
Flow (2022), 2 E36
doi:10.1017/flo.2022.29

RESEARCH ARTICLE

Jetting onset on a liquid surface accelerated past a
submerged cylinder
Rubert Martín Pardo1 ,* , Niloy Barua1, Daphné Lisak1 and Jovan Nedić1

1Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
*Corresponding author. E-mail: rubert.martin@mail.mcgill.ca

Received: 21 April 2022; Revised: 3 September 2022; Accepted: 24 October 2022

Keywords: Surface instabilities; Gravity waves; Jets; Surface gravity waves; Wave breaking; Instability control; Optical based
flow diagnostics; Air/sea interactions

Abstract
A novel experiment is presented to study the initial disturbances on a free surface due to the constant acceleration
of liquid around a submerged obstacle. The surface response to different obstacle sizes, initial surface heights and
fluid velocities is measured using high-speed videography. Perturbations observed on the surface are classified into
either jetting or gravity waves by measuring the steepness of growing liquid columns. A classification phase map
between these two regimes is obtained and compared with analytical results by Martín Pardo and Nedić (2021). The
agreement between decision boundaries is good for high Froude numbers (high fluid velocities) but deteriorates at
lower velocities, where viscosity and surface tension effects (not considered in the analytical model) have a greater
predominance. The surface profile and perturbation amplitude measured in experiments are also compared against
this analytical model. In all cases, the model accurately predicts the corresponding experimental results at the
beginning of the motion, but the prediction error increases with time. It is also observed that faster moving surfaces
that lead to the onset of jetting have greater prediction accuracies and longer validity times of the predictions.

Impact Statement
To develop machines for fusion power, obtaining models that scale with the machine size is a paramount
issue. A magnetised target fusion (MTF) power plant, for example, exhibits cavity surface disturbances that
will vary with the design parameters of the machine. The present results indicate that, for initial disturbances,
the dominant scalable parameters are the geometric factors (the initial surface position relative to submerged
obstacles) and the initial surface acceleration. Interestingly, fluid properties such as viscosity, surface tension
and density do not explicitly appear in the analysis for high Froude numbers Fr (high inertia to gravity effects
ratio). For small Fr, we do observe the influence of viscosity and surface tension; the experimental free surface
is observed to be smoother than the corresponding analytical results from potential flow models. Therefore,
analytical models can be used for designing worst-case scenarios in applications in which it is critical to
diminish surface perturbations and jets, such as the design of imploding cavities in MTF plants.

1. Introduction

Generating energy via MTF relies on the rapid compression of magnetised plasma to fusion conditions
(Kirkpatrick, Lindemuth, & Ward, 1995). General Fusion is developing an MTF concept on which
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Figure 1. (a) Artistic rendering of the lateral view of a MTF power plant. (b) Zoomed-in view of the
initially disturbed surface as pusher pistons move the liquid metal through radial channels. (c) Zoomed-
in view of (b), where a single channel wall is represented as an equivalent circular obstacle that disturbs
the moving free surface of the liquid metal liner.

fusion is achieved by first rotating a liquid metal liner inside a rotating core to create a quasi-spherical
cavity into which magnetised plasma is injected, as shown in figure 1(a). Pistons are then used to
impulsively push the liquid out of a series of radial channels (see zoom-in of figure 1b), which in turn
causes the liner to move radially inwards, collapsing the cavity and hence compressing the plasma to
fusion conditions (Laberge, 2019). To maintain plasma stability during compression, it is critical that
disturbances on the liner–cavity interface (see zoom-in on the right of figure 1b), which is initially some
distance in front of the channel walls, are kept to a minimum i.e. the interface is as smooth as possible
(Avital, Suponitsky, Khalzov, Zimmermann, & Plant, 2020; Huneault, Plant, & Higgins, 2019). Due
to the initial proximity of the interface to the walls of the channels, it is reasonable to assume that the
onset of any disturbances is due to the interaction of the liquid with these walls, and will depend on
the acceleration of the liquid, the initial distance of the interface from the end of the channels and the
geometry of the channels. To explore the origins of such disturbances, we idealise the problem to that
of a liquid being impulsively accelerated past a single cylindrical obstacle over a finite time interval,
as represented with a yellow circle in panel (c) of figure 1. As such, the cylindrical obstacle represents
the wall between two consecutive channels, whilst the finite time interval confines the problem to the
initial motion of the interface, where the interface has moved a distance comparable to that of the
wall (cylinder) thickness. Finally, the rapid acceleration of the fluid allows one to consider potential
flow solutions to such problems which, if verified experimentally, can then be readily expanded to the
multiple obstacle configurations, such as those seen in the actual machine (figure 1b).

Prior studies on the interaction between a moving free surface and submerged obstacles primarily
focused on the canonical system of a submerged cylindrical obstacle in a two-dimensional semi-infinite
fluid. Lamb (1913) modelled the circle as a dipole potential, modified to satisfy linearised free-surface
conditions, which produced a satisfactory solution to the surface perturbations, but was limited to small
disturbances on the free surface. This was later extended by Havelock (1927, 1936), who constructed
a complete solution to the linear problem. Later, Wehausen and Laitone (1960) designed a recursive
scheme for the linearised problem, whilst Tuck (1965) extended the approach by Wehausen and Laitone
(1960) to address nonlinearities on the free surface. The works by Telste (1987), Greenhow (1988),
Teles da Silva and Peregrine (1990), Terentev (1991) and Guerber, Benoit, Grilli, and Buvat (2012)
rely on numerical simulations to analyse the full initial/boundary value problem of the forced motion
of a submerged cylinder and its interaction with the free surface. Analytical works to describe the
full nonlinear problem, however, are usually limited to the initial development of the perturbation.
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Tyvand and Miloh (1995) used conformal mapping to bipolar coordinates to obtain a Taylor time
series expansion of the surface perturbation. Makarenko (2003) and Kostikov and Makarenko (2018)
explored an alternative method for computing the short-time triggering of nonlinear effects based on the
transformation of the full domain equations into a boundary integro-differential system, defined only on
the free surface. While analytical expressions were obtained independently by Kostikov and Makarenko
(2018) and Tyvand and Miloh (1995) for surface perturbations up to the fourth order in time, only the
method by Kostikov and Makarenko (2018) proved to be easily extendable to higher orders, as well as
submersion motions different from constant acceleration or constant velocity. Such an investigation was
conducted by Martín Pardo and Nedić (2021), who analysed the influence of the obstacle size, the initial
surface level and the liquid acceleration profile on the resulting surface perturbations. Martín Pardo
and Nedić (2021) developed a recursive semi-analytical method to obtain higher-order accuracy of the
surface perturbation in both time and space. A marginal gain in accuracy, however, was observed as
higher-order solutions were implemented. To the best of our knowledge, there is no rigorous experimental
validation of the analytical models cited above in the literature.

Tyvand and Miloh (1995), Kostikov and Makarenko (2018) and Martín Pardo and Nedić (2021)
provide approximations of different orders to the temporal series for nonlinear surface disturbances,
but are limited to a finite prediction time. After such prediction times, the analytical solutions grow
unbounded without any resemblance to the physical system itself. How well and for how long these
approximations hold needs to be validated experimentally. Moreover, these analytical models are based
on potential flow theory, and therefore neglect viscous and surface tension effects; see, for example,
the study of Moreira and Peregrine (2010) who analysed surface tension effects on the free surface and
the nonlinear features that emerge as a result, in particular the appearance of capillary–gravity waves.
It remains unclear how these effects will change the surface as compared with the results provided by
these models. To answer these critical questions, we developed an experimental facility where a liquid is
impulsively accelerated around a circular cylinder, and compared the results with the analytical models
by Tyvand and Miloh (1995), Kostikov and Makarenko (2018) and Martín Pardo and Nedić (2021).

The second objective is to determine the critical parameters for which surface disturbances result in
jetting, the most adverse condition in the application of MTF. Jetting is usually described as a collimated
stream of liquid that results from hydrodynamic instability and singularity formation on a liquid surface
(Cruz-Mazo & Stone, 2022; Eggers, 1993; Lai, Eggers, & Deike, 2018). Although prior studies have
classified jetting and gravity waves based on empirical observations (Martín Pardo & Nedić, 2021; Rein,
1996; Zhao, Brunsvold, & Munkejord, 2011), we believe an approach which utilises highest standing
wave theory (Grant, 1973; Okamura, 1998; Penney et al., 1952; Taylor, 1953) may provide a physical
foundation to the classification of surface disturbances into jetting or gravity waves.

2. Experimental set-up and system parameters

A custom facility, the frontal view of which is shown in figure 2, was developed to measure free-surface
disturbances on an accelerating liquid. In each experiment, a double-piston assembly pushed a mass of
water past an initially submerged cylindrical obstacle. The system was set into motion via the expansion
of compressed gas from a reservoir, released with the opening of a solenoid valve. A thorough description
of the different components of the apparatus can be found in § 1 of the supplementary material available
at https://doi.org/10.1017/flo.2022.29. The moving free surface was recorded using high-speed imaging.
Two sample video frames for one of the experiments are shown in figure 3; figure 3(a) corresponds to
an instant before the fluid is set into motion, whilst figure 3(b) shows a later time when disturbances are
clearly visible. The circular obstacle boundary is delimited by a blue circle in the figures. A Cartesian
coordinate system is fixed with the x-axis along with the initial planar position of the liquid surface and
the y-axis passing through the centre of the obstacle, directed vertically upwards. The obstacle of radius
R is located at the coordinate x = 0, y = −H0, where H0 is the initial depth of the surface relative to
the obstacle. The time t is measured from the initiation of the liquid motion. The instantaneous surface
profiles are detected by an edge-tracking algorithm, indicated as red curves in figure 3, from which the
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Figure 2. Diagram of the experimental apparatus (not to scale).
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Figure 3. Video frames of one experiment with the coordinate system and main geometric variables
utilised to describe surface perturbations (a) before (t < 0) and (b) after (t > 0) the beginning of the
motion.

surface profile height 𝜂(x, t) and the average surface height 𝜂(t) can be measured (figure 3b). Since at
t ≤ 0 the surface is planar (figure 3a), it follows that 𝜂(x, t = 0) = 𝜂(t = 0) = 0. For conditions where
a rising central column develops in the surface, as shown in the inset of figure 3(b), the width W (t)
between the local minima of the column, and the prominence P(t) of the peak, is utilised to analyse the
evolution of this central column.

The average surface height 𝜂(t) depends only on the geometric parameters R and H0 and on the initial
gas pressure P0 in the reservoir. A total of 260 experiments were conducted for this work, with input
parameters in the ranges 2.5 mm ≤ R ≤ 7.5 mm, R ≤ H0 ≤ 5R and 0.2 MPa ≤ P0 ≤ 0.7 MPa. The
particular selection of these bounds corresponds to an optimal functioning of the experimental device
and to the mitigation of wall effects from the water tank. See § 1 of the supporting material for further
discussion on these inputs limits.
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Figure 4. Temporal dependence of the average surface height 𝜂(t) for a set-up with an obstacle radius of
R = 5.0 mm, an initial surface depth of H0 ≈ 6.3 mm and different initial gas pressures P0. Dashed lines
represent measured 10-value averages and coloured bands show the corresponding standard deviation.
Parabolas (solid lines) correspond to the best fit of a constant acceleration profile departing from rest for
each experimental curve. White circles denote the time validity of the constant acceleration assumption.

Figure 4 shows five representative motion curves 𝜂(t) for different values of P0 for a set-up with
R = 8 mm and H0 = 10 mm. Each dash-dot line shows the 10-value moving average of measured values,
with the bands indicating the standard deviation of the moving windows. Continuous lines indicate
constant acceleration parabolas of the form at2/2 that have been fitted to each 𝜂(t) curve. Note that
the acceleration of the average surface height 𝜂(t) corresponds to the rate of change of the volumetric
flow rate per unit area of the fluid as it moves through the water tank. As a first approximation, and
to allow for systematic comparison between experiments and theory, we assume that the acceleration
of the interface is approximately constant for times where the parabola fit lies within the uncertainty
bounds of the experimental data 𝜂(t). The times at which this assumption is no longer valid are shown
as white circles in figure 4. Under this premise, each motion function 𝜂(t) can be parameterised only by
the fitted acceleration constant a. Similar fits to those shown in figure 4 were obtained for measurements
from experiments with other values of R, H0 and P0.

To characterise the evolution of the surface disturbance with time, we will analyse the perturbation
height, defined as Δ𝜂(t) ≡ maxx 𝜂(x, t) −minx 𝜂(x, t). Like the average surface height 𝜂(t), the perturba-
tion height Δ𝜂(t) depends only on R,H0 and P0. In particular, the dependence on P0 can be conveniently
substituted by the dependence on 𝜂(t) : Δ𝜂(t) = f1(R,H0, 𝜂(t); t), where a semicolon has been used to
separate the parameters R, H0 and 𝜂(t) that define the functional form of f1 from the variable t. Utilising
the motion profile instead of the initial gas pressure detaches our analysis of the particularities of the
experimental apparatus, thus making it applicable to general moving surfaces and submerged obstacles.
Moreover, if we restrict our study to the time for which the motion of the surface is one of constant
acceleration, Δ𝜂(t) can be simplified to Δ𝜂(t) = f2(R,H0, a; t). In order to facilitate the comparison
between our results and those found in the literature, we introduce the characteristic velocity

Ū =

√
aH0

2
, (2.1)

which corresponds to the average velocity of the surface position 𝜂(t) between t = 0 and the characteristic
time t = T , defined as the time taken for the surface to move its own initial depth H0, that is Ū = H0/T ,
with T defined such that 𝜂(t = T) = H0. The system variables are non-dimensionalised using H0 as a
spatial scale and T as a time scale (see, for example, Tyvand & Miloh, 1995). Throughout this work,
we denote with a starred variable x∗ the non-dimensional counterpart of the corresponding dimensional
variable x. We thus obtain the non-dimensional perturbation amplitude Δ𝜂∗ ≡ Δ𝜂/H0 as a function of
only two dimensionless independent groups, and of the non-dimensional position x∗ ≡ x/H0 and time
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t∗ ≡ t/T: Δ𝜂∗ (t∗) = f3(r∗, 𝜆; t∗) where r∗ is the obstacle radius to initial depth ratio

r∗ =
R
H0

, (2.2)

and 𝜆 is the inverse squared Froude number

𝜆 = (g + a)H0/Ū2. (2.3)

Here, the apparent gravity g+a felt in a fixed-obstacle reference frame is used to facilitate a comparison
of the experimental results to numerical/analytical studies found in the literature, e.g. Terentev (1991)
and Tyvand and Miloh (1995). Combining equations (2.1) and (2.3), we obtain a definition for 𝜆 under
the assumption of constant acceleration

𝜆 = 2 + gH0/Ū2, (2.4)

which shows that 𝜆 ≥ 2. Although r∗ and 𝜆 have been used in previous studies, we propose to use the
variables

H∗ =
H0

R
− 1 ≡ 1 − r∗

r∗
and (2.5)

Fr =
1√
𝜆
, (2.6)

which are more relatable to experimental conditions. Therefore, the functional form of Δ𝜂∗(t∗) to be
analysed in this work isΔ𝜂∗ (t∗) = f (H∗,Fr; t∗). The non-dimensional fill depth H∗ indicates the distance
between the initial free surface and the highest point of the cylinder surface, i.e. H∗ = 0 corresponds to
the initial free surface being initially tangent to the cylinder while H∗ = 5 means it is five radii away
from this point. The Froude number Fr is the ratio between inertia and apparent gravity forces at the
surface, with larger Fr values indicating faster fluid motions relative to apparent gravity effects.

3. Identification and classification of jetting and gravity waves

3.1. Perturbation features

Frame sequences from two representative experiments are shown in figure 5, one (figure 5a) corre-
sponding to conditions that lead to the creation of jetting, the other corresponding to a free surface
with gravity waves (figure 5b). For the jetting case, figure 5(a), the obstacle radius was R = 5.0 mm,
initial surface depth H0 = 6.4 mm and with a characteristic liquid velocity of Ū = 0.61 m s−1, whilst
for the gravity wave case figure 5(b) the radius was R = 5.0 mm, initial surface depth H0 = 13.1 mm
and Ū = 0.57 m s−1. The corresponding recorded videos of these two experiments can be found in the
supplementary material to this article. Note that, since the values of H0 and Ū are different for the two
experiments, the non-dimensional times t∗ of each frame evolve differently for equal dimensional times
t in figure 5.

At t = 10 ms, the initially planar free surface has developed a central depression above the cylinder.
The depth of the depression is different for both cases. This is expected, given the different initial
surface depths H0. Also, a deeper central depression can be observed for the shallower initial depth. By
t = 15 ms, a central wave starts to appear for both cases. Critically, we note that the central wave for
the jetting case is narrower as compared with the gravity wave case. By t = 20 ms, the central waves
grow in amplitude for both cases, but the morphology of the waves is quite different. For the jetting
case, a strong, thin jet, with very steep slopes appears, where droplets (in the form of a spray) will
detach from the bulk of the fluid, carrying perturbation energy along with them. The gravity wave case,
on the other hand, begins to subside and the perturbation energy will be dispersed as a gravity wave.
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Figure 5. Features that emerge on the free surface for (a) jetting, and (b) gravity wave. The surface
shown in (a) corresponds to experimental settings R = 5.0 mm, H0 = 6.4 mm and Ū = 0.61 m s−1

(H∗ = 0.28,Fr = 0.70), while the surface shown in (b) corresponds to R = 5.0 mm, H0 = 13.1 mm and
Ū = 0.57(H∗ = 0.38,Fr = 0.64) m s−1. Dimensional and non-dimensional times have been annotated
on each frame.

The two cases shown in figure 5 have both different initial fill depths H0 and were driven at different
characteristic velocities Ū. By altering these two parameters for each experiment, one can obtain free-
surface perturbations that vary in morphology as has been discussed here, and that can be categorised
as either a gravity wave or a jet.

3.2. Central column steepness

As mentioned in § 1, the presence of jets on the free surface can be detrimental to the MTF application.
Therefore, being able to predict the conditions under which each perturbation regime is observed is of
practical importance. Except for cases where the surface keeps an almost planar form during its motion
(for small fluid velocities Fr � 0.35 and/or large initial depths H∗ � 4.0), a central depression in the
moving surface is observed, followed by the formation of an emerging liquid column around x = 0
(see inset in figure 3b). In this section, we show how the analysis of the evolution of this central liquid
column can be utilised to find the limiting set of parameters H∗ and Fr that separate a smooth surface,
where gravity waves are present, from one where jetting onsets.

It is reasonable to assume that the central liquid column may no longer sustain its shape, and hence
break into a jet, when its height becomes too large for its width, i.e. the column becomes too steep.
Finding the limiting breaking steepness for the cases of standing waves and progressive waves has been
studied extensively in the past (e.g. Penney et al., 1952; Taylor, 1953). Notice that, in the moving obstacle
reference frame discussed previously, the average surface height is quiescent and the central column can
be studied as a solitary standing wave. We shall, therefore, rely on the theory of highest standing waves
to obtain a breaking limit for the observed central column.

The study of highest standing waves before reaching the breaking limit was first conducted by
Penney et al. (1952), who postulated that these waves break when the peak angle reaches a value of
90◦, corresponding to a maximal slope of 45◦ on its surface. Under this condition, the particles at the
tip of the wave face a zero pressure gradient, and so fall freely under gravity at the maximum height.
The assertion of the 90◦ peak angle by Penney et al. (1952) for the highest wave was later corroborated
experimentally by Taylor (1953) and theoretically by Grant (1973) and Okamura (1998).
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The well-established topic of highest progressive periodic waves in deep water, which is related to,
but is different from, highest standing waves, was pioneered by Stokes (1880) using classical nonlinear
wave theory. Stokes (1880) showed that the highest progressive waves have a peak angle of 120◦, which
corresponds to a maximum slope of 30◦ on the liquid surface. Defining the steepness of a wave as the
ratio of its prominence P to its width W (see inset in figure 3), i.e. s ≡ P/W, (Schwartz & Fenton,
1982), using numerical computations, produced the currently established value of sbr = 0.1412 for the
maximum attainable steepness for travelling deep water waves before breaking. The maximum slope
angle for a standing wave of 45◦ is 50 % greater than the steepest slope angle of 30◦ for a progressive
wave. Therefore, the maximum steepness should be approximately 50 % higher for standing waves than
for progressive waves, that is sbr ≈ 0.2118. This elementary estimate holds notably well, when compared
with the values obtained by Grant (1973), Schwartz and Whitney (1981), Tsai, Jeng, and Hsu (1994) and
Tyvand and Nøland (2021). These authors arrive by different methods to maximal values in the range
0.204 ≤ sbr ≤ 0.213. In this work, we will utilise a value of sbr = 0.2, which gives the needed accuracy
for determining whether a central column reached its breaking limit in our experiments.

The central wave steepness for a selection of Fr and H∗ is shown in figure 6. For cases where the
shape of the wave could no longer be accurately tracked due to the formation of splashes and droplets,
the continuous line has been replaced by dashed lines in figure 6. Before the onset of a central column,
the steepness is approximately zero, after which the steepness parameter begins to increase as the central
column grows. This growth is initiated at later times for larger H∗ (around t∗ = 2 for H∗ = 2.33 in
figure 6a) and at earlier times for smaller H∗ (around t∗ = 1.0 for H∗ = 0.43 in figure 6d). Moreover, the
rate at which the steepness increases is slower for bigger H∗, which is evident by comparing, for example,
the slopes of the curves for H∗ = 2.33 with those for H∗ = 1.50, 0.67 and 0.43. For equal H∗ values,
the initial growth rate seems to be related to Fr. Smaller Fr (smaller characteristic velocities) result in
slower column growth; see, for example, the H∗ = 2.33 curves for Fr values of 0.40 and 0.75. In certain
cases, after the initial growth phase, the steepness begins to decrease, e.g. for H∗ = 0.67,Fr = 0.58,
eventually reaching a plateau, whilst for other cases, namely Fr > 0.51 and H∗ = 0.67, it continues
to grow unbounded, with splashes observed at the tip of the wave. When the latter occurs, and for a
given H∗, the maximum height of the column is typically lower for smaller Fr values. For example, in
figure 6(d), the maximum steepness of the initial plateau is 0.47 for Fr = 0.69, 0.41 for Fr = 0.67 and
0.35 for Fr = 0.50. For the smaller Fr cases, or equivalently slower characteristic velocities, the plateau
is not observed within the field of view of the experiment, although one is expected to be seen had the
field of view been increased.

In figure 6, the breaking wave threshold of sbr = 0.2 has been indicated with a dashed grey line. All
the experiments shown in figure 6(a) for H∗ = 2.33 and in figure 6(b) for H∗ = 1.50, Fr ≤ 0.65 cases
have steepness curves that remain below the breaking wave limit at all measured times. For the faster
fluid motion (H∗ = 1.50, Fr = 0.69) figure 6(b) shows that the wave steepness surpasses the threshold
and continues to grow unbounded. A similar behaviour is observed for the case H∗ = 0.67. However,
the surface motion needs to be slower than Fr = 0.51 for the column steepness to remain bounded by
the limiting threshold. Finally, for H∗ = 0.43, we see that the steepness curves for all velocities consist
of an initial rapid growth region (e.g. Fr = 0.69 in the range 0 < t∗ < 1), followed by plateaus, within
high uncertainty (e.g. Fr = 0.69 in the range 1 < t∗ < 1.7), and then periods of erratic behaviour (e.g.
Fr = 0.69 for t∗ > 1.7). The initial growth for these cases corresponds to the formation of a central
depression (e.g. figure 5(a) at 10 ms). The plateau indicates that a jet is forming inside the depression
(e.g. figure 5(a) at 15 ms). The jet continues to grow until its tip surpasses the uppermost point of the
surface (e.g. figure 5(a) at 20 ms). At these times the steepness measurements are no longer accurate
since part of the surface has broken into droplets at the tip of the jet.

3.3. Classification phase map

The previous section focused on establishing an experimental method to determine whether the central
liquid column evolves into a jet, or else remains a gravity wave throughout the fluid motion. We now
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Figure 6. Wave steepness evolution for experiments with multiple values of H∗ and Fr. The 10-value
moving average and the corresponding standard deviation are plotted in the form of continuous lines and
transparent shades of the same colour; (a) H∗ = 2.33, (b) H∗ = 1.50, (c) H∗ = 0.67 and (d) H∗ = 0.43.

apply this criterion to all the collected experimental data and classify the observed perturbations. The
resulting classification map is shown in figure 7, where each marker corresponds to a single experiment
of a particular pair of values H∗ and Fr. The marker colour indicates the observed surface regime; blue
for gravity waves, where s < 0.2 at all times, and orange for jetting, where this threshold is surpassed
at any point in time.

From figure 6 we notice that those experiments corresponding to low velocities Ū (smaller values of
Fr) can be tracked for smaller total times than faster experiments. For H∗ = 2.33 (figure 6a) the steepness
curve with Fr = 0.62 could be tracked up to t∗ = 2.8, while for Fr = 0.40, the corresponding curve
was plotted only up to t∗ = 2.2. This technical limitation of our experimental set-up does not prevent
the classification process of the central waves into gravity waves or jetting, since most of the time, if an
experiment conducted with a given H∗ is seen to be a gravity wave, then it is likely those experiments
with the same H∗ but slower velocities and smaller values of Fr will also be classified as gravity waves.

The coloured regions in the background of figure 7 show the domains in the (H∗, Fr) space for
which a gravity wave (in blue), or jetting (in orange) surface should be expected. The experimental
decision boundary between the two regions was obtained using the support vector classification method
(the support vector classification (see Noble, 2006) method was implemented with scikit-learn and
Python utilising a radial basis function kernel. The decision boundary between the two classification
regions is obtained through an optimisation process that minimises the number of outliers on each side
of the boundary (avoiding under-fitting), while at the same time preventing a high complexity of the
resulting curve (avoiding over-fitting)), which gave an optimal regularisation parameter C = 10.0 for
the provided dataset. The steep slope of the boundary indicates that H∗ is the more influential parameter
than Fr. Hence, this decision boundary can be viewed as a critical fill level, below which gravity waves
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Figure 7. Decision boundaries for the regimes of rough and smooth surfaces for a diagram of Fr versus
H∗. Each marker represents a different experiment, with the size of the marker indicating the obstacle
radius R and the colour indicating the classification of the surface. Marginal histograms in the vertical
and horizontal axis indicate the distribution of experiments that were classified into each of the two
regimes.

(or inversely jets) are expected. Critically, it is not a vertical line, but a monotonically increasing one,
which indicates that at equal values of H∗, decreasing the fluid velocity (decreasing Fr) will increase
the likelihood of obtaining a smooth surface. For example, an experiment with H∗ = 1, Fr = 0.65 is
observed to yield jetting on the liquid free surface, while one with H∗ = 1, Fr = 0.45 will have a smooth
surface throughout its motion. Similarly, increasing the Froude number (faster motions), would require
a larger fill level to ensure gravity waves are observed; for example, a critical fill level of H∗

crit = 0.5 is
required for Fr = 0.35, whilst H∗

crit = 1.35 for Fr = 0.7.
A second decision boundary obtained using the analytical model developed by Martín Pardo

and Nedić (2021) has been superimposed in figure 7 with a dashed line. Martín Pardo and Nedić (2021)
obtained a similar classification map for a constant acceleration profile, making use of the slenderness of
the central wave (in Martín Pardo and Nedić (2021), the slenderness was defined as the ratio between the
height of the centre of mass of the central wave to its semi-height), instead of the steepness. They utilised
three regimes instead of two: gravity wave, transition and jetting. In figure 7 the decision boundary of
the theoretical model developed in Martín Pardo and Nedić (2021) was adapted to the new classification
criterion based on the steepness of the central wave compared with the threshold value of sbr = 0.2. As
shown, the agreement between the experimental and analytical decision boundaries is excellent. Within
the range of Fr values utilised, the highest horizontal distance between decision boundaries is 0.2 in the
value of H∗, which is smaller than 5 % of the range of H∗ values presented in the phase map. Both curves
have a very steep slope and are monotonically increasing. One possible explanation for the departure
between the experimental and analytical results as the speed decreases (decreasing Fr), is that viscous
effects begin to become non-negligible for the experimental results. Momentum diffusion by viscosity
takes a characteristic time scale of H2

0/𝜈 where 𝜈 = 8.90× 10−4 Pa · s is the dynamic viscosity of water.
As an example, a low-velocity experiment with H0 = 6 mm and Ū = 0.22 m s−1 will have a viscosity
time scale of 40 ms, and an inertial time scale of T = Ho/Ū = 27 ms, which is comparable in magnitude
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to the former. Therefore, in this case, viscosity will play an important role in smoothing the free surface,
while they are neglected in the analytical model. This would also explain why the analytical decision
boundary in figure 7 is located to the right of the experimental decision boundary. Several experiments
that would be classified as jets by the analytical model are observed to be smooth gravity waves in the
experiments, due to the smoothing effects of surface tension and viscosity. Also, notice how the sepa-
ration between the two decision boundaries increases as Fr decreases. The smoothing effects of surface
tension and viscosity have more time to become relevant at smaller fluid velocities (smaller Fr) and thus
a greater difference between the analytical model and the experiments should be expected. Nevertheless,
the decision boundary of the analytical model in figure 7 can still be used as a worst-case scenario for
many practical applications that seek to obtain a smooth surface.

Marginal histograms have also been plotted in figure 7 to show the distribution in H∗ (horizontal
histogram) and Fr (vertical histogram) of experiments classified to have jetting or gravity waves. The
horizontal histogram demonstrates a high correlation between the central wave classification and the
value of H∗. A value of H∗ = 0.70 serves as a nominal threshold to divide both regimes: more than
90 % of the experiments classified as jetting and gravity waves located to the left and right of this H∗

value respectively. Also worth noting is the maximum value of H∗ for which jetting is observed. From
(2.4), (2.6), Fr ≤ 1/

√
2 ≈ 0.71, whose limit corresponds to the fastest experiments, where the role

of gravity is negligible when compared with inertial effects. Both the analytical and the experimental
decision boundaries in figure 7 predict a maximum height of H∗ = 1.35 such that jetting can still be
observed at this maximum Fr. The vertical histogram does not show a conclusive relationship between
the classification label and the value of Fr, but does highlight scarcity of experiments at smaller Fr. At
these values, the slow velocities made it hard to observe the development of a central wave within the
field of view, and therefore fewer experiments could be successfully classified into jetting or gravity
waves. An example of this is the experiment for H∗ = 0.67, Fr = 0.36, on which, as shown in figure 6(c),
the measurements are cut short before the central wave height could reach a maximum. Finally, note that
the marker sizes in figure 7 indicate the size R of the obstacle. That the classification of the experiments
is independent of the size of the obstacle serves as further proof that H∗, and not R, is the relevant
parameter to be utilised when conducting this classification.

4. Comparison against analytical models

4.1. Analysis of two typical cases

Existing analytical models (Kostikov & Makarenko, 2018; Martín Pardo & Nedić, 2021; Tyvand
& Miloh, 1995) consider a submerged obstacle in an initially quiescent semi-infinite fluid, whilst our
experiments consider the opposite. Given that 𝜂(t) is moving under constant acceleration, transforming
the experimental variables in the fixed-obstacle frame to a moving-obstacle frame is therefore trivial.
The models consider the perturbation amplitude 𝜂(x, t) as a small time series

𝜂N (x, t) = 𝜂 (1) (x)t + 𝜂 (2) (x)t2 + 𝜂 (3) (x)t3 + · · · , (4.1)

where the odd-ordered coefficients 𝜂 (1) , 𝜂 (3) . . . are null for constant acceleration motion. We denote 𝜂N
as the surface profile computed up to order N, and Δ𝜂N the corresponding perturbation amplitude. For
example, for order N = 8, 𝜂8 ≡ 𝜂 (2) (x)t + 𝜂 (4) (x)t4 + 𝜂 (6) (x)t6 + 𝜂 (8) (x)t8 and Δ𝜂8(t) ≡ maxx 𝜂8(x, t) −
minx 𝜂8(x, t). Tyvand and Miloh (1995) and Kostikov and Makarenko (2018) independently derived
analytical expressions for 𝜂4, while Martín Pardo and Nedić (2021) developed a systematic method to
compute coefficients of higher orders, producing results up to 𝜂8.

Measurements of surface perturbation amplitude are plotted in figure 8 for a jetting case (orange
line), and a gravity wave case (blue line). Each curve contains a 10-value moving average (dash-dotted
line) and the corresponding standard deviation (coloured band around the line) (here, we refer to the 10-
value moving average and standard deviation of a particular variable as the result of taking each of these
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Figure 8. Perturbation heightΔ𝜂∗ versus time t∗ for jetting (orange curve, Ū = 0.74 m s−1, H0 = 6.6 mm,
R = 5 mm) and gravity waves (cyan curve, Ū = 1 m s−1, H0 = 17.0 mm, R = 5 mm). Dashed lines
represent moving average for a 10-value window, while transparent bands represent standard deviation
in measurements. Solutions of the analytical model 𝜂2, 𝜂4, 𝜂6 and 𝜂8 are plotted for the jetting curve,
and 𝜂8 is shown for the gravity waves case. Four characteristic frames for each case corresponding to
the points A, B, C and D in the jetting curve and i, ii, iii and iv in the gravity wave curve are displayed
above and below the figure, respectively. The surface profile corresponding to the analytical solution 𝜂8
at each time has been superimposed onto the frames for comparison.

statistics of the variable over a moving window that comprises 10 frames (or 1.25 ms at 8000 f.p.s.)).
The Δ𝜂 curve of the jetting case is compared with results from the analytical models. Lamb’s conjecture
(Lamb, 1913) of perturbation amplitude for a submerging dipole (instead of a cylinder) corresponds
to the 𝜂2 approximation, as demonstrated by Martín Pardo and Nedić (2021). Eight representative
frames corresponding to times t∗ = 0.55, 1.10, 1.70 and 1.80 of the jetting experiment (A,B,C and D,
respectively) and t∗ = 0.25, 0.65, 0.85 and 1 (i, ii, iii and iv, respectively) of the gravity wave experiment,
have been included in figure 8 as a reference of the free-surface profile at each time. The superimposed
red line on each frame is the predicted surface profile 𝜂8 using the model of Martín Pardo and Nedić
(2021). The gravity wave case in figure 8 includes only a comparison with the Δ𝜂8 solution using the
model by Martín Pardo and Nedić (2021), for greater clarity in the figure.

Before proceeding to compare the results from the analytical model and those from experiments, it is
worth recalling that this model is specifically designed for predicting initial perturbations on a flow where
surface tension and viscosity effects are negligible. The first assumption – initial perturbations – means
that the model will only accurately predict the surface behaviour up until a particular instant (called
prediction time), after which the surface amplitude will grow unbounded, without any resemblance to
experimental measurements. This divergence comes from truncating the infinite series of (4.1) to a finite
order N. The second assumption – neglecting surface tension and viscosity effects – allows for utilising
potential flow theory in the development of the model.

The analytical predictions are in good agreement with the experiments for initial times in both
cases. Using figure 8 one can determine the time at which the solution of one order deviates from the
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experimental results. For the jetting case (orange line) a prediction time of t∗2 ≈ 0.85 is observed for
the Δ𝜂2 approximation, t4 ≈ 1.15 for Δ𝜂4, t6 ≈ 1.60 for Δ𝜂6 and t8 ≈ 1.75 for Δ𝜂8. It is clear that the
prediction time increases with the order N of the model, as should be expected when we incorporate
new terms to the time series (4.1). It should also be noted that the relative increase in prediction time
decreases as the order of the model increases, e.g. the increase from order N = 4 to 6 is 0.45, whilst the
increase from N = 6 to 8 is 0.15. Therefore, an upper bound exists on the maximum prediction time of
the small-time series (4.1) approximation, regardless of how many new terms are added to it. Except
otherwise noted, all analytical model results presented in this work correspond to N = 8, which is the
highest order discussed in Martín Pardo and Nedić (2021). They showed that obtaining higher orders
come with a high computational cost at and relatively small prediction time gains.

It is noticeable in figure 8 that the greater accuracy models forΔ𝜂6 andΔ𝜂8 predict the initial plateau of
the surface perturbation amplitude for the jetting case, but then fail to correctly anticipate the subsequent
growth after this plateau. After their corresponding prediction times, the analytical predictions grow
rapidly and unbounded, while the experimental amplitude shows a plateau with a longer duration and a
slower growth afterwards.

The comparisons between experiments and analytical models are made clearer when the free-surface
position is compared with the surface profile obtained from the 𝜂8 model by Martín Pardo and Nedić
(2021) for the selected frames shown in figure 8 for the jetting case. The 𝜂8 curve closely follows the
free surface up to t∗ = 1.75. Some nonlinear features appear in the model profile on either side of the
central depression at t∗ = 0.55 (panel a) and t∗ = 1.10 (panel b), which become more pronounced at
t∗ = 1.70 (panel c) and begin to deviate significantly from the experimental surface. Nevertheless, the
central column for both the model and experimental results are similar until t∗ = 1.70. At t∗ = 80, which
is after the prediction time for the Δ𝜂8 model prediction, the nonlinearities have grown considerably
to create a profile that is very different from the measured free surface. The contrast between the fast-
growing nonlinearities and the smooth behaviour of the measured free surface can be directly related
to the absence of surface tension effects in the models. Surface tension has a stronger influence on the
dynamics of the jet formation when small radii of curvature are reached at the tip of the jet. Since surface
tension is always a smoothing and stabilising factor in the evolution of the perturbation, it will induce a
slower growth than if it were not present, as observed in figure 8.

Similar comparisons can be made between the analytical models and the experiments for the gravity
wave case (blue line in figure 8). Here, the Δ𝜂8 curve predicts fairly well the experimental measurements
of Δ𝜂 until t∗ ≈ 1, where the analytical curve starts growing unbounded. The four predicted surface
profiles displayed in video frames in figure 8 for the gravity wave experiment (in Roman letters) show also
a good agreement with the experimental surfaces. The last frame (iv), at t ≈ 1, displays nonlinearities
on the predicted profile that do not appear on the experiment, similarly to what was observed for the
jetting frames.

The analysis and comparisons against analytical models shown here are for only two of the 260
experiments conducted. The following section includes a general analysis that includes the full set of
experiments, to obtain a conclusive idea of how well the analytical models compare with experimental
results.

4.2. Analysis across all experiments

For greater clarity, we utilise subscript ‘exp’ to indicate results obtained from the experimental mea-
surements. To generalise the comparison performed in the previous section to all of the measurements,
we define two new variables; the prediction error of the perturbation amplitude

EΔ𝜂 (t∗) =
����Δ𝜂exp(t∗) − Δ𝜂8(t∗)

Δ𝜂exp(t∗)

���� × 100 % (4.2)
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and the prediction error of the surface profile 𝜂(x, t)

E𝜂 (t∗) =

��������

∫ L

−L
[𝜂exp(x, t∗) − 𝜂8(x, t∗)] dx
∫ L

−L
𝜂exp(x, t∗) dx

��������
× 100 %. (4.3)

These are therefore relative errors between the analytical model predictions Δ𝜂8 and 𝜂8, and the
corresponding experimental values Δ𝜂exp and 𝜂exp, respectively, measured with the same system inputs.
Note that (4.3) considers a comparison of the integral height

∫ L
−L 𝜂(x, t∗) dx of the surface which,

unlike (4.2), considers the global behaviour of the surface profile, and thus imposes a more restrictive
comparison between model and experiment. As an example, the perturbation amplitude error for the
time frame A of the jetting experiment presented in figure 8 is found to be EΔ𝜂 = 16.1 %, while the
corresponding surface profile error is of EΔ𝜂 = 21 % at that time.

Although the objective of this analysis is to obtain a measure of the accuracy of the model, it should
be noted that an additional source of error exists on the experimental measurements in the form of
resolution error. Its contribution to the overall prediction error is non-negligible for initial times, when the
amplitude of the perturbations is small as compared with the spatial resolution of the camera, but would
diminish at later times as the perturbations grow. Indeed, for the case when there are no perturbations,
hence 𝜂8 = 0 and Δ𝜂8 = 0, the prediction errors could be as great as 100 % due to resolution errors in
the experimental data. We, therefore, expect the total prediction error to first decrease, as a result of the
diminishing effects of the resolution error on the total error, before increasing as a result of discrepancies
between the model and experimental observations. We shall therefore calculate the relative prediction
errors for t∗ > 0.5 where the amplitudes are approximately 20 times the spatial resolution of the camera.
Recall that the spatial resolution of our measurements is 0.10 mm, which corresponds to distances of
2 mm or greater – see, for example, figure 8.

Figure 9 shows the evolution of the distributions of EΔ𝜂 (figure 9a) and E𝜂 (figure 9b) as a function of
the non-dimensional time t∗. At each time t∗ displayed in the figure, the sets of experiments classified as
gravity waves and jets have been analysed separately, and the distributions of their amplitude and profile
errors have been plotted in blue and orange, respectively. To show multiple distributions of errors at
once, a kernel density estimation has been utilised for each set of error measurements. Each distribution
contains three discontinuous lines that indicate the quartiles in the distribution.

A practical definition for assessing the adequacy of the analytical model is that of the validity time tv.
We consider that the predictions of either perturbation amplitude or surface profile are no longer valid
for times where the median (second quartile) of the error surpasses a predefined threshold from below.
In each panel of figure 9, a dashed line has been drawn to indicate an error threshold of 10 %. For this
threshold, we observe that amplitude prediction (figure 9a) for experiments with gravity waves have a
validity time of t∗v ≈ 0.95, after which the error quickly grows unbounded, indicating that the model
is no longer applicable at those times. In the case of experiments where jets are observed, the validity
time is t∗v ≈ 1.45. The trends observed for the surface profile error (figure 9b) are similar to those for the
amplitude error in figure 9(a): both error distributions (for gravity waves and jets) grow unbounded at
different times, with the predictions for gravity waves having again a smaller time validity (t∗v ≈ 0.75)
as compared with the jet experiments (t∗v ≈ 1.25).

Two main differences must be highlighted between the measured amplitude errors and profile errors.
First, the validity times of the 𝜂8 model are larger when predicting surface amplitudes than when
predicting surface profiles, e.g. compare the validity time for amplitude predictions of jet experiments
(t∗v = 1.45) with the corresponding profile prediction (t∗v = 1.25). Therefore, in general, the 𝜂8 model from
Martín Pardo and Nedić (2021) is better at describing jet experiments than gravity wave experiments
and, in doing so, it predicts with greater accuracy and for longer times the perturbation amplitude than
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Figure 9. Distribution of prediction errors for (a) perturbation amplitude, (b) surface profile. Distri-
butions of experiments classified as jets (orange) and gravity waves (blue) have been plotted separately
for multiple times. A black dashed line indicates the maximum error 10 % for which the prediction of
each variable is acceptable.

the overall surface profile. Nevertheless, at initial times t∗ < 0.7 the model will give accurate predictions
for variables and experiments in both regimes.

The choice of a 10 % threshold for the prediction error, however, is arbitrary. A discussion on how it
was selected and further analysis on the validity time for gravity waves and jetting experiments can be
found § 2 of the supplementary material.

5. Conclusions

Time-resolved measurements of a flow past a submerged circular cylinder are presented, under constant
acceleration conditions, and compared with existing analytical models. These are, to the best of our
knowledge, the first such experiments reported in the literature.

By varying the Froude number Fr, and the non-dimensional fill depth H∗, two distinct flow surface
perturbations were identified: gravity waves and jets. Utilising the theory of highest standing waves
by Tyvand and Nøland (2021), a criterion based on the steepness of the central column is used for
classification purposes; when sbr > 0.2, the central column was found to develop into a jet, whilst for
sbr ≤ 0.2 a gravity wave emerged. The classification map, and the corresponding boundary as a function
of Fr and H∗, are compared with the analytical potential flow model of Martín Pardo and Nedić (2021).
This model is only applicable for the early stages of surface motion, in cases on which surface tension
and viscosity effects are negligible. For large Fr, the experimental results and model predictions are
in excellent agreement, with differences appearing for lower Fr cases, where the effects of viscosity,
which are neglected in the model, play a more dominant role. For the greatest possible Froude number
of Fr = 2−1/2, under the assumption of constant acceleration, a jet will be observed on the free surface
for H∗ < 1.35, that is to say, where the initial surface is less than 1.35 radial distances above the top
surface of the cylinder. This critical fill level decreases to 0.5 when Fr = 0.35.
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A detailed comparison between the surface profile obtained from the model of Martín Pardo and Nedić
(2021) and the current experimental results was also conducted. It was found that the model was able
to predict both the amplitude of the central column and the overall shape of the disturbance to within
an error of 10 %, and this for both gravity waves and jets. The non-dimensional time over which the
model is considered to be accurate, that is to say where the error is less than 10 %, was found to be, on
average, 60 % longer for jet dominated free surfaces as compared with gravity wave ones. Moreover,
this validity time was found to be longer when predicting the amplitude of the free surface (t∗v ≈ 1.45
for jet and t∗v ≈ 0.95 for gravity wave) compared with the profile of the surface (t∗v ≈ 1.25 for jet and
t∗v ≈ 0.75 for gravity wave). It is important to stress that, although the non-dimensional validity time
is lower for gravity waves, their characteristic time scales are longer, and thus the model can track the
free surface over longer dimensional times. These findings, therefore, suggest that the model of Martín
Pardo and Nedić (2021) is well suited for predicting the onset and amplitude of jets on free surfaces,
which is of particular interest for MTF machines where such features are detrimental.

The potential to extend the proposed experiment to new studies is considerable, and in closing, we
present a few directions the work could be expanded to. In § 1, we idealised the problem of surface
disturbances inside an MTF machine to those of a liquid that moves around one submerged circular
cylinder. The natural next step in approaching the multiple channel geometry would be analysing
multiple-obstacle experiments, where an array of submerged two-dimensional cylinders is utilised to
perturb the moving liquid surface. This geometry more closely relates to the periodical arrangement
of channels (each cylinder represents the wall between consecutive channels) and such analysis would
provide insight on the influence of the channel periodicity on the initial disturbances seen in MTF
machines. Also, the influence of surface tension and viscosity in the transition between gravity waves
and jetting regimes (see figure 7) can be subject to an extended analysis, on which liquids with multiple
viscosity and surface tension coefficients could be utilised. Transition maps (similar to those obtained
by Cossali, Coghe, and Marengo (1997) and Wang, Yang, and Zhao (2011) for coalescing droplets) in
terms of new non-dimensional numbers (Weber and Ohnesorge numbers) would provide physical insight
into the role of surface tension and viscosity effects on the jetting formation process. Such analysis is
left to future work.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/flo.2022.29.
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