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Almost Disjointness Preservers

Timur Oikhberg and Pedro Tradacete

Abstract. 'We study the stability of disjointness preservers on Banach lattices. In many cases, we
prove that an “almost disjointness preserving” operator is well approximable by a disjointness pre-
serving one. However, this approximation is not always possible, as our examples show.

1 Introduction

Recall that an operator T between Banach lattices E and F is called disjointness pre-
serving (DP for short) if Tx 1 Ty whenever x L y. Such operators have been in-
vestigated intensively, and are known to possess many remarkable properties (see [9],
[23, Chapter 3], or the survey paper [16]). For instance, it is known that any DP oper-
ator on C(K) is a weighted composition [23, Section 3.1]. A similar result was shown
for DP maps on Kéthe spaces [25]. For many other kinds of spaces, the general form
of a DP map is also known [5,17,21]. Compact DP maps on C(K) have been described
in [22]. Moreover, the inverse of a DP map is again DP [9].

In this paper, we investigate the “stability” of being disjointness preserving. To be
more specific, suppose E and F are Banach lattices. We say that an operator T:E - F
is e-disjointness preserving (e-DP for short) if for any disjoint x, y € E,

ITx[ AITy|| < emax{]x], | y]}-

Note that 0-DP operators are precisely the disjointness preserving operators.

Note that if T is e-DP, then for any scalar A, AT is |A|e-DP. Clearly, every operator
T is | T||-DP, so the above notion is only interesting for € < || T|.

The goal of this paper is to investigate the properties of e-DP operators, and fur-
thermore, to determine whether such operators can be approximated by disjointness
preserving ones. More precisely, for what e-DP operators T does there exist a DP map
Swith |T -S| < ¢(e, | T|), where lim,_.o ¢(¢, ) = 0 for every #?

This question has been considered previously on spaces of continuous functions,
namely, G. Dolinar [13] (and later J. Araujo and J. Font [6-8], as well as R. Kantrowitz
and M. Neumann [18]) considered a formally different notion of almost disjointness
preserving operators between C(K) spaces. More precisely, suppose E = C(Kg) and
F = C(KF). We say that T: E — F is Dolinar € — DP if

[(Tx)(Ty)| < ellx[]yl
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for any disjoint x and y. It is easy to see that if T: C(Kg) — C(KF) is Dolinar &-DP,
then it is /£ — DP; and, in the converse direction, if T: C(Kg) — C(KF) is e-DP, then
it is Dolinar | T'||e-DP. Improving the results of [13], Arajo and Font [6]showed that if
T is a Dolinar ¢ — DP contraction (0 < € < 2/17), then there exists a (disjointness pre-
serving) weighted composition operator S so that | T — S|| < y/17¢/2. They improved
on this for linear functionals [7].

The paper is organized as follows: Section 2 is devoted to collecting basic facts
about e-DP operators. In Section 3, we establish a probabilistic inequality (to be used
throughout our work), and list some of its consequences.

In Section 4 we show that positive e-DP operators from ¢, or ¢ into a Banach lattice
with the Fatou property can be nicely approximated by DP operators (Theorem 4.1).
Our main technical tool is an inequality from Lemma 3.1, which may be of interest in
its own right.

In Section 5, we show that any ¢-DP operator from a symmetric sequence space
into a o-Dedekind complete C(K) space can be approximated by DP maps (Theo-
rem 5.1).

Section 6 is devoted to proving that any positive e-DP operator from £, into L,
can be approximated by a DP one (Theorems 6.1 and 6.2). In Section 7, we prove
similar approximation results for operators from a sequence space with a shrinking
basis to L;.

In Section 8 we show that for 1 < p < g < oo and any ¢ > 0, there exists a positive
&-DP contraction T: €, — £, so that | T -S| > 1/2 for any DP map S (Proposition 8.1).
Similar results hold for operators from ¢, into a certain class of Banach lattices, in-
cluding L, (Proposition 8.3).

Section 9 deals with the connections between the properties of an operator and
its modulus. We start by observing that if T € B(E, F) is regular and |T| is &-DP,
then the same holds for T. Under some conditions on E and F, the converse is true
(Proposition 9.1). In general, Proposition 9.4 provides a counterexample.

Finally, in Section 10 we explore notions closely related to e-DP operators, such
as almost-lattice homomorphisms, and operators almost preserving expressions of
the form (|x|? + [y|?)"/?. Further, we explore the connections between &-DP opera-
tors, and operators “almost preserving” order (Proposition 10.1). We also consider a
stronger version of e-DP operators for which approximation results hold in a general
setting (see Theorem 10.6).

Throughout this paper, we use standard Banach lattice terminology and notation,
as well as some well known facts. For more information we refer the reader to any
of the excellent monographs on the topic, such as [3] or [23]. For the peculiarities of
complex Banach lattices, one may consult [2].

2 Basic Facts

We start with a few easy observations. First, almost disjointness preservation only
needs to be verified on positive elements.
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Proposition 2.1  Suppose E and F are real (complex) Banach lattices. If T € B(E, F)
is such that |||Tx| A |Ty|| < e for any positive disjoint x, y € B(E), then T is 4e-DP
(16&-DP in the complex case). Moreover, if T is positive, then it is e-DP.

Proof Suppose that T is positive. Then for every z € E, we have |Tz| < T|z| (see
[2, Lemma 3.22]). If x and y are disjoint, then

HTx| A |Ty|| < || TIx| A T]yl| <e.
For general T in the real case, write x = x, —x_,and y = y, — y_ (here x L y). Then

NTxl ATy < [ (1Tl +1T2d) A (ITyel + 1Ty l) | € 3 1Tl ATyl
6=

o +

<e > max{|xo |, | ys]} < 4e.

0,0=%
The complex case is dealt with similarly. ]

Furthermore, almost disjointness preserving operators also preserve “almost dis-
jointness”.

Proposition 2.2 Suppose E and F are real Banach lattices, and T € B(E, F) is e-DP.
Then
[17x] A TA| < 4Cemax{[lx], [y} + I TH] el A IyI])

for any x, y € E. In the complex case, a similar inequality holds, with 16 instead of 4.
Proof We prove the real case. Suppose that x and y are positive. Then x’ = x —x A y
and y’ = y — x A y are disjoint, and therefore,
[T T ATy < emax{ ][ |y} < emax{]x], [ y[}-
However,
[Tl A Ty| < [T+ 1T A ) A (TY+ T A )|
= 1T | ATy |+ T A P < [IT2TAITY[| + 1T Ce A p)]
< emax{|x[, [y} + [ T]lx A yl-

For general x, y € E, use the Riesz decompositions x = x; —x_and y = y, — y_.
For 0,8 = +, we have x, A y5 < |x| A |y|. Hence | x5 A ys| < |[|x| A |y]]. By the above,

|1Txol A Tysl| < emax{|xal, [ys]} +1T1lxo A yol
< emax{ x|, [y} + [Tl A [y]-
To finish the proof, recall that |[Tx| A |Ty| < ¥, s-. | Txo| A | Tys|. [ |

Finally, we show that if a Banach lattice E is “diffuse enough” and F is “atomic
enough’, then the norm of an e-DP operator from E to F cannot exceed 2¢. We say that
a Banach lattice E has Fatou norm with constant f if, for any non-negative increasing
net (x;) c E, with sup, |x;| < co, wehave \/; x; € E,and | V; x;| < fsup; |x;]. Recall
that x € E,\{0} is called an atom of E if it generates a one-dimensional principal ideal
E,. In this case, E, is actually a projection band [28, Proposition 4.18]. Moreover, x
is an atom if and only if whenever 0 < x3,x; < x, and x; L x;, then either x; = 0
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or x, = 0. A Banach lattice is called atomic if it is generated by its atoms as a band
[23, §2.5].

Proposition 2.3  Suppose E and F are Banach lattices, so that E is order continuous
and has no atoms, while F is atomic, and has Fatou norm with constant §. If T:E — F
is e-DP, then | T| < 2¢f.

The restriction on E being order continuous is essential. For instance, suppose
E = C(K) and F is 1-dimensional. Then any scalar multiple of a point evaluation is
a DP functional (see [13] for the proof that any e-DP functional is close to a scalar
multiple of a point evaluation).

Proof Denote the atoms of F by (8;);c;. By the discussion above, for every i € I,
span[d;] is the range of a band projection. We denote this band projection by P;,
and write P;x = (f;,x)d;, where f; € F;. For a finite set A c I, define the “basis”
projection Q4 = Y ;c4 Pi. It is easy to see [26, pp. 142-144] that for any y € F, the
net (Qy) converges to y in the order topology (here, the net of finite subsets of I is
ordered by inclusion).

Fix ¢ < || T||, and find x € E so that | x| < 1and | Tx| > c. Further, find a finite set A
so that |Qa Tx| > c/f. Let P, be the band projection corresponding to |x|, and denote
its image by G. Note that G inherits the lack of atoms from E. Indeed, suppose, for the
sake of contradiction, that y € G, is an atom of G. By [23, Lemma 2.712], there exist
non-zero disjoint y;, y, € E, sothat y = y;+y,. By the properties of band projections,
Y1, 2 € G.

By [20, Theorem 1.b.14], we can view G as a Kothe function space on (Q, it). The
proof (in conjunction with the characterization of atoms given above) actually con-
structs a measure y without atoms. Moreover, there exist y-measurable functions ¢;
so that for every y € G, (fi, Ty) = [, ¢iy du. By Liapounoff’s theorem (see [20, The-
orem 2.c.9]), there exists a subset S ¢ Q) so that the equality

{fi» Tx)

2

(fi» T(x1s)) = (fir T(x1s¢)) =
holds for any i € A. As Q4 is a band projection, we have for every z € F,

Qalel = Qaz| = 3. (i 2)I0:.
ieA
Consequently, Qu|Tx| = X | (fi» Tx)| 8 = 2Q4|T(x15)| = 2Qa| T(x1s)|. Hence

1
[ITGaas) ATl > 5| QalTl] > <.

2f

However, x15 and x15: belong to B(X), hence || |T(x1s)|A|T (x1se) || < ¢. To complete
the proof, recall that ¢ can be arbitrarily close to | T||. [ |

3 A Probabilistic Inequality

The following lemma may be interesting in its own right.
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Lemma 3.1 Suppose (b;)}_, is a family of non-negative numbers. Then

Eg min{Zb,-, Z b,-} < (Zn:b,- ~ max bi) < 28Esmin{2bi, Z bi}.
i=0 sisn

ieS ieS¢ ieS ieS¢

Here the expected value is taken over all subsets S c {0, ..., n}, with equal weight.

Proof Clearly, for every S c {0,...,n} we have

min{Zbi, Z b,-} < Zn:bi - max b;,
i=0

ies eS¢ O<i<n

and therefore, the first inequality of the claim follows.

For the second one, without loss of generality, we can assume 1 = by > by > ---
b, >0,andsetb =b;+---+b,. For S c {0,...,n},let f(S) = ¥,;cs b; and g(S)
min{f(S), f(5°)}.

Consider two cases.
Casel: b<2".ForSc{0,...,n}setS =Sif0¢S,and S’ = S¢ otherwise. Then S’
is uniformly distributed over subsets of {1,..., n}. Then

273 b;<27b<1< > by
ieS’ i€{0,...,n}\S"

I v

Case2: b>2".Notethat 3.1, b? < Y7 b; = b+1. By the large deviation inequality
for Bernoulli random variables (see [24, Chapter 7]),
P([b+1-23b;| > (b+1)/4) <2exp(-((b+1)/4)*/(4(b +1)))
ieS
=2e~(*D/6% < 2071 < 0.74.

Thus, with probability greater than 0.26, ;.4 b; € [%, 3(1:’1) ] ; hence g(S) > (b +

1)/4. Therefore,

E) >27h.
4

Thus, each of the cases gives the desired result. ]

Eg(S) > 0.26(

Now an application of Krivine functional calculus [20, Theorem 1.d.1] yields the
following.

Corollary 3.2 If fi,..., fu are positive elements in a Banach lattice, then

Bemin{ %0 35} 22 (0, Y. 5)

Consequently, Eg || min{ Yies fis Ziesffi} || >278 || Y fi- Vls,-s,,f,-H.

As a consequence, we have the following corollary.
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Corollary 3.3 Suppose T:E — F is a positive operator that is e-DP. Then for any
disjoint x1, ..., x, € E, we have

n n
I3 7= ] < 256e] 3.
i=1 i= i=1
In particular, for any disjoint xi, ..., x, € E and every 1 < p < oo, it also holds that
n 1 n 1 n
[(XITalt)? = T(C i) * < 256e] Yol
i=1 i=1 i=1
Proof ForanySc{l,...,n}, wehave

[ irsl) a (S Tl) | < | 1150l A 7] 3 5

Now apply Corollary 3.2 with f; = |Tx;|.
For the second inequality, note that for every 1 < p < oo, we have

og(Z|Tx,-|P)%_T(Z|x,-|P)%gZ|Txi|—_\f/1|Txi|. n

i=1 i=1 i=1

n
<o 3.
i=1

Corollary 3.4  Suppose the operator T € B(E,F), is e-DP, and E is o-Dedekind
complete. Then for any xi, ..., x, € E,, we have

max{|T(V x,) - V (Tx,)

>

i/Z\l(Txi) - T(i/:\1Xi)|| } < 256sH i\Z/IXi H

Proof First prove that
n n n
(3.1) I T( ylxi) - Yl(Txi)|\ < 256¢|| '\—/1xi [.

Fix ¢ > 0 and let x = x; + --- + x,,. Let € be the set of components of x, i.e., of vectors
y € E, satisfying yA(x—y) = 0. By [3, Theorem 1.49], C is closed under the operations
v and A. Moreover, if u,v € C are such that u < v, then v — u € C. Finite linear
combinations of elements of C are called simple functions.

By [23, Proposition 1.2.20], E has the principal projection property. By the Freud-
enthal spectral theorem (see [3, Theorem 2.8]), for every i there exists a simple func-
tion u; so that 0 < x; — u; < c|x|/|x| (hence ||u; — x;| < ¢). By considering u; v 0
instead of u;, we can assume that all the u;’s are non-negative. Write u; = Zj.\i‘l ®ijVijs

where a;; > 0 and (v; j);\i"l are disjoint components of x. By the discussion above, the
elements AJ_, v;;, for any j; < N; are disjoint components of x, and therefore, there
exists a family (w;) j.\il of disjoint components of x, so that for each i, we can write
u; = Z]Ni] ﬁ,JW] Note that \/i u; = Z] ﬁjo, where /3] = Vi ﬁ,]

Define the sets (A;) recursively by setting Ag = @,and A; = {j : fij = fj}\ Us<i As.
These sets are clearly disjoint, and their union is {1,...,M}. For1 < i < n, set
yi = ZjeA,»ﬂjo' Then 0 < y; < u;, the y;’s are disjoint, and V; y; = V; u; < V; x;.
Thus,

<=2

1OV ) = V(T < TV 30 =V (1) = 7(2 30) = ¥ (1)

i=1 i=1
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By Corollary 3.3,
(3.2) ITCV wi) =V (Tud)| < | T(X yi) = V.(Tyi)|

1= 1= i=1 1=

n
<256¢| Y yif < 256¢] lei I.
i

i=1

For each i, write x; = u; + z;, where z; > 0 and | z;|| < c. In this notation, V1, x; <
Vi, ui+ VL, zi, and therefore, | V7, x; = Vi u; || < nc. From this, we conclude that

[TV )= V()| < [ TV ) =V (Tw))| + me T

To obtain (3.1), invoke (3.2), and recall that ¢ can be arbitrarily small.
To obtain the inequality

>

(3.3) I Z\l(Tx")_T(Z\lx")H < 256¢ }f/lxi

set x = VI, x;. For each i set y; = x — x;, then 0 < y; < x. We have VI, y; =
x+ Vi (yi—x) =x- A/, x;. Hence T(AL,x;) = Tx — T(V!,y;). Similarly,
ViyTy; = Tx + Vi (T(y; — x)) = Tx — AL, Tx;, which yields AL, Tx; =
Tx - VI, Tyy. Therefore, AL (Txi) — T(AL %1) = TV y1) - Vi (Tyi). To
obtain (3.3), combine (3.1) with the fact that V7, y; < x. [ |

It was shown [1] that for any rearrangement invariant spaces X, Y over a finite mea-
sure such that X ¢ Y, there is no non-zero disjointness preserving operator T: X — Y.
In particular, the only disjointness preserving operator T: L,[0,1] — L,[0,1] for p > g
is T = 0. An application of Corollary 3.3 provides the following version of this fact
for positive e-DP operators.

Proposition 3.5 Let1< p < q < oo and E be a q-convex Banach lattice. If
T:L,[0,1] - E
is positive and e-DP, then || T| < 256¢.

Proof Given a positive x € L,[0,1] with |x|, = 1, for every n € N an application
of Liapunov’s theorem [20, Theorem 2.c.9] allows us to find a partition of [0,1] in
pairwise disjoint measurable sets (A;)%, such that |xxa, |, = n7/7. Let x; = xya,,
fori=1,...,n. We have that (x;)?, are disjointand x = 3}, x;.

Since E is g-convex, there is a constant C > 0 so that

n 1 n 1 L1
I3 ITxi|7) *| < (D] Txi?) * < C|T|na"s.
i=1 i=1
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Hence, using Corollary 3.3, we have

n

n 1 n 1
[T < | () - (N7l o + [ (X 17l ]
i=1 i=1 i=1

[ (S e ] 1S )

=1

=

< 256¢ + C|| T||ni 5.

Since p < g and n was arbitrary, we get that | T|| < 256¢. |

4 Positive Operators on ¢, ¢y, and ¢

Recall that a Banach lattice X has the Fatou property with constant § if, for any non-
negative increasing net (x;) c X, with sup; [x;| < oo, we have V;x; € X, and
| Vixi| < fsup; |xi]. If f = 1, we speak simply of the Fatou property. Every Banach
lattice with the Fatou property is 0-Dedekind complete. Note that if X is a Kothe
function space, then it suffices to verify the above inequality for non-negative in-
creasing sequences (x; ). Banach lattices with the Fatou property include dual lattices
[23, Proposition 2.4.19] and KB-spaces [3, p. 232].

Theorem 4.1 Suppose F is a Banach lattice, and let € > 0.

(i) For any positive operator T:€%, — F that is e-DB there exists a DP operator
S:¢h, - F,s0that0< S < Tand|T -S| <256¢.

(ii) Suppose F has the Fatou property with constant §. Then for any positive operator
T:co — F, which is e-DP, there exists a DP operator S:co — F, sothat0 < S< T
and | T - S| < 256fe.

(iii) Suppose F has the Fatou property with constant §. Then for any positive operator
T:c — F that is e-DD, there exists a DP operator S:¢c — F, so that 0 < S < T and
IT -S| < 256f%.

The following lemma is needed to prove Theorem 4.1. This result may be known
to the experts, but we have not been able to find it in the literature.

Lemma 4.2  Suppose that for1< i <k, (xfli)),,eN are increasing positive sequences in
a Banach lattice, so that \/ ,;en xf,l)forl <i<kand V,,GN( Zf le, )) exist. Then

k .
U (5580) 3 v

=1 neN

Proof We will proceed by induction on k. For any m € N, we have

(Zx())> \/(Zx()+x("+1)) (Zx())+x(k+1)

neN neN neN

Hence, using the induction hypothesis,

(Zx()) > \/(Zx())+ \/ x(kﬂ)_z \/x

neN neN i=1 neN
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The converse inequality follows from the fact that for every m,

m k k k
\/(Zxﬁ,i))=2x,(,f)éz V2 [ |
n=l =1 i=1 i=1 neN
Proof of Theorem 4.1 Throughout the proof, we denote by (J;) the canonical basis
of €%, or ¢o, and f; = T9;. Furthermore, we assume that | T| < 1. Indeed, if | T| > 1,
then T’ = T/|T|| is ¢/|| T|-DP. If (i) is established for a contractive operator T, then
we can find a DP map §’ so that 0 < §" < T" and ||§' - T'| < 256¢/|T|, and take
S = | T||S’. The same argument works for (ii) and (iii).
For each n € N define a I-homogeneous continuous function ¢,:R" - R:

0 if [t] < ViL, [t
Gui(ti, o ntn) > 2(I0] = Vi [t])  if VI, 6] < 6] <2V, |t
|t1] if |t > 2VE, .|t

(i) For1<i<n,set g = ¢n(fir fixts-- > fu> fis o> fim1). We claim that the oper-
ator S: €%, — F:§; — g; has the desired properties.

Note that 0 < ¢,,(#1,...,t,) <t forany ty,..., ¢, € R,. Hence 0 < g; < f;, which
shows that 0 < S < T.

To show that S is disjointness preserving, consider i # j. Forany (#y,...,t,) € R”,
¢n(ti) Fivlreeorbnstlseees ti—l) A (Pn(l’j, t’j+1, P S S TR tj—l) = 0. Hence gi and g]
are disjoint.

Finally we estimate [T —S|| = |[(T - S) X%, 8| = | =5, (fi — i) |- We claim that
Y (fi— i) <2°Es( Ties fi) A(Ziese fi) - Indeed, by functional calculus, we need
to show that for any #, ..., t, € RY,

n
So(ti = ultistivtse s tuntine o tic)) < 2°Es( Do t) A (D) 1)
i=1 ieS ieS¢

By relabeling, we can assume that ¢; > £, > --- > £, > 0. By Lemma 3.1, the right-hand
side is at least 2(¢; + - - + £,,). In the left-hand side however,

t2_¢n(t2>t3>--->tnstl) =t ...ty _(pn(tnstl)---)tnfl) =ty,

while 0 < #; = ¢, (f1,t2, ..., tn) < Visz ti = tp. Therefore, the right-hand side is at
most 2t + t3 + -+ + t, < 2(ty +--- + t, ). Finally, since T is ¢-DP, the result follows.
(ii) For T:co — F, let f; = T'§;. For n > i, set

8 = $u(fir firev s fimts fistnee o fu)-

Clearly, 0 < gi(") < fi. Moreover, it is easy to observe that

¢n(t1,~ e tn) = ¢n+1(t1)-~ . tn)o) > ¢n+1(t1>- e tn’ tn+1)

forany f1,...,t,41 € Ry. As the Krivine functional calculus preserves lattice opera-
tions, we have

g,(n) = ¢n+1(fi>f1)~--)ﬁ—l)ﬁ+l>---:fn)0)
2 ¢n+1(fi>f1,~ '-)fi—l)_fi+1:~ . ~,fn)fn+1) = g,(nJrl)'
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(m)

Hence the sequence (g;"’), is decreasing for every i. Due to the 0-Dedekind com-

pleteness of F, g; = A, g\ exists in F,.

Define the operator S:¢co — F by §§; = g;. Clearly 0 < § < T. Moreover,
g§") A gj(.") = 0 whenever i,j € {1,...,n} are distinct. Hence g; L g fori # j,
and consequently, S is disjointness preserving. Moreover,

n

7 -1 = supl (7= 5) 3 8] = sup] (i~ )]

n =1

Reasoning as in (i), we conclude that for every k > n,

n k
| S =) <[ S - 8] < 256e.
i=1 i=1

By the Fatou property and Lemma 4.2,

| Z;(fi -g)| = | zg(ﬁ — ¢ < 256fe.

(iil) As before, let (§;) be the canonical basis of ¢y c ¢, and denote by 1 the constant
sequence (1,1,...) €c. Let f; = T8;and fo = T1- V2, (X1, f;). Note that Y7, f; =
T(X!,0;) < TL Hence the supremum in the centered equation exists due to the
o-Dedekind completeness of F. Note also that for x = (a3, a3,...) € ¢,

Tx = (lima;)T1+ ) (a; - lima;) f;.
j i=1 /

Further observe that for any S c {0,1,...,n}, we have

||(igs:ﬁ)A(zf,-)||gs

ieS¢
(here §¢ = {0,1,...,n}\S). Indeed, suppose without loss of generality that 0 € S. Let
S =8\{0},y =Y 0i,andx =1-y. As Tise-DP, |[TxATy| < e. But Ty = ¥ cse fis
while

Te= 3 fie -3 2 S fie T V3= 3 fie fo= 3 i

ieS’ i=1 ieS’ m=1j= ieS’ ieS

Define gf") = bnn(fis fos- o5 ficts fisrs s fu), for 0 < i < n. As in the proof of (ii),
n
| > - g™ < 256e.
i=0

Let g; = limy gfk); then | ¥7_o(fi — gi)| < 256fe for every .

Now observe that gl.(i) > gl.(i“) >---andsetg =V, Yr, g Define S:c - F by
setting S0; = g;, and S1 = g+ go. This operator is well defined and positive. Moreover,
(T-8)d; = fi—giforieN,and, by Lemma 4.2, (T-S)1= V2, > ,(fi—gi). Thus,
T > S. Indeed, suppose x = (@; )72 € ¢ is positive. Let « = lim; ;. Then

(7= 5)x=a ¥ 5 (- 80) + - (i~ ) 2 a(fo - 0) 20,
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Consequently,

|T =8| =[(T-8)1]=| n?()i(ﬁ—&)” éfsgpﬂé(ff—gi)ﬂ <256fc. ™

5 Operators into C(K) Spaces

In this section we consider operators from sequence spaces into C(K). Through-
out the section, K denotes a compact Hausdorff space. First, consider the case when
C(K) is 0-Dedekind complete (equivalently, K is a basically disconnected compact
Hausdorff set, see [20, Proposition 1.a.4]).

Theorem 5.1  Suppose X is a Banach lattice with the order structure given by its
l-unconditional basis, and C(K) is 0-Dedekind complete. If T: X — C(K) is ¢-DB, then
there exists a disjointness preserving S: X — C(K) so that |S| < |T| and |S - T| <
257¢| T|. If T is positive, then S can be chosen so that, in addition, 0 < S < T.

Proof By scaling, we can assume that T is a contraction. Denote the normalized
unconditional basis of X by (8;)$2;, and let ¢qg be the linear span of 8;, &5, ... in X.
For i € N, set f; = T;, and note that |f;| < 1. Consequently, the sequence (f;) is
order bounded. Hence, by the o-Dedekind completeness of C(K), h; = V4 [fj| is
continuous for every i. Let us define the continuous functions

0 if‘fi(t)|ﬁhi(t)a
gi(t) =1 /i(1) if |£i ()] = 2k (1),
2(fi(t) —signfi(t) - hi (1)) if hi(t) <|fi(£)] < 2h;(2).

Now let S:cgp > C(K):8; — g;. Clearly, S is disjointness preserving, since |g;| A
|gj| = 0 for i # j. It remains to show that T/, — S is bounded and that its norm does
not exceed 257¢ (once this is done, we extend S to the whole space X by continuity).

To this end, fix t € K, and pick ay, ..., ay € Fwith | ¥V, a;8;]x < 1. We must
show that for every t € K

N
(5.) D lail lfi(r) - gi(1)] < 257e.
i=1

It suffices to consider a4, ..., ayx > 0.

For § c {1,...,N}, set §¢ = {1,...,N}\S. Consider x = ¥ ;g w;a;8; and y =
Yiese wia; 05, where w; = [f;(¢)|/fi(t) if fi(¢) # 0, and w; = 0 otherwise. Note that x
and y are disjoint elements of B(X). As T is e-DP, we have

(Sl @) A (3 ai(0]) <1757 1Ty < e

ieS

Hence, by Lemma 3.1,
N N
> ailfi()] = V ailfi(1)] < 256e.
i=1 i=

Pick k so that \/Y, a;|fi(t)] = ax|fx(t)]. Note that |fi(t) — gk ()| < e. Indeed, this
inequality is evident if | f (£)| < e. If |fi(¢)| > &, note that |f;(¢)| < € for any j # k.

https://doi.org/10.4153/CJM-2016-020-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-020-x

Almost Disjointness Preservers 661

Otherwise we would have |[|T8| A|Td;|| > ¢, contradicting the assumption that T is
&-DP. Thus, if | f ()| > &, then hy () < €, and we also have |fi (t) — gk (£)| < he(2).
As ay <1, we have

N
2 ailfi(t) = gi(O) < X ail fi(0)] + |fi(t) - gu(1)] < 256 + &,
i=1 itk
establishing (5.1).
If T is positive, then we have 0 < g; < f;; hence 0 < S < T. [ |

Along the same lines, we prove the following theorem.

Theorem 5.2  Suppose X is a finite dimensional Banach lattice. If T: X — C(K) is
&-DB then there exists a disjointness preserving S: X — C(K) so that |S| < |T| and
|S—T| < 256¢|T|. If T is positive, then S can be chosen so that, in addition, 0 < S < T.

Sketch of a proof It is well known (see [28, Corollary 4.20]) that X has a basis of
atoms, which we denote by (8;)¥, (N = dim X). Use scaling to assume that T is con-
tractive. Let f; = Td; and h; = \Vj4; | fj|- Define g; and S as in the proof of Theorem 5.1
and proceed further in the same manner. ]

For operators from c or ¢y into C(K), the assumption that the range is 0-Dedekind
complete is redundant.

Theorem 5.3  Suppose K is a compact Hausdorff space, and ¢ is a positive number.
Then for any e-DP operator T:co — C(K), there exists a DP operator S: ¢y - C(K)
so that |S| < |T| and |T - S| < 257e. If T is positive, then S can be selected so that
0<S<T.

Here and below, we use the notation (6; ) ;e for the canonical basis of ¢g, while cgg
denotes the set of all finitely supported sequences in ¢q. The following straightforward
observation will be used throughout the proof.

Lemma 5.4 A linear map U: coo — C(K) is bounded if and only if

sup Y [[U&](t)]

teK =1
is finite. If this is the case, then the above expression equals |U|. Moreover, U extends
by continuity to an operator from cq into C(K) of the same norm.

Proof of Theorem 5.3 We know that if T is e-DP, then T/||T| is ¢/|| T|-DP. We can
therefore assume that T is a contraction, and restrict our attention to & < 27, Denote
the canonical basis of ¢ by (8;)52;, and set f; = T'§;. Note that T is e-DP if and only
if the inequality ( ¥;c4 |fi(£)]) A (Zie|fi(£)]) < € holds for any ¢ € K and for any
two disjoint sets A and B. Consequently, for any ¢ € K, there exists at most one i € N
so that |f;(t)| > e.
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Consider the function

0 if|t| <e,
o(t) =12(|t] - e)signt  ife < |t| < 2,
t if |¢] > 2e.

Letg; = ¢o fi,ie., gi(t) = ¢(fi(¢))), and define the operator S: cop > C(K): §; — g;.
As noted above, for any ¢ € K, there exists at most one i € N so that |g;(¢)| # 0. Hence
the vectors (g;) are disjoint, which shows that S is disjointness preserving. Moreover,
if T is positive, then for any 1,0 < S§; = g; < f; = Té;,

First show that S is, indeed, a well-defined contraction (hence it extends by conti-
nuity to a contraction ¢y - C(K)). By Lemma 5.4, 32, |f;(¢)| < 1for every t € K. By
our construction, |g;| < |f;|. Hence Y52, |gi(¢)| < 1 for every t. Again by Lemma 5.4,
IS <1.

It remains to estimate

I T =S| =sup D |[(T - $)8:1(£)| =sup > |fi(t) - gi ().
teK j=1 teK j=1
Fix t € K and N € N, and show that
N
(5.2) Y o1fi(t) — gi(1)] < 257e.
i=1

To this end, find k € {1,..., N} so that |fi(¢)| = maxi<i<y | fi(¢)]. Then [fj(f)| < €
(and consequently, g;(t) = 0) for j # k. ForasetS c {1,...,N}, set §° =
{1,...,N}\S. We know that for any such S, ¥;cs | fi(£)| A Zicse | fi(£)| < &. Indeed,
consider

x =) signfi(t)8; and y= ) signfi(t)d;.

ieS ieS¢
The elements x and y belong to the unit ball of ¢y and are disjoint. Thus,
2O IO [ITx[ ATy <.

ieS ieS¢

Then 335 /i (1) = gi ()] = i | f (D] +1fic(£) - g (¢)]. By Lemma 3.1, 5 |f5(1)] <
256¢. Moreover, sup, [¢(s) — s| = e. Hence, | fi (1) — gk (f)| < e. This yields (5.2). ™

Theorem 5.5 Suppose K is a compact Hausdor{f space, and ¢ is a positive number.
For any &-DP operator T:c — C(K), there exists a DP operator S:¢c — C(K) so that
| T — S| <536¢. If T is positive, then S can be chosen to be positive as well.

Throughout the proof, we identify ¢, with its canonical image in ¢. Then ¢ =
span[cy,1]. As before, we denote the canonical basis of ¢y by (8;);en. The follow-
ing lemma can be easily verified.

Lemma 5.6  For any operator V:c — X (X is an arbitrary Banach space), we have
IVI<2[Vie | + V1]

Proof Consider the projection Q from ¢ to [F1, defined by
Q((ap, a2,...)) =lima;1.
1
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Clearly |Q| =1. Hence |I. — Q|| < 2, and ker Q = ran (I — Q) = ¢o. We complete the
proof by writing V = VQ + V(I - Q). [ |

We also need a simple fact about complex numbers. Fix ¢ > 0. For a complex
number z = |z|e’ 8%, define ¢.(z) = (|z| - ¢) €' *"8%.

Lemma 5.7 Given c > 0, for any z,w € C, we have |¢.(z) — ¢.(w)| < |z — w].

Proof By scaling, we may assume ¢ = 1. Without loss of generality, |z| > |w|.
The case of |w| < 1is easy: ¢.(w) = 0 and by the triangle inequality,

2= w| 2 |z] = [w| 2 (|e] = 1)+ = [$c(2) = pe(w)l.
Now if |z| > |w| > 1, use the law of cosines: |z — w|* = a* + b — kab, where a = |z|,
b = |w|,and k = 2 cos(argz—argw) (note that -2 < « < 2). Similarly, |¢(z) - ¢(w)|* =
(a-1)2+(b-1)>-x(a-1)(b-1). Thus,

lz-=w|* = |p(z) —dp(w)]* = (2-x)(a+b-1)20. [ ]

Lemma 5.8 Suppose K is a compact Hausdor{f space and a contraction U: ¢ - C(K)
is 6-DP. Suppose, moreover, that U|., is disjointness preserving and the functions f = U1l
and f; = U§; are such that

(5.3) ifi e Nandte Kwith |f;(t)| > o, then |f(¢t) - fi(t)| < 0.

Then there exists a DP operator S: ¢ - C(K) such that |U — S| < 1lo. If U is positive,
then S can be chosen positive as well.

Proof We shall construct g, g1, £2, ... € C(K) so that:

* Foranyi, |g; — fill <4o.
* lg-fl<30.
* The functions g1, £», . .. are disjoint; if i and ¢ are such that g;(¢) # 0, then g;(¢) =
8(1).
o If the functions f, fi, fa, ... are positive, then the same holds for g, g1, g2, . - ..
Once these functions are selected, we define S: ¢ - C(K) by setting S8; = g; (i € N)
and S1 = g. Then |(S - U)|,,| < 40 and |(S - U)1|| < 30. Hence, by Lemma 5.6,
|S-U| <1le.
Moreover, S is disjointness preserving. Indeed, consider two disjoint elements of
c: x = (a;)iea and y = (Bi)icp> Where the sets A and B are disjoint. If the sets
{ieA:a;#0} and {i € B : B; # 0} are both infinite, then x and y belong to ¢,
and we finish the proof invoking the disjointness of the functions g;. Otherwise,
suppose A is finite. Then we can assume that B = N\A. Let 8 = lim; f3;, and write
y = Bl+ Y2 y:i0;, where

-1 ifi € A.

Then Sx = Y, cpa;g:and Sy = g — Y &i + Diep Vigi- U [Sx](¢) # 0, then there
exists i € A so that g;(t) # 0, and therefore, [Sy](¢) = g(¢) — gi(¢) = 0. Thus, Sx and
Sy are disjoint.

i~ lfIEB,
yi:{/s f
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Finally, suppose g, g1, £2, . . . are positive. For x = (a1, &3, ...) € ¢y, let a = lim; «;.
Then Sx = ag+ Yo (a; — «)g; > 0. Indeed, suppose t € K is such that there exists i
with g;(¢) > 0. Such an i is unique. Hence

[Sx](#) = ag(t) = (ai — @) gi(t) = @ig(t) 2 0.

If there is no such i, then [Sx](¢) = ag(t) > 0.

To construct g, g1, g2, - .., let h = ¢o(f) (that is, h(t) = (|[f(t)| - 0),e' ¥/ (D),
For i e N, set h; = ¢,(f;). Clearly | f — h| < ¢, and | f; — h;| < o for any i. Also, if i
and t are such that h;(¢) # 0, then |h(¢) — h;(¢t)| < 0, by Lemma 5.7 and (5.3).

Now define p:R — [0,1] via

0 ift<o,
p(t)=4t/c if0<t<o,
1 ift>o,

and let k;(t) = (1 - p(|h:i(¥)]))hi(t) + p(|hi(¢)])h(t). Clearly the function k; is
continuous, and k;(t) = 0 whenever h;(t) = 0. If h;(t) # 0, then

[ki(t) = hi(£)] = p(lhi () )|R() = hi ()] < 0.
Hence | h; - k;| < 0. Finally, if |k; (¢)| > 20, then k; (t) = h(¢). Indeed, if |k; (¢)| > 20,
then |h;(t)| > 0. Hence p(|h;(t)|) = 1, yielding k; (t) = h(¢).
Now set g; = ¢25(k;), and g = ¢»,(h). From the above, if g;(¢) # 0, then g;(¢) =
g(t). Clearly the functions g; are disjoint. Furthermore,

1 fi = gill < 1fi = hill + i = Kl + [ i = i < 4o,
If =gl <|f=hl+]h-g| <30
Thus, g, g1, g2, - . - have the desired properties. ]

Corollary 5.9  Suppose K is a compact Hausdorff space and a contraction U:c —
C(K) is -DP. Suppose, moreover, that U|., is disjointness preserving. Then there exists
a DP operator S: ¢ - C(K) so that |U - S| < 1lo. If U is positive, then S can be chosen
positive as well.

Proof Let f; = U§; and f = Ul The functions f; are disjoint. Now fix i and ¢, and
setx = §; and y =1- §;. Both x and y belong to the unit ball of c. Hence

iOIAf () = fi@)] < [ITx[ A Tyl] < 0.
Thus, (5.3) holds. To complete the proof, apply Lemma 5.8. ]

Proof of Theorem 5.5 By Theorem 5.3, there exists a disjointness preserving map
Vicg > C(K) so that |V|| < |T|, and |V - T|.| < 257¢ (if T is positive, then
0 < V < T). Define U:¢c - C(K) by setting U|., = V and Ul = T1. By Lemma 5.6,
|T - U|| <514e.

Set f = T1 = UL, f; = U;, and F; = T§;. Note that if T is positive, then so is V.
Indeed, by the construction in the proof of Theorem 5.3, 0 < f; < F; for every i. Note
that T(1-6;) = f — F; > 0 for every i. Hence f > f;. For x = (a;,a2,...) € ¢4 set
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a =lim; a;. Then Ux = af + 31 (a; — ) f;. Fix t € K. If f;(¢) = 0 for every i, then
[Ux](t) = af(t) = 0. Otherwise, there is a unique i so that f;(¢) > 0. Then

[Ux](2) = af (1) + (a; - ) fi(1) = i fi(1) + a(f (1) - fi(2)) > 0.

We shall show that (5.3) holds with o = 2, that is, if i and ¢ satisfy f;(¢) # 0, then
Ifi(t) — f(#)] < 2e. Once this is done, we can apply the proof of Lemma 5.8 to obtain
S with the desired properties.

Let x = §; and y = 1 - 6;. In the above notation, Tx = F; and Ty = f - F;.
Hence, for any ¢ € K, min{|F;(t)|,|f(¢) — Fi(¢)|} < e. By the proof of Theorem 5.3,
|F;(t) — fi(t)] < € (we use the fact that |¢(s) — 5| < € for every s).

Now suppose |f;(t)| > 2¢. Then |F;(t)| > 2¢ as well, hence |f(t) — F;(t)| < e. The
triangle inequality implies

If(0) = i) < £ (8) = Fi()| + [fi(t) = Fi(#)] < 2e.
By the proof of Lemma 5.8, there exists a “good” S with |U - S| < 22¢. By the triangle
inequality, | T - S| < 536e. [ |

6 Positive Operators From ¢, to L,

We start this section exploring the case of e-DP operators defined on the space #;.
We use the following classical result of Dor [14, Corollary 3.2]. Suppose (Q, u) is a
measure space, (fy, ) ey are functions in Ly (€, i), and there exists 6 € (0,1] so that
the inequality | Y7, a;fi| > 6 X/, |a;| holds for any finite sequence (a;)",. Then
there are disjoint measurable sets (A, ) ey in Q so that

4
'ff ldA>1-~(1-6).
inf [ hlarz1-3a-0)

Dor proved this theorem for the Lebesgue measure on [0,1]. However (as noted [4])
an inspection shows that the proof works for an arbitrary measure space. Moreover,
one can select the sets A; from the o-algebra generated by the functions (£, ) sen.

Theorem 6.1  Suppose (Q, y) is a measure space and T: €, — Li(y) is a positive -
DP operator with € € (0, |T||/16). Then there exists a positive disjointness preserving

operator S:€; — Ly(u) such that 0 < S < T and || T — S| < 2./2¢| T| /3.

Proof As usual, we can assume || T| = 1. Then we need to prove the existence of a
disjointness preserving S:¢; - L;(¢) suchthat 0 < S < T and |T - S| < 24/2¢/3.

For n € N, let f,, = Td,. Since | T| < 1, we have | f,| < 1. By positivity, f, > 0. Let
c=2 25/3andM:{neN: [ £l Zc}.

Now, for n € M, let g, = f,/|f.|. These form a normalized sequence in L;(y),
which is equivalent to the unit vector basis of ;. In fact, given real scalars (a, ) neu let
P={neM:a,>0},N={neM:a,<0}and x =Y ,.p|anlgn ¥ = X pen |an|gn-
We have

” Z angnH = “ Z|‘1n|gn_ Z |‘1n|gn|| =lx-xAy+xny-y|
neM neP neN

=[x —xnyl+lxny-ylzlx|+]y]-2]xny].
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Since g, > 0 and |g,| =1, we have x| = ¥ ,cp|aa] and |y|| = 3,cn 44| Now,
since PN N = g and P, N c M, we have

"x“44HZN%VﬂA<232VU

nep neN
_ lan| lan|
=[7(% ) A% 7o)
6l la]
<emax{ 2 /20 X )

&
< (el + 1y D-

Hence, we get that H Y e Gngn ” > (1-28) 3 ,cpr |@n|- Now by Dor’s theorem quoted
above, there exist pairwise disjoint measurable sets (A,) c Q such that ||g,|a,] >
8¢

~koyc

Let us define the operator S: £; — Li(u) given by

S8n: fn|A,, lfI’IEM
0 elsewhere.

Since the (A, ) are pairwise disjoint, S is disjointness preserving. We have | T - §| =
sup,, | (T —S)d,|. Now for n € M, we have

(T =8)8nll = [ fulagl = 1 full = I falanll = 1 fal (1=l ga
while for n ¢ M, we get | (T - S)8,| = ||fu]| < c. Thus, |[T -S| <c. [ |

al)<e

Theorem 6.2 Supposel < q < oo, € € (0,1/85), and (Q, p) is a measure space. If
T:8y — Lg(u) is positive and e-DP, then there exists S: €, — Lq(u) so that 0 < S < T,
and

2¢| T

IT -S| <2%+2 -

To deduce this theorem from Theorem 6.1, we need an auxiliary result.

Lemma 6.3 Supposel< q< oo, (Q,u) is a measure space, and the positive operator
R: 8, — Ly(u) satisfies the following.

(i) Ifx,yeB(&,), aredisjoint, then |Rx A Ry|| < &;.
(ii) sup; [|RS;| < &3, where (8;)52, is the canonical basis of €.

Then |R| < 28¢; + ¢,.

Proof Write RS; = f;. Then sup, ||f;| < ;. It suffices to show that || Y7, a; fi| <
28¢; + &, whenever a, ..., a, > 0 satisfy ¥°; a < 1. By the triangle inequality,

6.) IS wisi] < |y aisi=Vasfil 1V aifil
i=1 i=1 i= i=
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However,

n

|V asfil < [ (X aaf)) ™|
1= i=1

= [ S aliotdp) < sup £l za <el,

1<i<n

Furthermore, by Corollary 3.2,

|3 csi= i < 2B (D) o (3 i)

ieS¢

= ZSEs“R(Z(X,'(S,') /\R( z (X,'(si) || < 2881
ieS

ieS¢
(we average over all S c {1,..., n}). Plugging this into (6.1), we finish the proof. M
Proof of Theorem 6.2 By scaling, we can assume | T|| < 1. We denote the canonical

basis on ¢, by (81["] 2, (below, we consider p = gand p =1). Let f; = Tél[.q] €Ly(u)
and g; = fiq € L;. Define T": ¢; — L;(u) by setting T’81[.1] = g;, for every i. Clearly,

1
|7 = sup | T6M [, = sup | gi s = sup | £i}§ = sup | T3 < | T7 <1.
We show that T is €9-DP. It suffices to prove that for disjoint x, y € ¢; with finite
support, we have [|T'x| A |T'y|[; < e?max{|x|s, |y[:}. Write x = ¥c0 ;0"

and y = Z;esﬁ 6 (¢ B(¢), where A and B are disjoint finite sets. Define X =
Yiea |“1‘1/q8 Yien |ﬁ |1/q6 € eq- Then
I

|||T'x| AT, < H(gomgi) A (X Bie:)
= [(Zleisi(0) n (Z1Bilai(0)) duo).

icA

However, it is easy to see that for any positive y, ..., ym, we have 3, y; < (¥; yl/q)
Hence

sttty < f (Sl s 0) A (S 185 )" du(t)

= (%) A (TR < € maX{ %03 1713} = e® max{ ], |yl } -

Use Theorem 6.1 to find an operator §":¢; — Ly () sothat0 < §' < T',and | T'- 5’| <
(8/3)/2£4/2, Define S: 2, — L, bysetting (Y, ociél[q]) =Y, oc,-(S'(?l[l])l/q. We clearly
have 0 < § < T. Hence S is a bounded operator. It remains to estimate |T — §| from
the above.

As0<T-S<T,T- S must be e-DP. Furthermore, for any i,

I(T =982 = ol - 5ol 13 = [ ((Tel)(1) - (58 (1)* du(v).
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Note that for 0 < a < f3, we have (8 - «)7 < 7 - af. Recall that (T(Sl[q])(t) = fi(t) =
g (V4 = (1'6M) ()9, and (587 (¢) = ('8 (£)"/4. Thus,

I(T=)8 7 < [ (T8 (0) - (8'8!M)(1)) du(t) < | T'- ') < \/f/
Lemma 6.3 gives the desired estimate for | T - S|. [ |

Remark 6.4 Itis wellknown that for p # 2, every linear isometry T: L, () — L,(v)
is disjointness preserving [11, p. 77]. Along the same lines, it can be shown that for
p # 2, thereis a constant C,, such that every linear e-isometry T: L, (u) — L,(v) (that
is, such that (1+ &)™ x| < | Tx| < (1+¢)]x]) is also C,e-DP.

7 Positive Operators From Sequence Spaces to L,

Throughout this section, the Banach lattice structure on E is assumed to be given by
its 1-unconditional basis (§;).

Denote by S(Z) the unit sphere of a normed space Z. We define the set-valued
duality mapping D by letting D (x) = {f € S(E*) : f(x) = | x|} for x € E\{0}. The
map D is said to be lower semicontinuous if for any x € E\{0} and any open set U with
Un®D(x) # @, there exists ¢ € (0, |x|) so that U nD(y) # @ whenever |x - y| < e.

We call the space E smooth if D (x) is a singleton for very x. In this case, we can
define ©°: E\{0} — E* so that ©(x) = {®°(x)} for every x. It is known [12, §2.2]
that ©° is continuous (with respect to the norm topology) if and only if the norm of
E is Fréchet differentiable away from 0. Clearly, for smooth spaces D¢ is continuous
if and only if ® is lower semi-continuous.

Theorem 7.1  Suppose the order in a reflexive Banach lattice E is determined by its
1-unconditional basis and the duality map is lower semi-continuous on E\{0}. Suppose,
furthermore, that the operator T € B(E, ¢,), is e-DP. Then there exists a disjointness
preserving operator S € B(E, €) such that S < T and || T - S| < 256¢.

Let us begin with some auxiliary results. The first one is straightforward.

Lemma 72 IfE isaspace with al-unconditional basis §; and 8} denote the correspon-
ding biorthogonal functionals, then forany T € B(E, Ly(4) )+, | T| = | £ | T8 6}

E*’

Proof For the sake of brevity, set f; = T';. Suppose («;) € coo is a finite sequence
of non-negative numbers. Then | T(Y; a;0;)| = [ (X; aifi) = X; ai fi. Therefore,

I7) = sup{ | T(Sasdi) | | Seo] <1}
~sup{ Sail il | S ewdi] <1 = | 1Al

The next lemma may be known to the experts in Banach space geometry.

E*’

Lemma 7.3 Suppose Z is a real Banach space whose duality mapping © is lower
semi-continuous. Suppose, furthermore, that there exist z,z),2,, ... € Z so that z # 0,
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lim, |z — z,| = 0, and for each n, there exists z}, € D(z) so that

i sap 121 (750 22)

> 0.
n |z = zall

Then |z, | < ||z|| for some value of n.

Proof By rescaling, we can assume that ||z|| = 1. Furthermore, by passing to a sub-
sequence, we can assume that for every n, (z,,z,) < 1- c|z - z,|, where ¢ > 0 is
a constant. By the lower semi-continuity of the duality map, we can find a sequence
Z) € D(zy) so thatlim, ||z — Z};| = 0. We then have

(71) [2ull = (Z0s 2n) = (Z0s2) = (205 2) + (2 = 250 20 = 2) + (25 20)-

l1-cllz-z,|,and (2} — 2}, 2z, — 2) < |25 =z} ||| zn — 2| = 0(]|z = 24]). Now (7.1) shows
that |z, || <1-c¢|lz = zu|| + o(|z - zu]|)- ]

As z; € D(z), and ||Z};| = 1, we have (Z},z) — (z};,z) < 0. Furthermore, (z},z,) <

Proof of Theorem 7.1 We assume that the basis (J;) is normalized. Let f; = T§;. By
Corollary 3.3, for every sequence («;) € cgo, we have

IS wsi - Vesi] < 2566 et
i i i
We will find mutually disjoint sets A; ¢ N with the property that

(72) [ Z [1ac fi[| 87 || < 256e.

Once this is done, we define S:E — ¢1:§; — 14, f;. Then clearly 0 < § < T, and by
Lemma 7.2,

1781 = [ 21~ 1 £l = [ 3 11 filo; | <256e.
For the purpose of finding (A;), we use some ideas of [14]. Consider the space

j‘f:{(l’ll,hz,...)EHB(ZM)+IZhi§1}.

Here []; B(fs )+ is equipped with the topology of the product of infinitely many
copies of (€oo, w*). It is easy to see that H is compact. Now define

FH - R:(hi)ien = HZH(I—h;)ﬁH@fH

Note that the function F is convex. Indeed, suppose h; = thfo) +(1- t)hgl) for every
i. For convenience, set ¢; = f;(1 - h;) and ¢§j) = fi(1- hgj)) for j = 0,1. Then
¢; = t(/)EO) +(1- t)¢§‘), and as all the functions are non-negative, |¢;| = th,‘)SO) | +

(@-0l¢"].
F((ha)a) = | 163187 = | 2 (elgi” | + = )¢ 1oy

<t S 118 + - 1)] 3 1oV 07

= tF((h{);) + (1= O)F((K{))).
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Moreover, F is continuous. Indeed, fix ¢’ > 0 and (h;) € H. Find N so that

IS Ifile:

i=N+1

Then |[F((h;)) — F(h!))| < ¢ whenever, for1<i < N,

Q=) fill = Q=B Fll = 1 = hi)fil = | (i = W )] < =

({-, - ) denotes the duality bracket between £, and ¢;). The centered equation above
clearly defines a relatively open subset of J.

<2

By the above, for any n € N, there exists an extreme point (hl(”)),- € H so that

F((hf"))i) <inf F +1/n. As noted in [14], (h;) is an extreme point of H if and only
if there exist disjoint sets A; so that h; = 14,, for every i. Moreover, the set of the
extreme points of H is closed. Indeed, one can observe that J{ is metrizable. Suppose

((h ") )ieN ) neN is a sequence of extreme points, converging to some (h;);eny € H.
Write h( O A Then for any i, h( m h; pointwise, hence h; = 1,4,. Moreover,
for each i, t € N, only two situations are poss1b1e

(i) For nlarge enough, t € AE") (that is, hf")(t) =1), and consequently, f € A;.

(ii) For n large enough, ¢ ¢ Ag"), and then, t ¢ A;.

This shows that the sets (A;) are disjoint.

We therefore conclude that F attains its minimum on an extreme point (14, ). By
enlarging the sets A; if necessary, we can assume that U; A; = N. It remains to show
that these sets satisfy (7.2).

For the sake of brevity, write f; = |14 fi[, and x = ¥, ;6;. Find z = ¥; a;; €
S(E)s so that ¥, ;8 = | X; i |. We will show that for any t € A;, a; fi(t) =
Vja;fi(t). Indeed, suppose, by way of contradiction, that there exist ¢ € A;, and
j # i,sothat a;fj(t) < a;fj(t). For k € N, let hy = 1,,. Furthermore, for any

e € (0,(ajfi(t) —aifi(t))/2), define h(s) by setting h( ¢) = hy for k ¢ {i,j}, h( e -
hi—eliy,and h$) = hj+elgy. Let B = [ (1-h{* ))ka,Then/sk = By fork ¢ {i, j},
B = Bi +efi(t) and BI°) = B; — efj(t). Write x = £ fid; and x() = 3, L5
Then [x - x| = [efi(£)8; - (1) ;] < (|fi ()] + |f;(£)])e. Moreover,

(z, x(s) Z(x ﬁ( ©) - Zock/}k+s( ifi(t) - oc]f](t))

=1-e(a;f;(t) —aifi(1)).
An application of Lemma 7.3 shows that for some ¢,
E((h)1) = O] < x] = F((hi)s),
contradicting our assumption that F attains its minimum at (h;).
For N € N, let By = Uy, A and ¢y = ZﬁlailAifi. By the above, ¢n(t) =
YN aifi(t) - V; aifi(t) for t € By. Consequently,

N
[ gutonl <13 afi - Vaufi| < 2566
i=1 i
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Now consider a finite set B c N. Then B c By for N large enough. Hence

N
| (X ilac fi) 18] < 256¢
i=1

for every N. By the Fatou Property of ¢,

| (D ailac fi) 15 < 256¢,

i=1

and as B can be arbitrarily large, | 3; a;14: fi|| < 256e. Now, since
I3 ac fill 67| = 3 ailtas fill = || D ailac fi]| < 256,
i i i

we get (7.2) as claimed. u

Theorem 7.4  Suppose the order in a reflexive Banach lattice E is determined by its
1-unconditional basis, and the operator T € B(E, €,), is e-DP. Then for every ¢ > 1,
there exists a disjointness preserving operator S € B(E, £1)4 sothatS < T, and | T-S| <
256¢¢.

For the proof we need a renorming result similar to [15, Proposition 1.4]. Recall
that a Banach space Z is called locally uniformly rotund (LUR, for short) if, for any
2,21, 22, ... € Z,lim |z, — z| = 0 whenever lim, (2(|z]* + | z4[*) - ||z + 2 [?) = 0. We
say that a basis in a Banach space Z is shrinking if its biorthogonal functionals form
a basis of the dual space Z*. For unconditional bases, this condition holds precisely
when the space contains no subspace isomorphic to ¢ [19, Theorem 1.c.9].

Lemma 7.5 Suppose (E, ||-|) is a space with a shrinking 1-unconditional basis (8;).
Then for every ¢ > 1, E admits an equivalent norm || - | o such that

(i) foranyx €E, |x|o < [x] < c|x]o;
(i) (E,|lo)* is LUR;
(iil) the basis (8;) is 1-unconditional in (E, | - ||o)-

Sketch of the proof We follow the reasoning of [15, Proposition 1.4]. The minor
changes that are required are indicated below. As before, we assume that the basis
(8;) is normalized, and we denote the corresponding biorthogonal functionals by 87
To distinguish between the (originally given) norms on E and E*, we denote them by
| -] and | - |*, respectively.

Find1=¢p>¢ >¢& >--->0sothat Y72 ¢; <c. For f =}, fi0F € E*, set

1715 = (LA + el i) 2.

Then (E*, | -||}) is smooth, and for any f, | f|* < | flli < /c|f|*. Moreover, | - ||} is
a dual norm, and we can define the predual norm | - ; on E. Finally, the basis (J}) is
l-unconditional in (E*, |- |} ). Hence (9;) is 1-unconditional in (E, || - ;).

Now set

*2\ 1/2
D)

o= (Nl 3 fiot

i=0 k=i+1
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This is a dual LUR norm, and || ||} < || f|§ < \/c[ f||- Finally, the 1-unconditionality
is once again preserved. u

Proof of Theorem 7.4 By Lemma 7.5, we can equip E with an equivalent norm | - ||o,
with the properties that || - [ < ||- || < ¢ - [0, the basis (8;)$2, is 1-unconditional, and
(E,|-lo)* is LUR. By [15, Corollary 1.16], || - | ¢ is Fréchet differentiable on E\{0}.
Now consider T as a map from (E, | - ||o) into &;. AsB(E, |- ||o) < ¢B(E), we con-
clude that T is ce-DP with respect to || - | ¢. By Theorem 71, we can find a disjointness
preserving mapping S: (E, |- [lo) — €1 sothat 0 < S < T, and | T - S| < 256¢e. To
finish the proof, recall that |- || < | - |. [ |

In the case of operators with values in L; (€, ¢) (for an arbitrary measure space
(), u)), we obtain the following.

Theorem 7.6  Suppose the order in a Banach lattice E is determined by its 1-uncondi-
tional shrinking basis, and the operator T € B(E,L,(Q, u))+ is €-DP. Then for every
o > 0 there exists a disjointness preserving finite rank operator S € B(E, Li(Q, u))+ so
that | T - S| < 256¢ + 0.

Remark 7.7  Note that if the order on a Banach lattice E is determined by a shrinking
unconditional basis, then any T € B(E, L;(Q, 4)) is necessarily compact. Indeed,
if T as above is not compact, then a standard small perturbation argument produces
a disjoint normalized positive sequence (x;) so that inf; | Tx;| > 0. By [19, Theo-
rem 1.c.9], E contains no isomorphic copies of #;. Hence (x;) is weakly null. Then
(Tx;) is weakly null. However, any positive weakly null sequence in L; must also be
norm null, yielding a contradiction.

Proof As before denote the normalized 1-unconditional basis of E by (§;), and set
fi = T3;. Then E* is spanned by (8} );en, and by Lemma 72, | T|| = | X ooy [1fi 1167 |-
Given ¢ > 0, find N so that | X721 | il 67| < 0/4. Let Ex = span[é},...,0x] c E.
Find a finite o-algebra A in (Q, ), so that, for every x € B(Ey),

|Tx - PTx| <270

(here P denotes the conditional expectation onto L;(A, u)). Then T’ = PT|g, is
(¢ +27'%0)-DP. Indeed, for every disjoint x;, x; € B(Ey),

T 51| AT x| < ||| T 30| A (T = T)xa| + || |T 31| A | Tx2 |
<(T = T)xa| + | |[(T' = T)xi| A |Toxa|| + ||| Tx1] A | Txs|
<I(T = T)xa| + (T = T)xi || + [ | Tor| A | Ta|| <2700 +e.

Fix ¢ € (1, (256¢ + 0/4) ' (256¢ + 30/4)). As in the proof of Theorem 7.4, we can
find S Ey — Li(A, u) sothat0< 8" < T" and |S - T| < (256¢ + ¢/4)c. Now define
S:E — Li(Q, u) by setting S8; = §'6; for1 < i < N, §8; = 0 otherwise. Clearly S is
positive and disjointness preserving, and

IT =S| < T =S| + | Tlspan[sssisn| <256c(27% +¢) + % < 256¢ + 0,

due to the choice of c. |
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8 Counterexamples

In this section we show that, in general, not every positive almost DP operator can
be approximated by a disjointness preserving one. Actually, our examples produce
positive operators T which are not merely e-DP, but have a stronger property:

Tx[AITH < en/lix[lly] - foranyx L y.

Proposition 8.1 Supposel< p < q < oo. Then for any € > 0, there exists a finite rank
positive e — DP operator T: €, — €y, so that | T| < 2""Y9 and | T - S| >27Y1 > | T|/2
whenever S is disjointness preserving.

Start with a combinatorial lemma.

Lemma 8.2 For N € N, let M = N(N +1)/2. Then {1,..., M} contains sets
Fi, ..., Fny1 of cardinality N each, so that

(i) each numbers e {1,..., M} belongs to exactly two of the sets F;

Proof Consider the complete graph on N +1 vertices, and denote its sets of vertices
and edges by V and E, respectively. Write V = {v1,...,vns1} and E = {ey,..., ex}-
Let F; be the set of all s so that e; is adjacent to v;. [ |

Proof of Proposition 8.1 Pick N € N so that

S N4 if oo > ¢q>2p,
£ 2
(NTYN +1)>9/P)/a if2p>q > p.

Define the operator T: EPN“ - 82’1 by setting T'8; = N™/415 , where (§;) is the canon-
ical basis for (,’g *1, Clearly, T is positive. Moreover,

| T > e = max | T8; ], = NY4
where 1/g +1/q" = 1. Furthermore,
| 72X — e = | T1]| oo = N7V 31, | = 2N
i

(for1<s <M, (¥;15)(s) = 2,sinces € F; for exactly two indices 7). By interpolation,
|5 e < | T > e M| T s eV <2V

As the formal identity from €g *Tto 82’ *1is contractive, the desired estimate for || T||
follows.

Next we show that T'is e — DP. Consider disjoint elements x = };.p «;0; and
y =Yjep, Bj6j, where Pk n P, = @and P, uP, = {l,...,N+1}. Fors € {1,..., M},
let Q; be the set of i’s for which s € F; (we have |Q | = 2). If Q; ¢ P, or Q, c P, then
(ITx| A |Ty[)(s) = 0.If Qs = {i, j} with i € P, and j € P, then

NYA(|Tx| A [Ty|)(s) = ol A 1B < laxi[ 218,12,
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Note that any pair (i, j) appears in the right-hand side of the centered inequality at
most once (when Qg = (i, j)). Therefore,

NITAA TG = N AT A T ] < Xl 1B17)*
s i,j
= 2 el 3 1B 17
i j

For q > 2p, (2 | |‘1/2)2/q < (% |oc,~|1’)l/p = |x||p, and therefore, ¥, |a;|7/? <
HxHq/2 Similarly, 3 ; |ﬁ]|q/2 < ”y”q/2 Thus,

2 _
Tl ATy, < N7yl < x50

due to our definition of «.
For p < q <2p,

(Z\ 172) 7 < (N + 1) 1“’(ZI 7Y = (N -+ 1)aie ],

Hence ¥, |a;]9/? < (N +1)1-9/(2p) HxHQ/2 Handling }; ||/ similarly, we conclude
that N|[|Tx| A |Ty]| T < (N +1)*- q/PHxH'f/ZHyHW Hence

[T A [Ty, < (NN 4129209 [l [y < e/l

Finally, we show that T is poorly approximated by disjointness preserving oper-
ators. Suppose S: ZN“ - €M is disjointness preserving. Let G; = supp(S9d;) and
H; = F\G;. The sets G; are disjoint, and Y Ni'|G;| < M = N(N +1)/2. Hence
|G;| < N/2 for some i. Then |H;| > N/2. Hence

IT =82 (T ~8)8:| > NTVa|H, /4 > 2714,
Thus T has all the desired properties. ]

The above results can be generalized somewhat by extending the range space. Re-
call that a Banach lattice X satisfies a lower g- estzmate with constant €, if, for any

disjoint x1,...,x, € X, | X xi| 2 € (Z [[x; Hq)

Proposition 8.3 Supposel < p < q < oo, and X is an infinite dimensional Banach
lattice satisfying a lower g-estimate with constant €. Suppose, moreover, that X does
not satisfy a lower r-estimate for any r < q. Then for any € > 0 there exists a finite rank
positive £ — DP operator T:€, — X such that | T| < 2"Y9(1 + &) and whenever S is
disjointness preserving, | T-S|| > Qq/(Z_l/q?f(‘f_l)/q). In the particular case of X = Ly,
we can have | T|| <2""V9 and | T - S| > 274,

Remark 8.4 Recall that there are no non-zero disjointness preserving operators
from L,(0,1) to Ly(0,1), when p < g (see [1], and also Proposition 3.5.)
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Proof Follow the proof of Proposition 8.1. Pick N € N so that

£ NYa if oo > q>2p,
27 |(NTYN+1D)>9P)Ve if2p>g> p.

Let M = N(N +1)/2. Fix § € (0,1/4). By Krivine’s theorem for lattices (see [27]),
there exist disjoint positive norm one x;, ..., xp € X so that for any a3, ..., ap € C,

gl Sl < (Shalt) " < 0 0)| T

Define the operator T:€,/*' — X by setting T, = NYa Y jer, %j» where (8;) is the

canonical basis for L’g *1. Clearly, T is positive. From the proof of Proposition 8.1,

IT| < (1+6)2Y4 and T is (1+ 8)e/2 — DP.
It remains to show that if S: Eg *1 - X is disjointness preserving, then

max | (T - 8)8;] 2 €,/(3-27/1).

It is easy to see that any disjoint order bounded sequence in X is norm null. Hence
X is order continuous (see [23, §2.4]). This, in turn, implies that any ideal in X is a
projection band. For x € X, we shall denote by P, the band projection corresponding
to x. Let P; = Pgs,Prs,. If P is a projection, we use the shorthand P* = I — P. By
the basic properties of band projections (see [23, §1.2]), P;’s are band projections and
PP =0ifi#j.

Recall that for1 < s < M, Qs = {1 < i < N+1:5s € F;} and |Qg| = 2. Let
¥is = Pix;, and note that y;; = 0 unless s € F;, or equivalently, i € Q;. Also let
Yos = Xs = Ljeq, Pixs = (Xicq, Pi)*xs. The elements y;, are disjoint. We have

NY4|(T - )8 > NY|Pg; Prs, (T61)]

= “ Z(xs J’IS)” = H Z(}’Os

seF; seF;

where i’ is such that Q, = {i, i'}. By the lower g-estimate,
N[(T - 8)8:]7 > &g 3 (Iyosl? + [yirs| -

seF;
Consequently,
N+1 N+1
¢ N Z (T =8)a:l"2 3 3 (hyos|® + |yel®)
i=1 seF;
= Z > (Iyosl + [y )
s=1ieQ;
M
=2 (2lyosl®+ X lyisl?)-
s=1 i€Qs

An easy computation shows that the inequality

207+ b1+ c1>al+ b1+ c?1>3"a+b+c)1
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holds for any non-negative reals a, b, c. Hence

_ q _ _
2“)/05Hq+ Z ”J’iSHq >3! q(HJ’OSH + Z H)’isn) >3 q“)’05+ Z yiSHq =3 quSHq-

i€Qs i€Qs i€Qs

Therefore,
N+1

-q q 1 M . M
€N LT =)0l 35 2l = 5
i=1 s=1
Thus, for some i,

M ¢
3-IN(N +1) 2-30-1

I(T = $)8:[* =

The particular case of X = Ly (u) is1 more straightforward. In this case, €; = 1 and
the x;s satisfy | ¥; a;x;| = (;]ai?) /% that i, we can take 6 = 0. Keeping the same
notation as before, we obtain:

N+1 M

N;H(T—S)&quz >yl

LiefouQ.

ST Y

s=1 ie{0}uQ,

M
=2 ] = M.

i=1

Hence, for some i, |(T - §)8;||7 > M/(N(N +1)) =1/2. [ |

9 Modulus of an ¢-DP Operator

By [23, §3.1], the modulus of a disjointness preserving operator T exists, and for any
x > 0,|T|x = |Tx|. Itis easy to see that || T|| = || T|, and that | T| preserves disjointness.
Conversely, if |T| exists and is disjointness preserving, then the same is true for T.
More generally, if | T| is ¢-DP, then T is ¢-DP. Indeed, suppose |T| is ¢-DP, and pick
disjoint x and y:

[1Tx| ATyl] < [Tl A TIyl] < emax <], [y]}-
For operators into Dedekind complete C(K) spaces we have a converse.

Proposition 9.1 Consider T € B(E, F), where E and F are Banach lattices, and F is
an M-space. If T € B(E, F) is e-DP and the modulus | T| exists, then | T| is e-DP.

Remark 9.2  Suppose, in Proposition 9.1, F is a Dedekind complete M-space, with
a strong order unit (equivalently, F = C(K), where K is a Stonian compact Hausdorff
space [20, §1.a-b]). Then any operator T € B(E, F) has modulus |T| and ||T|| = || T|
[29].
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Proof Recall that for any x € E we have |T]|x| = V|,j<|x| |Ty|. Now given disjoint
X1, X2, we have

| 117ba] {1710 | <1110 AT |

=| v imnia v Ty

[y1<]x] [y2]<|xa|
| v imnlalTy|.

[y1l<|x]

[y2|<x2|

As F is an M-space,

| v ATl = sup 1Tl ATy
[y1]<]x1] [y1l<|x]
[y2I<]x2] y2<[x2]

Recall that T is e-DP, hence

[1T1] ATyl | < emax{{ ], 2]} < emax{]la], [x2]},

and therefore, || || T|x1| A||T|x2|| < emax{||x], | x2 ]} [ |

Incidentally, in the non-locally convex setting, we have some stability for the mod-
ulus of an e-DP operator.

Proposition 9.3  Let 0 < p < 1/2 be a Banach lattice E and T:€, — E be an e-DP
operator. The modulus |T| (which is also bounded) is \/¢| T||-DP.

Proof Let f, = TJ,, where (8,);2; form the canonical basis of £,. We have that
|T|84 = |ful- Indeed, since &, is an atom, we have

|T|6, = sup{|Ty|: |y| < 0n} = sup{|TAS,| : |A| < 1} = T8,

Therefore, |T|: €, - Eisgivenby|T|(X, andx) = X, an|fu| (Which defines a bounded
operator). We claim that for n # m,

(9.1) [anful Alom funl | < VEITIN |an]lbml.

Indeed, as T is e-DP, we have H |anfu A |bmfm|H <e(lan| v |bml). Also,

[anful A1om finl | < 1@nful A Nom fuull < || T l@n| A [bml.

Assume without loss of generality that |a,| < |b,,|. Then

” |an ful A |bmfm||| < elbm| A ” T” lan| </ elbw|[| T|anl,

establishing (9.1).
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Now let x, y € £, be disjoint elements. We can write x = Y;c4 4i0i, ¥ = X jep b;0;
with A n B = @. Taking (9.1) into account, we obtain

wawmmuwmzwmwmzmmw
<|ZZlasinlessil] < ¥ Sllassil A loifil

i€A jeB i€A jeB
<SSVl W ail bj] = /el T 1/lxl 1 Iy
i€A jeB

<\l T I Ixlp Iyl < /el T [ max{ |x]p lyl,}. =

The result below shows that, in general, the e-disjointness preserving properties
of T do not allow us to conclude anything about the e-disjointness properties of | T|,
even if the latter exists.

Proposition 9.4  Forevery ¢ > 0, there exists an operator T € B(£,) such that | T| > 1,
|| |T||| <2,and T is e-DP, yet | T| is not c-DP whenever ¢ < 1/2. Moreover, | T —I,,|| < ¢,

while || T| - U| >1/(3\/2) whenever U is disjointness preserving.
Start by observing that the property of being e-DP is preserved by direct sums.

Lemma 9.5 Suppose (E;)icn, (Fi)ien are Banach lattices, U is a Banach space with
a 1-unconditional basis, and the operators T; € B(E;, F;) are such that sup, | T;| < co.
Define the Banach lattices E = (@; E;)y and F = (@, F;)uy, and the operator T =
@®; T; € B(E,F). If T; is ¢-DP for every i € N, then T is 2¢-DP,

Proof Consider disjoint x = (x;)ien, ¥ = (¥i)ien € E (here x;, y; € E;, for every
i € N). By [20, Proposition 1.d.2], we have
[T AlTyl| = | (N Tixil A Tyall)
< ef| (max{ x|, [ yi[})illv
<ef[ (il + lyilillv
£2£max{ Hx|\,||y||} ]

Proof of Proposition 9.4 Consider the operators S; € B(¢2), given by unitary
Walsh matrices. It is known that IS:] = 212§, ® &;, where & is the unit vector

272 Z] 1€j (er,..., ey is the canonical ba31s of €2 ). Let T; = 1 2 + 27128, Pick
k € N'so that 27%/6 < ¢/6. Identify (&, 82 )2 with £,. Then we can View T = Disi T,
as an operator on ¢,. We show that T has the required properties.

Indeed, for any i, | T;| > 1- 272, Hence |T| = sup, | T;| > 1. Furthermore,
|T — Iz|| = sup, 27"/2||S; | < e. The operator | T| = @i(I,n + & ® ;) has norm 2.

Now fix i > k, and consider disjoint vectors ’

t 1 2i
=270~ 1)/226 and y=2"0"D/2 > e

j=1 j=21"141
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in the unit ball of €2'. Then |T|x = |T|y = 27"/2¢;. Hence IITlx| AllTIy]] =272
Thus, | T| cannot be ¢-DP for ¢ < 1/2.
To prove that T is e-DP, it suffices to prove (in light of Lemma 9.5) that for any

i>k,I+27/28;is e/2-DP. If x, y ¢ B(£2') are disjoint, then

(142728, 2 A (1+277728,) 5] < (x| + 27218ix]) A (9] +2-2150])
< x| A 272185 y] + 2728 x) A [y + 272 1Six| A 277185y,
Hence
[ (2 +277280)x| A | (T+27728:)y|| < min {2772|x[ |y} +min {277|y], ]}
+min {277 x ], 277 | y | }
<3272 <¢f2,
by our choice of k.

Finally, suppose U € B(#£,) is a disjointness preserving operator. Let V = |T| - U,
and suppose, for the sake of contradiction, that | V|| <1/ (3v/2). As before, take x =
2-(i-1/2 Z?zl ejand y = 27(7D/2 Z?ZZ,-_IH ej. Then |||T|x| A||T]y|| = 27"2. On
the other hand,

[ Tlx A [T]y = (Ux + Vx) A (Uy + Vy) < ([Ux] + [Vx]) A ([Uy] + [Vy])
<|Ux| A |Vy|+ Vx| AUy + Vx| A VY.
Hence % = |17l | ATl || < Vol +2| Vx| <3|V < %,yieldingacontradic—
tion. |

10 Lattice Homomorphisms and Operators Preserving p-estimates

Let us now consider positive operators being “almost lattice homomorphisms” We
say that an operator T € B(E, F) is an e-lattice homomorphism (e-LH for short) if,
forany x € E, | | T|x|| - |Tx|| < ¢|x|. A positive operator T € B(E, F) is said to be
e-minimum preserving (e-MP) if, for any positive x, y € B(E),

[(Tx) A(Ty) = T(x A y)| <&
It is known [23, §3.1] that a positive operator is disjointness preserving if and only
if it is 0-LH, if and only if it is 0-MP; in this case, it is a lattice homomorphism. In

the “approximate” case, the notions introduced above are connected to being &'-DP
as well (for some ¢’ depending on &).

Proposition 10.1  For Banach lattices E and F, and T € B(E, F), the following hold.

(i) If T is positive, then T is e-MP if and only if it is e-DP.

(ii) Any e-DP operator between real Banach lattices is a 2e-LH.

(iii) IfT is e-LH, then T is 4e-DP in the real case, or 16e-DP in the complex case. If, in
addition, T is positive, then it is e-DP.

Proof (i) If T is e-MP, then it is e-DP, by Proposition 2.1. To prove the converse,
consider x,y € B(E),. Then xg = x —x A y and yo = x — x A y are positive and
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disjoint, and
TxATy—-T(xAy)=(Txog+T(xAy))A(Tyo+T(xAy))=T(xAy)=TxonATyo.

If Tis e-DP, then |[Tx A Ty — T(x A y)| = | Txo A Tyo| <e.
(ii) Suppose T is a e-DP map between real Banach lattices. Then, for any x € E,

[T = | Tl || = [Ty = Toe| =T + T || = 2(] T A T ]).

As max{||x,|, |x=]} < ||x||, and x; 1L x_ we have |[|Tx| - |T|x|||| < 2¢|x].
(iii) Suppose T is e-LH, and pick disjoint positive y,z € B(E). Let x = y — z. As in
part (ii), we obtain

[Tyt ATl = 31731 = 7181 < Sl < S(Upl + el <
To finish the proof, apply Proposition 2.1. ]

In the rest of the section we consider operators that almost preserve estimates of
the form (|x|? + [y|?)"/? and their connections with e-DP operators and lattice ho-
momorphisms. This approach is in part motivated by Corollary 3.3. In particular,
this will allow us to extend some of the previous results to the complex setting (see
Proposition 10.5.)

Given 1 < p < oo, a positive operator between Banach lattices T: E — F is said to
be ¢ preserving p-estimates if for every x, y € E we have

| T(xl? +[y12)7 = (I Tx? + | TylP) e | < e(flx] + |y])s
while for p = oo, we would have

| T(xl v Iyl = (AT v TyD]| < eClxl + yDD-

It is easy to see that an operator is € preserving 1-estimates if and only if it is an
e-lattice homomorphism. More generally, we have the following proposition.

Proposition 10.2  Let E and F be real Banach lattices. If T € B(E, F) is a positive
&-DP operator, then for every1 < p < oo, T is Klog,(e(| T| + 1))7(e(| T| +1))"/?
preserving p-estimates (where K is a universal constant).

Recall that according to Proposition 10.1 (i), a positive operator is e-MP if and only
if it is e-DP. Before giving the proof, we need a preliminary lemma.

Lemma 10.3 If T € B(E,F) is a positive e-MP operator, then for any x1,...,x, €
B(E,) we have |T(ViL, xi) — Vi, Tx;| < e[log, n]n.

Proof It suffices to show that for any m € N, | T(V2, x;) - V2 Tx;i| < em2™ 1,
Proceed by induction on m. The case of m = 1is contained in the definition of T
being e-MP. To deal with the induction step, suppose the statement holds for m, and
prove it for m + 1. For j = 0,11et

2™ j+2" 2Mj42m
yi= V xi and z;=Ty;— \/ Tx;.
i=am i1 i=am 41
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By the induction hypothesis, |z;]| < em2™" (and it is easy to see that z; > 0). Also,

IT(ro v 1) = (Tyo) v (Tyn) | < emax{||yol, | 1]} < 2™e.
We clearly have

2™ 2™
T(V xi) = V Txi = T(yo v y1) = (Tyo — 20) v (Ty1 = 21)

<(T(yovy1) = (Tyo) v (Ty)) +20 + 21.

Hence,
2" 2m
|| T(Vxi) -V Txi| <[ T(yo v y1) = (Tyo) v (Tyn)| + (20| + 1)
From the above, || /7, Tx; = T(V/ x;)| <2™e+2-m2™ e = (m +1)2™e. [ |
We also need a simple calculus result.

Lemma 10.4  Suppose ¢ is a monotone continuous function on an interval [a, b],
continuously differentiable on (a,b). Then the arclength of the graph of ¢ does not
exceed b —a+|p(b) — ¢(a)l.

Proof For the arclength in question we have

b b
sza \/1+(¢’(t))2dt$fa (1+]¢/ (1)) dt.
The monotonicty of ¢ implies jab |9’ ()| dt = |¢(b) — ¢(a)). [ |

Proof of Proposition 10.2  For any u and v in a Banach lattice, if 1/p + 1/g = 1, then
(see [20, 1.d])

(|u|f’+|v|p)w = \/{oc|u|+ﬁ|v| ta,Be[0,1],a?+ = 1}.

For any N € N, let {(xj,y;) : j = 0,1,... N} be a collection of points satisfying
xj,yj € [0,1], x]+y7 = 1and such that for any (a, ) witha, f € [0,1] and a? + 7 = 1,
there exists 0 < j < N for which max{|a—x;|, |8~ yj|} < Cq/N, where C, is the length
of the curve {(x, y) : x, y € [0,1], x7+ y9 = 1}. By Lemma 10.4, C, < 2. Thus, for any
(a, B) with a, f € [0,1] and a7 + 89 = 1, there exists j so that

2
oufue] + BIvl < (xesluul + yslvl) + 5 (jul + V1)
Taking the supremum, we obtain

N 2
\/{oc|u| +Bv|:a, Be[0,1], 0%+ p = 1} < j\z/o(xj\u| +yilv]) + N(M +v]),

and by the triangle inequality we get

P WY = (sl + D < 2l + I ]).
u V (x; Vi
o N
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By Lemma 10.3,
N N 1
| 7V Goilel + 351D = VTl + 3Tl | < €27 log, (N + DN +1).
j= i=
By Proposition 10.1 (ii), T is e-LH, hence | T|x| - |Tx||, || T|y| — | Ty|| < e. Hence
N N
| VGl 3T = VGl Tl + i TYD| < 2N + e

Thus, by the triangle inequality,

| Tl + 131232 = (1Tt + | T917) Y|
<[ + b =T Vol o)
[/ Vol ) = Ve Tl 3T |
|| Vaiel 3o - U Gelred+ b

N
# VGl eyl = (T [y |

4| 7|

< +s(N+1)(2%[log2(N+l)]+2).

To finish the proof, select N ~ (e(|| T|| +1))"2. [ |

As a consequence of this result, we can now give the complex version of Proposi-
tion 10.1 (ii). We follow [2] in representing a complex Banach lattice X as a complexi-
fication of its real part Xg. More precisely, any x € X can be represented as x = a + b,
with a, b € Xg. Then |x| = (a® + b?)"/2.

Proposition 10.5 Suppose E and F are complex Banach lattices, and T € B(E, F) is
a positive e-DP operator. Then T is a Clog, (e(| T| +1)) ™ (e(| T| +1))Y2-LH (with C
a universal constant).
Proof Consider T € B(E, F) as in the statement; we show that, for any x € B(E),

| Tlx| = |Tx| < Clog, (e(I T +1)) ™ (e(I T| +1))">.

By Proposition 10.1 (i, iii), T|g, is 2¢e-LH. Hence by Proposition 10.2, it follows that
T|g, is Klog, (2¢(| T|| +1)) 7' (2e(|| T|| +1))? preserving 2-estimates.
Now write x = a + tb, where a and b belong to Eg. We have that

| Tlx| = |Tx|)| = | T(a® + b%)'/2 — ((Ta)* + (T0)*)"?|
< 2Klog, (2¢(| T +1)) ™ (2¢(|| ] + 1)), u

Motivated by Lemma 10.3 we will consider next a strengthening of operators that
are ¢ preserving oo-estimates. For ¢ > 0, we say that a positive operator T € B(E, F)
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(E and F are Banach lattices) is e-strongly maximum preserving (e-SMP for short) if,
for any xi, ..., x, € B(E),, we have | T(V%, x;) — Vi Tx;| <e.

We say that T € B(E, F) is an ¢e-strongly disjointness preserving (¢-SDP) if, for any
mutually disjoint xi,...,x, € B(E), we have | X7, | Tx;| - VI, |Txi|| < e. Clearly,
any &-SMP positive operator is also e-SDP.

Note that these properties are much harder to satisfy. For instance, it is easy to see
that any operator T is || T|-DP. On the other hand, for a pair of Banach lattices (E, F),
the following are equivalent.

(1) E islattice isomorphic to an M-space.
(2) There exists C > 0 so that any T € B(E, F). is C| T||-SDP.

To prove (1) = (2), suppose E is an M-space. Fix a positive operator T: E — F, and
consider mutually disjoint x1, ..., x, € B(E). Then

ISl < | TSl < 1713 all = 17 max il

which implies (2).
For (2) = (1), recall that, by [23, §2.1, 2.8], the following are equivalent:

* E is lattice isomorphic to an M-space;

* there exists a constant K so that the inequality || 3°; x;| < K max; ||x;|| holds when-
ever xy, ..., X, € E are mutually disjoint;

o there exists a constant K so that the inequality | ¥; x7| > K™' 3, | ] | holds when-
ever x;,...,x, € E* are mutually disjoint.

Suppose now that (1) fails; we show that (2) fails as well.

If (1) fails, then for every C > 1 there exist mutually disjoint non-zero x;, ..., x,, €
E?, satisfying || Yixl| < (C+2)7'Y; |x]|. Without loss of generality, we can assume
1 = max; |x]|. Applying [23, Proposition 1.4.13] to x} /|| x; |, we see that, forany ¢ > 0,
there exist mutually disjoint x1, . . ., x, € B(E), so that (x}, x;) > ||x}| -n"" for any i.

Now let x* = 3, x/'; pick a norm one positive y € F, and define T: E — span[y] c
F:x = (x*,x)y. Clearly | T| = ||x*|. On the other hand, max; |x;| =1, V; Tx; < y,
and ¥, Tx; = (X Zj(x;‘,xj))y > (X, |xf] - 1) y. Consequently, if T is y| T |-SDP,
then

 illxil -2
5]

As C can be arbitrarily large, we are done.

> C.

Theorem 10.6  Suppose E and F are Banach lattices, and T € B(E, F) is a positive

&-SDP operator.

(i)  Suppose E is finite dimensional. Then there exists a disjointness preserving S €
B(E,F)sothat0<S< T,and |T -S| < 2e.

(ii) Suppose the order on E is determined by its 1-unconditional basis, while F has

the Fatou property with constant §. Then there exists a disjointness preserving
SeB(E,F)sothat0<S<T,and|T -S| < 2fe.

Remark 10.7 By Corollary 3.3, if a positive operator T is e-DP, then for any mutu-
ally disjoint x1, ..., x, € B(E), we have | X7, | Tx;| - Vi, |Txi|| < 256¢| ¥; x| In
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particular, this holds for the operator T from Proposition 8.1. However, in light of The-
orem 10.6, if T is 0-SDP, then ¢ > 1/4. Thus, there is no function f: (0, o) — (0, c0),
with lim;_.o f(#) = 0, so that being e-DP implies being f(¢)-SDP.

Proof (i) It is well known [28, Corollary 4.20] that X has a basis of atoms, which we
denote by (6;)%, (n = dim X), and they form a 1-unconditional basis. Use scaling to
assume that T is contractive. Let f; = T'0;. As in the proof of Theorem 4.1, define the
function ¢,: R” — R by setting

0 if ] < Vi, [t
Gni(ti, s tn) > 2(I0] = Vi [t])  if VI, [t < 6] <2V, |t
|t1] if ] < Vi, [t

Forl < i< m,setg; = ¢u(firfist>- o> fu> fis---» fiz1). We claim that the operator
S:E — F:§; ~ g; has the desired properties.
Note that 0 < ¢, (#1,...,t,) < t;. Hence 0 < g; < f;, which shows that 0 < S < T.
To show that S is disjointness preserving, consider i # j. Note that

Gu(tistivts oo ostustisee s tic)) Au(tjntjsts oo ostustisen s tjsg) = 0,

for any (t1,...,t,) € R". Hence g; and g; are disjoint.
Now note that | T -S| < [[(T - 8) X5 6i]l = | Xiei(fi — gi) |- It therefore suffices
to show that

n

(10. 2 (fi-g) <A fim Vi)

i=1 i=1 i=
Indeed, applying the definition of e-SDP to x; = &, we obtain | X7, fi - VI, fi]| <e.
To establish (10.1), by functional calculus it suffices to show that

(1= bn(tistas .o stn))+(ta— dn(tastss o tn, 1)) + -+

+(tn = Gt tis s tumt)) <2( D0t - \? ti),

1

n
i=1
for any ty,...,t, € R7. By relabeling, we can assume that t; > ¢, > --- > t,,. In the
left-hand side, the i-th term equals t;, while the first term does not exceed t,. Thus,
the left-hand side does not exceed 2t; + t3 +- - - + t,, On the other hand, the right-hand
side equals 2 Y7, t;.

(i) Now denote the basis of X by (8;)%;, and set f; = T§;. With the notation of
(i), set gf") = ¢u(fi» fisrs s fu> fis- > fiz1). Note that, for any #1,..., ¢, € Ry,
we have ¢, (1, tg,...,tn) = ¢n+1.(t1, t2yee s b0, 0) > Gpia1(t1, 25 o5ty tne1). Hence
we have f; > gt > g1 > gl*2) 5 ... 0. By the o-Dedekind completeness of
F, gi = lim, g;"’ exists for every i. Define S:E — F by setting S§; = g;. Clearly
0 < § < T. Furthermore, S is disjointness preserving. Indeed, if i # j,and n > i v j,
then forany t;,...,t, € Ry,

(pn(ti’ ti+l’~~ ) tn) tl)- B ti—l) A ¢n(t]’ tj+la- . "tna tla- B tj—l) =0.

Hence gf") A g](”) =0.
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To estimate | T — S||, note that

| T =S| <sup | (T=8)> 8] =sup| > (fi —gi)|-
m i=1 =1

m i

For each m, | ¥12,(fi - gi)|| < Fsup, | T (fi - gf"))” . By the proof of part (i),
m
| X 0i=g™)] <26,
i=1
and the proof is complete. ]
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