-shaped step cylinder flow is based on a combination of the
vortex shedding frequency and the vortex topology. If the two steps of an I-shaped step
cylinder are sufficiently far away from each other (i.e. l is large enough), three dominant
vortex cells occur, the S-cell vortex, N-cell vortex and L-cell vortex (figure 4a) with three
distinct shedding frequencies (figure 5a). This mode, which is observed for l/D = 10, 5,
3, is denoted the F3SNL mode (i.e. where 3 denotes the number of dominant shedding
frequencies and SNL denotes the corresponding vortex cells). Since the topology and
formation mechanism (as will be further discussed in the following subsections) of these
three dominant vortices behind the I-shaped dual-step cylinder are similar to those behind
the single-step cylinder, the names of these three dominant vortices are adopted from
the single-step cylinder wake (Dunn & Tavoularis 2006), as shown in figure 1(c) and
described in the introduction. When the distance l between the two steps (l) decreases, the
three-dimensional wakes induced by these two steps start interacting, causing three other
wake modes. The second wake mode, which is observed for l/D = 2.5 and 2, is denoted
the F2MNL mode, where three dominant vortex cells, the M-, N- and L-cell vortices, occur
(figure 4b) with two dominant shedding frequencies (figure 5b). Here, the S-cell vortex
disappears as the length of the small cylinder decreases. Instead, we identify a new vortex
cell, the M cell, in the middle of the I-shaped step cylinder wake. Although the M cell and
the N cell have the same shedding frequency, they have distinct vortex topologies, which
will be discussed in detail in § 3.2. The third wake mode, which is observed for l/D = 1.5
and 1, is denoted the F3MNL mode. Similar to the F2MNL mode, three dominant vortex
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Figure 5. Streamwise velocity spectra are obtained from a fast Fourier transform (FFT) of time series of the
streamwise velocity u along a vertical sampling line behind the I-shaped step cylinder at (x, y) = (1.6, 0.4)

over 1000 time unit (D/U) for (a) l/D = 10, (b) l/D = 2.0, (c) l/D = 1.5, (d) l/D = 0.2.

cells (the M-, N- and L-cell vortices) occur for the F3MNL mode (figure 4c), but with
three dominant associated shedding frequencies (figure 5c) instead of the two observed for
F2MNL. The fourth wake mode, denoted as the F1L mode, is found for l/D = 0.2. Here,
one dominant vortex cell (the L-cell vortex) occurs (figure 4d) with only one dominant
shedding frequency (figure 5d). Due to the different shedding frequencies of the dominant
vortex cells for the first three wake modes (the F3SNL, F2MNL and F3MNL modes),
the vortex dislocations occur between neighbouring vortex cells, where the NL-, NN-
and LL-vortex loops (which were identified behind a single-step cylinder in Tian et al.
2020b) occur, as shown in figure 4(a–c). Figure 6 shows a periodic (in time) occurrence
of the vortex dislocations visualized by the contours of the cross-flow velocity v along a
spanwise sampling line at (x, y) = (0.6, 0). The positive and negative values of v are due
to the vortices shed from the +Y and −Y sides of the step cylinder, respectively. As l/D
decreases, the similarity of the wake flow behind the single-step cylinder (as shown in
figure 1c) and the I-shaped step cylinder (as shown in figure 4a–d) gradually disappears.
The flow development and the formation mechanism of these four wake modes will be
discussed in detail in the following sections.

3.1. The F3SNL mode
In the present section, the formation of the F3SNL mode will be discussed based on
the l/D = 10 case. The mode F3SNL also occurs for l/D = 5 and 3; the corresponding
wakes are shown in Appendix B. When the F3SNL mode occurs, the wake behind an

1004 A9-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1103


Laminar flow over I-shaped dual-step cylinders

20

10

0

–10

–20
600

900

1250

600 650 700 750 800 850 900

1300 1350 1400 1450 1500

950 1000 1050 1100 1150 1200

650 700 750 800 850 900
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

v

v

v

v

t

z

20

10

0

–10

–20

z

20

10

0

–10

–20

Lb cell

Lt cell

Lb cell

Nb cell

Nt cell

Lb cell

Nb cell

Nt cell

Lt cell

Lb cell

Nb cell

Nt cell

Lt cell

S cell

M cell

M cell

Lt cell

z

20

10

0

–10

–20

z

(b)

(a)

(c)

(d )

Figure 6. Cross-flow velocity component v as a function of the non-dimensional time, along the spanwise
sampling line at (x, y) = (0.6, 0) (a) for l/D = 10, (b) for l/D = 2, (c) for l/D = 1.5, (d) for l/D = 0.2. The
red solid line indicates the vortex dislocations between the N- and L-cell vortices.

I-shaped step cylinder can be treated as a combination of two single-step cylinder wakes.
Figure 4(a) shows that the three main spanwise vortices (S-, N- and L-cell vortices) which
were originally identified by Dunn & Tavoularis (2006) behind the single-step cylinder
(figure 1c) form in the wakes behind both the top part (z > 0) and the bottom part (z < 0)
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Figure 7. Distribution of time-averaged base pressure coefficient Cpb (a,c) on the large cylinder part and
(b) on the small cylinder part. Distribution of recirculation length Lr (d, f ) on the large cylinder part and (e) on
the small cylinder part. The black, red, green and purple curves represent the corresponding distributions for
l/D = 10, 2, 1.5 and 0.2. The red dashed curves represent the distributions along a single-step cylinder with
D/d = 2 at ReD = 150. The corresponding data are obtained from Tian et al. (2023). The horizontal axis for
(a,c,d, f ) is set as zD = z − zstep (where zstep represents the coordinate of the step on the corresponding part of
the cylinder; subscripts b and t indicate the bottom and top parts of the I-shaped step cylinder), indicating the
distance between the sampling position and the step. The horizontal axis for (b,e) is set as zd = zD/l, indicating
the relative sampling position on the small cylinder.

of the I-shaped step cylinder. Figure 5(a) shows that the S-cell vortex sheds behind the
small cylinder with the largest shedding frequency StS; the L-cell vortex sheds behind the
large cylinder with the shedding frequency StL; and the N-cell vortex sheds between the
S- and L-cell vortices with the smallest shedding frequency StN .

The formation of F3SNL is due to the length of the small cylinder (l) being so large
that the interaction between the two steps can be neglected. The three-dimensional flow
structures induced by each step are similar to those induced by the step of a single-step
cylinder. Figure 7(a–c) shows the spanwise distribution of the time-averaged recirculation
length Lr, which is obtained from the position where the time-averaged streamwise
velocity crosses zero from negative to positive. Figure 7(d–f ) shows the time-averaged
base pressure coefficient Cpb along a spanwise sampling line located 0.02D downstream
of the I-shaped step cylinder wall at y = 0. Here, Cpb = 2(pb − p0), where pb is the
time-averaged base pressure and p0 is the pressure at the outlet boundary. The distance
h = 0.02D is selected because it is slightly larger than the smallest cell’s diagonal (

√
2Δ <

h = 0.02D < 1.5
√

2Δ, where Δ = 0.01D) such that we safely avoid wiggles possibly
caused by cells directly cut by the cylinder surface and still stay as close as possible to
the surface. It should be noted that the sampling line is located at different streamwise
positions behind the small and large cylinders due to the different diameters of the small
and large cylinders. As a reference, the distribution of Cpb and Lr along a single-step
cylinder with D/d = 2.0 at ReD = 150 is obtained in the region −15 < z < 5 from Tian
et al. (2023) and plotted as the black dash line in figure 7(a–f ). The comparison of Cpb
and Lr between the l/D = 10 case (the red curve in figure 7) and the single-step cylinder
(the red dashed curve in figure 7) shows tiny differences, with a maximum deviation of
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Figure 8. Isosurface of λ2 = −0.01 in the region around the small cylinder for l/D = 10 showing
developments of vortex structures on the −Y side (a) at t = 331.7, (b) at t = 335.4, (c) at t = 337.7. The
SS-loop is marked by the red dash-dot-dot line.

7 % appearing at zd = 1 in figure 7(d). As a result, the formation of the S-, N- and L-cell
vortices remains almost the same when the configuration changes from the single-step
cylinder to the I-shaped step cylinder with l/D = 10.

Contrary to the single-step cylinder wake, where the S-N vortex dislocation occurs at
the bottom of the small cylinder (figure 1c), the S-N vortex dislocation occurs at both the
top and bottom of the small cylinder for l/D = 10 (as shown in figure 4a). This causes the
topology of the S-S vortex loop to change from the half-loop for the single-step cylinder
(reported by Dunn & Tavoularis (2006), Tian et al. (2017a) and visualized by the red
dash-dot-dot curve in figure 1c) to the full loop for the I-shaped step cylinder (visualized by
the red dash-dot-dot curve in figure 4a). The vortex interaction between the S- and N-cell
vortices is further illustrated by consecutive snapshots of the isosurface of λ2 = −0.01
in figure 8. All vortices are labelled by a combination of capital letters and numbers:
‘N’ and ‘S’ represent N- and S-cell vortices, respectively, while the number indicates the
vortex shedding order. To differentiate between vortices shed from different sides of the
cylinder, the capital letters with primes represent vortices shed from the +Y side and pure
capital letters represent vortices shed from −Y . When the S- and N-cell vortices just shed
from the same cylinder side, they connect directly (e.g. S2 connects directly to Nt2 and
Nt2 in figure 8a). As they convect downstream, since the N-cell vortex contains a larger
vortex strength than the S-cell vortex, all N-cell vortices split into at least two filaments
(Morton & Yarusevych 2010). One connects to the subsequent N-cell vortex rotating in
the opposite direction (e.g. a filament of N′

b1 connects to Nb2 from figure 8a to 8b); the
other connects to the S-cell vortex rotating in the opposite direction (e.g. a filament of N′

b1
connects to S2 in figure 8b,c) or the same direction (e.g. a filament of Nb2 connects to S4
in figure 8b,c), depending on the phase alignment between the S- and N-cell vortices. The
S-cell vortex that does not connect to any N-cell vortex connects to other S-cell vortices
rotating in the opposite direction, forming the new SS-loop structure (e.g. S′

3 connects to
S4 in figure 8b,c).
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3.2. The F2MNL mode
In the present subsection, the formation of the F2MNL mode will be discussed based on
the l/D = 2 case. This mode also occurs for l/D = 2.5, as shown in table 1; the wake for
l/D = 2.5 is shown in Appendix B. As the wake mode changes from F3SNL to F2MNL,
a comparison between figures 4(a) and 4(b) shows that the formation of the N- and L-cell
vortices and the vortex dislocations between them are similar for l/D = 10 and l/D = 2,
except that the S-cell vortex is absent for l/D = 2. Figure 5(a,b) further shows that, for
l/D = 10 and l/D = 2, the shedding frequency of the N-cell vortex (StN) and the L-cell
vortex (StL) does not change significantly (deviation <2 %), the frequency component StS
disappears and the frequency component StN occurs both behind the small cylinder and
behind the large cylinder close to the step (−5 < z < 5).

The formation of F2MNL is due to the fact that the decreasing length of the
small cylinder (l) barely affects the flow characteristics behind the large cylinder,
but significantly affects those behind the small cylinder due to the enhanced viscous
suppression of the velocity fluctuations in the small cylinder near wake as the gap between
the two steps decreases. Further details are discussed below. The comparison between the
black and red solid curves in figure 7(a,d) shows that, as l/D decreases from 10 to 2, Lr
and Cpb only slightly decrease along the large cylinder with no significant change in their
distribution, and thus the formation of the N- and L-cell vortices are rarely affected. Along
the small cylinder, the strong wake flow interactions between the two steps for l/D = 2
lead to a completely different distribution of Lr and Cpb compared with the l/D = 10
case. Even for the spanwise position zd = 0 (i.e. z = 0) located in the middle of the small
cylinder, which is least affected by the steps, Lr increases by around 95 % from 1.1D to
2.1D and −Cpb increases by around 10 % from 0.7 to 0.78 when l/D decreases from 10
to 2. This is because the length of the small cylinder becomes too short to let the step
effect decay along the small cylinder when l/D decreases from 10 to 2. For l/D = 10, the
black solid curve in figure 7(a–f ) shows that, due to the different diameters of the small
and large cylinders, the base pressure (−Cpb) is weaker and the recirculation length (Lr)
is smaller behind the small cylinder than behind the large cylinder away from the step
(Rajani, Kandasamy & Majumdar 2009). However, the wakes behind the small and large
cylinders mix, leading to a strengthened base pressure and increased recirculation length
behind the small cylinder as the step is approached (referred to as the wake mixing effect).
Unlike the l/D = 10 case, the short small cylinder length in the l/D = 2 case is not long
enough for the wake mixing effect to vanish along the small cylinder. As a result, the red
and black solid curves in figure 7(b,e) show that, in the vicinity of the step, −Cpb and Lr

are similar for l/D = 10 and 2; as away from the step, −Cpb and Lr decreases for l/D = 10
but only exhibits a slight variation for l/D = 2. For l/D = 2, the recirculation length Lr
remains larger than for l/D = 10 over the entire small cylinder, suppressing the instability
in the near wake behind the small cylinder due to the increased viscous effects, leading to
the disappearance of the S-cell vortex.

Figure 9(a–f ) shows consecutive spanwise vorticity (ωz = ∂v/∂x − ∂u/∂y) contours in
the xy-plane in the middle of the small cylinder (z = 0) for l/D = 10 (figure 9a–c) and for
l/D = 2 (figure 9d–f ). The time history of the lift coefficient (CL) is shown in figure 9(g,h),
where the time instants for figure 9(a–f ) are marked. Here, CL = 2FL(t)/ρU2DpLc, where
FL is the sampled lift force; DP = D for the large cylinder and DP = d for the small
cylinder; Lc is the spanwise length of the part of the step cylinder where forces are sampled.
Different from the staggered distribution of the vorticity ωz behind the small cylinder
for l/D = 10 shown in figure 9(a–c), figure 9(d–f ) shows that ωz is almost distributed
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Figure 9. Consecutive instantaneous vorticity ωz contours in the xy-plane at z = 0 showing the flow
developments around the middle section of the cylinder: (a–c) for l/D = 10, (d–f ) for l/D = 2. The
corresponding time history of the lift coefficient for the centre part of the small cylinder at z = 0: (g) for
l/D = 10 and (h) for l/D = 2.

(×10–3)
8 0.15

0.10

0.05

l/D = 2

l/D = 106

4

2

0 1 2

x/D
0 1 2

x/D

u′
u′

v
′ v

′

(b)(a)

Figure 10. Distribution of velocity fluctuations along a horizontal sampling line at ( y, z) = (0, 0) (a) u′u′,
(b) v′v′.

symmetrically on the +Y and −Y sides of the small cylinder in the near-wake region
(0.5 < z < 2) for l/D = 2. This implies that no typical staggered Kármán vortices are
shed behind the small cylinder for l/D = 2 (i.e. the vortex structures visualized by the
isosurface of λ2 behind the small cylinder in figure 4(b) are not the typical Kármán vortex).
The underlying mechanism is that the shorter distance between the two steps for l/D = 2,
compared with the l/D = 10 case, suppresses the velocity fluctuations in the near wake,
leading to the absence of typical staggered Kármán vortex shedding behind the small
cylinder.

Figure 10(a,b) shows the distribution of the velocity fluctuations along a streamwise
sampling line at ( y, z) = (0, 0) for l/D = 2 (in red) and l/D = 10 (in black), indicating
that the velocity fluctuations are highly suppressed for l/D = 2 compared with l/D =
10. In addition to stabilizing the near-wake fluctuations, the reduced distance between
the two steps may also lead to a decrease in the upstream velocity of the small cylinder
due to an enhanced frictional effect, causing the vorticity generation around the small
cylinder to become insufficient for the S-cell formation. Whether the disappearance of the
S-cell vortex is caused by the suppression of the vorticity generation around the small
cylinder will be discussed below. The time-averaged circulation (Γ = ∫ ∫ B

A u|ω| dy dt/T ,
where T = 100 represents the integration time; the integration path (AB) is shown by the
red solid line on the vertical axis in figure 9a,d) generated and convected into the wake
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Figure 11. Isosurface of λ2 = −0.01 in a close-up region around the small cylinder for l/D = 2 (indicated
by the red rectangle in figure 4b) shows three types of M-cell vortex loops: (a–c) type 1 M-cell vortex loop,
(d–f ) type 2 M-cell vortex loop, (g–i) type 3 M-cell vortex loop. ( j–l) Time history of the cross-flow velocity
at (x, y, z) = (1, 0, ±2) for type 1–3 M-cell vortex loops. The top (Nt) and bottom (Nb) N-cell vortices and the
top (Mt) and bottom (Mb) parts of the M-cell vortices are indicated in (a). The blue and red colours indicate
positive and negative spanwise vorticity, respectively.

from the small cylinder is estimated. The result shows that, from l/D = 10 to l/D = 2,
Γ only decreases slightly (3 % from 1.25 to 1.22). Now, it is safe to conclude that, as the
recirculation length sharply increases, the wake instability is highly suppressed for l/D =
2 compared with that for l/D = 10, leading to the disappearance of the S-cell vortex.

A further detailed investigation shows that, although only one dominant shedding
frequency fN is detected behind the small cylinder (figure 5b) for l/D = 2, the
corresponding vortex structure is not the N-cell vortex. Figure 11(a–e) shows consecutive
snapshots of the isosurface of λ2 = −0.01 in a close-up region around the small cylinder
for l/D = 2.0 (as marked by the red rectangle in figure 4b). It appears that a vortex-loop
structure forms in the near wake behind the small cylinder (i.e. in the middle part of the
I-shaped step cylinder). We identify this structure as the M-cell vortex loop due to the
following two reasons: (a) although this vortex cell has the same shedding frequency as
the N-cell vortex, it has a different topology. (b) The shape of the M-cell vortex for F2MNL
is similar to the M-cell vortex for F3MNL; whereas the M-cell vortex in the F3MNL mode
has a different shedding frequency and shape compared with the N-cell vortex, which will
be discussed in detail in § 3.3. Figure 11 shows that all M-cell vortex loops in the F2MNL
mode consist of at least a top part M-cell vortex (Mt) and a bottom part M-cell vortex (Mb),
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located at z > 0 and z < 0, respectively. Based on a long-time observation (approximately
300 shedding periods), three different types of M-cell vortex loops are observed: (type 1)
the top and bottom parts of the M-cell vortex loop are from the same cross-flow side (either
+Y or −Y side) of the cylinder (as shown in figure 11a–c); (type 2) the top and bottom
parts of the M-cell vortex loop are from the opposite cross-flow side of the cylinder (as
shown in figure 11d–f ); (type 3) besides a pair of Mt and Mb from the same side of the
cylinder, another M cell vortex from the opposite side of the cylinder also merges into the
M-cell vortex loop (as shown in figure 11g–i).

For all three types of the M-cell vortex loops, figure 11 shows that complex vortex
interactions occur as these M-cell loops form and convect downstream; however, no
M-cell vortex is shed from (i.e. dislocates with) the corresponding N-cell vortex.
In other words, all the M-cell vortices shed in phase with the corresponding N-cell
vortices, thereby explaining why only one dominant frequency exists in the M- and N-cell
regions (−5 < z < 5 in figure 5b). The different types of M-cell vortex loops result from
variations in the phase relationship between Nt and Nb cells, which changes between in
phase or out of phase. This phase difference can be measured by monitoring the time
history of the cross-flow velocity (v) at z1 = 1 in the Nt region and z2 = −1 in the Nb
region. When Nt and Nb shed in phase, e.g. from t = 1292.4 to t = 1296.2 (figure 11a–c),
the time history of v at z1 and z2 peaks (with the same sign) almost simultaneously
(figure 11j). Here, Mt and Mb form in phase at the same cross-flow side of the cylinder,
inducing the type 1 M-loop. When Nt and Nb shed anti-phase, e.g. from t = 901.4 to
t = 904.0 (figure 11d–f ), the time history of v peaks with the opposite sign almost
simultaneously (figure 11k). Here, Mt and Mb form in phase at the opposite cross-flow
sides (−Y and +Y sides) of the cylinder, inducing the type 2 M-loop. When Nt and
Nb shed partly out of phase (i.e. between in phase and anti-phase), the vortex strength
between the corresponding Nt and Nb cells becomes unbalanced. To compensate for this,
one more M-cell vortex on the weaker M-cell side joins the M-cell vortex loop (the type 3
M-loop). For example, Mb forms earlier than Mt in figure 11(g). This is also reflected by
the velocity time history shown in figure 11(l): the black solid line (corresponding to Nt)
shows an earlier peak than the black dashed line (corresponding to Nb). Therefore, during
the formation of the corresponding M-loop, the strength of Mb is larger than Mt, causing
the centre of the M-loop to move slightly in the +z direction and merge with Mt.

3.3. The F3MNL mode
In the present subsection, the formation of the F3MNL mode will be discussed based
on the l/D = 1.5 case. As shown in table 1, this mode also occurs for l/D = 1; the
corresponding wake is shown in Appendix B. A comparison between figures 4(b) and
4(c) shows that both the F2MNL and F3MNL modes contain the M-, N- and L-cell
vortices. Figure 5(b,c) further show two changes as l/D decreases from 2 to 1.5: (i) a new
shedding frequency component StM occurs in the small cylinder wake. This frequency is
lower than the shedding frequency of the S-cell vortex for l/D ≥ 3 and higher than the
shedding frequency of the N- and L-cell vortices for all cases; (ii) the dominant shedding
frequency behind the large cylinder becomes blurred. The underlying mechanisms will
now be explained.

Although the M-cell vortex exists for both F2MNL and F3MNL, the occurrence of a
new frequency component StM in F3MNL is due to the fact that the M-cell vortex can
dislocate from the corresponding N-cell vortex in F3MNL, making the M-cell vortex
exhibit a different shedding frequency than the N-cell vortex. This is in contrast to the
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Figure 12. Isosurface of λ2 = −0.01 in a close-up region around the small cylinder for l/D = 1.5 (indicated
by the red rectangle in figure 4c) shows a vortex dislocation process when the M-cell vortex simultaneously
dislocates from the corresponding top and bottom N-cell vortices.
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Figure 13. Isosurface of λ2 = −0.01 in a close-up region around the small cylinder for l/D = 1.5 (indicated
by the red rectangle in figure 4c) shows a vortex dislocation process when the M-cell vortex dislocates from
the bottom N-cell vortex while it keeps the connection with the top N-cell vortex.

F2MNL mode, where the M-cell vortex always keep the one-to-one relationship with
the N-cell vortex (as described in § 3.2). When dislocations occur between the M- and
N-cell vortices, it appears that the M-cell vortex can either simultaneously dislocate from
the top and bottom N-cell vortices or dislocate from only one of them, depending on the
phase difference between the corresponding top and bottom N-cell vortices. Figure 12(a–e)
shows consecutive snapshots of isosurfaces of λ2 = −0.01 for l/D = 1.5 in the region
around the small cylinder marked by the red rectangle in figure 4(c). At t = 1200.2, M1
forms in figure 12(a). As M1 convects downstream (figure 12a–c), it dislocates from the
corresponding N-cell vortices Nt1 and Nb1. Another M-cell vortex M2 forms between Nt1
and Nb1 in figure 12(d,e). Here, the M-cell vortex M1 simultaneously dislocates from the
corresponding top (Nt1) and bottom (Nb1) N-cell vortices, because Nt1 and Nb1 almost
shed in phase. When the top and bottom N-cell vortices are out of phase, the M-cell vortex
can only dislocate from one of them. An example is shown in figure 13, where the M-cell
vortex M3 only dislocates from the bottom N-cell vortex Nb3 but keeps connected with
the top N-cell vortex Nt3. The dislocations between the M- and N-cell vortices persist in
time. The contour of the cross-flow velocity v is plotted along a spanwise sampling line at
(x, y) = (0.6, 0) in figure 14. The positive and negative values of v, shown in the contours,
are induced by the vortices shed from the +Y and −Y sides of the I-shaped cylinder,
respectively. The number of M-cell vortices is larger than the number of N-cell vortices
shed from t = 1200 to 1300, indicating a series of dislocations at the M-N boundary.

The two main reasons for the occurrence of the vortex dislocation between the M- and
N-cell vortices when l/D decreases from 2 to 1.5 are (i) the larger vortex strength of the
M-cell for l/D = 1.5 than for l/D = 2 and (ii) the higher convective velocity in the M-cell
region than in the N-cell region. Firstly, as l/D decreases from 2 to 1.5, the decreased
distance between the top and bottom N-cell vortices leads to more circulation energy
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Figure 14. Cross-flow velocity component v as a function of the non-dimensional time, along the spanwise
sampling line at (x, y) = (0.6, 0) for l/D = 1.5.
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Figure 15. (a) Time history of the circulation strength in the M-cell region (solid black line for l/D = 1.5
and dashed black line for l/D = 2) and the shear layer around the small cylinder (solid red line for l/D = 1.5
and dashed red line for l/D = 2). (b) The red and black boxes show the flow volumes used to integrate the
circulation strength in the shear layer around the small cylinder and the M-cell region, respectively.

being transferred from the N-cell region into the M-cell region, causing an increase in
the circulation strength of the M-cell vortex. The total circulation strength (Γ ) within
a flow region in the present work is calculated based on Γi = ∑N

j=1 |ωi|Aj, where ω

represents the vorticity, i = x, y or z is the direction of ω, A represents the corresponding
area perpendicular to the direction of ω and N is the total number of grid cells within
the selected flow region. Then, the averaged circulation strength (Γ̄ ) can be obtained by
Γ̄ =

√
Γ 2

x + Γ 2
y + Γ 2

z /VO, where VO represents the volume of the selected flow region.
Figure 15(a) shows the averaged circulation strength in the M-cell region (marked by the
black box in figure 15b) and in the shear layer region of the small cylinder (marked by
the red box in figure 15b) for l/D = 2.0 and 1.5. The black curves exhibit an oscillatory
behaviour. Every time an M-cell vortex passes through the monitoring flow region, the
black curves reach a peak. The red curve (shear region) remains almost unchanged since
the corresponding monitoring flow region is located upstream of the position the M-cell
vortex sheds. It appears that the circulation strengths within the shear layer around the
small cylinder are comparable for l/D = 2 and 1.5. However, the circulation strength in
the M-cell region increases substantially (i.e. the oscillation amplitude along the black
solid curve for l/D = 1.5 is clearly higher than for the black dashed curve for l/D = 2).
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Figure 16. (a) Distributions of the mean streamwise velocity in the M-cell and N-cell regions for l/D = 1.5.
(b) Distributions of the mean streamwise velocity in the M-cell region for l/D = 1.5 and 1.

These tendencies are due to more circulation energy being transferred from the N-cell
region to the M-cell region as l/D decreases from 2 to 1.5. This stronger circulation
strength makes the top and bottom parts of the M-cell vortex able to sustain themselves
while disconnecting from the corresponding N-cell vortices as the M-cell vortex convects
downstream for l/D = 1.5, instead of disconnecting from each other as for l/D = 2.
Secondly, the smaller blockage effect of the small cylinder (compared with the large
cylinder) causes the averaged convective velocity to become larger behind the small
cylinder (the M-cell region) than behind the large cylinder (the N-cell region). Due to
the spatial inhomogeneity of the convective velocity in the present case, it is difficult
to evaluate an accurate convective velocity in the N- and M-cell regions. Yet, the mean
streamwise velocity in the different vortex cell regions can be used to roughly compare the
convective velocities in these regions. Figure 16 shows the averaged streamwise velocity
in the M-cell region and the N-cell region, based on ū = ∑N

j=1 ujAj/
∑N

j=1 Aj, where
N represents all grid cells within the sampling flow region, and A is the streamwise
projection area of the corresponding grid cell. The flow region selected to calculate the
averaged velocity is −0.4 < y < 0.4 (covering the concentrated swirling region in the
wake behind the small cylinder with D/d = 2), −l/2D < z < l/2D for the M-cell region
and −5 < z < 0 for the N-cell region. Figure 16(a) indicates that the vortex in the M-cell
region convects faster than that in the N-cell region. The higher convective velocity and
stronger circulation strength cause the new shedding frequency of the M-cell vortex, StM ,
to occur for l/D = 1.5. Our explanation can be further confirmed by checking the variation
of the shedding frequency of the M-cell vortex when l/D decreases from 1.5 to 1.0. The
corresponding mean streamwise velocity distribution and shedding frequencies are shown
in figures 16(b) and 31(b) (Appendix B), indicating that, as the convective velocity behind
the small cylinder decreases, the shedding frequency of the M-cell vortex decreases from
0.23 for l/D = 1.5 to 0.21 for l/D = 1.

Another interesting phenomenon for the F3MNL mode is that the frequency contours
become blurred behind the large cylinder in the N- and L-cell vortex regions, as shown in
figure 5(c). This is caused by the interactions between the M- and N-cell vortices described
above. Figure 17(a,b) compares the time history of the downwash flow (spanwise flow) and
the base pressure in the vicinity of the step behind the large cylinder for l/D = 2, l/D =
1.5 and l/D = 0.2. As pointed out by Tian et al. (2020a), the formation mechanism of
the N-cell vortex is closely related to the step-induced variations of the spanwise velocity
(w) and the base pressure. As l/D decreases from 2.0 to 1.5, the occurrence of the vortex
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Figure 17. (a) Time history of the spanwise velocity w at (x, y, zD) = (0.6, 0, −0.1), where zD is defined in
figure 7 for l/D = 2.0, 1.5 and 0.2. (b) Time history of the base pressure at (x, y, zD) = (0.51, 0, −0.1). The
period of the vortex dislocation between the N- and L-cell vortices for l/D = 2.0 is marked.
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Figure 18. (a–c) Consecutive instantaneous vorticity ωz contours in the xy-plane at z = 0 showing the flow
developments around the middle section of the cylinder for l/D = 0.2. (d) The corresponding time history of
the lift coefficient for the centre part of the small cylinder at z = 0.

dislocation between the M- and N-cell vortices disturbs the wake flow and induces a more
irregular and sharp variation of the spanwise velocity and the base pressure for l/D = 1.5
(the black solid line in figure 17a,b) than for l/D = 2.0 (the black dashed line in figure
17a,b). This causes the shedding frequencies of the N- and L-cell vortices to be unstable for
l/D = 1.5, leading to a blurred frequency contour behind the large cylinder for l/D = 1.5,
as shown in figure 5(c). Another consequence of the unstable shedding frequencies (StN
and StL) is that the regularity of the vortex dislocations between the N- and L-cell vortices
becomes weaker for l/D = 1.5 than for l/D = 10 and 2. As shown in figure 6(a–c), the
formation position and the period of the NL-dislocation vary only for l/D = 1.5.

3.4. The F1L mode
In the present section, the formation of the F1L mode will be discussed based on the
l/D = 0.2 case. A comparison between figures 4(c) and 4(d) shows two differences as the
flow changes from the F3MNL to the F1L mode: (i) the N- and M-cell vortices disappear,
while the L-cell vortex becomes the only dominant vortex; (ii) the streamwise vortices
form regularly between the L-cell vortices shed from the different sides of the I-shaped
step cylinder.

To be certain that the vortex in the small cylinder wake belongs to the L-cell vortex
instead of the M-cell vortex, figure 18(a–c) shows consecutive spanwise vorticity ωz
contours in the xy-plane in the middle of the small cylinder (z = 0) for l/D = 0.2.
The corresponding time history of CL is shown in figure 18(d). It appears that the
vortices behind the small cylinder are generated from the shear layer located at y = ±0.5
(figure 18a–c). Since y = ±0.5 is located at the surface of the large cylinder, the vortices
behind the small cylinder are mainly from the shear layer of the large cylinder, belonging
to the L-cell vortex. The disappearance of the M-cell vortex as l/D decreases from 2 to 0.2
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Figure 19. Time-averaged magnitude of the velocity (Umag = √
u2 + v2 + w2) on the xy-plane in the middle

of the small cylinder (z = 0): (a) for l/D = 2, (b) for l/D = 0.2.

is caused by the fact that the shorter distance between the two steps highly suppresses
the surrounding velocity around the small cylinder, thus suppressing the generation
of circulation. Figure 19 shows the contours of the time-averaged velocity magnitude
(Umag = √

u2 + v2 + w2) on the xy-plane in the middle of the small cylinder for l/D = 2
and 0.2. It shows that the surrounding flow around the small cylinder (e.g. the region
encircled by the white rectangle in figure 19) in the l/D = 0.2 case is clearly weaker than
that in the l/D = 2 case. As a result, the circulation generated from the +Y and −Y sides
of the small cylinder is clearly smaller for l/D = 0.2 (as shown in figure 18a–c) than for
l/D = 2 (as shown in figure 9e–g), leading to the disappearance of the M-cell vortex.

The vanishing of the N-cell vortex is due to the fact that the three-dimensional effect
of the step on the large cylinder wake becomes weak as the length of the small cylinder
decreases to 0.2D. Figure 17(a,b) shows that the fluctuation of the downwash flow and the
base pressure become much more regular and weaker for l/D = 0.2 than for l/D = 1.5 and
2.0; and these two flow quantities dominate the formation of the N-cell vortex (Tian et al.
2020a). The formation of the regular streamwise vortices between the neighbouring L-cell
vortices is due to the step disturbing the wake. Firstly, the spanwise velocity (w shown in
figure 17a) triggered by the step contributes to the formation of the streamwise vorticity
(ωx = ∂w/∂y − ∂v/∂z). Secondly, the above-mentioned velocity suppression effect of the
two steps, and the small diameter of the small cylinder, cause the circulation strength of the
L-cell vortex to be smaller behind the small cylinder than behind the large cylinder away
from the step. This is illustrated by the time history of the circulation strength (Γ ) within
the flow volume just behind the small cylinder (marked by the red box in figure 20b) and
behind the large cylinder away from the step (marked by the black box in figure 20b). Only
the L-cell vortices shed from the −Y side of the cylinder are monitored. This difference
in vortex strength induces part of the L-cell vortex to split and connect to the other L-cell
vortices, which shed from the opposite side of the cylinder, as shown in figure 4(d).

4. The streamwise vortex system around the I-shaped step cylinder

The streamwise vortex system around the single-step cylinder was initially investigated
by Dunn & Tavoularis (2006), where a pair of edge vortices and a junction vortex were
identified. The junction vortex forms on the joint surface between the small and large
cylinders (i.e. on the step surface), upstream of the small cylinder; the edge vortex
originates from the edge of the step surface. These vortices are sketched in figure 21.

1004 A9-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1103


Laminar flow over I-shaped dual-step cylinders

910 920
t

930 940900

Γ
–

80

60

40

20

0

100

Red: behind the small cylinder

Black: behind the large cylinder

(b)(a)

Figure 20. (a) Time history of the circulation strength in the wake behind the small and large cylinders for
l/D = 0.2. (b) The red box (3 < x < 4, −1 < y < 0 and −0.1 < z < 0.1) and black box (3 < x < 4, −1 <

y < 0 and −3 < z < 2) show the flow volumes used to calculate the circulation strength behind the small and
large cylinders, respectively.
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Figure 21. Sketch of the streamwise vortices forming around a step cylinder, reproduced based on figure 2 in
Dunn & Tavoularis (2006).

The purpose of this section is to show how the distance between the two steps affects the
streamwise vortex system around the I-shaped dual-step cylinder.

Firstly, the formation of the streamwise vortex system is investigated based on the
time-averaged flow field. Since the time-averaged flow fields shown in figure 7(a–f ) are
symmetric about the middle of the step cylinder for all wake modes, the discussion in
the present section is concerned only with the bottom half of the I-shaped cylinder, i.e.
z < 0. Figure 22 shows isosurfaces of the time-averaged λ2 = −2 and the isosurface of
the streamwise vorticity ωx = ±1 around the bottom part of the I-shaped step cylinder.
As in figure 4, results are presented only for the four different configurations l/D = 10,
2, 1.5 and 0.2, each representing one of the four characteristic wake modes described in
§§ 3.1–3.4. It appears that a pair of edge vortices and a junction vortex form around the
I-shaped step cylinder for the F3SNL, F2MNL and F3MNL modes. The edge vortices and
junction vortices rotate in opposite directions on the same side of the step surface, similar
to the single-step cylinder case depicted in figure 21. Figure 22(d,h) shows that, for the F1L
mode (l/D = 0.2), the junction vortex disappears and only a pair of edge vortices exist.
This is because the gap l/D = 0.2 between the two steps is too narrow for the formation of
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Figure 22. Isosurface of the time-averaged λ2 = −2 coloured by the streamwise vorticity for (a) l/D = 10,
(b) l/D = 2, (c) l/D = 1.5, (d) l/D = 0.2. Isosurface of the time-averaged streamwise vorticity ωx = 1 in red
and ωx = −1 in blue for (e) l/D = 10, ( f ) l/D = 2, (g) l/D = 1.5, (h) l/D = 0.2.
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Figure 23. Time-averaged streamlines on the xz-plane at y = 0 for (a) l/D = 10, (b) l/D = 2,
(c) l/D = 1.5 and (d) l/D = 0.2. The junction vortex and the impinging attachment point (point A) are
marked.

the junction vortex. This is further visualized in figure 23(a–c), showing the time-averaged
streamlines in the centre plane (y = 0) just in front of the step for l/D = 10, 2 and 1.5.
When the distance between the two steps is large enough, the junction vortex is caused
by both the flow separation at the leading edge of the step and the impingement of the
flow at the surface of the small cylinder. After the flow separates at the leading edge of
the step, it impinges on the upstream surface of the small cylinder at the attachment point
A (see figure 23a–c), where a part of the flow deflects downward and recirculates into
the junction vortex. However, when the gap between the two steps becomes too short,
there is not enough space for this downward flow to recirculate into the junction vortex.
Figure 23(d) shows that the flow almost aligns in the streamwise direction above the step
surface for l/D = 0.2.

The formation of the edge vortices around the I-shaped step cylinder is similar to that
around the single-step cylinder, where the flow is pushed sideways due to the blockage of
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the small cylinder, spilling over the edges of the step surface and rolling up into the edge
vortex (Dunn & Tavoularis 2006). The instantaneous dynamics of the streamwise vortex
system is not investigated here because it was found that, in the present laminar Reynolds
number regime, the streamwise vortices are almost stable around the step surface. For
example, the fluctuations of the circulation strength in the region containing the junction
and edge vortices are negligible, as shown by the red curves in figure 15(a).

Overall, except for the case where the gap between the two steps becomes too small (e.g.
l/D = 0.2), the streamwise vortex system around the I-shaped step cylinder is similar to
that around the single-step cylinder where a pair of edge vortices and a junction vortex
occur. In the exceptional l/D = 0.2 case, the junction vortex disappears.

5. Structural loads on I-shaped step cylinders

For cylindrical structures, the time-averaged drag force and the root-mean-square of the
lift force are usually investigated to quantify the overall steady and unsteady forces
acting on the structure, which are essential for assessing resistance and potential for
vibration-induced fatigue. The structural load distribution along single-step cylinders was
described in Tian et al. (2023): along the large cylinder, due to step effects and the pressure
difference between the small and the large cylinder wakes, the mean drag coefficient
decreases towards the step until it reaches a minimum (see figure 24a); then, it increases
towards the step. The root mean square value of the lift coefficient decreases towards the
step because of the distortion of vortices near the step. During this decrease, a minimum
(see figure 24c) occurs due to the vortex dislocations between the N- and L-cell vortices;
the effect of these vortex dislocations on the structural load was discussed in detail in Tian
et al. (2023). Along the small cylinder, both the time-averaged drag coefficient and the
root mean square value of the lift coefficient decrease towards the step (see figure 24b,d)
since the velocity is suppressed by the step surface and the vortices are distorted around
the step.

As the configuration changes from a single-step cylinder to an I-shaped dual-step
cylinder, the interactions between the two steps become severe as the gap between the
steps decreases. This gives rise to two research questions: (i) How are the structural loads
distributed along the I-shaped dual-step cylinder as the gap between the steps varies?
(ii) And how do the different wake modes affect these distributions? These are discussed
in detail below. As in § 3, results are presented only for the four different configurations
l/D = 10, 2, 1.5 and 0.2, each of which is representative of one of the four characteristic
wake modes described in §§ 3.1–3.4. The definitions of the time-averaged drag coefficient
CD and the root-mean-square of the lift coefficient C′

L are

CD = 1
N

N∑
i=1

2FD,i(t)
ρU2DpLc

(5.1)

C′
L =

√√√√ 1
N

N∑
i=1

(CL,i − CL)2, CL = 2FL(t)
ρU2DpLc

, CL = 1
N

N∑
i=1

CL,i, (5.2a–c)

where N is the number of values in the sample, and FD(t) and FL(t) are the instantaneous
drag (the structural load in the x-direction) and lift (the structural load in the y-direction)
forces acting on the structure, respectively. Here, CL and CL are the instantaneous and
time-averaged lift force coefficients; Dp = D for the large cylinder and Dp = d for the
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Figure 24. The distributions of structural loads in the l/D = 10, 2, 1.5 and 0.2 cases are plotted in black, red,
green and purple, respectively. The spanwise distribution of the total drag coefficient CD (a) along the large
cylinder; (b) along the small cylinder. The spanwise distribution of the root mean square of lift coefficient
C′

L (c) along the large cylinder; (d) along the small cylinder. The local minima of CD and CD along the large
cylinder are indicated by the triangle and circle. In (a,c), the local extremes of the drag coefficient EXDL and
the lift coefficient EXLL are marked in all cases.

small cylinder; Lc = 0.05D is the spanwise length of the step cylinder for which forces are
calculated.

5.1. Structural load along the large cylinder

Figure 24(a,c) shows the distributions of CD and C′
L along the large cylinder, while

figure 24(b,d) shows the distributions of CD and C′
L along the small cylinder; the structural

load distribution along a single-step cylinder with D/d = 2 for ReD = 150 (adopted from
Tian et al. 2023) is given for comparison. As l/D decreases from 10 to 1.5, figure 24(a,c)
shows that the distributions of CD and C′

L along the large cylinder are qualitatively similar
to those for the single-step cylinder. This is because the dominant vortex cells (the N- and
L-cell vortices) are similar for the F3SNL, F2MNL and F3MNL modes, as well as for the
single-step cylinder (see figures 1c and 4a–c). In figure 24(a,c), the local extremes of drag
coefficient EXDL and lift coefficient EXLL are marked by triangles and circles, respectively,
for all cases.

As l/D decreases to 0.2, an apparent change of C′
L is the disappearance of the local

minimum EXLL (see figure 24a). The occurrence of this minimum for l/D = 10, 2 and
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Laminar flow over I-shaped dual-step cylinders

Wake mode F3SNL F2MNL F3MNL F1L

l/D 10 2 1.5 0.2

z −6.7 −5.1 −2.3 −1.1 −2.95 −0.85 −0.5 −0.2
CDp (fore part) 0.24 0.26 0.23 0.25 0.23 0.25 0.25 0.31
CDp (aft part) 0.68 0.74 0.71 0.76 0.72 0.77 0.76 0.74
Total CDp 0.92 1.00 0.94 1.01 0.95 1.02 1.01 1.05
Total CD 1.15 1.24 1.17 1.26 1.19 1.28 1.24 1.29
R 89 % 78 % 78 % 80 %

Table 2. Time-averaged pressure-induced drag force coefficient (CDp) and total drag force coefficient (CD) on
the fore part (x < 0) and the aft part (x > 0) of the cylinder for different wake modes at EXDL and the position
0.1D away from the step surface. The shaded columns represent the position 0.1D away from the step. From
EXDL to the position 0.1D below the step, the ratio of the change in total CD due to pressure is shown in the
last line, R = �CDp/�CD.

1.5 is caused by the vortex dislocations between the N- and L-cell vortices: Tian et al.
(2023) reported that the formation of such vortex dislocations can cause a 90 % reduction
in the local lift amplitude. The series of vortex dislocations at the N-L cell boundary
for l/D = 10, 2 and 1.5 shown in figures 4(a–c) and 6(a–c), are underpinning the local
minima EXLL. As the vortex dislocations between the N- and L-cell vortices disappear for
l/D = 0.2 due to the absence of the N-cell vortex (see figure 6d), the local minimum EXLL

also disappears. As a result, C′
L becomes larger along the small cylinder for l/D = 0.2 than

for 1.5 < l/D < 10.
For all the cases, CD decreases towards the step along the large cylinder until reaching

the local minimum EXDL, and then increases towards to the step. This is similar to the
behaviour observed for the single-step cylinder (Tian et al. 2023). However, a detailed
investigation reveals that the mechanism underpinning the increase of CD from EXDL
towards the step is different for the l/D = 0.2 case than for the other cases.

This is further detailed in table 2, showing the total drag coefficient CD, and the
pressure-induced drag coefficient over the fore part and aft part of the cylinder, as well as
over the entire cylinder at EXDL and at zD/D = −0.1 (i.e. 0.1D away from the step). The
ratio of the change in CD due to the pressure is also given as R = �CDp/�CD. Firstly,
R is larger than 78 % for all cases, indicating that the pressure-induced drag coefficient
CDp dominates the variation of the total drag coefficient. Secondly, the increase of the
pressure-induced drag coefficient CDp is mainly due to the increased CDp on the aft
part of the cylinder for the F3SNL, F2MNL and F3MNL modes. This is similar to the
mechanism reported for the single-step cylinder (Tian et al. 2023). However, for the F1L
mode, the increase of pressure-induced drag coefficient CDp is caused by the increased
CDp on the fore part of the cylinder; the pressure-induced drag coefficient on the aft part
of the cylinder decreases slightly from EXDL to the step for the F1L mode, as opposed to
the other modes. These different behaviours between the F3SNL, F2MNL and F3MNL
modes on one side, and the F1L mode on the other side, are due to the different wake
modes around the I-shaped step cylinders. For the F3SNL, F2MNL and F3MNL modes,
there are three vortex cells behind the I-shaped step cylinder. Figure 7(d) shows that the
recirculation length in the N-cell vortex region is larger than in the neighbouring L-cell and
S-cell (or M-cell) vortex regions, leading to a non-monotonic variation of the recirculation
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Figure 25. Time-averaged streamlines on xy-planes behind the large cylinder: (a–d) at zD = −0.1 for l/D =
10, 2, 1.5 and 0.2; (e–h) at the local minimum point EXDL shown in figure 24(a) for l/D = 10, 2, 1.5 and 0.2.
The red reference line indicates the location of the circulation centre on the xy-plane.

length along the large cylinder. The time-averaged streamlines in the xy-planes reveal that
the circulation centre moves upstream as the step is approached, thus strengthening the
pressure behind the large cylinder, leading to an enhanced pressure force on the aft part of
the cylinder for the F3SNL, F2MNL and F3MNL modes (see table 2). For the F1L mode,
however, the L-cell vortex is the only dominant vortex cell behind the step cylinder, leading
to a monotonic variation of the recirculation length along the large cylinder, as shown in
figure 7(d). Figure 25(d,g) shows that the recirculation centre moves slightly downstream
as the step is approached, thereby weakening the pressure behind the large cylinder, thus
leading to the slightly decreased pressure force on the aft part of the cylinder (see table 2).

5.2. Structural load along the small cylinder
As the configuration changes from the single-step cylinder to the I-shaped dual-step
cylinder with different gaps between the two steps, the structural load is more affected
along the small cylinder than along the large cylinder. First, the structural load (i.e. CD

and C′
L) on the I-shaped step cylinder with l/D = 10, 2 and 1.5 will be discussed. Then,

the structural loads will be discussed for l/D = 0.2.
Figure 24(b,d) shows that the lift coefficient and the drag coefficient in the middle of

the small cylinder for l/D = 10 are higher than for the single-step cylinder. This is because
the symmetric shape of the I-step cylinder leads the S-cell vortex to shed in parallel behind
the middle of the small cylinder for l/D = 10 (see figure 4a), while an oblique shedding
angle of around 13 degrees was found for the single-step cylinder (Tian et al. 2023) at the
same distance away from the step. This oblique vortex shedding will re-direct part of the
spanwise vortex circulation (ωz) into circulation in the other two directions. This will in
turn decrease the base pressure strength, causing smaller structural load coefficients in the
single-step cylinder case.

When l/D decreases from 10 to 2 (and 1.5), figure 24(b,d) shows that the distribution of
CD does not change significantly, while C′

L changes substantially along the small cylinder.
The smaller C′

L as l/D decreases is due to the fact that the vorticity distribution in the
near-wake region behind the small cylinder changes from asymmetric to almost symmetric
(around the streamwise centre line) as l/D decreases from 10 to 2 (see figure 9a–f ). During

1004 A9-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1103


Laminar flow over I-shaped dual-step cylinders

1.2

0.6

0
U

θ

y

xCp

–0.6

–1.2
0 30

+Y side for l/D = 0.2

–Y side for l/D = 0.2

+Y side for l/D = 2

–Y side for l/D = 2

60 90 120 150 180

θ
0 30 60 90 120 150 180

1.2

0.6

0Cp

–0.6

–1.2

θ

(b)(a)

Figure 26. The circumferential distribution of pressure along a slice in the middle of the small cylinder at
z = 0: (a) the time-averaged pressure and (b) the instantaneous pressure when CL peaks at t1 (in figure 18d)
for l/D = 0.2 and at t4 (in figure 9h) for l/D = 2. Notice that the continuous and broken lines coincide in (a).

this process, no clear decrease occurs in the magnitude of the spanwise vorticity |ωz| (the
dominant vorticity component in that region), leading to the almost unchanged CD.

As l/D further decreases from 2 to 0.2, C′
L increases and CD decreases. Firstly, CD is

discussed in the light of the pressure on the +X and −X parts of the cylinder; figure 26(a)
shows the circumferential distribution of the time-averaged pressure (Cp = 2(p̄ − p0))
along the small cylinder at z = 0 for l/D = 2 (red curve) and 0.2 (black curve). It appears
that the time-averaged impinging pressure on the −X part of the small cylinder (θ < 45)
and pressure on the +X part of the small cylinder (θ > 90) are weaker for l/D = 0.2 than
for l/D = 2, leading to a smaller pressure difference between the −X and the +X parts of
the cylinder, i.e. between fore and aft, and thus an overall smaller drag distribution along
the small cylinder for l/D = 0.2 than for l/D = 2 (as shown in figure 24b). This is because
the velocity surrounding the small cylinder is suppressed as the distance between the step
surfaces decreases from l/D = 2 to l/D = 0.2, due to friction.

Secondly, C′
L is discussed in the light of the pressure on the +Y and −Y sides of the

cylinder. Figure 26(b) shows the circumferential distribution of the instantaneous pressure
along the small cylinder at z = 0 for l/D = 2 (red curve) and 0.2 (black curve) when CL
peaks for l/D = 0.2 (i.e. at t1 in figure 18d) and when CL peaks for l/D = 2 (i.e. at t4
in figure 9h). It appears that the pressure difference between the +Y and −Y sides of the
cylinder is visible for l/D = 0.2, but almost negligible for l/D = 2 when CL peaks. Thus,
the fluctuation amplitude of CL for the l/D = 0.2 case is much larger than for l/D = 2, as
shown in figures 9(h) and 18(d). This is due to the disappearance of the M-cell vortex and
the appearance of the L-cell vortex behind the small cylinder, as l/D decreases from 2 to
0.2, which in turn makes the near wake change from symmetric to asymmetric, as shown
by the vorticity contours in figures 9(e–g) and 18(a–c). This explains why C′

L is larger for
l/D = 0.2 than for l/D = 2.

6. Conclusion

Flow over I-shaped step cylinders is investigated using DNS for D/d = 2.0 and l/D = 10,
5, 3, 2.5, 2, 1.5, 1 and 0.2 at ReD = 150. As the length of the small cylinder l/D (i.e. the
distance ‘l’ between the two steps) decreases from 10 to 0.2, four distinct wake modes (as
shown in figure 4 and table 1) are identified behind the I-shaped step cylinder:
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(i) The F3SNL mode is identified for l/D = 10, 5 and 3. Here, ‘SNL’ refers to the
formation of the S-, N- and L-cell vortices, and ‘F3’ indicates the corresponding
three different shedding frequencies. It should be noted that these three vortex cells
behave similarly to those behind the single-step cylinder. This is because, when
the length of the small cylinder is large enough, the interaction between the two
steps is almost negligible, making the wake behind an I-shaped step cylinder similar
to the combination of two single-step cylinder wakes, except that the SS-half loop
vortex behind the single-step cylinder becomes a closed S-S loop vortex behind the
I-shaped step cylinder.

(ii) As l/D decreases to 2.5 and 2, the F2MNL mode is identified. Here, three dominant
vortex cells, the M-, N- and L-cell vortices, appear but there are only two different
shedding frequencies. Furthermore, the S-cell disappears and a new vortex structure,
denoted the M-cell vortex, appears. The vanishing of the S-cell vortex is related
to the distance between the steps: as the distance between the two steps becomes
shorter, the wake mixing effect caused by the steps affects the flow over the whole
small cylinder, thereby increasing the recirculation length. This suppresses the wake
instability, causing the S-cell vortex to disappear. The reason why the M-, N- and
L-cell vortices exhibit only two shedding frequencies is that all M-cell vortices shed
in phase with the N-cell vortices.

(iii) As l/D further decreases to 1.5 and 1, the F3MNL mode is identified. Here, three
dominant vortex cells, the M-, N- and L-cell vortices, appear and there are three
distinct frequencies. The one additional shedding frequency (relative to the F2MNL
mode) is due to the fact that the M-cell vortex starts to dislocate from the N-cell
vortex, leading to the M-cell vortex exhibiting a different shedding frequency than
the N-cell vortex. This is due to the following two reasons: (a) a decrease in l/D
shortens the distance between the top and bottom N-cell vortices, leading to the
M-cell vortex receiving more energy from the N-cell vortex. Thus, the M-cell
vortices contain more circulation strength for the F3MNL mode than for the F2MNL
mode. This stronger circulation strength makes the top and bottom parts of the
M-cell vortex sustainable while disconnecting from the corresponding N-cell vortex.
(b) The smaller blockage effect of the small cylinder (compared with the large
cylinder) causes the averaged convective velocity to become larger behind the small
cylinder (in the M-cell region) than behind the large cylinder region, contributing to
a higher shedding frequency for the M-cell vortex than for the N-cell vortex.

(iv) The F1L mode is identified for l/D = 0.2. Here, the L-cell vortex becomes the only
dominant vortex. The M-cell vortex vanishes because the small distance between the
two steps highly suppresses the velocity surrounding the small cylinder, leading to a
decrease of the circulation around the small cylinder, thus suppressing the formation
of the M-cell vortex. The N-cell vortex disappears because the spanwise velocity
and the varying suction pressure caused by the step become weak as the distance
between the two steps (i.e. l/D) becomes very small.

Besides the wake flow, the streamwise vortex system around the I-shaped step cylinder
was also investigated. Except for the case where the gap between the two steps becomes too
small (e.g. l/D = 0.2), the streamwise vortex system around the I-shaped step cylinder is
similar to that around the single-step cylinder, where a pair of edge vortices and a junction
vortex occur. In the exceptional case, the junction vortex disappears due to the small gap
between the two steps forcing the flow in between to become parallel.
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Laminar flow over I-shaped dual-step cylinders

Investigations of the time-averaged drag coefficient (CD) and the root mean square of
the lift coefficient (C′

L) reveal that the distribution of the structural load along the I-shaped
step cylinder significantly changes between the four identified wake modes. The results are
directly compared with the structural load distribution along a corresponding single-step
cylinder. For the F3SNL mode, the similar wake pattern behind the I-shaped step cylinder
and the single-step cylinder gives rise to a similar distribution of CD and C′

L along the
I-shaped step cylinder and the single-step cylinder.

As the wake flow changes from the F3SNL mode to the F2MNL mode (and F3MNL
mode), the staggered Kármán vortex shedding disappears behind the small cylinder. This
causes the overall distribution of the lift force coefficient C′

L to significantly decrease on
the small cylinder, as compared with the single-step cylinder. As the wake flow transforms
to the F1L mode for l/D = 0.2, the wake behind both the small and large cylinders
changes significantly. Along the large cylinder, the disappearance of the N-cell vortex
causes the vortex dislocations between the N- and L-cell vortices to vanish, causing no
local minimum (EXLL) in the distribution of the lift coefficient (C′

L). The distribution of
CD along the large cylinder for F1L is qualitatively similar to the other three modes: a
local minimum EXDL forms as the step is approached. However, the mechanism of the
increased CD from EXDL to the step differs for F1L. As the multi-wake vortices change to
the single wake vortex behind the I-shaped step cylinder from F3SNL, F2MNL and F3MNl
to F1L, the non-monotonic distribution of the recirculation length along the larger cylinder
changes to a monotonic distribution. This makes the enhanced pressure in the vicinity of
the step on the large cylinder for F3SNL, F2MNL and F3MNl disappear for F1L, leading
to the fact that the increased CD from EXDL to the step is caused by the pressure variation
on the aft part of the cylinder for F3SNL, F2MNL and F3MNl; however, for F1L, the
increased CD is caused by the enhanced circumferential pressure on the fore part of the
cylinder.

Behind the small cylinder in the F1L mode, the M-cell vortex disappears and the L-cell
vortex appears. This converts the near wake of the small cylinder from symmetric to
asymmetric (i.e. staggered) vortex shedding, thereby causing the overall distribution of C′

L
to increase on the small cylinder, relative to the other three modes. The increased friction
effect between the two steps for F1L compared with F3SNL, F2MNL and F3MNl weakens
the pressure difference between the −X and +X sides of the small cylinder, leading to an
overall smaller CD for F1L than for the other three modes.
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Appendix A. Grid convergence

As shown in § 3, the wake flow is more complex for the F2MNL and F3MNL modes
than for the F3SNL and F1L modes due to the vortex interactions between the M- and
N-cell vortices. Therefore, the I-shaped step cylinder with l/D = 2 where the F2MNL
mode occurs is selected to conduct the grid convergence study. The three cases denoted
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Case Min. cell size Δc/D Domain size (Lx × Ly × Lz)/D l/D L/D Grids (×108)

Fine 10 0.01 63.36 × 42.24 × 70.4 10 30.2 6.41
Fine 5 0.01 63.36 × 42.24 × 63.36 5 29.18 5.77
Fine 3 0.01 63.36 × 42.24 × 63.36 3 30.18 5.77
Fine 2.5 0.01 63.36 × 42.24 × 63.36 2.5 30.43 5.77
Coarse 2 0.015 60.48 × 40.32 × 60.48 2 29.24 1.51
Medium 2 0.012 62.208 × 41.472 × 62.208 2 30.104 3.19
Fine 2 0.01 63.36 × 42.24 × 63.36 2 30.68 5.77
Fine 1.5 0.01 63.36 × 42.24 × 63.36 1.5 30.93 5.77
Fine 1 0.01 63.36 × 42.24 × 63.36 1 31.18 5.77
Fine 0.2 0.01 63.36 × 42.24 × 63.36 0.2 31.58 5.77

Table 3. Mesh and computational domain information of all simulations in the present study. The case coarse
has five levels of grids, and the other cases all have six levels of grids. The cases coarse 2, medium 2 and fine 2
are used for the grid study. As shown in figure 2, the minimum grid cells (Δc/D) cover the close region around
the I-shaped step cylinder.

Grid — Level 6 Level 5 Level 4 Level 3 Level 2

Fine 2 x (−0.88, 2.20) (−1.32, 5.28) (−1.76, 7.92) (−3.52, 10.56) (−7.04, 14.08)
y (−0.88, 0.88) (−1.32, 1.32) (−1.76, 1.76) (−3.52, 3.52) (−7.04, 7.04)

Medium 2 x (−0.864, 2.592) (−1.296, 5.184) (−1.728, 7.775) (−3.456, 10.368) (−6.912, 13.824)
y (−0.864, 0.864) (−1.296, 1.296) (−1.728, 1.728) (−3.456, 3.456) (−6.912, 6.912)

Coarse 2 x (−0.84, 2.52) (−1.26, 5.04) (−1.68, 7.56) (−3.36, 10.08) (−6.72, 13.44)
y (−0.84, 0.84) (−1.26, 1.26) (−1.68, 1.68) (−3.36, 3.36) (−6.72, 6.72)

Table 4. Locations of the grid-refinement regions for the original case and the case with an increased
grid-refinement region. All the grid-refinement regions occupy the whole flow domain in the z-direction. The
level 1 grid covers the whole flow domain.

Case StM = StN StL

Coarse 2 0.153 0.173
Medium 2 0.154 0.175
Fine 2 0.155 0.175

Table 5. The St of three dominant vortex cells (StM = fMD/U, StN = fND/U and StL = fLD/U) for the three
cases with l/D = 2.0, i.e. coarse 2, medium 2 and fine 2, as shown in table 3.

coarse 2, medium 2 and fine 2 (shown in table 3) are set up for the grid convergence study.
The locations of the grid-refinement region for the coarse 2, medium 2 and fine 2 cases is
shown in table 4.

The St of the three dominant vortex cells (StM = fMD/U, StN = fND/U and StL =
fLD/U) is calculated by FFT of the time series of the streamwise velocity u along a vertical
sampling line at (x, y) = (1.6, 0.4) for coarse 2, medium 2 and fine 2. The results are
shown in table 5, indicating tiny differences for the St in these three cases.

Figure 27(a,b) shows the time-averaged streamwise velocity (ū) and pressure (p̄) along
the sampling line AB (see in figure 27a-ii) located upstream of the small cylinder at
(x, y) = (−0.4, 0), respectively. A close-up of the red rectangle in figure 27(a,b) is shown
in figures 27(a-i) and 27(b-i), respectively, indicating a convergent tendency from the
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Figure 27. (a) Distributions of time-average streamwise velocity ū along a sampling line AB in the xz-plane
at y = 0 in the l/D = 2 case. Inset: (a-i) a zoomed-in view of the upper part of the curves (red rectangle
in a); (a-ii) a sketch of the position of the sampling line AB of length 2D at x = −0.4. (b) Distribution of
time-averaged pressure p̄ along a sampling line AB. Inset: (b-i) a zoomed-in view of the upper part of the
curves (red rectangle in b).

coarse 2 case to the fine 2 case. The difference between medium 2 and fine 2 is negligible.
The above comparisons indicate that the grid resolution in the fine 2 case is sufficiently fine
to accurately simulate the flow around the I-shaped step cylinders discussed in the present
paper. Grid and computational domain information of all simulations in the present study
are shown in table 3.

The horizontal size of the computational domain (Lx and Ly shown in table 3 and
figure 3) applied in the present study is larger than that used by Morton & Yarusevych
(2010), Tian et al. (2023) and Massaro et al. (2023b) and comparable to that applied by
Tian et al. (2021) for the single-step cylinder at the same or higher ReD. The spanwise
convergence study provided by Tian et al. (2023) shows that a 45D step cylinder (30D
for the large cylinder and 15D for the small cylinder) can make the free-slip boundary
condition used at the top and bottom boundaries have a minor effect on the flow region
around the step spanning in 20D for flow over a single-step cylinder with D/d = 2 at
ReD = 150. Considering that the I-shaped step cylinder applied in the present study has
the same diameter ratio (D/d = 2) and Reynolds number (ReD = 150), the length of the
large cylinder L is set up to around 30D for all cases with the length of the small cylinder
varying from 0.2 to 10, as shown in table 3.

Appendix B. Wake overview for l/D = 5, 3, 2.5, 1.0

This appendix includes four figures, i.e. figures 28, 29, 30 and 31. All vortex structures are
visualized by instantaneous isosurface of λ2 = −0.01. All velocity spectra are calculated
by a FFT of at least 1500D/U continuous streamwise velocity (u) data along a vertical
sampling line parallel to the z-axis at (x, y) = (1.6, 0.4).
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Figure 28. (a) Instantaneous isosurface of λ2 = −0.01 for l/D = 5. (b) The corresponding streamwise
velocity spectrum is obtained from a FFT of time series of the streamwise velocity u along a vertical sampling
line behind the I-shaped step cylinder at (x, y) = (1.6, 0.4).
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Figure 29. Same as figure 28, but for l/D = 3.

1004 A9-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1103


Laminar flow over I-shaped dual-step cylinders

10 20 30 40 50 60 70 80 90

Euu/Total Euu

20

15

10

5

0

–5

–10

–15

–20

z StN = StM = 0.155

StL = 0.175

StL = 0.175

0 0.1 0.2 0.3 0.4

fD/U

Lu cell

Nu cell

Nb cell

Lb cell

S cell

(b)

(a)

Figure 30. Same as figure 28, but for l/D = 2.5.
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Figure 31. Same as figure 28, but for l/D = 1.
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