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Almost Disjointness Preservers

Timur Oikhberg and Pedro Tradacete

Abstract. We study the stability of disjointness preservers on Banach lattices. In many cases, we
prove that an “almost disjointness preserving” operator is well approximable by a disjointness pre-
serving one. However, this approximation is not always possible, as our examples show.

1 Introduction

Recall that an operator T between Banach lattices E and F is called disjointness pre-
serving (DP for short) if Tx ⊥ Ty whenever x ⊥ y. Such operators have been in-
vestigated intensively, and are known to possess many remarkable properties (see [9],
[23, Chapter 3], or the survey paper [16]). For instance, it is known that anyDP oper-
ator on C(K) is a weighted composition [23, Section 3.1]. A similar result was shown
for DP maps on Köthe spaces [25]. For many other kinds of spaces, the general form
of a DPmap is also known [5,17,21]. CompactDPmaps onC(K) have been described
in [22]. Moreover, the inverse of a DP map is again DP [9].

In this paper, we investigate the “stability” of being disjointness preserving. To be
more speciûc, suppose E and F are Banach lattices. We say that an operator T ∶ E → F
is ε-disjointness preserving (ε-DP for short) if for any disjoint x , y ∈ E,

∥∣Tx∣ ∧ ∣Ty∣∥ ≤ εmax{∥x∥, ∥y∥}.

Note that 0-DP operators are precisely the disjointness preserving operators.
Note that if T is ε-DP, then for any scalar λ, λT is ∣λ∣ε-DP. Clearly, every operator

T is ∥T∥-DP, so the above notion is only interesting for ε < ∥T∥.
_e goal of this paper is to investigate the properties of ε-DP operators, and fur-

thermore, to determine whether such operators can be approximated by disjointness
preserving ones. More precisely, forwhat ε-DP operators T does there exist a DPmap
S with ∥T − S∥ ≤ ϕ(ε, ∥T∥), where limε→0 ϕ(ε, t) = 0 for every t?

_is question has been considered previously on spaces of continuous functions,
namely,G.Dolinar [13] (and later J.Araujo and J. Font [6–8], aswell as R. Kantrowitz
andM. Neumann [18]) considered a formally diòerent notion of almost disjointness
preserving operators between C(K) spaces. More precisely, suppose E = C(KE) and
F = C(KF). We say that T ∶ E → F is Dolinar ε −DP if

∥(Tx)(Ty)∥ ≤ ε∥x∥∥y∥
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for any disjoint x and y. It is easy to see that if T ∶C(KE) → C(KF) is Dolinar ε-DP,
then it is

√
ε−DP; and, in the converse direction, if T ∶C(KE)→ C(KF) is ε-DP, then

it isDolinar ∥T∥ε-DP. Improving the results of [13], Arajo and Font [6]showed that if
T is a Dolinar ε −DP contraction (0 < ε < 2/17), then there exists a (disjointness pre-
serving) weighted composition operator S so that ∥T − S∥ <

√
17ε/2. _ey improved

on this for linear functionals [7].
_e paper is organized as follows: Section 2 is devoted to collecting basic facts

about ε-DP operators. In Section 3, we establish a probabilistic inequality (to be used
throughout our work), and list some of its consequences.

In Section 4we show that positive ε-DP operators from c0 or c into a Banach lattice
with the Fatou property can be nicely approximated by DP operators (_eorem 4.1).
Our main technical tool is an inequality from Lemma 3.1, which may be of interest in
its own right.

In Section 5, we show that any ε-DP operator from a symmetric sequence space
into a σ-Dedekind complete C(K) space can be approximated by DP maps (_eo-
rem 5.1).

Section 6 is devoted to proving that any positive ε-DP operator from ℓp into Lp
can be approximated by a DP one (_eorems 6.1 and 6.2). In Section 7, we prove
similar approximation results for operators from a sequence space with a shrinking
basis to L1.

In Section 8 we show that for 1 ≤ p < q < ∞ and any ε > 0, there exists a positive
ε-DP contraction T ∶ ℓp → ℓq so that ∥T−S∥ ≥ 1/2 for anyDPmap S (Proposition 8.1).
Similar results hold for operators from ℓp into a certain class of Banach lattices, in-
cluding Lq (Proposition 8.3).

Section 9 deals with the connections between the properties of an operator and
its modulus. We start by observing that if T ∈ B(E , F) is regular and ∣T ∣ is ε-DP,
then the same holds for T . Under some conditions on E and F, the converse is true
(Proposition 9.1). In general, Proposition 9.4 provides a counterexample.
Finally, in Section 10 we explore notions closely related to ε-DP operators, such

as almost-lattice homomorphisms, and operators almost preserving expressions of
the form (∣x∣p + ∣y∣p)1/p . Further, we explore the connections between ε-DP opera-
tors, and operators “almost preserving” order (Proposition 10.1). We also consider a
stronger version of ε-DP operators for which approximation results hold in a general
setting (see_eorem 10.6).

_roughout this paper, we use standard Banach lattice terminology and notation,
as well as some well known facts. For more information we refer the reader to any
of the excellent monographs on the topic, such as [3] or [23]. For the peculiarities of
complex Banach lattices, onemay consult [2].

2 Basic Facts

We start with a few easy observations. First, almost disjointness preservation only
needs to be veriûed on positive elements.
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Proposition 2.1 Suppose E and F are real (complex) Banach lattices. If T ∈ B(E , F)
is such that ∥∣Tx∣ ∧ ∣Ty∣∥ ≤ ε for any positive disjoint x , y ∈ B(E), then T is 4ε-DP
(16ε-DP in the complex case). Moreover, if T is positive, then it is ε-DP.

Proof Suppose that T is positive. _en for every z ∈ E, we have ∣Tz∣ ≤ T ∣z∣ (see
[2, Lemma 3.22]). If x and y are disjoint, then

∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ ∥T ∣x∣ ∧ T ∣y∣∥ ≤ ε.
For general T in the real case, write x = x+ − x−, and y = y+ − y− (here x ⊥ y). _en

∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ ∥( ∣Tx+∣ + ∣Tx−∣) ∧ ( ∣Ty+∣ + ∣Ty−∣)∥ ≤ ∑
σ ,δ=±

∥ ∣Txσ ∣ ∧ ∣Tyδ ∣∥

≤ ε ∑
σ ,δ=±

max{∥xσ∥, ∥yδ∥} ≤ 4ε.

_e complex case is dealt with similarly.

Furthermore, almost disjointness preserving operators also preserve “almost dis-
jointness”.

Proposition 2.2 Suppose E and F are real Banach lattices, and T ∈ B(E , F) is ε-DP.
_en

∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ 4( εmax{∥x∥, ∥y∥} + ∥T∥∥ ∣x∣ ∧ ∣y∣∥)
for any x , y ∈ E. In the complex case, a similar inequality holds, with 16 instead of 4.

Proof We prove the real case. Suppose that x and y are positive. _en x′ = x − x ∧ y
and y′ = y − x ∧ y are disjoint, and therefore,

∥ ∣Tx′∣ ∧ ∣Ty′∣∥ ≤ εmax{∥x′∥, ∥y′∥} ≤ εmax{∥x∥, ∥y∥}.
However,

∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ ∥(∣Tx′∣ + ∣T(x ∧ y)∣) ∧ (∣Ty′∣ + ∣T(x ∧ y)∣)∥

= ∥ ∣Tx′∣ ∧ ∣Ty′∣ + ∣T(x ∧ y)∣∥ ≤ ∥ ∣Tx′∣ ∧ ∣Ty′∣∥ + ∥T(x ∧ y)∥
≤ εmax{∥x∥, ∥y∥} + ∥T∥∥x ∧ y∥.

For general x , y ∈ E, use the Riesz decompositions x = x+ − x− and y = y+ − y−.
For σ , δ = ±, we have xσ ∧ yδ ≤ ∣x∣ ∧ ∣y∣. Hence ∥xσ ∧ yδ∥ ≤ ∥∣x∣ ∧ ∣y∣∥. By the above,

∥ ∣Txσ ∣ ∧ ∣Tyδ ∣∥ ≤ εmax{∥xσ∥, ∥yδ∥} + ∥T∥∥xσ ∧ yδ∥
≤ εmax{∥x∥, ∥y∥} + ∥T∥∥∣x∣ ∧ ∣y∣∥.

To ûnish the proof, recall that ∣Tx∣ ∧ ∣Ty∣ ≤ ∑σ ,δ=± ∣Txσ ∣ ∧ ∣Tyδ ∣.

Finally, we show that if a Banach lattice E is “diòuse enough” and F is “atomic
enough”, then the normof an ε-DP operator from E to F cannot exceed 2ε. We say that
a Banach lattice E has Fatou norm with constant f if, for any non-negative increasing
net (x i) ⊂ E,with supi ∥x i∥ <∞,we have⋁i x i ∈ E, and ∥⋁i x i∥ ≤ f supi ∥x i∥. Recall
that x ∈ E+/{0} is called an atom of E if it generates a one-dimensional principal ideal
Ex . In this case, Ex is actually a projection band [28, Proposition 4.18]. Moreover, x
is an atom if and only if whenever 0 ≤ x1 , x2 ≤ x, and x1 ⊥ x2, then either x1 = 0
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or x2 = 0. A Banach lattice is called atomic if it is generated by its atoms as a band
[23, §2.5].

Proposition 2.3 Suppose E and F are Banach lattices, so that E is order continuous
and has no atoms, while F is atomic, and has Fatou norm with constant f. If T ∶ E → F
is ε-DP, then ∥T∥ ≤ 2εf.

_e restriction on E being order continuous is essential. For instance, suppose
E = C(K) and F is 1-dimensional. _en any scalar multiple of a point evaluation is
a DP functional (see [13] for the proof that any ε-DP functional is close to a scalar
multiple of a point evaluation).

Proof Denote the atoms of F by (δ i)i∈I . By the discussion above, for every i ∈ I,
span[δ i] is the range of a band projection. We denote this band projection by Pi ,
and write Pix = ⟨ f i , x⟩δ i , where f i ∈ F∗+ . For a ûnite set A ⊂ I, deûne the “basis”
projection QA = ∑i∈A Pi . It is easy to see [26, pp. 142-144] that for any y ∈ F, the
net (QAy) converges to y in the order topology (here, the net of ûnite subsets of I is
ordered by inclusion).
Fix c < ∥T∥, and ûnd x ∈ E so that ∥x∥ ≤ 1 and ∥Tx∥ > c. Further, ûnd a ûnite set A

so that ∥QATx∥ > c/f. Let Px be the band projection corresponding to ∣x∣, and denote
its image byG. Note thatG inherits the lack of atoms from E. Indeed, suppose, for the
sake of contradiction, that y ∈ G+ is an atom of G. By [23, Lemma 2.7.12], there exist
non-zero disjoint y1 , y2 ∈ E+ so that y = y1+y2. By the properties of band projections,
y1 , y2 ∈ G.
By [20,_eorem 1.b.14], we can view G as a Köthe function space on (Ω, µ). _e

proof (in conjunction with the characterization of atoms given above) actually con-
structs ameasure µ without atoms. Moreover, there exist µ-measurable functions ϕ i
so that for every y ∈ G, ⟨ f i , Ty⟩ = ∫Ω ϕ i y dµ. By Liapounoò ’s theorem (see [20,_e-
orem 2.c.9]), there exists a subset S ⊂ Ω so that the equality

⟨ f i , T(x1S)⟩ = ⟨ f i , T(x1S c)⟩ = ⟨ f i , Tx⟩
2

holds for any i ∈ A. As QA is a band projection, we have for every z ∈ F,

QA∣z∣ = ∣QAz∣ =∑
i∈A

∣⟨ f i , z⟩∣δ i .

Consequently, QA∣Tx∣ = ∑i∈A ∣ ⟨ f i , Tx⟩∣δ i = 2QA∣T(x1S)∣ = 2QA∣T(x1S c)∣. Hence

∥ ∣T(x1S)∣ ∧ ∣T(x1S c)∣∥ ≥ 1
2
∥QA∣Tx∣∥ > c

2f
.

However, x1S and x1S c belong toB(X), hence ∥ ∣T(x1S)∣∧∣T(x1S c)∣∥ ≤ ε. To complete
the proof, recall that c can be arbitrarily close to ∥T∥.

3 A Probabilistic Inequality

_e following lemmamay be interesting in its own right.
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Lemma 3.1 Suppose (b i)n
i=0 is a family of non-negative numbers. _en

ES min{∑
i∈S
b i ,∑

i∈S c
b i} ≤ (

n

∑
i=0
b i − max

0≤i≤n
b i) ≤ 28 ES min{∑

i∈S
b i ,∑

i∈S c
b i} .

Here the expected value is taken over all subsets S ⊂ {0, . . . , n}, with equal weight.

Proof Clearly, for every S ⊂ {0, . . . , n} we have

min{∑
i∈S
b i ,∑

i∈S c
b i} ≤

n

∑
i=0
b i − max

0≤i≤n
b i ,

and therefore, the ûrst inequality of the claim follows.
For the second one, without loss of generality, we can assume 1 = b0 ≥ b1 ≥ ⋅ ⋅ ⋅ ≥

bn ≥ 0, and set b = b1 + ⋅ ⋅ ⋅ + bn . For S ⊂ {0, . . . , n}, let f (S) = ∑i∈S b i and g(S) =
min{ f (S), f (Sc)}.
Consider two cases.

Case 1: b ≤ 27. For S ⊂ {0, . . . , n} set S′ = S if 0 ∉ S, and S′ = Sc otherwise. _en S′

is uniformly distributed over subsets of {1, . . . , n}. _en

2−7 ∑
i∈S′
b i ≤ 2−7b ≤ 1 ≤ ∑

i∈{0, . . . ,n}/S′
b i .

Hence g(S) ≥ 2−7∑i∈S′ b i . Note that S′ is uniformly distributed over subsets of
{1, . . . , n}. Hence ES g(S) ≥ 2−7ES′⊂{1, . . . ,n}∑i∈S′ b i = 2−7 ⋅ b2 = 2−8b.

Case 2: b > 27. Note that∑n
i=0 b

2
i ≤ ∑n

i=0 b i = b+ 1. By the large deviation inequality
for Bernoulli random variables (see [24, Chapter 7]),

P( ∣b + 1 − 2∑
i∈S
b i ∣ ≥ (b + 1)/4) ≤ 2 exp(−((b + 1)/4)2/(4(b + 1)))

= 2e−(b+1)/64 < 2e−1 < 0.74.

_us, with probability greater than 0.26, ∑i∈S b i ∈ [ b+1
4 , 3(b+1)

4 ] ; hence g(S) ≥ (b +
1)/4. _erefore,

Eg(S) ≥ 0.26( b + 1
4

) > 2−5b.

_us, each of the cases gives the desired result.

Now an application of Krivine functional calculus [20, _eorem 1.d.1] yields the
following.

Corollary 3.2 If f1 , . . . , fn are positive elements in a Banach lattice, then

ES min{∑
i∈S
f i ,∑

i∈S c
f i} ≥ 2−8(

n

∑
i=1
f i − ⋁

1≤i≤n
f i) .

Consequently, ES∥min{ ∑i∈S f i ,∑i∈S c f i}∥ ≥ 2−8∥∑n
i=1 f i −⋁1≤i≤n f i∥ .

As a consequence, we have the following corollary.
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Corollary 3.3 Suppose T ∶ E → F is a positive operator that is ε-DP. _en for any
disjoint x1 , . . . , xn ∈ E, we have

∥
n

∑
i=1

∣Tx i ∣ −
n
⋁
i=1

∣Tx i ∣∥ ≤ 256ε∥
n

∑
i=1

x i∥ .

In particular, for any disjoint x1 , . . . , xn ∈ E and every 1 ≤ p <∞, it also holds that

∥(
n

∑
i=1

∣Tx i ∣p)
1
p − T(

n

∑
i=1

∣x i ∣p)
1
p ∥≤ 256ε∥

n

∑
i=1

x i∥ .

Proof For any S ⊂ {1, . . . , n}, we have

∥(∑
i∈S

∣Tx i ∣) ∧ (∑
i∈S c

∣Tx i ∣)∥ ≤ ∥T ∣∑
i∈S

x i ∣ ∧ T ∣∑
i∈S c

x i ∣ ∥ ≤ ε∥
n

∑
i=1

x i∥ .

Now apply Corollary 3.2 with f i = ∣Tx i ∣.
For the second inequality, note that for every 1 ≤ p <∞, we have

0 ≤ (
n

∑
i=1

∣Tx i ∣p)
1
p − T(

n

∑
i=1

∣x i ∣p)
1
p ≤

n

∑
i=1

∣Tx i ∣ −
n
⋁
i=1

∣Tx i ∣.

Corollary 3.4 Suppose the operator T ∈ B(E , F)+ is ε-DP, and E is σ-Dedekind
complete. _en for any x1 , . . . , xn ∈ E+, we have

max{ ∣T(
n
⋁
i=1

x i) −
n
⋁
i=1

(Tx i)∥ , ∥
n
⋀
i=1

(Tx i) − T(
n
⋀
i=1

x i)∥} ≤ 256ε∥
n
⋁
i=1

x i∥.

Proof First prove that

(3.1) ∥T(
n
⋁
i=1

x i) −
n
⋁
i=1

(Tx i)∥ ≤ 256ε∥
n
⋁
i=1

x i∥.

Fix c > 0 and let x = x1 + ⋅ ⋅ ⋅ + xn . Let C be the set of components of x, i.e., of vectors
y ∈ E+ satisfying y∧(x−y) = 0. By [3,_eorem1.49],C is closed under the operations
∨ and ∧. Moreover, if u, v ∈ C are such that u ≤ v, then v − u ∈ C. Finite linear
combinations of elements of C are called simple functions.
By [23, Proposition 1.2.20], E has the principal projection property. By the Freud-

enthal spectral theorem (see [3,_eorem 2.8]), for every i there exists a simple func-
tion u i so that 0 ≤ x i − u i ≤ c∣x∣/∥x∥ (hence ∥u i − x i∥ ≤ c). By considering u i ∨ 0
instead of u i , we can assume that all the u i ’s are non-negative. Write u i = ∑N i

j=1 α i jv i j ,
where α i j > 0 and (v i j)N i

j=1 are disjoint components of x. By the discussion above, the
elements ⋀n

i=1 v i j i for any j i ≤ N i are disjoint components of x, and therefore, there
exists a family (w j)M

j=1 of disjoint components of x, so that for each i, we can write
u i = ∑M

j=1 β i jw j . Note that ⋁i u i = ∑ j β jw j , where β j = ⋁i β i j .
Deûne the sets (A i) recursivelyby settingA0 = ∅, andA i = { j ∶ β i j = β j}/⋃s<i As .

_ese sets are clearly disjoint, and their union is {1, . . . ,M}. For 1 ≤ i ≤ n, set
y i = ∑ j∈A i

β jw j . _en 0 ≤ y i ≤ u i , the y i ’s are disjoint, and ⋁i y i = ⋁i u i ≤ ⋁i x i .
_us,

T(
n
⋁
i=1

u i) −
n
⋁
i=1

(Tu i) ≤ T(
n
⋁
i=1

y i) −
n
⋁
i=1

(Ty i) = T(
n

∑
i=1

y i) −
n
⋁
i=1

(Ty i).
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By Corollary 3.3,

(3.2) ∥T(
n
⋁
i=1

u i) −
n
⋁
i=1

(Tu i)∥ ≤ ∥T(
n

∑
i=1

y i) −
n
⋁
i=1

(Ty i)∥

≤ 256ε∥
n

∑
i=1

y i∥ ≤ 256ε∥
n
⋁
i=1

x i∥.

For each i, write x i = u i + z i , where z i ≥ 0 and ∥z i∥ ≤ c. In this notation,⋁n
i=1 x i ≤

⋁n
i=1 u i +⋁n

i=1 z i , and therefore, ∥⋁n
i=1 x i −⋁n

i=1 u i∥ ≤ nc. From this,we conclude that

∥T(
n
⋁
i=1

x i) −
n
⋁
i=1

(Tx i)∥ ≤ ∥T(
n
⋁
i=1

u i) −
n
⋁
i=1

(Tu i)∥ + nc∥T∥.

To obtain (3.1), invoke (3.2), and recall that c can be arbitrarily small.
To obtain the inequality

(3.3) ∥
n
⋀
i=1

(Tx i) − T(
n
⋀
i=1

x i)∥ ≤ 256ε∥
n
⋁
i=1

x i∥ ,

set x = ⋁n
i=1 x i . For each i set y i = x − x i , then 0 ≤ y i ≤ x. We have ⋁n

i=1 y i =
x + ⋁n

i=1(y i − x) = x − ⋀n
i=1 x i . Hence T(⋀n

i=1 x i) = Tx − T(⋁n
i=1 y i). Similarly,

⋁n
i=1 Ty i = Tx + ⋁n

i=1(T(y i − x)) = Tx − ⋀n
i=1 Tx i , which yields ⋀n

i=1 Tx i =
Tx − ⋁n

i=1 Ty i . _erefore, ⋀n
i=1(Tx i) − T(⋀n

i=1 x i) = T(⋁n
i=1 y i) − ⋁n

i=1(Ty i). To
obtain (3.3), combine (3.1) with the fact that ⋁n

i=1 y i ≤ x.

Itwas shown [1] that for any rearrangement invariant spaces X ,Y over a ûnitemea-
sure such that X ⊈ Y , there is no non-zero disjointness preserving operator T ∶X → Y .
In particular, the onlydisjointnesspreserving operatorT ∶ Lp[0, 1]→ Lq[0, 1] for p > q
is T = 0. An application of Corollary 3.3 provides the following version of this fact
for positive ε-DP operators.

Proposition 3.5 Let 1 ≤ p < q ≤∞ and E be a q-convex Banach lattice. If

T ∶ Lp[0, 1]→ E

is positive and ε-DP, then ∥T∥ ≤ 256ε.

Proof Given a positive x ∈ Lp[0, 1] with ∥x∥p = 1, for every n ∈ N an application
of Liapunov’s theorem [20, _eorem 2.c.9] allows us to ûnd a partition of [0, 1] in
pairwise disjoint measurable sets (A i)n

i=1 such that ∥x χA i ∥p = n−1/p . Let x i = x χA i ,
for i = 1, . . . , n. We have that (x i)n

i=1 are disjoint and x = ∑
n
i=1 x i .

Since E is q-convex, there is a constant C > 0 so that

∥(
n

∑
i=1

∣Tx i ∣q)
1
q ∥ ≤ C(

n

∑
i=1

∥Tx i∥q)
1
q ≤ C∥T∥n

1
q −

1
p .
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Hence, using Corollary 3.3, we have

∥Tx∥ ≤ ∥T(
n

∑
i=1

x i) − (
n

∑
i=1

∣Tx i ∣q)
1
q ∥ + ∥(

n

∑
i=1

∣Tx i ∣q)
1
q ∥

= ∥T(
n

∑
i=1

∣x i ∣q)
1
q − (

n

∑
i=1

∣Tx i ∣q)
1
q ∥ + ∥(

n

∑
i=1

∣Tx i ∣q)
1
q ∥

≤ 256ε + C∥T∥n
1
q −

1
p .

Since p < q and n was arbitrary, we get that ∥T∥ ≤ 256ε.

4 Positive Operators on ℓn∞, c0, and c

Recall that a Banach lattice X has the Fatou property with constant f if, for any non-
negative increasing net (x i) ⊂ X, with supi ∥x i∥ < ∞, we have ⋁i x i ∈ X, and
∥⋁i x i∥ ≤ f supi ∥x i∥. If f = 1, we speak simply of the Fatou property. Every Banach
lattice with the Fatou property is σ-Dedekind complete. Note that if X is a Köthe
function space, then it suõces to verify the above inequality for non-negative in-
creasing sequences (x i). Banach lattices with the Fatou property include dual lattices
[23, Proposition 2.4.19] and KB-spaces [3, p. 232].

_eorem 4.1 Suppose F is a Banach lattice, and let ε > 0.
(i) For any positive operator T ∶ ℓn

∞
→ F that is ε-DP, there exists a DP operator

S∶ ℓn
∞
→ F, so that 0 ≤ S ≤ T and ∥T − S∥ ≤ 256ε.

(ii) Suppose F has the Fatou property with constant f. _en for any positive operator
T ∶ c0 → F, which is ε-DP, there exists a DP operator S∶ c0 → F, so that 0 ≤ S ≤ T
and ∥T − S∥ ≤ 256fε.

(iii) Suppose F has the Fatou property with constant f. _en for any positive operator
T ∶ c → F that is ε-DP, there exists a DP operator S∶ c → F, so that 0 ≤ S ≤ T and
∥T − S∥ ≤ 256f2ε.

_e following lemma is needed to prove _eorem 4.1. _is result may be known
to the experts, but we have not been able to ûnd it in the literature.

Lemma 4.2 Suppose that for 1 ≤ i ≤ k, (x(i)n )n∈N are increasing positive sequences in
a Banach lattice, so that ⋁n∈N x(i)n for 1 ≤ i ≤ k and ⋁n∈N(∑k

i=1 x
(i)
n ) exist. _en

⋁
n∈N

(
k

∑
i=1

x(i)n ) =
k

∑
i=1
⋁
n∈N

x(i)n .

Proof We will proceed by induction on k. For any m ∈ N, we have

⋁
n∈N

(
k+1

∑
i=1

x(i)n ) ≥ ⋁
n∈N

(
k

∑
i=1

x(i)n + x(k+1)
m ) = ⋁

n∈N
(

k

∑
i=1

x(i)n ) + x(k+1)
m .

Hence, using the induction hypothesis,

⋁
n∈N

(
k+1

∑
i=1

x(i)n ) ≥ ⋁
n∈N

(
k

∑
i=1

x(i)n ) + ⋁
m∈N

x(k+1)
m =

k+1

∑
i=1
⋁
n∈N

x(i)n .
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_e converse inequality follows from the fact that for every m,

m
⋁
n=1

(
k

∑
i=1

x(i)n ) =
k

∑
i=1

x(i)m ≤
k

∑
i=1
⋁
n∈N

x(i)n .

Proof of_eorem 4.1 _roughout the proof, we denote by (δ i) the canonical basis
of ℓn

∞
or c0, and f i = Tδ i . Furthermore, we assume that ∥T∥ ≤ 1. Indeed, if ∥T∥ > 1,

then T ′ = T/∥T∥ is ε/∥T∥-DP. If (i) is established for a contractive operator T , then
we can ûnd a DP map S′ so that 0 ≤ S′ ≤ T ′ and ∥S′ − T ′∥ ≤ 256ε/∥T∥, and take
S = ∥T∥S′. _e same argument works for (ii) and (iii).
For each n ∈ N deûne a 1-homogeneous continuous function ϕn ∶Rn → R:

ϕn ∶ (t1 , . . . , tn)↦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ∣t1∣ ≤ ⋁n
i=2 ∣t i ∣,

2(∣t1∣ −⋁n
i=2 ∣t i ∣) if ⋁n

i=2 ∣t i ∣ ≤ ∣t1∣ ≤ 2⋁n
i=2 ∣t i ∣,

∣t1∣ if ∣t1∣ > 2⋁n
i=2 .∣t i ∣.

(i) For 1 ≤ i ≤ n, set g i = ϕn( f i , f i+1 , . . . , fn , f1 , . . . , f i−1). We claim that the oper-
ator S∶ ℓn

∞
→ F∶ δ i ↦ g i has the desired properties.

Note that 0 ≤ ϕn(t1 , . . . , tn) ≤ t1 for any t1 , . . . , tn ∈ R+. Hence 0 ≤ g i ≤ f i , which
shows that 0 ≤ S ≤ T .

To show that S is disjointness preserving, consider i /= j. For any (t1 , . . . , tn) ∈ Rn ,
ϕn(t i , t i+1 , . . . , tn , t1 , . . . , t i−1) ∧ ϕn(t j , t j+1 , . . . , tn , t1 , . . . , t j−1) = 0. Hence g i and g j
are disjoint.
Finally we estimate ∥T − S∥ = ∥(T − S)∑n

i=1 δ i∥ = ∥∑n
i=1( f i − g i)∥. We claim that

∑n
i=1( f i − g i) ≤ 29ES(∑i∈S f i) ∧ (∑i∈S c f i) . Indeed, by functional calculus, we need

to show that for any t1 , . . . , tn ∈ Rn
+
,

n

∑
i=1

(t i − ϕn(t i , t i+1 , . . . , tn , t1 , . . . , t i−1)) ≤ 29ES(∑
i∈S

t i) ∧ (∑
i∈S c

t i) .

By relabeling, we can assume that t1 ≥ t2 ≥ ⋅ ⋅ ⋅ ≥ tn ≥ 0. By Lemma 3.1, the right-hand
side is at least 2(t2 + ⋅ ⋅ ⋅ + tn). In the le�-hand side however,

t2 − ϕn(t2 , t3 , . . . , tn , t1) = t2 , . . . , tn − ϕn(tn , t1 , . . . , tn−1) = tn ,

while 0 ≤ t1 − ϕn(t1 , t2 , . . . , tn) ≤ ⋁i≥2 t i = t2. _erefore, the right-hand side is at
most 2t2 + t3 + ⋅ ⋅ ⋅ + tn ≤ 2(t2 + ⋅ ⋅ ⋅ + tn). Finally, since T is ε-DP, the result follows.

(ii) For T ∶ c0 → F, let f i = Tδ i . For n ≥ i, set

g(n)i = ϕn( f i , f1 , . . . , f i−1 , f i+1 , . . . , fn).

Clearly, 0 ≤ g(n)i ≤ f i . Moreover, it is easy to observe that

ϕn(t1 , . . . , tn) = ϕn+1(t1 , . . . , tn , 0) ≥ ϕn+1(t1 , . . . , tn , tn+1)
for any t1 , . . . , tn+1 ∈ R+. As the Krivine functional calculus preserves lattice opera-
tions, we have

g(n)i = ϕn+1( f i , f1 , . . . , f i−1 , f i+1 , . . . , fn , 0)

≥ ϕn+1( f i , f1 , . . . , f i−1 , f i+1 , . . . , fn , fn+1) = g(n+1)
i .
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Hence the sequence (g(n)i )n is decreasing for every i. Due to the σ-Dedekind com-
pleteness of F, g i = ⋀n g(n)i exists in F+.
Deûne the operator S∶ c0 → F by Sδ i = g i . Clearly 0 ≤ S ≤ T . Moreover,

g(n)i ∧ g(n)j = 0 whenever i , j ∈ {1, . . . , n} are distinct. Hence g i ⊥ g j for i /= j,
and consequently, S is disjointness preserving. Moreover,

∥T − S∥ = sup
n

∥(T − S)
n

∑
i=1
δ i∥ = sup

n
∥

n

∑
i=1

( f i − g i)∥ .

Reasoning as in (i), we conclude that for every k ≥ n,

∥
n

∑
i=1

( f i − g(k)i )∥ ≤ ∥
k

∑
i=1

( f i − g(k)i )∥ ≤ 256ε.

By the Fatou property and Lemma 4.2,

∥
n

∑
i=1

( f i − g i)∥ = ∥
∞

⋁
k=1

n

∑
i=1

( f i − g(k)i )∥ ≤ 256fε.

(iii)As before, let (δ i) be the canonical basis of c0 ⊂ c, and denote by 1 the constant
sequence (1, 1, . . . ) ∈ c. Let f i = Tδ i and f0 = T1−⋁∞n=1(∑n

i=1 f i) . Note that∑n
i=1 f i =

T(∑n
i=1 δ i) ≤ T1. Hence the supremum in the centered equation exists due to the

σ-Dedekind completeness of F. Note also that for x = (α1 , α2 , . . . ) ∈ c,

Tx = (lim
j
α j)T1 +

∞

∑
i=1

(α i − lim
j
α j) f i .

Further observe that for any S ⊂ {0, 1, . . . , n}, we have
∥(∑

i∈S
f i) ∧ (∑

i∈S c
f i)∥ ≤ ε

(here Sc = {0, 1, . . . , n}/S). Indeed, suppose without loss of generality that 0 ∈ S. Let
S′ = S/{0}, y = ∑i∈S c δ i , and x = 1−y. As T is ε-DP, ∥Tx∧Ty∥ ≤ ε. But Ty = ∑i∈S c f i ,
while

Tx = ∑
i∈S′

f i + T1 −
n

∑
i=1
f i ≥ ∑

i∈S′
f i + T1 −

∞

⋁
m=1

m

∑
i=1
f i = ∑

i∈S′
f i + f0 =∑

i∈S
f i .

Deûne g(n)i = ϕn+1( f i , f0 , . . . , f i−1 , f i+1 , . . . , fn), for 0 ≤ i ≤ n. As in the proof of (ii),

∥
n

∑
i=0

( f i − g(n)i )∥ ≤ 256ε.

Let g i = limk g(k)i ; then ∥∑n
i=0( f i − g i)∥ ≤ 256fε for every n.

Now observe that g(i)i ≥ g(i+1)
i ≥ ⋅ ⋅ ⋅ and set g̃ = ⋁∞n=1∑n

i=1 g i . Deûne S∶ c → F by
setting Sδ i = g i , and S1 = g̃+ g0. _is operator iswell deûned and positive. Moreover,
(T−S)δ i = f i − g i for i ∈ N, and, by Lemma 4.2, (T−S)1 = ⋁∞n=0∑n

i=0( f i − g i). _us,
T ≥ S. Indeed, suppose x = (α i)∞i=1 ∈ c is positive. Let α = lim j α j . _en

(T − S)x = α(
∞

⋁
n=0

n

∑
i=0

( f i − g i)) +
∞

∑
i=1

(α i − α)( f i − g i) ≥ α( f0 − g0) ≥ 0.
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Consequently,

∥T − S∥ = ∥(T − S)1∥ = ∥
∞

⋁
n=0

n

∑
i=0

( f i − g i)∥ ≤ f sup
n

∥
n

∑
i=0

( f i − g i)∥ ≤ 256f2ε.

5 Operators into C(K) Spaces

In this section we consider operators from sequence spaces into C(K). _rough-
out the section, K denotes a compact Hausdorò space. First, consider the case when
C(K) is σ-Dedekind complete (equivalently, K is a basically disconnected compact
Hausdorò set, see [20, Proposition 1.a.4]).

_eorem 5.1 Suppose X is a Banach lattice with the order structure given by its
1-unconditional basis, and C(K) is σ-Dedekind complete. If T ∶X → C(K) is ε-DP, then
there exists a disjointness preserving S∶X → C(K) so that ∥S∥ ≤ ∥T∥ and ∥S − T∥ ≤
257ε∥T∥. If T is positive, then S can be chosen so that, in addition, 0 ≤ S ≤ T .

Proof By scaling, we can assume that T is a contraction. Denote the normalized
unconditional basis of X by (δ i)∞i=1, and let c00 be the linear span of δ1 , δ2 , . . . in X.
For i ∈ N, set f i = Tδ i , and note that ∣ f i ∣ ≤ 1. Consequently, the sequence ( f i) is
order bounded. Hence, by the σ-Dedekind completeness of C(K), h i = ⋁ j/=i ∣ f j ∣ is
continuous for every i. Let us deûne the continuous functions

g i(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ∣ f i(t)∣ ≤ h i(t),
f i(t) if ∣ f i(t)∣ ≥ 2h i(t),
2( f i(t) − sign f i(t) ⋅ h i(t)) if h i(t) ≤ ∣ f i(t)∣ ≤ 2h i(t).

Now let S∶ c00 → C(K)∶ δ i ↦ g i . Clearly, S is disjointness preserving, since ∣g i ∣ ∧
∣g j ∣ = 0 for i /= j. It remains to show that T ∣c00 − S is bounded and that its norm does
not exceed 257ε (once this is done, we extend S to the whole space X by continuity).

To this end, ûx t ∈ K, and pick α1 , . . . , αN ∈ F with ∥∑N
i=1 α iδ i∥X ≤ 1. We must

show that for every t ∈ K

(5.1)
N

∑
i=1

∣α i ∣ ∣ f i(t) − g i(t)∣ ≤ 257ε.

It suõces to consider α1 , . . . , αN ≥ 0.
For S ⊂ {1, . . . ,N}, set Sc = {1, . . . ,N}/S. Consider x = ∑i∈S ω iα iδ i and y =

∑i∈S c ω iα iδ i , where ω i = ∣ f i(t)∣/ f i(t) if f i(t) /= 0, and ω i = 0 otherwise. Note that x
and y are disjoint elements of B(X). As T is ε-DP, we have

(∑
i∈S
α i ∣ f i(t)∣) ∧ (∑

i∈S c
α i ∣ f i(t)∣) ≤ ∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ ε.

Hence, by Lemma 3.1,
N

∑
i=1
α i ∣ f i(t)∣ −

N
⋁
i=1
α i ∣ f i(t)∣ ≤ 256ε.

Pick k so that ⋁N
i=1 α i ∣ f i(t)∣ = αk ∣ fk(t)∣. Note that ∣ fk(t) − gk(t)∣ ≤ ε. Indeed, this

inequality is evident if ∣ fk(t)∣ ≤ ε. If ∣ fk(t)∣ > ε, note that ∣ f j(t)∣ ≤ ε for any j /= k.
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Otherwise we would have ∥∣Tδk ∣∧ ∣Tδ j ∣∥ > ε, contradicting the assumption that T is
ε-DP. _us, if ∣ fk(t)∣ > ε, then hk(t) ≤ ε, and we also have ∣ fk(t) − gk(t)∣ ≤ hk(t).
As αk ≤ 1, we have

N

∑
i=1
α i ∣ f i(t) − g i(t)∣ ≤∑

i /=k
α i ∣ f i(t)∣ + ∣ fk(t) − gk(t)∣ ≤ 256ε + ε,

establishing (5.1).
If T is positive, then we have 0 ≤ g i ≤ f i ; hence 0 ≤ S ≤ T .

Along the same lines, we prove the following theorem.

_eorem 5.2 Suppose X is a ûnite dimensional Banach lattice. If T ∶X → C(K) is
ε-DP, then there exists a disjointness preserving S∶X → C(K) so that ∥S∥ ≤ ∥T∥ and
∥S−T∥ ≤ 256ε∥T∥. If T is positive, then S can be chosen so that, in addition, 0 ≤ S ≤ T .

Sketch of a proof It is well known (see [28, Corollary 4.20]) that X has a basis of
atoms, which we denote by (δ i)N

i=1 (N = dimX). Use scaling to assume that T is con-
tractive. Let f i = Tδ i and h i = ⋁ j/=i ∣ f j ∣. Deûne g i and S as in the proof of_eorem 5.1
and proceed further in the samemanner.

For operators from c or c0 intoC(K), the assumption that the range is σ-Dedekind
complete is redundant.

_eorem 5.3 Suppose K is a compact Hausdorò space, and ε is a positive number.
_en for any ε-DP operator T ∶ c0 → C(K), there exists a DP operator S∶ c0 → C(K)
so that ∥S∥ ≤ ∥T∥ and ∥T − S∥ ≤ 257ε. If T is positive, then S can be selected so that
0 ≤ S ≤ T .

Here and below,we use the notation (δ i)i∈N for the canonical basis of c0,while c00
denotes the set of all ûnitely supported sequences in c0. _e following straightforward
observation will be used throughout the proof.

Lemma 5.4 A linear map U ∶ c00 → C(K) is bounded if and only if

sup
t∈K

∞

∑
i=1

∣ [Uδ i](t)∣

is ûnite. If this is the case, then the above expression equals ∥U∥. Moreover, U extends
by continuity to an operator from c0 into C(K) of the same norm.

Proof of_eorem 5.3 We know that if T is ε-DP, then T/∥T∥ is ε/∥T∥-DP. We can
therefore assume that T is a contraction, and restrict our attention to ε < 2−8. Denote
the canonical basis of c0 by (δ i)∞i=1, and set f i = Tδ i . Note that T is ε-DP if and only
if the inequality (∑i∈A ∣ f i(t)∣) ∧ (∑i∈B ∣ f i(t)∣) ≤ ε holds for any t ∈ K and for any
two disjoint sets A and B. Consequently, for any t ∈ K, there exists at most one i ∈ N
so that ∣ f i(t)∣ > ε.
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Consider the function

ϕ(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ∣t∣ ≤ ε,
2(∣t∣ − ε)sign t if ε ≤ ∣t∣ ≤ 2ε,
t if ∣t∣ ≥ 2ε.

Let g i = ϕ○ f i , i.e., g i(t) = ϕ( f i(t))), and deûne the operator S∶ c00 → C(K)∶ δ i ↦ g i .
As noted above, for any t ∈ K, there exists at most one i ∈ N so that ∣g i(t)∣ /= 0. Hence
the vectors (g i) are disjoint,which shows that S is disjointness preserving. Moreover,
if T is positive, then for any i, 0 ≤ Sδ i = g i ≤ f i = Tδ i ,
First show that S is, indeed, a well-deûned contraction (hence it extends by conti-

nuity to a contraction c0 → C(K)). By Lemma 5.4,∑∞

i=1 ∣ f i(t)∣ ≤ 1 for every t ∈ K. By
our construction, ∣g i ∣ ≤ ∣ f i ∣. Hence∑∞

i=1 ∣g i(t)∣ ≤ 1 for every t. Again by Lemma 5.4,
∥S∥ ≤ 1.

It remains to estimate

∥T − S∥ = sup
t∈K

∞

∑
i=1

∣ [(T − S)δ i](t)∣ = sup
t∈K

∞

∑
i=1

∣ f i(t) − g i(t)∣.

Fix t ∈ K and N ∈ N, and show that

(5.2)
N

∑
i=1

∣ f i(t) − g i(t)∣ ≤ 257ε.

To this end, ûnd k ∈ {1, . . . ,N} so that ∣ fk(t)∣ = max1≤i≤N ∣ f i(t)∣. _en ∣ f j(t)∣ ≤ ε
(and consequently, g j(t) = 0) for j /= k. For a set S ⊂ {1, . . . ,N}, set Sc =
{1, . . . ,N}/S. We know that for any such S,∑i∈S ∣ f i(t)∣ ∧∑i∈S c ∣ f i(t)∣ ≤ ε. Indeed,
consider

x =∑
i∈S

sign f i(t)δ i and y = ∑
i∈S c

sign f i(t)δ i .

_e elements x and y belong to the unit ball of c0 and are disjoint. _us,

∑
i∈S

∣ f i(t)∣ ∧ ∑
i∈S c

∣ f i(t)∣ ≤ ∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ ε.

_en∑N
i=1 ∣ f i(t)− g i(t)∣ = ∑ j/=k ∣ f j(t)∣+ ∣ fk(t)− gk(t)∣. By Lemma 3.1,∑ j/=k ∣ f j(t)∣ ≤

256ε. Moreover, sups ∣ϕ(s) − s∣ = ε. Hence, ∣ fk(t) − gk(t)∣ ≤ ε. _is yields (5.2).

_eorem 5.5 Suppose K is a compact Hausdorò space, and ε is a positive number.
For any ε-DP operator T ∶ c → C(K), there exists a DP operator S∶ c → C(K) so that
∥T − S∥ ≤ 536ε. If T is positive, then S can be chosen to be positive as well.

_roughout the proof, we identify c0 with its canonical image in c. _en c =
span[c0 , 1]. As before, we denote the canonical basis of c0 by (δ i)i∈N. _e follow-
ing lemma can be easily veriûed.

Lemma 5.6 For any operator V ∶ c → X (X is an arbitrary Banach space), we have
∥V∥ ≤ 2∥V ∣c0∥ + ∥V1∥.

Proof Consider the projection Q from c to F1, deûned by
Q((α1 , α2 , . . . )) = lim

i
α i1.
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Clearly ∥Q∥ = 1. Hence ∥Ic − Q∥ ≤ 2, and kerQ = ran (I − Q) = c0. We complete the
proof by writing V = VQ + V(I − Q).

We also need a simple fact about complex numbers. Fix c > 0. For a complex
number z = ∣z∣e ι arg z , deûne ϕc(z) = (∣z∣ − c)+e ι arg z .

Lemma 5.7 Given c > 0, for any z,w ∈ C, we have ∣ϕc(z) − ϕc(w)∣ ≤ ∣z −w∣.

Proof By scaling, wemay assume c = 1. Without loss of generality, ∣z∣ ≥ ∣w∣.
_e case of ∣w∣ ≤ 1 is easy: ϕc(w) = 0 and by the triangle inequality,

∣z −w∣ ≥ ∣z∣ − ∣w∣ ≥ (∣z∣ − 1)+ = ∣ϕc(z) − ϕc(w)∣.
Now if ∣z∣ ≥ ∣w∣ > 1, use the law of cosines: ∣z − w∣2 = a2 + b2 − κab, where a = ∣z∣,
b = ∣w∣, and κ = 2 cos(arg z−argw) (note that−2 ≤ κ ≤ 2). Similarly, ∣ϕ(z)−ϕ(w)∣2 =
(a − 1)2 + (b − 1)2 − κ(a − 1)(b − 1). _us,

∣z −w∣2 − ∣ϕ(z) − ϕ(w)∣2 = (2 − κ)(a + b − 1) ≥ 0.

Lemma 5.8 Suppose K is a compactHausdorò space and a contractionU ∶ c → C(K)
is σ-DP. Suppose,moreover, that U ∣c0 is disjointness preserving and the functions f = U1
and f i = Uδ i are such that

(5.3) if i ∈ N and t ∈ K with ∣ f i(t)∣ > σ , then ∣ f (t) − f i(t)∣ ≤ σ .

_en there exists a DP operator S∶ c → C(K) such that ∥U − S∥ ≤ 11σ . If U is positive,
then S can be chosen positive as well.

Proof We shall construct g , g1 , g2 , . . . ∈ C(K) so that:
● For any i, ∥g i − f i∥ ≤ 4σ .
● ∥g − f ∥ ≤ 3σ .
● _e functions g1 , g2 , . . . are disjoint; if i and t are such that g i(t) /= 0, then g i(t) =

g(t).
● If the functions f , f1 , f2 , . . . are positive, then the same holds for g , g1 , g2 , . . . .
Once these functions are selected, we deûne S∶ c → C(K) by setting Sδ i = g i (i ∈ N)
and S1 = g. _en ∥(S − U)∣c0∥ ≤ 4σ and ∥(S − U)1∥ ≤ 3σ . Hence, by Lemma 5.6,
∥S −U∥ ≤ 11σ .

Moreover, S is disjointness preserving. Indeed, consider two disjoint elements of
c: x = (α i)i∈A and y = (β i)i∈B , where the sets A and B are disjoint. If the sets
{i ∈ A ∶ α i /= 0} and {i ∈ B ∶ β i /= 0} are both inûnite, then x and y belong to c0,
and we ûnish the proof invoking the disjointness of the functions g i . Otherwise,
suppose A is ûnite. _en we can assume that B = N/A. Let β = limi β i , and write
y = β1 +∑∞

i=1 γ iδ i , where

γ i =
⎧⎪⎪⎨⎪⎪⎩

β i − β if i ∈ B,
−1 if i ∈ A.

_en Sx = ∑i∈A α i g i and Sy = g − ∑i∈A g i + ∑i∈B γ i g i . If [Sx](t) /= 0, then there
exists i ∈ A so that g i(t) /= 0, and therefore, [Sy](t) = g(t)− g i(t) = 0. _us, Sx and
Sy are disjoint.
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Finally, suppose g , g1 , g2 , . . . are positive. For x = (α1 , α2 , . . .) ∈ c+, let α = limi α i .
_en Sx = αg +∑∞

i=1(α i − α)g i ≥ 0. Indeed, suppose t ∈ K is such that there exists i
with g i(t) > 0. Such an i is unique. Hence

[Sx](t) = αg(t) − (α i − α)g i(t) = α i g(t) ≥ 0.

If there is no such i, then [Sx](t) = αg(t) ≥ 0.
To construct g , g1 , g2 , . . ., let h = ϕσ( f ) (that is, h(t) = (∣ f (t)∣ − σ)+e ι arg f (t)).

For i ∈ N, set h i = ϕσ( f i). Clearly ∥ f − h∥ ≤ σ , and ∥ f i − h i∥ ≤ σ for any i. Also, if i
and t are such that h i(t) /= 0, then ∣h(t) − h i(t)∣ ≤ σ , by Lemma 5.7 and (5.3).

Now deûne ρ∶R→ [0, 1] via

ρ(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if t ≤ 0,
t/σ if 0 ≤ t ≤ σ ,
1 if t ≥ σ ,

and let k i(t) = (1 − ρ(∣h i(t)∣))h i(t) + ρ(∣h i(t)∣)h(t). Clearly the function k i is
continuous, and k i(t) = 0 whenever h i(t) = 0. If h i(t) /= 0, then

∣k i(t) − h i(t)∣ = ρ(∣h i(t)∣)∣h(t) − h i(t)∣ < σ .

Hence ∥h i −k i∥ ≤ σ . Finally, if ∣k i(t)∣ > 2σ , then k i(t) = h(t). Indeed, if ∣k i(t)∣ > 2σ ,
then ∣h i(t)∣ > σ . Hence ρ(∣h i(t)∣) = 1, yielding k i(t) = h(t).

Now set g i = ϕ2σ(k i), and g = ϕ2σ(h). From the above, if g i(t) /= 0, then g i(t) =
g(t). Clearly the functions g i are disjoint. Furthermore,

∥ f i − g i∥ ≤ ∥ f i − h i∥ + ∥h i − k i∥ + ∥k i − g i∥ ≤ 4σ ,
∥ f − g∥ ≤ ∥ f − h∥ + ∥h − g∥ ≤ 3σ .

_us, g , g1 , g2 , . . . have the desired properties.

Corollary 5.9 Suppose K is a compact Hausdorò space and a contraction U ∶ c →
C(K) is σ-DP. Suppose,moreover, that U ∣c0 is disjointness preserving. _en there exists
a DP operator S∶ c → C(K) so that ∥U − S∥ ≤ 11σ . IfU is positive, then S can be chosen
positive as well.

Proof Let f i = Uδ i and f = U1. _e functions f i are disjoint. Now ûx i and t, and
set x = δ i and y = 1 − δ i . Both x and y belong to the unit ball of c. Hence

∣ f i(t)∣ ∧ ∣ f (t) − f i(t)∣ ≤ ∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ σ .

_us, (5.3) holds. To complete the proof, apply Lemma 5.8.

Proof of_eorem 5.5 By _eorem 5.3, there exists a disjointness preserving map
V ∶ c0 → C(K) so that ∥V∥ ≤ ∥T∥, and ∥V − T ∣c0∥ ≤ 257ε (if T is positive, then
0 ≤ V ≤ T). Deûne U ∶ c → C(K) by setting U ∣c0 = V and U1 = T1. By Lemma 5.6,
∥T −U∥ ≤ 514ε.

Set f = T1 = U1, f i = Uδ i , and Fi = Tδ i . Note that if T is positive, then so is V .
Indeed, by the construction in the proof of_eorem 5.3, 0 ≤ f i ≤ Fi for every i. Note
that T(1 − δ i) = f − Fi ≥ 0 for every i. Hence f ≥ f i . For x = (α1 , α2 , . . . ) ∈ c+ set
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α = limi α i . _en Ux = α f +∑n
i=1(α i − α) f i . Fix t ∈ K. If f i(t) = 0 for every i, then

[Ux](t) = α f (t) ≥ 0. Otherwise, there is a unique i so that f i(t) > 0. _en

[Ux](t) = α f (t) + (α i − α) f i(t) = α i f i(t) + α( f (t) − f i(t)) ≥ 0.

We shall show that (5.3) holds with σ = 2ε, that is, if i and t satisfy f i(t) /= 0, then
∣ f i(t) − f (t)∣ ≤ 2ε. Once this is done, we can apply the proof of Lemma 5.8 to obtain
S with the desired properties.

Let x = δ i and y = 1 − δ i . In the above notation, Tx = Fi and Ty = f − Fi .
Hence, for any t ∈ K, min{∣Fi(t)∣, ∣ f (t) − Fi(t)∣} ≤ ε. By the proof of _eorem 5.3,
∣Fi(t) − f i(t)∣ ≤ ε (we use the fact that ∣ϕ(s) − s∣ ≤ ε for every s).

Now suppose ∣ f i(t)∣ ≥ 2ε. _en ∣Fi(t)∣ ≥ 2ε as well, hence ∣ f (t) − Fi(t)∣ ≤ ε. _e
triangle inequality implies

∣ f (t) − f i(t)∣ ≤ ∣ f (t) − Fi(t)∣ + ∣ f i(t) − Fi(t)∣ ≤ 2ε.

By the proof of Lemma 5.8, there exists a “good” S with ∥U − S∥ ≤ 22ε. By the triangle
inequality, ∥T − S∥ ≤ 536ε.

6 Positive Operators From ℓp to Lp

We start this section exploring the case of ε-DP operators deûned on the space ℓ1.
We use the following classical result of Dor [14, Corollary 3.2]. Suppose (Ω, µ) is a
measure space, ( fn)n∈N are functions in L1(Ω, µ), and there exists θ ∈ (0, 1] so that
the inequality ∥∑n

i=1 a i f i∥ ≥ θ∑n
i=1 ∣a i ∣ holds for any ûnite sequence (a i)n

i=1. _en
there are disjoint measurable sets (An)n∈N in Ω so that

inf
n ∫An

∣ fn ∣ dλ ≥ 1 − 4
3
(1 − θ).

Dor proved this theorem for the Lebesguemeasure on [0, 1]. However (as noted [4])
an inspection shows that the proof works for an arbitrary measure space. Moreover,
one can select the sets A i from the σ-algebra generated by the functions ( fn)n∈N.

_eorem 6.1 Suppose (Ω, µ) is a measure space and T ∶ ℓ1 → L1(µ) is a positive ε-
DP operator with ε ∈ (0, ∥T∥/16). _en there exists a positive disjointness preserving
operator S∶ ℓ1 → L1(µ) such that 0 ≤ S ≤ T and ∥T − S∥ ≤ 2

√
2ε∥T∥/3.

Proof As usual, we can assume ∥T∥ = 1. _en we need to prove the existence of a
disjointness preserving S∶ ℓ1 → L1(µ) such that 0 ≤ S ≤ T and ∥T − S∥ ≤ 2

√
2ε/3.

For n ∈ N, let fn = Tδn . Since ∥T∥ ≤ 1, we have ∥ fn∥ ≤ 1. By positivity, fn ≥ 0. Let
c = 2

√
2ε/3 and M = {n ∈ N ∶ ∥ fn∥ ≥ c} .

Now, for n ∈ M, let gn = fn/∥ fn∥. _ese form a normalized sequence in L1(µ),
which is equivalent to the unit vector basis of ℓ1. In fact, given real scalars (an)n∈M , let
P = {n ∈ M ∶ an > 0}, N = {n ∈ M ∶ an < 0} and x = ∑n∈P ∣an ∣gn , y = ∑n∈N ∣an ∣gn .
We have

∥ ∑
n∈M

an gn∥ = ∥∑
n∈P

∣an ∣gn − ∑
n∈N

∣an ∣gn∥ = ∥x − x ∧ y + x ∧ y − y∥

= ∥x − x ∧ y∥ + ∥x ∧ y − y∥ ≥ ∥x∥ + ∥y∥ − 2∥x ∧ y∥.
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Since gn ≥ 0 and ∥gn∥ = 1, we have ∥x∥ = ∑n∈P ∣an ∣ and ∥y∥ = ∑n∈N ∣an ∣. Now,
since P ∩ N = ∅ and P,N ⊂ M, we have

∥x ∧ y∥ = ∥(∑
n∈P

∣an ∣
∥ fn∥

fn) ∧ (∑
n∈N

∣an ∣
∥ fn∥

fn)∥

= ∥T(∑
n∈P

∣an ∣
∥ fn∥

δn) ∧ T(∑
n∈N

∣an ∣
∥ fn∥

δn)∥

≤ εmax{∑
n∈P

∣an ∣
∥ fn∥

, ∑
n∈N

∣an ∣
∥ fn∥

}

≤ ε
c
(∥x∥ + ∥y∥).

Hence,we get that ∥∑n∈M an gn∥ ≥ (1− 2ε
c )∑n∈M ∣an ∣. Now byDor’s theorem quoted

above, there exist pairwise disjoint measurable sets (An) ⊂ Ω such that ∥gn ∣An∥ ≥
1 − 8ε

3c = 1 − c.
Let us deûne the operator S∶ ℓ1 → L1(µ) given by

Sδn =
⎧⎪⎪⎨⎪⎪⎩

fn ∣An if n ∈ M
0 elsewhere.

Since the (An) are pairwise disjoint, S is disjointness preserving. We have ∥T − S∥ =
supn ∥(T − S)δn∥. Now for n ∈ M, we have

∥(T − S)δn∥ = ∥ fn ∣Ac
n
∥ = ∥ fn∥ − ∥ fn ∣An∥ = ∥ fn∥(1 − ∥gn ∣An∥) ≤ c,

while for n ∉ M, we get ∥(T − S)δn∥ = ∥ fn∥ ≤ c. _us, ∥T − S∥ ≤ c.

_eorem 6.2 Suppose 1 < q < ∞, ε ∈ (0, 1/8
1
q ), and (Ω, µ) is a measure space. If

T ∶ ℓq → Lq(µ) is positive and ε-DP, then there exists S∶ ℓq → Lq(µ) so that 0 ≤ S ≤ T ,
and

∥T − S∥ ≤ 28ε + 2

√
2ε∥T∥

3
.

To deduce this theorem from _eorem 6.1, we need an auxiliary result.

Lemma 6.3 Suppose 1 ≤ q ≤∞, (Ω, µ) is ameasure space, and the positive operator
R∶ ℓq → Lq(µ) satisûes the following.
(i) If x , y ∈ B(ℓq)+ are disjoint, then ∥Rx ∧ Ry∥ ≤ ε1.
(ii) supi ∥Rδ i∥ ≤ ε2, where (δ i)∞i=1 is the canonical basis of ℓq .
_en ∥R∥ ≤ 28ε1 + ε2.

Proof Write Rδ i = f i . _en supi ∥ f i∥ ≤ ε2. It suõces to show that ∥∑n
i=1 α i f i∥ ≤

28ε1 + ε2 whenever α1 , . . . , αn ≥ 0 satisfy∑i α
q
i ≤ 1. By the triangle inequality,

(6.1) ∥
n

∑
i=1
α i f i∥ ≤ ∥

n

∑
i=1
α i f i −

n
⋁
i=1
α i f i∥ + ∥

n
⋁
i=1
α i f i∥.
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However,

∥
n
⋁
i=1
α i f i∥q ≤ ∥(

n

∑
i=1

(α i f i)q) 1/q∥
q

= ∫
n

∑
i=1
αq

i f i(t)
q dµ(t) ≤ sup

1≤i≤n
∥ f i∥q ⋅

n

∑
i=1
αq

i ≤ ε
q
2 .

Furthermore, by Corollary 3.2,

∥
n

∑
i=1
α i f i −

n
⋁
i=1
α i f i∥ ≤ 28ES∥(∑

i∈S
α i f i) ∧ (∑

i∈S c
α i f i)∥

= 28ES∥R(∑
i∈S
α iδ i) ∧ R(∑

i∈S c
α iδ i)∥ ≤ 28ε1

(we average over all S ⊂ {1, . . . , n}). Plugging this into (6.1), we ûnish the proof.

Proof of_eorem 6.2 By scaling, we can assume ∥T∥ ≤ 1. We denote the canonical
basis on ℓp by (δ[p]i )∞i=1 (below, we consider p = q and p = 1). Let f i = Tδ[q]i ∈ Lq(µ)
and g i = f qi ∈ L1. Deûne T ′∶ ℓ1 → L1(µ) by setting T ′δ[1]i = g i , for every i. Clearly,

∥T ′∥ = sup
i

∥Tδ[1]i ∥1 = sup
i

∥g i∥1 = sup
i

∥ f i∥q
q = sup

i
∥Tδ[q]i ∥q

q ≤ ∥T∥q ≤ 1.

We show that T ′ is εq-DP. It suõces to prove that for disjoint x , y ∈ ℓ1 with ûnite
support, we have ∥∣T ′x∣ ∧ ∣T ′y∣∥1 ≤ εq max{∥x∥1 , ∥y∥1}. Write x = ∑i∈A α iδ

[1]
i

and y = ∑i∈B β iδ
[1]
i ∈ B(ℓ1), where A and B are disjoint ûnite sets. Deûne x̃ =

∑i∈A ∣α i ∣1/qδ[q]i , ỹ = ∑i∈B ∣β i ∣1/qδ[q]i ∈ ℓq . _en

∥ ∣T ′x∣ ∧ ∣T ′y∣∥ 1 ≤ ∥(∑
i∈A

∣α i ∣g i) ∧ (∑
i∈B

∣β i ∣g i)∥
1

= ∫ (∑
i∈A

∣α i ∣g i(t)) ∧ (∑
i∈B

∣β i ∣g i(t)) dµ(t).

However, it is easy to see that for any positive γ1 , . . . , γm , we have∑i γ i ≤ (∑i γ
1/q
i )q .

Hence

∥ ∣T ′x∣ ∧ ∣T ′y∣∥ 1 ≤ ∫ ((∑
i∈A

∣α i ∣1/q f i(t)) ∧ (∑
i∈B

∣β i ∣1/q f i(t)))
q
dµ(t)

= ∥(T x̃) ∧ (T ỹ)∥ q
q ≤ ε

q max{∥x̃∥q
q , ∥ ỹ∥q

q} = εq max{∥x∥1 , ∥y∥1} .

Use_eorem 6.1 to ûnd an operator S′∶ ℓ1 → L1(µ) so that 0 ≤ S′ ≤ T ′, and ∥T ′−S′∥ ≤
(8/3)1/2εq/2. Deûne S∶ ℓq → Lq by setting S(∑i α iδ

[q]
i ) = ∑i α i(S′δ[1]i )1/q .We clearly

have 0 ≤ S ≤ T . Hence S is a bounded operator. It remains to estimate ∥T − S∥ from
the above.
As 0 ≤ T − S ≤ T , T − S must be ε-DP. Furthermore, for any i,

∥(T − S)δ[q]i ∥q
q = ∥Tδ[q]i − Sδ[q]i ∥q

q = ∫ ((Tδ[q]i )(t) − (Sδ[q]i )(t)) q
dµ(t).
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Note that for 0 ≤ α ≤ β, we have (β − α)q ≤ βq − αq . Recall that (Tδ[q]i )(t) = f i(t) =
g i(t)1/q = (T ′δ[1]i )(t)1/q , and (Sδ[q]i )(t) = (S′δ[1]i )(t)1/q . _us,

∥(T − S)δ[q]i ∥q
q ≤ ∫ ((T ′δ[1]i )(t) − (S′δ[1]i )(t)) dµ(t) ≤ ∥T ′ − S′∥ ≤

√
8
3
εq/2 .

Lemma 6.3 gives the desired estimate for ∥T − S∥.

Remark 6.4 It iswell known that for p /= 2, every linear isometry T ∶ Lp(µ)→ Lp(ν)
is disjointness preserving [11, p. 77]. Along the same lines, it can be shown that for
p /= 2, there is a constantCp such that every linear ε-isometry T ∶ Lp(µ)→ Lp(ν) (that
is, such that (1 + ε)−1∥x∥ ≤ ∥Tx∥ ≤ (1 + ε)∥x∥) is also Cpε-DP.

7 Positive Operators From Sequence Spaces to L1

_roughout this section, the Banach lattice structure on E is assumed to be given by
its 1-unconditional basis (δ i).
Denote by S(Z) the unit sphere of a normed space Z. We deûne the set-valued

duality mapping D by letting D(x) = { f ∈ S(E∗) ∶ f (x) = ∥x∥} for x ∈ E/{0}. _e
mapD is said to be lower semicontinuous if for any x ∈ E/{0} and any open setU with
U ∩D(x) /= ∅, there exists ε ∈ (0, ∥x∥) so that U ∩D(y) /= ∅ whenever ∥x − y∥ < ε.

We call the space E smooth if D(x) is a singleton for very x. In this case, we can
deûne Do ∶ E/{0} → E∗ so that D(x) = {Do(x)} for every x. It is known [12, §2.2]
that Do is continuous (with respect to the norm topology) if and only if the norm of
E is Fréchet diòerentiable away from 0. Clearly, for smooth spaces Do is continuous
if and only ifD is lower semi-continuous.

_eorem 7.1 Suppose the order in a re�exive Banach lattice E is determined by its
1-unconditional basis and the dualitymap is lower semi-continuous on E/{0}. Suppose,
furthermore, that the operator T ∈ B(E , ℓ1)+ is ε-DP. _en there exists a disjointness
preserving operator S ∈ B(E , ℓ1)+ such that S ≤ T and ∥T − S∥ ≤ 256ε.

Let us begin with some auxiliary results. _e ûrst one is straightforward.

Lemma 7.2 If E is a spacewith a 1-unconditional basis δ i and δ∗i denote the correspon-
ding biorthogonal functionals, then for anyT ∈ B(E , L1(µ))+, ∥T∥ = ∥∑i ∥Tδ i∥δ∗i ∥ E∗ .

Proof For the sake of brevity, set f i = Tδ i . Suppose (α i) ∈ c00 is a ûnite sequence
of non-negative numbers. _en ∥T(∑i α iδ i)∥ = ∫ (∑i α i f i) = ∑i α i∥ f i∥. _erefore,

∥T∥ = sup{∥T(∑
i
α iδ i)∥ ∶ ∥∑

i
α iδ i∥ ≤ 1}

= sup{∑
i
α i∥ f i∥ ∶ ∥∑

i
α iδ i∥ ≤ 1} = ∥∑

i
∥ f i∥δ∗i ∥ E∗ .

_e next lemmamay be known to the experts in Banach space geometry.

Lemma 7.3 Suppose Z is a real Banach space whose duality mapping D is lower
semi-continuous. Suppose, furthermore, that there exist z, z1 , z2 , . . . ∈ Z so that z /= 0,
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limn ∥z − zn∥ = 0, and for each n, there exists z∗n ∈D(z) so that

lim sup
n

∥z∥ − ⟨z∗n , zn⟩
∥z − zn∥

> 0.

_en ∥zn∥ < ∥z∥ for some value of n.

Proof By rescaling, we can assume that ∥z∥ = 1. Furthermore, by passing to a sub-
sequence, we can assume that for every n, ⟨z∗n , zn⟩ < 1 − c∥z − zn∥, where c > 0 is
a constant. By the lower semi-continuity of the duality map, we can ûnd a sequence
z̃∗n ∈D(zn) so that limn ∥z∗n − z̃∗n∥ = 0. We then have

(7.1) ∥zn∥ = ⟨z̃∗n , zn⟩ = ⟨z̃∗n , z⟩ − ⟨z∗n , z⟩ + ⟨z̃∗n − z∗n , zn − z⟩ + ⟨z∗n , zn⟩.
As z∗n ∈ D(z), and ∥z̃∗n∥ = 1, we have ⟨z̃∗n , z⟩ − ⟨z∗n , z⟩ ≤ 0. Furthermore, ⟨z∗n , zn⟩ ≤
1− c∥z− zn∥, and ⟨z̃∗n − z∗n , zn − z⟩ ≤ ∥z̃∗n − z∗n∥∥zn − z∥ = o(∥z− zn∥). Now (7.1) shows
that ∥zn∥ ≤ 1 − c∥z − zn∥ + o(∥z − zn∥).

Proof of_eorem 7.1 We assume that the basis (δ i) is normalized. Let f i = Tδ i . By
Corollary 3.3, for every sequence (α i) ∈ c00, we have

∥∑
i
α i f i −⋁

i
α i f i∥ ≤ 256ε∥∑

i
α iδ i∥ .

We will ûndmutually disjoint sets A i ⊂ N with the property that

(7.2) ∥∑
i
∥1Ac

i
f i∥δ∗i ∥ ≤ 256ε.

Once this is done, we deûne S∶ E → ℓ1∶ δ i ↦ 1A i f i . _en clearly 0 ≤ S ≤ T , and by
Lemma 7.2,

∥T − S∥ = ∥∑
i
∥ f i − 1A i f i∥δ∗i ∥ = ∥∑

i
∥1Ac

i
f i∥δ∗i ∥ ≤ 256ε.

For the purpose of ûnding (A i), we use some ideas of [14]. Consider the space

H = {(h1 , h2 , . . . ) ∈∏
i
B(ℓ∞)+ ∶∑

i
h i ≤ 1} .

Here ∏i B(ℓ∞)+ is equipped with the topology of the product of inûnitely many
copies of (ℓ∞ ,w∗). It is easy to see that H is compact. Now deûne

F∶H → R∶ (h i)i∈N ↦ ∥∑
i
∥(1 − h i) f i∥δ∗i ∥ .

Note that the function F is convex. Indeed, suppose h i = th(0)
i + (1− t)h(1)

i for every
i. For convenience, set ϕ i = f i(1 − h i) and ϕ( j)

i = f i(1 − h( j)
i ) for j = 0, 1. _en

ϕ i = tϕ(0)
i + (1 − t)ϕ(1)

i , and as all the functions are non-negative, ∥ϕ i∥ = t∥ϕ(0)
i ∥ +

(1 − t)∥ϕ(1)
i ∥.

F((h i)i) = ∥∑
i
∥ϕ i∥δ∗i ∥ = ∥∑

i
(t∥ϕ(0)

i ∥ + (1 − t)∥ϕ(1)
i ∥)δ∗i ∥

≤ t∥∑
i
∥ϕ(0)

i ∥δ∗i ∥ + (1 − t)∥∑
i
∥ϕ(1)

i ∥δ∗i ∥

= tF((h(0)
i )i) + (1 − t)F((h(0)

i )i).
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Moreover, F is continuous. Indeed, ûx ε′ > 0 and (h i) ∈H. Find N so that

∥
∞

∑
i=N+1

∥ f i∥δ∗i ∥ < ε′/2.

_en ∣F((h i)) − F(h′i))∣ < ε′ whenever, for 1 ≤ i ≤ N ,

∣ ∥(1 − h i) f i∥ − ∥(1 − h′i) f i∥∣ = ∥(h′i − h i) f i∥ = ∣ ⟨h i − h′i , f i⟩∣ <
ε′

2N
(⟨ ⋅ , ⋅ ⟩ denotes the duality bracket between ℓ∞ and ℓ1). _e centered equation above
clearly deûnes a relatively open subset ofH.
By the above, for any n ∈ N, there exists an extreme point (h(n)

i )i ∈ H so that
F((h(n)

i )i) < inf F + 1/n. As noted in [14], (h i) is an extreme point ofH if and only
if there exist disjoint sets A i so that h i = 1A i , for every i. Moreover, the set of the
extreme points ofH is closed. Indeed, one can observe thatH is metrizable. Suppose
((h(n)

i )i∈N)n∈N is a sequence of extreme points, converging to some (h i)i∈N ∈ H.
Write h(n)

i = 1A(n)i
. _en for any i, h(n)

i →
n

h i pointwise, hence h i = 1A i . Moreover,
for each i , t ∈ N, only two situations are possible.

(i) For n large enough, t ∈ A(n)
i (that is, h(n)

i (t) = 1), and consequently, t ∈ A i .
(ii) For n large enough, t ∉ A(n)

i , and then, t ∉ A i .
_is shows that the sets (A i) are disjoint.

We therefore conclude that F attains its minimum on an extreme point (1A i ). By
enlarging the sets A i if necessary, we can assume that ⋃i A i = N. It remains to show
that these sets satisfy (7.2).
For the sake of brevity, write β i = ∥1Ac

i
f i∥, and x = ∑i β iδ∗i . Find z = ∑i α iδ i ∈

S(E)+ so that ∑i α iβ i = ∥∑i β iδ∗i ∥. We will show that for any t ∈ A i , α i f i(t) =
⋁ j α j f j(t). Indeed, suppose, by way of contradiction, that there exist t ∈ A i , and
j /= i, so that α i f i(t) < α j f j(t). For k ∈ N, let hk = 1Ak . Furthermore, for any
ε ∈ (0, (α j f j(t) − α i f i(t))/2), deûne h(ε)

k by setting h(ε)
k = hk for k ∉ {i , j}, h(ε)

i =
h i−ε1{t}, and h(ε)

j = h j+ε1{t}. Let β(ε)k = ∥(1−h(ε)
k ) fk∥,_en β(ε)k = βk for k ∉ {i , j},

β(ε)i = β i + ε f i(t) and β(ε)j = β j − ε f j(t). Write x = ∑k βkδ∗k and x(ε) = ∑k β
(ε)
k δ∗k .

_en ∥x − x(ε)∥ = ∥ε f i(t)δ i − ε f j(t)δ j∥ ≤ (∣ f i(t)∣ + ∣ f j(t)∣)ε. Moreover,

⟨z, x(ε)⟩ =∑
k
αkβ

(ε)
k =∑

k
αkβk + ε(α i f i(t) − α j f j(t))

= 1 − ε(α j f j(t) − α i f i(t)) .
An application of Lemma 7.3 shows that for some ε,

F((h(ε)
i )i) = ∥x(ε)∥ < ∥x∥ = F((h i)i),

contradicting our assumption that F attains its minimum at (h i).
For N ∈ N, let BN = ⋃N

k=1 Ak and ϕN = ∑N
i=1 α i1Ac

i
f i . By the above, ϕN(t) =

∑N
i=1 α i f i(t) −⋁i α i f i(t) for t ∈ BN . Consequently,

∥ϕN1BN ∥ ≤ ∥
N

∑
i=1
α i f i −⋁

i
α i f i∥ ≤ 256ε.

https://doi.org/10.4153/CJM-2016-020-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-020-x


Almost Disjointness Preservers 671

Now consider a ûnite set B ⊂ N. _en B ⊂ BN for N large enough. Hence

∥(
N

∑
i=1
α i1Ac

i
f i) 1B∥ ≤ 256ε

for every N . By the Fatou Property of ℓ1,

∥(
∞

∑
i=1
α i1Ac

i
f i) 1B∥ ≤ 256ε,

and as B can be arbitrarily large, ∥∑i α i1Ac
i
f i∥ ≤ 256ε. Now, since

∥∑
i
∥1Ac

i
f i∥δ∗i ∥ =∑

i
α i∥1Ac

i
f i∥ = ∥∑

i
α i1Ac

i
f i∥ ≤ 256ε,

we get (7.2) as claimed.

_eorem 7.4 Suppose the order in a re�exive Banach lattice E is determined by its
1-unconditional basis, and the operator T ∈ B(E , ℓ1)+ is ε-DP. _en for every c > 1,
there exists a disjointness preserving operator S ∈ B(E , ℓ1)+ so that S ≤ T , and ∥T−S∥ ≤
256cε.

For the proof we need a renorming result similar to [15, Proposition 1.4]. Recall
that a Banach space Z is called locally uniformly rotund (LUR, for short) if, for any
z, z1 , z2 , . . . ∈ Z, lim ∥zn − z∥ = 0 whenever limn(2(∥z∥2 +∥zn∥2)−∥z+ zn∥2) = 0. We
say that a basis in a Banach space Z is shrinking if its biorthogonal functionals form
a basis of the dual space Z∗. For unconditional bases, this condition holds precisely
when the space contains no subspace isomorphic to ℓ1 [19,_eorem 1.c.9].

Lemma 7.5 Suppose (E , ∥ ⋅ ∥) is a space with a shrinking 1-unconditional basis (δ i).
_en for every c > 1, E admits an equivalent norm ∥ ⋅ ∥0 such that
(i) for any x ∈ E, ∥x∥0 ≤ ∥x∥ ≤ c∥x∥0;
(ii) (E , ∥ ⋅ ∥0)∗ is LUR;
(iii) the basis (δ i) is 1-unconditional in (E , ∥ ⋅ ∥0).

Sketch of the proof We follow the reasoning of [15, Proposition 1.4]. _e minor
changes that are required are indicated below. As before, we assume that the basis
(δ i) is normalized, andwe denote the corresponding biorthogonal functionals by δ∗i .
To distinguish between the (originally given) norms on E and E∗, we denote them by
∥ ⋅ ∥ and ∥ ⋅ ∥∗, respectively.
Find 1 = ε0 > ε1 > ε2 > ⋅ ⋅ ⋅ > 0 so that∑∞

i=0 ε i < c. For f = ∑i f iδ∗i ∈ E∗, set

∥ f ∥∗1 = (∥ f ∥∗2 +∑
i
ε i ∣ f i ∣2)

1/2
.

_en (E∗ , ∥ ⋅ ∥∗1 ) is smooth, and for any f , ∥ f ∥∗ ≤ ∥ f ∥∗1 ≤
√
c∥ f ∥∗. Moreover, ∥ ⋅ ∥∗1 is

a dual norm, and we can deûne the predual norm ∥ ⋅ ∥1 on E. Finally, the basis (δ∗i ) is
1-unconditional in (E∗ , ∥ ⋅ ∥∗1 ). Hence (δ i) is 1-unconditional in (E , ∥ ⋅ ∥1).

Now set

∥ f ∥∗0 = (
∞

∑
i=0
ε i∥

∞

∑
k=i+1

fkδ∗k∥
∗2
1
) 1/2

.
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_is is a dual LUR norm, and ∥ f ∥∗1 ≤ ∥ f ∥∗0 ≤
√
c∥ f ∥∗1 . Finally, the 1-unconditionality

is once again preserved.

Proof of_eorem 7.4 By Lemma 7.5,we can equip E with an equivalent norm ∥ ⋅ ∥0,
with the properties that ∥ ⋅ ∥0 ≤ ∥ ⋅ ∥ ≤ c∥ ⋅ ∥0, the basis (δ i)∞i=1 is 1-unconditional, and
(E , ∥ ⋅ ∥0)∗ is LUR. By [15, Corollary 1.16], ∥ ⋅ ∥0 is Fréchet diòerentiable on E/{0}.

Now consider T as amap from (E , ∥ ⋅ ∥0) into ℓ1. As B(E , ∥ ⋅ ∥0) ⊂ cB(E), we con-
clude that T is cε-DP with respect to ∥ ⋅ ∥0. By_eorem 7.1, we can ûnd a disjointness
preserving mapping S∶ (E , ∥ ⋅ ∥0) → ℓ1 so that 0 ≤ S ≤ T , and ∥T − S∥ ≤ 256cε. To
ûnish the proof, recall that ∥ ⋅ ∥0 ≤ ∥ ⋅ ∥.

In the case of operators with values in L1(Ω, µ) (for an arbitrary measure space
(Ω, µ)), we obtain the following.

_eorem 7.6 Suppose the order in a Banach lattice E is determined by its 1-uncondi-
tional shrinking basis, and the operator T ∈ B(E , L1(Ω, µ))+ is ε-DP. _en for every
σ > 0 there exists a disjointness preserving ûnite rank operator S ∈ B(E , L1(Ω, µ))+ so
that ∥T − S∥ ≤ 256ε + σ .

Remark 7.7 Note that if the order on a Banach lattice E is determined by a shrinking
unconditional basis, then any T ∈ B(E , L1(Ω, µ))+ is necessarily compact. Indeed,
if T as above is not compact, then a standard small perturbation argument produces
a disjoint normalized positive sequence (x i) so that inf i ∥Tx i∥ > 0. By [19, _eo-
rem 1.c.9], E contains no isomorphic copies of ℓ1. Hence (x i) is weakly null. _en
(Tx i) is weakly null. However, any positive weakly null sequence in L1 must also be
norm null, yielding a contradiction.

Proof As before denote the normalized 1-unconditional basis of E by (δ i), and set
f i = Tδ i . _en E∗ is spanned by (δ∗i )i∈N, and by Lemma 7.2, ∥T∥ = ∥∑∞

i=1 ∥ f i∥δ∗i ∥.
Given σ > 0, ûnd N so that ∥∑∞

i=N+1 ∥ f i∥δ∗i ∥ < σ/4. Let EN = span[δ1 , . . . , δN] ⊂ E.
Find a ûnite σ-algebraA in (Ω, µ), so that, for every x ∈ B(EN),

∥Tx − PTx∥ < 2−11σ

(here P denotes the conditional expectation onto L1(A, µ)). _en T ′ = PT ∣EN is
(ε + 2−10σ)-DP. Indeed, for every disjoint x1 , x2 ∈ B(EN),

∥ ∣T ′x1∣ ∧ ∣T ′x2∣∥ ≤ ∥ ∣T ′x1∣ ∧ ∣(T ′ − T)x2∣∥ + ∥ ∣T ′x1∣ ∧ ∣Tx2∣∥
≤ ∥(T ′ − T)x2∥ + ∥ ∣(T ′ − T)x1∣ ∧ ∣Tx2∣∥ + ∥ ∣Tx1∣ ∧ ∣Tx2∣∥
≤ ∥(T ′ − T)x2∥ + ∥(T ′ − T)x1∥ + ∥ ∣Tx1∣ ∧ ∣Tx2∣∥ ≤ 2−10σ + ε.

Fix c ∈ (1, (256ε + σ/4)−1(256ε + 3σ/4)). As in the proof of_eorem 7.4, we can
ûnd S′∶ EN → L1(A, µ) so that 0 ≤ S′ ≤ T ′ and ∥S − T∥ ≤ (256ε + σ/4)c. Now deûne
S∶ E → L1(Ω, µ) by setting Sδ i = S′δ i for 1 ≤ i ≤ N , Sδ i = 0 otherwise. Clearly S is
positive and disjointness preserving, and

∥T − S∥ ≤ ∥T ′ − S′∥ + ∥T ∣span[δ i ∶i>N]∥ ≤ 256c(2−10σ + ε) + σ
4
< 256ε + σ ,

due to the choice of c.
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8 Counterexamples

In this section we show that, in general, not every positive almost DP operator can
be approximated by a disjointness preserving one. Actually, our examples produce
positive operators T which are not merely ε-DP, but have a stronger property:

∥∣Tx∣ ∧ ∣Ty∣∥ ≤ ε
√

∥x∥∥y∥ for any x ⊥ y.

Proposition 8.1 Suppose 1 ≤ p < q <∞. _en for any ε > 0, there exists a ûnite rank
positive ε −DP operator T ∶ ℓp → ℓq , so that ∥T∥ ≤ 21−1/q and ∥T − S∥ ≥ 2−1/q ≥ ∥T∥/2
whenever S is disjointness preserving.

Start with a combinatorial lemma.

Lemma 8.2 For N ∈ N, let M = N(N + 1)/2. _en {1, . . . ,M} contains sets
F1 , . . . , FN+1 of cardinality N each, so that
(i) each number s ∈ {1, . . . ,M} belongs to exactly two of the sets Fi ;
(ii) ∣Fi ∩ F j ∣ = 1 if i /= j.

Proof Consider the complete graph on N + 1 vertices, and denote its sets of vertices
and edges by V and E, respectively. Write V = {v1 , . . . , vN+1} and E = {e1 , . . . , eM}.
Let Fi be the set of all s so that es is adjacent to v i .

Proof of Proposition 8.1 Pick N ∈ N so that

ε ≥
⎧⎪⎪⎨⎪⎪⎩

N−1/q if∞ > q ≥ 2p,
(N−1(N + 1)2−q/p)1/q if 2p > q > p.

Deûne the operator T ∶ ℓN+1
p → ℓMq by setting Tδ i = N−1/q1Fi ,where (δ i) is the canon-

ical basis for ℓN+1
p . Clearly, T is positive. Moreover,

∥T ∶ ℓN+1
1 → ℓM1 ∥ = max

i
∥Tδ i∥1 = N 1/q′ ,

where 1/q + 1/q′ = 1. Furthermore,

∥T ∶ ℓN+1
∞
→ ℓM

∞
∥ = ∥T1∥∞ = N−1/q∥∑

i
1Fi∥ = 2N−1/q

(for 1 ≤ s ≤ M, (∑i 1Fi )(s) = 2, since s ∈ Fi for exactly two indices i). By interpolation,

∥T ∶ ℓN+1
q → ℓMq ∥ ≤ ∥T ∶ ℓN+1

1 → ℓM1 ∥1/q ∥T ∶ ℓN+1
∞
→ ℓM

∞
∥1/q′ ≤ 21/q′ .

As the formal identity from ℓN+1
p to ℓN+1

q is contractive, the desired estimate for ∥T∥
follows.

Next we show that T is ε − DP. Consider disjoint elements x = ∑i∈Px
α iδ i and

y = ∑ j∈Py
β jδ j , where Px ∩ Py = ∅ and Px ∪ Py = {1, . . . ,N + 1}. For s ∈ {1, . . . ,M},

let Qs be the set of i’s for which s ∈ Fi (we have ∣Qs ∣ = 2). If Qs ⊂ Px or Qs ⊂ Py , then
(∣Tx∣ ∧ ∣Ty∣)(s) = 0. If Qs = {i , j} with i ∈ Px and j ∈ Py , then

N 1/q(∣Tx∣ ∧ ∣Ty∣)(s) = ∣α i ∣ ∧ ∣β j ∣ ≤ ∣α i ∣1/2∣β j ∣1/2 .
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Note that any pair (i , j) appears in the right-hand side of the centered inequality at
most once (when Qs = (i , j)). _erefore,

N∥ ∣Tx∣ ∧ ∣Ty∣∥ q
q = N∑

s
∣ (∣Tx∣ ∧ ∣Ty∣)(s)∣ q ≤∑

i , j
(∣α i ∣1/2∣β j ∣1/2)q

=∑
i
∣α i ∣q/2∑

j
∣β j ∣q/2 .

For q ≥ 2p, (∑i ∣α i ∣q/2)
2/q ≤ (∑i ∣α i ∣p)

1/p = ∥x∥p , and therefore, ∑i ∣α i ∣q/2 ≤
∥x∥q/2

p . Similarly,∑ j ∣β j ∣q/2 ≤ ∥y∥q/2
p . _us,

∥ ∣Tx∣ ∧ ∣Ty∣∥ 2
q ≤ N−2/q∥x∥p∥y∥p ≤ ε2∥x∥p∥y∥p ,

due to our deûnition of ε.
For p < q < 2p,

(∑
i
∣α i ∣q/2)

2/q ≤ (N + 1)2/q−1/p(∑
i
∣α i ∣p)

1/p = (N + 1)2/q−1/p∥x∥p .

Hence∑i ∣α i ∣q/2 ≤ (N + 1)1−q/(2p)∥x∥q/2
p . Handling∑ j ∣β j ∣q/2 similarly, we conclude

that N∥ ∣Tx∣ ∧ ∣Ty∣∥ q
q ≤ (N + 1)2−q/p∥x∥q/2

p ∥y∥q/2
p . Hence

∥ ∣Tx∣ ∧ ∣Ty∣∥ q ≤ (N−1(N + 1)2−q/p)1/q
√

∥x∥p∥y∥p ≤ ε
√

∥x∥p∥y∥p .

Finally, we show that T is poorly approximated by disjointness preserving oper-
ators. Suppose S∶ ℓN+1

p → ℓMq is disjointness preserving. Let G i = supp(Sδ i) and
H i = Fi/G i . _e sets G i are disjoint, and ∑N+1

i=1 ∣G i ∣ ≤ M = N(N + 1)/2. Hence
∣G i ∣ ≤ N/2 for some i. _en ∣H i ∣ ≥ N/2. Hence

∥T − S∥ ≥ ∥(T − S)δ i∥ ≥ N−1/q ∣H i ∣1/q ≥ 2−1/q .

_us T has all the desired properties.

_e above results can be generalized somewhat by extending the range space. Re-
call that a Banach lattice X satisûes a lower q-estimate with constant Cq if, for any
disjoint x1 , . . . , xn ∈ X, ∥∑i x i∥ ≥ Cq(∑i ∥x i∥q) 1/q

.

Proposition 8.3 Suppose 1 ≤ p < q < ∞, and X is an inûnite dimensional Banach
lattice satisfying a lower q-estimate with constant Cq . Suppose, moreover, that X does
not satisfy a lower r-estimate for any r < q. _en for any ε > 0 there exists a ûnite rank
positive ε − DP operator T ∶ ℓp → X such that ∥T∥ ≤ 21−1/q(1 + ε) and whenever S is
disjointness preserving, ∥T−S∥ ≥ Cq/(2−1/q3−(q−1)/q). In the particular case of X = Lq ,
we can have ∥T∥ ≤ 21−1/q and ∥T − S∥ ≥ 2−1/q .

Remark 8.4 Recall that there are no non-zero disjointness preserving operators
from Lp(0, 1) to Lq(0, 1), when p < q (see [1], and also Proposition 3.5.)
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Proof Follow the proof of Proposition 8.1. Pick N ∈ N so that

ε
2
>
⎧⎪⎪⎨⎪⎪⎩

N−1/q if∞ > q ≥ 2p,
(N−1(N + 1)2−q/p)1/q if 2p > q > p.

Let M = N(N + 1)/2. Fix δ ∈ (0, 1/4). By Krivine’s theorem for lattices (see [27]),
there exist disjoint positive norm one x1 , . . . , xM ∈ X so that for any α1 , . . . , αM ∈ C,

1
1 + δ

∥∑
i
α ix i∥ ≤ (∑

i
∣α i ∣q)

1/q ≤ (1 + δ)∥∑
i
α ix i∥ .

Deûne the operator T ∶ ℓN+1
p → X by setting Tδ i = N−1/q∑ j∈Fi x j , where (δ i) is the

canonical basis for ℓN+1
p . Clearly, T is positive. From the proof of Proposition 8.1,

∥T∥ ≤ (1 + δ)21/q′ and T is (1 + δ)ε/2 −DP.
It remains to show that if S∶ ℓN+1

p → X is disjointness preserving, then

max
1≤i≤N

∥(T − S)δ i∥ ≥ Cq/(3 ⋅ 2−1/q).

It is easy to see that any disjoint order bounded sequence in X is normnull. Hence
X is order continuous (see [23, §2.4]). _is, in turn, implies that any ideal in X is a
projection band. For x ∈ X, we shall denote by Px the band projection corresponding
to x. Let Pi = PSδ iPTδ i . If P is a projection, we use the shorthand P⊥ = I − P. By
the basic properties of band projections (see [23, §1.2]), Pi ’s are band projections and
PiPj = 0 if i /= j.

Recall that for 1 ≤ s ≤ M, Qs = {1 ≤ i ≤ N + 1 ∶ s ∈ Fi} and ∣Qs ∣ = 2. Let
y i s = Pixs , and note that y i s = 0 unless s ∈ Fi , or equivalently, i ∈ Qs . Also let
y0s = xs −∑i∈Qs

Pixs = (∑i∈Qs
Pi)⊥xs . _e elements y i s are disjoint. We have

N 1/q∥(T − S)δ i∥ ≥ N 1/q∥P⊥Sδ iPTδ i (Tδ i)∥
= ∥∑

s∈Fi
(xs − y i s)∥ = ∥∑

s∈Fi
(y0s + y i′s)∥ ,

where i′ is such that Qs = {i , i′}. By the lower q-estimate,

N∥(T − S)δ i∥q ≥ C
q
q ∑

s∈Fi
(∥y0s∥q + ∥y i′s∥q).

Consequently,

C
−q
q N

N+1

∑
i=1

∥(T − S)δ i∥q ≥
N+1

∑
i=1
∑
s∈Fi

(∥y0s∥q + ∥y i′s∥q)

=
M

∑
s=1
∑
i∈Qs

(∥y0s∥q + ∥y i′s∥q)

=
M

∑
s=1

(2∥y0s∥q + ∑
i∈Qs

∥y i s∥q) .

An easy computation shows that the inequality

2aq + bq + cq ≥ aq + bq + cq ≥ 31−q(a + b + c)q
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holds for any non-negative reals a, b, c. Hence

2∥y0s∥q + ∑
i∈Qs

∥y i s∥q ≥ 31−q(∥y0s∥ + ∑
i∈Qs

∥y i s∥)
q ≥ 31−q∥y0s + ∑

i∈Qs

y i s∥q = 31−q∥xs∥q .

_erefore,

C
−q
q N

N+1

∑
i=1

∥(T − S)δ i∥q ≥ 1
3q−1

M

∑
s=1

∥xs∥q = M
3q−1 .

_us, for some i,

∥(T − S)δ i∥q ≥
C

q
qM

3q−1N(N + 1) =
C

q
q

2 ⋅ 3q−1 .

_e particular case of X = Lq(µ) is more straightforward. In this case, Cq = 1 and
the x is satisfy ∥∑i α ix i∥ = (∑i ∣α i ∣q)

1/q
, that is,we can take δ = 0. Keeping the same

notation as before, we obtain:

N
N+1

∑
i=1

∥(T − S)δ i∥q ≥
M

∑
s=1

∑
i∈{0}∪Qs

∥y i s∥q

=
M

∑
s=1

∥ ∑
i∈{0}∪Qs

y i s∥
q

=
M

∑
i=1

∥xs∥q = M .

Hence, for some i, ∥(T − S)δ i∥q ≥ M/(N(N + 1)) = 1/2.

9 Modulus of an ε-DP Operator

By [23, §3.1], themodulus of a disjointness preserving operator T exists, and for any
x ≥ 0, ∣T ∣x = ∣Tx∣. It is easy to see that ∥∣T ∣∥ = ∥T∥, and that ∣T ∣ preserves disjointness.
Conversely, if ∣T ∣ exists and is disjointness preserving, then the same is true for T .
More generally, if ∣T ∣ is ε-DP, then T is ε-DP. Indeed, suppose ∣T ∣ is ε-DP, and pick
disjoint x and y:

∥ ∣Tx∣ ∧ ∣Ty∣∥ ≤ ∥ ∣T ∣∣x∣ ∧ ∣T ∣∣y∣∥ ≤ εmax{∥x∥, ∥y∥} .

For operators into Dedekind complete C(K) spaces we have a converse.

Proposition 9.1 Consider T ∈ B(E , F), where E and F are Banach lattices, and F is
an M-space. If T ∈ B(E , F) is ε-DP and themodulus ∣T ∣ exists, then ∣T ∣ is ε-DP.

Remark 9.2 Suppose, in Proposition 9.1, F is a Dedekind complete M-space, with
a strong order unit (equivalently, F = C(K), where K is a Stonian compact Hausdorò
space [20, §1.a–b]). _en any operator T ∈ B(E , F) has modulus ∣T ∣ and ∥∣T ∣∥ = ∥T∥
[29].
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Proof Recall that for any x ∈ E we have ∣T ∣∣x∣ = ⋁∣y∣≤∣x ∣ ∣Ty∣. Now given disjoint
x1 , x2, we have

∥ ∣ ∣T ∣x1∣ ∧ ∣ ∣T ∣x2∣ ∥ ≤ ∥ ∣T ∣ ∣x1∣ ∧ ∣T ∣ ∣x2∣∥

= ∥ ⋁
∣y1 ∣≤∣x1 ∣

∣Ty1∣ ∧ ⋁
∣y2 ∣≤∣x2 ∣

∣Ty2∣∥

= ∥ ⋁
∣y1 ∣≤∣x1 ∣

∣y2 ∣≤∣x2 ∣

∣Ty1∣ ∧ ∣Ty2∣∥ .

As F is an M-space,

∥ ⋁
∣y1 ∣≤∣x1 ∣

∣y2 ∣≤∣x2 ∣

∣Ty1∣ ∧ ∣Ty2∣∥ = sup
∣y1 ∣≤∣x1 ∣

∣y2 ∣≤∣x2 ∣

∥ ∣Ty1∣ ∧ ∣Ty2∣∥ .

Recall that T is ε-DP, hence

∥ ∣Ty1∣ ∧ ∣Ty2∣∥ ≤ εmax{∥y1∥, ∥y2∥} ≤ εmax{∥x1∥, ∥x2∥},

and therefore, ∥ ∣ ∣T ∣x1∣ ∧ ∣ ∣T ∣x2∣ ∥ ≤ εmax{∥x1∥, ∥x2∥}.

Incidentally, in the non-locally convex setting,we have some stability for themod-
ulus of an ε-DP operator.

Proposition 9.3 Let 0 < p ≤ 1/2 be a Banach lattice E and T ∶ ℓp → E be an ε-DP
operator. _emodulus ∣T ∣ (which is also bounded) is

√
ε∥T∥-DP.

Proof Let fn = Tδn , where (δn)∞n=1 form the canonical basis of ℓp . We have that
∣T ∣δn = ∣ fn ∣. Indeed, since δn is an atom, we have

∣T ∣δn = sup{∣Ty∣ ∶ ∣y∣ ≤ δn} = sup{∣Tλδn ∣ ∶ ∣λ∣ ≤ 1} = ∣Tδn ∣.

_erefore, ∣T ∣∶ ℓp → E is givenby ∣T ∣(∑n anδn) = ∑n an ∣ fn ∣ (whichdeûnes a bounded
operator). We claim that for n /= m,

(9.1) ∥ ∣an fn ∣ ∧ ∣bm fm ∣∥ ≤
√
ε∥T∥

√
∣an ∣∣bm ∣.

Indeed, as T is ε-DP, we have ∥ ∣an fn ∣ ∧ ∣bm fm ∣∥ ≤ ε(∣an ∣ ∨ ∣bm ∣). Also,

∥ ∣an fn ∣ ∧ ∣bm fm ∣∥ ≤ ∥an fn∥ ∧ ∥bm fm∥ ≤ ∥T∥ ∣an ∣ ∧ ∣bm ∣.

Assume without loss of generality that ∣an ∣ ≤ ∣bm ∣. _en

∥ ∣an fn ∣ ∧ ∣bm fm ∣∥ ≤ ε∣bm ∣ ∧ ∥T∥ ∣an ∣ ≤
√
ε∣bm ∣∥T∥∣an ∣,

establishing (9.1).
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Now let x , y ∈ ℓp be disjoint elements. We can write x = ∑i∈A a iδ i , y = ∑ j∈B b jδ j
with A∩ B = ∅. Taking (9.1) into account, we obtain

∥ ∣ ∣T ∣x∣ ∧ ∣ ∣T ∣y∣ ∥ ≤ ∥ ∣T ∣(∑
i∈A

∣a i ∣δ i) ∧ ∣T ∣(∑
j∈B

∣b j ∣δ j)∥

≤ ∥∑
i∈A
∑
j∈B

∣a i f i ∣ ∧ ∣b j f j ∣∥ ≤∑
i∈A
∑
j∈B

∥ ∣a i f i ∣ ∧ ∣b j f j ∣∥

≤∑
i∈A
∑
j∈B

√
ε∥T ∥

√
∣a i ∣ ∣b j ∣ =

√
ε∥T ∥

√
∥x∥ 1

2
∥y∥ 1

2

≤
√
ε∥T ∥

√
∥x∥p∥y∥p ≤

√
ε∥T ∥max{∥x∥p , ∥y∥p} .

_e result below shows that, in general, the ε-disjointness preserving properties
of T do not allow us to conclude anything about the ε-disjointness properties of ∣T ∣,
even if the latter exists.

Proposition 9.4 For every ε > 0, there exists an operator T ∈ B(ℓ2) such that ∥T∥ ≥ 1,
∥ ∣T ∣∥ ≤ 2, and T is ε-DP, yet ∣T ∣ is not c-DPwhenever c ≤ 1/2. Moreover, ∥T − Iℓ2∥ < ε,
while ∥∣T ∣ −U∥ ≥ 1/(3

√
2) whenever U is disjointness preserving.

Start by observing that the property of being ε-DP is preserved by direct sums.

Lemma 9.5 Suppose (E i)i∈N, (Fi)i∈N are Banach lattices, U is a Banach space with
a 1-unconditional basis, and the operators Ti ∈ B(E i , Fi) are such that supi ∥Ti∥ <∞.
Deûne the Banach lattices E = (⊕i E i)U and F = (⊕i Fi)U , and the operator T =
⊕i Ti ∈ B(E , F). If Ti is ε-DP for every i ∈ N, then T is 2ε-DP.

Proof Consider disjoint x = (x i)i∈N , y = (y i)i∈N ∈ E (here x i , y i ∈ E i , for every
i ∈ N). By [20, Proposition 1.d.2], we have

∥ ∣Tx∣ ∧ ∣Ty∣∥ = ∥(∥∣Tix i ∣ ∧ ∣Ti y i ∣∥) i∥U

≤ ε∥(max{∥x i∥, ∥y i∥})i∥U

≤ ε∥(∥x i∥ + ∥y i∥)i∥U

≤ 2εmax{∥x∥, ∥y∥} .

Proof of Proposition 9.4 Consider the operators S i ∈ B(ℓ2i2 ), given by unitary
Walsh matrices. It is known that ∣S i ∣ = 2i/2ξ i ⊗ ξ i , where ξ i is the unit vector
2−i/2∑2i

j=1 e j (e1 , . . . , e2i is the canonical basis of ℓ2
i

2 ). Let Ti = I
ℓ2

i
2
+ 2−i/2S i . Pick

k ∈ N so that 2−k/6 < ε/6. Identify (⊕i≥k ℓ2
i

2 )2 with ℓ2. _enwe can view T =⊕i≥k Ti
as an operator on ℓ2. We show that T has the required properties.

Indeed, for any i, ∥Ti∥ ≥ 1 − 2−i/2. Hence ∥T∥ = supi ∥Ti∥ ≥ 1. Furthermore,
∥T − Iℓ2∥ = supi 2

−i/2∥S i∥ ≤ ε. _e operator ∣T ∣ =⊕i(Iℓ2i2 + ξ i ⊗ ξ i) has norm 2.
Now ûx i > k, and consider disjoint vectors

x = 2−(i−1)/2
2i−1

∑
j=1
e j and y = 2−(i−1)/2

2i

∑
j=2i−1+1

e j
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in the unit ball of ℓ2
i

2 . _en ∣T ∣x = ∣T ∣y = 2−1/2ξ i . Hence ∥ ∣ ∣T ∣x ∣ ∧ ∣ ∣T ∣y ∣ ∥ = 2−1/2 .
_us, ∣T ∣ cannot be c-DP for c < 1/2.

To prove that T is ε-DP, it suõces to prove (in light of Lemma 9.5) that for any
i > k, I + 2−i/2S i is ε/2-DP. If x , y ∈ B(ℓ2i2 ) are disjoint, then

∣ ( I + 2−i/2S i)x∣ ∧ ∣ ( I + 2−i/2S i) y∣ ≤ ( ∣x∣ + 2−i/2∣S ix∣) ∧ ( ∣y∣ + 2−i/2∣S i y∣)
≤ ∣x∣ ∧ 2−i/2∣S i y∣ + 2−i/2∣S ix∣ ∧ ∣y∣ + 2−i/2∣S ix∣ ∧ 2−i ∣S i y∣.

Hence

∥ ∣ (I + 2−i/2S i)x∣ ∧ ∣ (I + 2−i/2S i)y∣ ∥ ≤ min{2−i/2∥x∥, ∥y∥} +min{2−i/2∥y∥, ∥x∥}
+min{2−i/2∥x∥, 2−i/2∥y∥}

≤ 3 ⋅ 2−i/2 ≤ ε/2,
by our choice of k.
Finally, suppose U ∈ B(ℓ2) is a disjointness preserving operator. Let V = ∣T ∣ −U ,

and suppose, for the sake of contradiction, that ∥V∥ < 1/(3
√

2). As before, take x =
2−(i−1)/2∑2i−1

j=1 e j and y = 2−(i−1)/2∑2i
j=2i−1+1 e j . _en ∥ ∣ ∣T ∣x ∣ ∧ ∣ ∣T ∣y ∣ ∥ = 2−1/2. On

the other hand,

∣T ∣x ∧ ∣T ∣y = (Ux + Vx) ∧ (Uy + Vy) ≤ (∣Ux∣ + ∣Vx∣) ∧ (∣Uy∣ + ∣Vy∣)
≤ ∣Ux∣ ∧ ∣Vy∣ + ∣Vx∣ ∧ ∣Uy∣ + ∣Vx∣ ∧ ∣Vy∣.

Hence 1
√

2
= ∥ ∣ ∣T ∣x ∣ ∧ ∣ ∣T ∣y ∣ ∥ ≤ ∥Vy∥ + 2∥Vx∥ ≤ 3∥V∥ < 1

√

2
, yielding a contradic-

tion.

10 Lattice Homomorphisms and Operators Preserving p-estimates

Let us now consider positive operators being “almost lattice homomorphisms.” We
say that an operator T ∈ B(E , F) is an ε-lattice homomorphism (ε-LH for short) if,
for any x ∈ E, ∥ ∣T ∣x∣ ∣ − ∣Tx∣∥ ≤ ε∥x∥. A positive operator T ∈ B(E , F) is said to be
ε-minimum preserving (ε-MP) if, for any positive x , y ∈ B(E),

∥(Tx) ∧ (Ty) − T(x ∧ y)∥ ≤ ε.
It is known [23, §3.1] that a positive operator is disjointness preserving if and only
if it is 0-LH, if and only if it is 0-MP; in this case, it is a lattice homomorphism. In
the “approximate” case, the notions introduced above are connected to being ε′-DP
as well (for some ε′ depending on ε).

Proposition 10.1 For Banach lattices E and F, and T ∈ B(E , F), the following hold.
(i) If T is positive, then T is ε-MP if and only if it is ε-DP.
(ii) Any ε-DP operator between real Banach lattices is a 2ε-LH.
(iii) If T is ε-LH, then T is 4ε-DP in the real case, or 16ε-DP in the complex case. If, in

addition, T is positive, then it is ε-DP.

Proof (i) If T is ε-MP, then it is ε-DP, by Proposition 2.1. To prove the converse,
consider x , y ∈ B(E)+. _en x0 = x − x ∧ y and y0 = x − x ∧ y are positive and
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disjoint, and

Tx ∧Ty−T(x ∧ y) = (Tx0 +T(x ∧ y))∧ (Ty0 +T(x ∧ y))−T(x ∧ y) = Tx0 ∧Ty0 .

If T is ε-DP, then ∥Tx ∧ Ty − T(x ∧ y)∥ = ∥Tx0 ∧ Ty0∥ ≤ ε.
(ii) Suppose T is a ε-DP map between real Banach lattices. _en, for any x ∈ E,

∣ ∣Tx∣ − ∣T ∣x∣ ∣ ∣ = ∣ ∣Tx+ − Tx−∣ − ∣Tx+ + Tx−∣∣ = 2( ∣Tx+∣ ∧ ∣Tx−∣) .

As max{∥x+∥, ∥x−∥} ≤ ∥x∥, and x+ ⊥ x− we have ∥∣Tx∣ − ∣T ∣x∣∣∥ ≤ 2ε∥x∥.
(iii) Suppose T is ε-LH, and pick disjoint positive y, z ∈ B(E). Let x = y − z. As in

part (ii), we obtain

∥ ∣Ty∣ ∧ ∣Tz∣∥ = 1
2
∥ ∣Tx∣ − ∣T ∣x∣ ∣ ∥ ≤ ε

2
∥x∥ ≤ ε

2
(∥y∥ + ∥z∥) ≤ ε.

To ûnish the proof, apply Proposition 2.1.

In the rest of the section we consider operators that almost preserve estimates of
the form (∣x∣p + ∣y∣p)1/p and their connections with ε-DP operators and lattice ho-
momorphisms. _is approach is in part motivated by Corollary 3.3. In particular,
this will allow us to extend some of the previous results to the complex setting (see
Proposition 10.5.)

Given 1 ≤ p ≤ ∞, a positive operator between Banach lattices T ∶ E → F is said to
be ε preserving p-estimates if for every x , y ∈ E we have

∥T(∣x∣p + ∣y∣p)
1
p − (∣Tx∣p + ∣Ty∣p)

1
p ∥ ≤ ε(∥x∥ + ∥y∥),

while for p =∞, we would have

∥T(∣x∣ ∨ ∣y∣) − (∣Tx∣ ∨ ∣Ty∣)∥ ≤ ε(∥x∥ + ∥y∥).
It is easy to see that an operator is ε preserving 1-estimates if and only if it is an

ε-lattice homomorphism. More generally, we have the following proposition.

Proposition 10.2 Let E and F be real Banach lattices. If T ∈ B(E , F) is a positive
ε-DP operator, then for every 1 < p < ∞, T is K log2(ε(∥T∥ + 1))−1(ε(∥T∥ + 1))1/2

preserving p-estimates (where K is a universal constant).

Recall that according to Proposition 10.1 (i), a positive operator is ε-MP if and only
if it is ε-DP. Before giving the proof, we need a preliminary lemma.

Lemma 10.3 If T ∈ B(E , F) is a positive ε-MP operator, then for any x1 , . . . , xn ∈
B(E+) we have ∥T(⋁n

i=1 x i) −⋁n
i=1 Tx i∥ ≤ ε⌈log2 n⌉n.

Proof It suõces to show that for any m ∈ N, ∥T(⋁2m
i=1 x i) − ⋁2m

i=1 Tx i∥ ≤ εm2m−1.
Proceed by induction on m. _e case of m = 1 is contained in the deûnition of T
being ε-MP. To deal with the induction step, suppose the statement holds for m, and
prove it for m + 1. For j = 0, 1 let

y j =
2m j+2m

⋁
i=2m j+1

x i and z j = Ty j −
2m j+2m

⋁
i=2m j+1

Tx i .
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By the induction hypothesis, ∥z j∥ ≤ εm2m−1 (and it is easy to see that z j ≥ 0). Also,

∥T(y0 ∨ y1) − (Ty0) ∨ (Ty1)∥ ≤ εmax{∥y0∥, ∥y1∥} ≤ 2mε.

We clearly have

T(
2m

⋁
i=1

x i) −
2m

⋁
i=1

Tx i = T(y0 ∨ y1) − (Ty0 − z0) ∨ (Ty1 − z1)

≤ (T(y0 ∨ y1) − (Ty0) ∨ (Ty1)) + z0 + z1 .

Hence,

∥T(
2m

⋁
i=1

x i) −
2m

⋁
i=1

Tx i∥ ≤ ∥T(y0 ∨ y1) − (Ty0) ∨ (Ty1)∥ + (∥z0∥ + ∥z1∥).

From the above, ∥⋁n
i=1 Tx i − T(⋁n

i=1 x i)∥ ≤ 2mε + 2 ⋅m2m−1ε = (m + 1)2mε.

We also need a simple calculus result.

Lemma 10.4 Suppose ϕ is a monotone continuous function on an interval [a, b],
continuously diòerentiable on (a, b). _en the arclength of the graph of ϕ does not
exceed b − a + ∣ϕ(b) − ϕ(a)∣.

Proof For the arclength in question we have

L = ∫
b

a

√
1 + (ϕ′(t))2 dt ≤ ∫

b

a
( 1 + ∣ϕ′(t)∣) dt.

_emonotonicty of ϕ implies ∫
b
a ∣ϕ′(t)∣ dt = ∣ϕ(b) − ϕ(a)∣.

Proof of Proposition 10.2 For any u and v in a Banach lattice, if 1/p + 1/q = 1, then
(see [20, 1.d])

( ∣u∣p + ∣v∣p) 1/p = ⋁{α∣u∣ + β∣v∣ ∶ α, β ∈ [0, 1], αq + βq = 1} .

For any N ∈ N, let {(x j , y j) ∶ j = 0, 1, . . .N} be a collection of points satisfying
x j , y j ∈ [0, 1], xq

j +y
q
j = 1 and such that for any (α, β)with α, β ∈ [0, 1] and αq+βq = 1,

there exists 0 ≤ j ≤ N forwhichmax{∣α−x j ∣, ∣β− y j ∣} ≤ Cq/N ,where Cq is the length
of the curve {(x , y) ∶ x , y ∈ [0, 1], xq + yq = 1}. By Lemma 10.4, Cq ≤ 2. _us, for any
(α, β) with α, β ∈ [0, 1] and αq + βq = 1, there exists j so that

α∣u∣ + β∣v∣ ≤ (x j ∣u∣ + y j ∣v∣) +
2
N

(∣u∣ + ∣v∣).

Taking the supremum, we obtain

⋁{α∣u∣ + β∣v∣ ∶ α, β ∈ [0, 1], αq + βq = 1} ≤
N
⋁
j=0

(x j ∣u∣ + y j ∣v∣) +
2
N

(∣u∣ + ∣v∣),

and by the triangle inequality we get

∥(∣u∣p + ∣v∣p)1/p −
N
⋁
j=0

(x j ∣u∣ + y j ∣v∣)∥ ≤ 2
N

(∥u∥ + ∥v∥).

https://doi.org/10.4153/CJM-2016-020-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-020-x


682 T. Oikhberg and P. Tradacete

By Lemma 10.3,

∥T
N
⋁
j=0

(x j ∣x∣ + y j ∣y∣) −
N
⋁
j=0

(x jT ∣x∣ + y jT ∣y∣)∥ ≤ ε2
1
p ⌈log2(N + 1)⌉(N + 1).

By Proposition 10.1 (ii), T is ε-LH, hence ∥T ∣x∣ − ∣Tx∣∥, ∥T ∣y∣ − ∣Ty∣∥ ≤ ε. Hence

∥
N
⋁
j=0

(x jT ∣x∣ + y jT ∣y∣) −
N
⋁
j=0

(x j ∣Tx∣ + y j ∣Ty∣)∥ ≤ 2(N + 1)ε.

_us, by the triangle inequality,

∥T(∣x∣p + ∣y∣p)1/p − ( ∣Tx∣p + ∣Ty∣p) 1/p∥

≤ ∥T(∣x∣p + ∣y∣p)1/p − T
N
⋁
j=0

(x j ∣x∣ + y j ∣y∣)∥

+ ∥T
N
⋁
j=0

(x j ∣x∣ + y j ∣y∣) −
N
⋁
j=0

(x jT ∣x∣ + y jT ∣y∣)∥

+ ∥
N
⋁
j=0

(x jT ∣x∣ + y jT ∣y∣) −
N
⋁
j=0

(x j ∣Tx∣ + y j ∣Ty∣)∥

+ ∥
N
⋁
j=0

(x j ∣Tx∣ + y j ∣Ty∣) − (∣Tx∣p + ∣Ty∣p)1/p∥

≤ 4∥T∥
N

+ ε(N + 1)(2
1
p ⌈log2(N + 1)⌉ + 2) .

To ûnish the proof, select N ∼ (ε(∥T∥ + 1))−1/2.

As a consequence of this result, we can now give the complex version of Proposi-
tion 10.1 (ii). We follow [2] in representing a complex Banach lattice X as a complexi-
ûcation of its real part XR. More precisely, any x ∈ X can be represented as x = a+ ιb,
with a, b ∈ XR. _en ∣x∣ = (a2 + b2)1/2.

Proposition 10.5 Suppose E and F are complex Banach lattices, and T ∈ B(E , F) is
a positive ε-DP operator. _en T is a C log2(ε(∥T∥+ 1))−1(ε(∥T∥+ 1))1/2-LH (with C
a universal constant).

Proof Consider T ∈ B(E , F) as in the statement; we show that, for any x ∈ B(E),

∥T ∣x∣ − ∣Tx∣∥ ≤ C log2(ε(∥T∥ + 1))−1(ε(∥T∥ + 1))1/2 .

By Proposition 10.1 (i, iii), T ∣ER is 2ε-LH. Hence by Proposition 10.2, it follows that
T ∣ER is K log2(2ε(∥T∥ + 1))−1(2ε(∥T∥ + 1))1/2 preserving 2-estimates.

Now write x = a + ιb, where a and b belong to ER. We have that

∥T ∣x∣ − ∣Tx∣∥ = ∥T(a2 + b2)1/2 − ((Ta)2 + (Tb)2)1/2∥
≤ 2K log2(2ε(∥T∥ + 1))−1(2ε(∥T∥ + 1))1/2 .

Motivated by Lemma 10.3 we will consider next a strengthening of operators that
are ε preserving∞-estimates. For ε > 0, we say that a positive operator T ∈ B(E , F)
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(E and F are Banach lattices) is ε-strongly maximum preserving (ε-SMP for short) if,
for any x1 , . . . , xn ∈ B(E)+, we have ∥T(⋁n

i=1 x i) −⋁n
i=1 Tx i∥ ≤ ε.

We say that T ∈ B(E , F) is an ε-strongly disjointness preserving (ε-SDP) if, for any
mutually disjoint x1 , . . . , xn ∈ B(E), we have ∥∑n

i=1 ∣Tx i ∣ − ⋁n
i=1 ∣Tx i ∣∥ ≤ ε. Clearly,

any ε-SMP positive operator is also ε-SDP.
Note that these properties aremuch harder to satisfy. For instance, it is easy to see

that any operator T is ∥T∥-DP. On the other hand, for a pair of Banach lattices (E , F),
the following are equivalent.
(1) E is lattice isomorphic to an M-space.
(2) _ere exists C > 0 so that any T ∈ B(E , F)+ is C∥T∥-SDP.

To prove (1)⇒ (2), suppose E is an M-space. Fix a positive operator T ∶ E → F, and
consider mutually disjoint x1 , . . . , xn ∈ B(E). _en

∥∑
i
∣Tx i ∣∥ ≤ ∥T∑

i
∣x i ∣∥ ≤ ∥T∥∥∑

i
∣x i ∣∥ = ∥T∥max

i
∥x i∥,

which implies (2).
For (2)⇒ (1), recall that, by [23, §2.1, 2.8], the following are equivalent:

● E is lattice isomorphic to an M-space;
● there exists a constant K so that the inequality ∥∑i x i∥ ≤ K maxi ∥x i∥ holds when-
ever x1 , . . . , xn ∈ E aremutually disjoint;

● there exists a constant K so that the inequality ∥∑i x∗i ∥ ≥ K−1∑i ∥x∗i ∥ holdswhen-
ever x∗1 , . . . , x∗n ∈ E∗ aremutually disjoint.

Suppose now that (1) fails; we show that (2) fails as well.
If (1) fails, then for every C > 1 there exist mutually disjoint non-zero x∗1 , . . . , x∗n ∈

E∗
+
, satisfying ∥∑i x∗i ∥ < (C+2)−1∑i ∥x∗i ∥. Without loss of generality,we can assume

1 = maxi ∥x∗i ∥. Applying [23,Proposition 1.4.13] to x∗i /∥x∗i ∥,we see that, for any σ > 0,
there existmutually disjoint x1 , . . . , xn ∈ B(E)+ so that ⟨x∗i , x i⟩ > ∥x∗i ∥−n−1 for any i.

Now let x∗ = ∑i x∗i ; pick a norm one positive y ∈ F, and deûne T ∶ E → span[y] ⊂
F∶ x ↦ ⟨x∗ , x⟩y. Clearly ∥T∥ = ∥x∗∥. On the other hand, maxi ∥x i∥ = 1, ⋁i Tx i ≤ y,
and∑i Tx i = (∑i ∑ j⟨x∗i , x j⟩) y ≥ (∑i ∥x∗i ∥ − 1) y. Consequently, if T is γ∥T∥-SDP,
then

γ ≥ ∑i ∥x∗i ∥ − 2
∥∑i x∗i ∥

> C .

As C can be arbitrarily large, we are done.

_eorem 10.6 Suppose E and F are Banach lattices, and T ∈ B(E , F) is a positive
ε-SDP operator.
(i) Suppose E is ûnite dimensional. _en there exists a disjointness preserving S ∈

B(E , F) so that 0 ≤ S ≤ T , and ∥T − S∥ ≤ 2ε.
(ii) Suppose the order on E is determined by its 1-unconditional basis, while F has

the Fatou property with constant f. _en there exists a disjointness preserving
S ∈ B(E , F) so that 0 ≤ S ≤ T , and ∥T − S∥ ≤ 2fε.

Remark 10.7 By Corollary 3.3, if a positive operator T is ε-DP, then for any mutu-
ally disjoint x1 , . . . , xn ∈ B(E), we have ∥∑n

i=1 ∣Tx i ∣ −⋁n
i=1 ∣Tx i ∣∥ ≤ 256ε∥∑i x i∥. In
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particular, thisholds for the operatorT fromProposition 8.1. However, in light of_e-
orem 10.6, if T is σ-SDP, then σ > 1/4. _us, there is no function f ∶ (0,∞)→ (0,∞),
with limt→0 f (t) = 0, so that being ε-DP implies being f (ε)-SDP.

Proof (i) It is well known [28, Corollary 4.20] that X has a basis of atoms, which we
denote by (δ i)n

i=1 (n = dimX), and they form a 1-unconditional basis. Use scaling to
assume that T is contractive. Let f i = Tδ i . As in the proof of_eorem 4.1, deûne the
function ϕn ∶Rn → R by setting

ϕn ∶ (t1 , . . . , tn)↦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ∣t1∣ ≤ ⋁n
i=2 ∣t i ∣,

2(∣t1∣ −⋁n
i=2 ∣t i ∣) if ⋁n

i=2 ∣t i ∣ ≤ ∣t1∣ ≤ 2⋁n
i=2 ∣t i ∣,

∣t1∣ if ∣t1∣ ≤ ⋁n
i=2 ∣t i ∣.

For 1 ≤ i ≤ n, set g i = ϕn( f i , f i+1 , . . . , fn , f1 , . . . , f i−1). We claim that the operator
S∶ E → F∶ δ i ↦ g i has the desired properties.

Note that 0 ≤ ϕn(t1 , . . . , tn) ≤ t1. Hence 0 ≤ g i ≤ f i , which shows that 0 ≤ S ≤ T .
To show that S is disjointness preserving, consider i /= j. Note that

ϕn(t i , t i+1 , . . . , tn , t1 , . . . , t i−1) ∧ ϕn(t j , t j+1 , . . . , tn , t1 , . . . , t j−1) = 0,

for any (t1 , . . . , tn) ∈ Rn . Hence g i and g j are disjoint.
Now note that ∥T − S∥ ≤ ∥(T − S)∑n

i=1 δ i∥ = ∥∑n
i=1( f i − g i)∥. It therefore suõces

to show that

(10.1)
n

∑
i=1

( f i − g i) ≤ 2(
n

∑
i=1
f i −

n
⋁
i=1
f i) .

Indeed, applying the deûnition of ε-SDP to x i = δ i , we obtain ∥∑n
i=1 f i −⋁n

i=1 f i∥ ≤ ε.
To establish (10.1), by functional calculus it suõces to show that

(t1 − ϕn(t1 , t2 , . . . , tn))+(t2 − ϕn(t2 , t3 , . . . , tn , t1)) + ⋅ ⋅ ⋅

+(tn − ϕn(tn , t1 , . . . , tn−1)) ≤ 2(
n

∑
i=1

t i −
n
⋁
i=1

t i) ,

for any t1 , . . . , tn ∈ Rn
+
. By relabeling, we can assume that t1 ≥ t2 ≥ ⋅ ⋅ ⋅ ≥ tn . In the

le�-hand side, the i-th term equals t i , while the ûrst term does not exceed t2. _us,
the le�-hand side does not exceed 2t2+ t3+⋅ ⋅ ⋅+ tn On the other hand, the right-hand
side equals 2∑n

i=2 t i .
(ii) Now denote the basis of X by (δ i)∞i=1, and set f i = Tδ i . With the notation of

(i), set g(n)i = ϕn( f i , f i+1 , . . . , fn , f1 , . . . , f i−1). Note that, for any t1 , . . . , tn+1 ∈ R+,
we have ϕn(t1 , t2 , . . . , tn) = ϕn+1(t1 , t2 , . . . , tn , 0) ≥ ϕn+1(t1 , t2 , . . . , tn , tn+1). Hence
we have f i ≥ g(i)i ≥ g(i+1)

i ≥ g(i+2)
i ≥ ⋅ ⋅ ⋅ ≥ 0. By the σ-Dedekind completeness of

F, g i = limn g(n)i exists for every i. Deûne S∶ E → F by setting Sδ i = g i . Clearly
0 ≤ S ≤ T . Furthermore, S is disjointness preserving. Indeed, if i /= j, and n ≥ i ∨ j,
then for any t1 , . . . , tn ∈ R+,

ϕn(t i , t i+1 , . . . , tn , t1 , . . . , t i−1) ∧ ϕn(t j , t j+1 , . . . , tn , t1 , . . . , t j−1) = 0.

Hence g(n)i ∧ g(n)j = 0.
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To estimate ∥T − S∥, note that

∥T − S∥ ≤ sup
m

∥(T − S)
m

∑
i=1
δ i∥ = sup

m
∥

m

∑
i=1

( f i − g i)∥ .

For each m, ∥ ∑m
i=1( f i − g i)∥ ≤ f supn ∥ ∑m

i=1( f i − g(n)i )∥ . By the proof of part (i),

∥
m

∑
i=1

( f i − g(n)i )∥ ≤ 2ε,

and the proof is complete.

References

[1] Y. Abramovich, Operators preserving disjointness on rearrangement invariant spaces. Paciûc J.
Math. 148(1991) 201–206. http://dx.doi.org/10.2140/pjm.1991.148.201

[2] Y. Abramovich and C. Aliprantis, An invitation to operator theory. Graduate Studies in
Mathematics 50. American Mathematical Society, Providence, RI, 2002.
http://dx.doi.org/10.1090/gsm/050

[3] C. Aliprantis and O. Burkinshaw, Positive operators. Springer, Dordrecht, 2006.
[4] D. Alspach, Small into isomorphisms on Lp spaces. Illinois J. Math. 27(1983), 300–314.
[5] J. Araujo, Linear biseparating maps between spaces of vector-valued diòerentiable functions and

automatic continuity. Adv. Math. 187(2004), 488–520. http://dx.doi.org/10.1016/j.aim.2003.09.007
[6] J. Araujo and J. Font, Stability of weighted composition operators between spaces of continuous

functions. J. London Math. Soc. 79(2009), 363–376. http://dx.doi.org/10.1112/jlms/jdn079
[7] , Stability of weighted point evaluation functionals. Proc. Amer. Math. Soc. 138(2010),

3163–3170. http://dx.doi.org/10.1090/S0002-9939-10-10214-7
[8] , On the stability index for weighted composition operators. J. Approx. _eory 162(2010),

2136–2148. http://dx.doi.org/10.1016/j.jat.2010.06.006
[9] W. Arendt, Spectral properties of Lamperti operators. Indiana Univ. Math. J. 32(1983), 199–215.

http://dx.doi.org/10.1512/iumj.1983.32.32018
[10] C. Bennett and R. Sharpley, Interpolation of operators. Pure and AppliedMathematics 129.

Academic Press, Boston,MA, 1988.
[11] N. L. Carothers, A short course on Banach space theory. London Mathematical Society Student

Texts 64. Cambridge University Press, Cambridge, 2005.
[12] J. Diestel, Geometry of Banach spaces–selected topics. Lecture Notes in Mathematics 485.

Springer-Verlag, Berlin-New York, 1975
[13] G. Dolinar, Stability of disjointness preserving mappings. Proc. Amer. Math. Soc. 130(2002),

129–138. http://dx.doi.org/10.1090/S0002-9939-01-06023-3
[14] L. E. Dor, On projections in L1 . Ann. ofMath. (2) 102(1975), no. 3, 463–474.

http://dx.doi.org/10.2307/1971039
[15] G. Godefroy, Renormings of Banach spaces. In: Handbook of the geometry of Banach spaces,

Vol. I. North-Holland, Amsterdam, 2001, pp. 781–835.
http://dx.doi.org/10.1016/S1874-5849(01)80020-6

[16] C. B. Huijsmans, Disjointness preserving operators on Banach lattices. In: Operator theory in
function spaces and Banach lattices. Oper. _eory Adv. Appl. 75. Birkhäuser, Basel, 1995,
pp. 173–189.

[17] R. Kantrowitz andM. Neumann, Disjointness preserving and local operators on algebras of
diòerentiable functions. Glasg. Math. J. 43(2001), 295–309.
http://dx.doi.org/10.1017/S0017089501020134

[18] , Approximation by weighted composition operators on C(X). Math. Proc. R. Ir. Acad.
108(2008), 119–135. http://dx.doi.org/10.3318/PRIA.2008.108.2.119

[19] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Ergebnisse der Mathematik und ihrer
Grenzgebiete 92. Springer-Verlag, Berlin, 1977.

[20] Classical Banach spaces. II. Ergebnisse der Mathematik und ihrer Grenzgebiete 97.
Springer-Verlag, Berlin, 1979.

[21] D. Leung, Biseparating maps on generalized Lipschitz spaces. StudiaMath. 196(2010), 23–40.
http://dx.doi.org/10.4064/sm196-1-3

https://doi.org/10.4153/CJM-2016-020-x Published online by Cambridge University Press

http://dx.doi.org/10.2140/pjm.1991.148.201
http://dx.doi.org/10.1090/gsm/050
http://dx.doi.org/10.1016/j.aim.2003.09.007
http://dx.doi.org/10.1112/jlms/jdn079
http://dx.doi.org/10.1090/S0002-9939-10-10214-7
http://dx.doi.org/10.1016/j.jat.2010.06.006
http://dx.doi.org/10.1512/iumj.1983.32.32018
http://dx.doi.org/10.1090/S0002-9939-01-06023-3
http://dx.doi.org/10.2307/1971039
http://dx.doi.org/10.1016/S1874-5849(01)80020-6
http://dx.doi.org/10.1017/S0017089501020134
http://dx.doi.org/10.3318/PRIA.2008.108.2.119
http://dx.doi.org/10.4064/sm196-1-3
https://doi.org/10.4153/CJM-2016-020-x


686 T. Oikhberg and P. Tradacete

[22] Y.-F. Lin andN.-C.Wong,_e structure of compact disjointness preserving operators on continuous
functions. Math. Nachr. 282(2009), 1009–1021. http://dx.doi.org/10.1002/mana.200610786

[23] P. Meyer-Nieberg, Banach lattices. Springer-Verlag, Berlin, 1991.
http://dx.doi.org/10.1007/978-3-642-76724-1

[24] V. Milman and G. Schechtman, Asymptotic theory of ûnite-dimensional normed spaces. Lecture
Notes in Mathematics 1200. Springer-Verlag, Berlin, 1986.

[25] T. Oikhberg, A. Peralta, and D. Puglisi, Automatic continuity of orthogonality or disjointness
preserving bijections. Rev. Mat. Complut. 26(2013), 57–88.
http://dx.doi.org/10.1007/s13163-011-0089-0

[26] H. H. Schaefer, Banach lattices and positive operators. Die Grundlehren der mathematischen
Wissenscha�en 215. Springer-Verlag, Berlin (1974).

[27] A. Schep, Krivine’s theorem and the indices of a Banach lattice. In: Positive operators and
semigroups on Banach lattice (Curacao, 1990). Acta Appl. Math. 27(1992), 111–121.
http://dx.doi.org/10.1007/BF00046642

[28] H.-U. Schwarz, Banach lattices and operators. Teubner-Texte zur Mathematik 71. Teubner,
Leipzig, 1984.

[29] A. Wickstead, Regular operators between Banach lattices. In: Positivity. Trends Math. Birkhäuser,
Basel, 2007, pp. 255–279. http://dx.doi.org/10.1007/978-3-7643-8478-4_9

Dept. ofMathematics, University of Illinois, Urbana IL 61801, USA
e-mail: oikhberg@illinois.edu

Mathematics Department, Universidad Carlos III deMadrid, E-28911 Leganés,Madrid, Spain
e-mail: ptradace@math.uc3m.es

https://doi.org/10.4153/CJM-2016-020-x Published online by Cambridge University Press

http://dx.doi.org/10.1002/mana.200610786
http://dx.doi.org/10.1007/978-3-642-76724-1
http://dx.doi.org/10.1007/s13163-011-0089-0
http://dx.doi.org/10.1007/BF00046642
http://dx.doi.org/10.1007/978-3-7643-8478-4_9
mailto:oikhberg@illinois.edu
mailto:ptradace@math.uc3m.es
https://doi.org/10.4153/CJM-2016-020-x

