SUMS OF COMPLEXES IN TORSION-FREE ABELIAN GROUPS

J.D. Tarwater and R.C. Entringer

(received February 15, 1969)

The number of elements in the sum A + B of two complexes A and B of a group G which have multiple representations a + b = a' + b' has been investigated by Scherk and Kemperman [1]. Kemperman [2] appealed to transfinite techniques (to order G) to prove:

If G is a torsion-free abelian group with finite subsets A and B with $|B| \ge 2$, then at least two elements c of A + B admit exactly one representation c = a + b.

Entringer [3] gave a proof of this result using only finite induction. It will be shown below that if d(A) is the dimension or rank of A in the torsion-free abelian group G, then there are at least d(A) elements of G which have a unique representation as a sum a + b where a is in A and b is in B.

A finite set $A = \{a_1, \ldots, a_t\}$ of non-zero elements of an abelian

group is linearly independent provided $\sum_{i=1}^{t} m_i a_i = 0$, with the m_i integers, implies $m_i a_i = 0$ for all i. The maximal number of linearly independent elements of A will be denoted by d(A). Then d(A) is the rank of the subgroup generated by A. The element a of A will be called the "A-component" of the sum a + b in A + B, and $U_B(A)$ will denote the set of all elements of A which are the A-component of an element in A + B which admits but one representation in A + B.

THEOREM. If G is a torsion-free abelian group with finite non-empty subsets A and B, then $U_B(A)$ contains a maximal linearly independent subset of A.

<u>Proof.</u> The result of Kemperman [2] and Entringer [3] mentioned above implies that $U_B(A)$ is non-empty. It is sufficient to show that the set A depends linearly on $U_B(A)$. Then recourse to the Steinitz

Canad. Math. Bull. vol. 12, no. 4, 1969

Exchange Theorem for torsion-free abelian groups, Fuchs [4, Lemma 8.3], will establish that $d(A) \leq d(U_B(A))$ and hence that $U_B(A)$ contains a maximal linearly independent subset of A.

To complete the proof then, it must be shown that A depends on $U_B(A)$. Toward this end, order $A = \{a_1, \ldots, a_t\}$ such that a_1, a_2, \ldots, a_n are not in $U_B(A)$, i.e., $U_B(A) = \{a_{n+1}, \ldots, a_t\}$. For each a_i , $i = 1, \ldots, n$, choose any $b_{i,1}$ in B and write $a_i + b_{i,1} = a_{i,2} + b_{i,2}$ for some $a_{i,2}$ in A and $b_{i,2}$ in B, with $b_{i,1} \neq b_{i,2}$. Similarly, write $a_i + b_{i,2} = a_{i,3} + b_{i,3}$, and so on. Since B is finite, some $b_{i,r} = b_{i,s}$ where r < s. Add the equations

to obtain the equation $(s - r)a_i = \sum_{j=1}^{s-r} a_{i,r+j}$. The set of equations so obtained form a system:

(*)
$$\sum_{j=1}^{t} c_{i,j,a,j} = 0, \quad i = 1, ..., n$$

where

(i)
$$\sum_{j=1}^{t} c_{ij} = 0, \quad i = 1, ..., n;$$

(ii)
$$c_{ij} \ge 0, \quad i \ne j;$$

(iii)
$$c_{ii} < 0, i = 1, ..., n.$$

It will now be shown by induction on n that the existence of such a system of equations implies that each of the elements a_i , $i=1,\ldots,n$, depends linearly on $\{a_{n+1},\ldots,a_t\}$. If n=1, then $-c_{11}a_1=t$ $\sum_{i,j}c_{i,j}a_j$ and the assertion holds. If $n\geq 2$, obtain a new system j=2 which is equivalent to (*) by a pivot operation:

where $d_{ij} = c_{i1}c_{1j} - c_{11}c_{ij}$. Then again

(i')
$$\sum_{j=2}^{t} d_{ij} = 0, \qquad i = 2, ..., n;$$

(ii')
$$d_{ij} \ge 0$$
, $i \ne j$;

(iii')
$$d_{ii} < 0, i = 2, ..., n$$

It is routine to verify that (i') and (ii') hold. If $d_{kk} \geq 0$, then for all $j=2,\ldots,t$ it must be that $d_{kj}=0$ and hence that $c_{k1}c_{1j}=c_{11}c_{kj}$. Now $c_{k1}=0$ implies $d_{kk}<0$. So $c_{1j}=0$ for $j\neq k$, $j=2,\ldots,t$. But then $c_{11}=-c_{1k}\neq 0$ and $c_{11}(a_1-a_k)=0$. Since this is an impossibility, (iii') is established.

By the induction assumption, each a_j , $j=2,\ldots,n$ depends on $\{a_{n+1},\ldots,a_t\}$. Since $\sum\limits_{j=1}^{t}c_{i\,j}a_j=0$, some non-zero multiple of a_1 is a linear combination of $\{a_2,\ldots,a_t\}$ and so a_1 also depends on $\{a_{n+1},\ldots,a_t\}$. The theorem is proved.

COROLLARY. If A_1 , A_2 , ..., A_n are finite non-empty complexes of a torsion-free abelian group G such that $d(A_1) \geq d(A_2) \geq \ldots \geq d(A_n)$, then there are at least $d(A_1)$ elements of G having a unique

representation in $A_1 + A_2 + \dots + A_n$.

That there may be exactly $d(A_1)$ elements of G having unique expressions in $A_1 + \ldots + A_n$ is easily seen by letting $A_1 = A_2 = \ldots = A_n = \{a_1, \ldots, a_t\}$ be an independent set in G. Then $a_1 + a_1 + \ldots + a_i$, $i = 1, \ldots, t$ are the only such elements in G.

REFERENCES

- P. Scherk and J.H.B. Kemperman, Complexes in abelian groups. Canad. J. Math. 6 (1954) 230-237.
- J.H.B. Kemperman, On complexes in a semigroup. Indag. Math. 18 (1956) 247-254.
- 3. R.C. Entringer, The 2Ω property of torsion-free abelian groups. Amer. Math. Monthly 74 (1967) 301-302.
- 4. L. Fuchs, Abelian groups. (Pergamon Press, Oxford, 1960.)

Texas Technological College Lubbock, Texas 79409

University of New Mexico Albuquerque New Mexico 87106