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Abstract

We develop the transversal harmonic theory for a transversally symplectic flow on a manifold and
establish the transversal hard Lefschetz theorem. Our main results extend the cases for a contact manifold
(H. Kitahara and H. K. Pak, ‘A note on harmonic forms on a compact manifold’, Kyungpook Math. J.
43 (2003), 1–10) and for an almost cosymplectic manifold (R. Ibanez, ‘Harmonic cohomology classes of
almost cosymplectic manifolds’, Michigan Math. J. 44 (1997), 183–199). For the point foliation these
are the results obtained by Brylinski (‘A differential complex for Poisson manifold’, J. Differential Geom.
28 (1988), 93–114), Haller (‘Harmonic cohomology of symplectic manifolds’, Adv. Math. 180 (2003),
87–103), Mathieu (‘Harmonic cohomology classes of symplectic manifolds’, Comment. Math. Helv. 70
(1995), 1–9) and Yan (‘Hodge structure on symplectic manifolds’, Adv. Math. 120 (1996), 143–154).
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1. Introduction

Let (N , 8̄) be a symplectic manifold of dimension 2n. On the graded algebra
�∗(N )=

∑
k �

k(N ) of all differential forms on N an operator L̄ defined by

L̄α := 8̄ ∧ α, ∀α ∈�k(N ),

induces a homomorphism

L̄ : H k(N )−→ H k+2(N ),

in the de Rham cohomology H∗(N ) of N .
Brylinski [5] introduced the notion of symplectic harmonic forms on a symplectic

manifold. He conjectured that on a closed symplectic manifold any de Rham
cohomology class has a symplectic harmonic representative. This conjecture is true
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for a closed Kähler manifold. However, it is not true in general. For example,
Mathieu [12] gave a counter example of a four-dimensional closed nilmanifold
(Kodaira–Thurston surface). Furthermore, he showed the following result.

THEOREM A. Let (N , 8̄) be a symplectic manifold of dimension 2n. Then the
following are equivalent:

(1) any de Rham cohomology class has a symplectic harmonic representative;
(2) for any k ≤ n, the homomorphism

L̄k
: Hn−k(N )−→ Hn+k(N ),

is surjective.

It should be noted that in view of the Poincaré duality, when N is closed L̄k is an
isomorphism. Theorem A is a generalization of the hard Lefschetz theorem for a
closed Kähler manifold (refer to [8, 27] for another proof). On the other hand, there
are known many closed symplectic manifolds which do not satisfy the hard Lefschetz
theorem [2, 13, 27].

Let (M, ω) be a contact manifold of dimension 2n + 1. Then we have the Reeb
vector field T, that is, a nowhere vanishing vector field on M such that

ι(T )ω = 1, LTω = 0, (1.1)

which defines a flow F , called the contact flow. Here and hereafter, ι(·) and L(·)
denote the interior product and the Lie derivative with respect to the vector field (·)
respectively. The harmonic theory on a closed Sasakian manifold has been extensively
studied by many geometers (say, [4, 7, 15, 22, 23]). Some of these results have been
extended to closed contact metric manifolds (say [19, 20]). The harmonic theory
developed before is usually founded on an adapted metric gω defined by

gω = ω ⊗ ω + dω ◦ J, (1.2)

where J is the complex structure on the contact distribution D := ker ω [26].
We observe that the contact flow F on a contact manifold is geodesible and

transversally symplectic with exact transversally symplectic form dω. From the
viewpoint of transversal geometry for foliations, in [11] an analogy was established
for Theorem A for the contact flow F .

In the present paper, we are interested in a tense, transversally symplectic flow F
with a transversally symplectic form8 on a manifold M . The contact flow on a contact
manifold is a typical example. Another example is the (contact) flow generated by the
Reeb vector field on an almost cosymplectic manifold. Our main purpose is to develop
a transversal harmonic theory for such a flow (F , 8).

In this situation, we consider an operator L on �∗(M) defined by

Lα :=8 ∧ α, ∀α ∈�k(M), (1.3)

which induces a homomorphism
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L : H k
B(F)−→ H k+2

B (F),
in the basic cohomology H∗

B(F) for F . Moreover, we introduce the notion of
transversally symplectic harmonic forms and then establish the transversal hard
Lefschetz theorem for F .

THEOREM B. Let (F , 8) be a tense, transversally symplectic flow on a manifold M
of dimension 2n + 1. Then the following are equivalent:

(1) any basic cohomology class for F has a transversally symplectic harmonic
representative;

(2) for any k ≤ n, the homomorphism

Lk
: Hn−k

B (F)−→ Hn+k
B (F),

is surjective.

For the point foliation, Theorem B reduces to Theorem A. Theorem B extends the
results in [11] for a contact manifold and in [9] for an almost cosymplectic manifold.

2. Transversally symplectic flows

Let F be the flow generated by a nonsingular vector field T on a manifold M of
dimension 2n + 1 . Let (�∗

B(F), dB) be the basic complex for F given by

�∗

B(F) := {α ∈�∗(M) | ι(T )α = LTα = 0},

which is a subcomplex of the de Rham complex (�∗(M), d) on M . Denote its
basic cohomology by H∗

B(F) := H(�∗

B(F), dB), which plays the role of the de Rham
cohomology of the leaf space M/F .

The flow F generated by a nonsingular vector field T on M is said to be
transversally symplectic if it admits a transversally symplectic form 8, that is, 8
∈�2

B(F) is closed and has rank 2n on �∗(M). Then, by definition, we have a global
1-form ω such that

ι(T )ω = 1, D := ker ω ' Q,

where Q denotes the normal bundle for F . We call ω the characteristic form of
T for (F , 8). Consider the following multiplicative filtration of (�∗(M), d) for F
defined by

Fr�k
:= {α ∈�k(M) | ι(X1) · · · ι(Xk−r+1)α = 0},

for X i ∈ 0(F), where F denotes the tangent bundle to F .
The mean curvature form for such a flow F is defined by

κ := LTω. (2.1)

It should be noted that κ ∈ F1�1. If κ ∈�1
B(F) (respectively κ = 0 on M) then F is

said to be tense (respectively geodesible). From Rummler’s formula [24]

dω + κ ∧ ω =: ϕ0 ∈ F2�2, (2.2)

we find that ϕ0 = 0 if and only ifω is integrable, that is, the distributionD is integrable.
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EXAMPLES.

(1) If F is the contact flow on a contact manifold (M, ω) generated by the Reeb
vector field T given by (1.1), then (F , 8= dω) is geodesible and transversally
symplectic. In this case, ϕ0 6= 0 on M .

(2) Consider an almost cosymplectic manifold (M, η, 8), that is, dη = 0, d8= 0
and η ∧8n

6= 0 on M [3]. Then we have the corresponding Reeb vector field ξ
characterized by

ι(ξ)η = 1, ι(ξ)8= 0.

If F is the flow generated by ξ (we also call it the contact flow), then (F , 8) is
geodesible and transversally symplectic. In this case, ϕ0 = 0 on M . Thus, the
distributionD = ker η defines a codimension-one foliation F⊥ transversal to F .

(3) More generally, a locally conformal almost cosymplectic manifold (M, η, 8)
is defined as an open covering {Us} of M endowed with smooth functions
σs : Us −→ R such that over each Us the local conformal change given by

ηs := e−σsη, 8s := e−2σs8

of (η, 8) is almost cosymplectic. It is easy to see that this manifold is
characterized by the existence of a closed 1-form ψ satisfying

dη = ψ ∧ η, d8= 2ψ ∧8. (2.3)

Then by (2.2) the flowF generated by the Reeb vector field ξ is tense with mean
curvature −ψ andD = ker η defines a codimension-one foliationF⊥ transversal
to F . From ψ ∈ F1�1 and (2.3) we have on D

d8= 2ψ ∧8.

It follows that D admits a locally conformal symplectic structure 8 with Lee
form ψ (see [25]). Namely, F is a transversally locally conformal symplectic
flow. However, F is not necessarily transversally symplectic. Observe that F is
transversally symplectic if and only if the Lee formψ vanishes on M . Therefore,
we deduce the following proposition.

PROPOSITION 2.1. Let (M, η, 8) be a locally conformal almost cosymplectic
manifold. Then the flow (F , 8) generated by the Reeb vector field ξ is transversally
locally conformal symplectic. Furthermore, it is transversally symplectic if and only if
M is almost cosymplectic.

In viewing the above examples, it is natural to consider a geodesible, transversally
symplectic flow (F , 8). In this case, (2.2) becomes ϕ0 = dω, so that it defines
[ϕ0] ∈ H2

B(F). Then we have the following theorem.

THEOREM 2.2. Let (F , 8) be a geodesible, transversally symplectic flow generated
by a nonsingular vector field T on a manifold M and ω be the characteristic form
of T :
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(1) if [ϕ0] = 0 in H2
B(F) then M can be equipped with an almost cosymplectic

structure;
(2) if [8] = [ϕ0]( 6= 0) in H2

B(F), then M can be equipped with a contact structure.

PROOF.

(1) Since [ϕ0] = 0 in H2
B(F) there exists β ∈�1

B(F) such that ϕ0 = dβ. Take
ω̃ := ω − β ∈�1(M). Then

ω̃ ∧8n
= ω ∧8n.

It follows that (ω̃, 8) is an almost cosymplectic structure on M .
(2) From the hypothesis we can write

8= ϕ0 + dγ

for some γ ∈�1
B(F). By taking ω̃ := ω + γ ∈�1(M), we obtain a contact

structure ω̃ on M . 2

REMARKS.

(1) Observe that under the situation as in Theorem 2.2, ϕ0 and 8 define de Rham
cohomology classes [ϕ0], [8] ∈ H2(M). Thus, if the second Betti number of
M vanishes, then (M, ω) is a contact manifold. There are several results on the
vanishing of the second Betti number on a closed Sasakian manifold [4].

(2) In the presence of the metric, Molino [14] discussed some classifications
of transversally symplectic Riemannian foliations on a closed Riemannian
manifold. In [16, 17], the authors studied the problem of when a Riemannian
flow on a closed Einstein(–Weyl) manifold admits transversally almost complex
structure. The vanishing of [ϕ0] was discussed in [21] when F is an isometric
flow (which is generated by a Killing vector field).

Let (F , 8) be a transversally symplectic flow generated by a nonsingular vector
field T on a manifold M of dimension 2n + 1 and ω be its characteristic form of T .
Define a map [ : 0(T M)−→�1(M) of C∞(M)-modules by

[(X) := ι(X)8+ ω(X)ω,

where 0(·) is the C∞(M)-module of all smooth sections of a vector bundle (·). Since
8 plays a role as a symplectic structure on the distribution D, [ is an isomorphism.
The map [ can be extended to an isomorphism of the space X k(M) of all skew-
symmetric k-vector fields onto �k(M) by setting

[(X1 ∧ · · · ∧ Xk) := [(X1) ∧ · · · ∧ [(Xk), ∀X1, . . . , Xk ∈ 0(T M). (2.4)

Let
XB(F) := {X ∈ 0(D) | [X, T ] ∈ 0(F)} ⊂ 0(T M),

where F denotes the subbundle of T M tangent to F . An element in XB(F) is called
a basic vector field.
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LEMMA 2.3. Let (F , 8) be a transversally symplectic flow generated by a
nonsingular vector field T on a manifold M of dimension 2n + 1 and ω be its
characteristic form of T . Then [ induces an isomorphism XB(F)−→�1

B(F).

PROOF. Let X ∈XB(F). It is obvious that ι(T )[(X)= 0. Moreover, using
the identity

[LT , ι(K )] = ι(LT K ), (2.5)

for K ∈X k(M) yields

LT [(X)= ι(X)LT8+ ι([T, X ])8= 0.

It follows that [(X) ∈�1
B(F).

Conversely, for α ∈�1
B(F) there exists X ∈ 0(T M) such that α = [(X). Then

0 = LTα = ι([T, X ])8,

which implies that [T, X ] ∈ 0(F) because of the nondegeneracy of 8 on D. Hence,
X ∈XB(F). 2

By Lemma 2.3, together with (2.4), [ can be naturally extended to an isomorphism

[ :X k
B(F)−→�k

B(F), (2.6)

where X k
B(F) denotes the space of all basic skew-symmetric k-vector fields.

In terms of the transversal volume form ν := (8n/n!) for F we define the star
operator ∗D by the formula

∗Dα := ι([−1(α))ν, (2.7)

for α ∈ Fk�k .

COROLLARY 2.4. Let (M,F , 8, T, ω) be as in Lemma 2.3. Then ∗D :�k
B(F)−→

�2n−k
B (F) is well defined.

PROOF. Let α ∈�k
B . Then by definition and (2.6)

LT ∗Dα = LT ι([
−1(α))ν = ι(LT [

−1(α))ν = 0,

from which it follows that ∗Dα ∈�2n−k
B (F). 2

As an application of Corollary 2.4, we have further properties.
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PROPOSITION 2.5. Let (M,F , 8, T, ω) be as in Lemma 2.3. Moreover, suppose that
M is closed and F is tense. Then:

(1) dκ = 0, so [κ] ∈ H1
B(F);

(2) ϕ0 ∈�2
B(F).

PROOF.

(1) The proof essentially follows [24]. Since κ ∈�1
B(F), there exists α ∈�2n−2

B (F)
such that ∗Dα = dκ by virtue of Corollary 2.4. Then (2.2) implies

‖α‖
2

:=

∫
M
α ∧ ∗Dα ∧ ω =

∫
M
α ∧ dκ ∧ ω

=

∫
M
α ∧ (κ ∧ dω + dϕ0)

=

∫
M

d(α ∧ ϕ0).

Therefore, α = 0, so that dκ = 0.
(2) From (2.1), (2.2) and (1), a direct computation yields

LTϕ0 = LT (dω + κ ∧ ω)= dκ = 0.

This means that ϕ0 ∈�2
B(F). 2

3. Transversally symplectic harmonic forms

Let (F , 8) be a transversally symplectic flow generated by a nonsingular vector
field T on a manifold M of dimension 2n + 1 and ω be its characteristic form of T .

We define the star operator ∗ :�k(M)−→�2n+1−k(M) by

∗α := ι([−1(α))(ω ∧ ν), (3.1)

in terms of the canonical volume form ω ∧ ν = ω ∧ (8n/n!) on M . A k-form α is said
to be harmonic if dα = 0 and δα := (−1)k∗d∗α = 0. Denote the space of all harmonic
forms on M byH∗(M).

Now we need an operator e(ω) on �∗(M) defined by

e(ω)α := ω ∧ α, ∀α ∈�k(M).

Then we have the following lemma.

LEMMA 3.1. Let (F , 8) be a transversally symplectic flow generated by a
nonsingular vector field T on a manifold M of dimension 2n + 1 and ω be its
characteristic form of T . Then for each k the map e(ω) : Fk�k

−→�k+1(M) is an
injective isomorphism.

PROOF. It suffices to note that if α ∈ Fk�k satisfies e(ω)α = 0, then

α = ι(T )e(ω)α + e(ω)ι(T )α = 0,

which means that e(ω) is injective. 2
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LEMMA 3.2. Under the same situation as in Lemma 3.1, the operator 3 := ∗L∗

defined on �∗(M) preserves �∗

B(F).

PROOF. A direct computation for α ∈�k
B(F) gives rise to

3α = ∗L∗α = ∗L[ι([−1(α))(ω ∧ ν)]

= (−1)k∗(ω ∧ L∗Dα)

= ι([−1(L∗Dα))ν

= ∗DL∗Dα.

Thus, Corollary 2.4 implies that 3α ∈�k−2
B (F). 2

For convenience, we set

�0,k
:= Fk�k, �1,k

:= e(ω)(Fk�k),

in the sense of Lemma 3.1. For `= 0, 1 let 5` :�k(M)−→�`,k−` be the natural
projection. Introduce a differential operator d0,1 :=5` ◦ d on �∗(M). It is observed
that d0,1 = dB on �∗

B(F) and

d0,1�
`,k

⊂�`,k+1, (3.2)

which implies from (2.2) that

d0,1ω = −κ ∧ ω. (3.3)

We define a codifferential on �k(M) by

δ0,1 := (−1)k∗d0,1∗. (3.4)

Then it is obvious from (3.1) and (3.2) that

δ0,1�
`,k

⊂�`,k−1. (3.5)

Furthermore, we have the following.

LEMMA 3.3. Let (M,F , 8, T, ω) be as in Lemma 3.1. Suppose thatF is tense. Then
the operator

δ0,1 :�k
B(F)−→�k−1

B (F),

is well defined.

PROOF. By applying (3.3) we find for α ∈�k
B(F)

∗d0,1∗α = ∗d0,1[ι([
−1(α))(ω ∧ ν)]

= (−1)k∗[d0,1ω ∧ ∗Dα − ω ∧ d0,1∗Dα]

= (−1)k+1
∗[ω ∧ (dB∗Dα − κ ∧ ∗Dα)]

= ∗D(dB − κ∧)∗Dα.

Therefore, Corollary 2.4 and the tenseness of F imply δ0,1α ∈�k−1
B (F). 2
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In what follows, (F , 8) considered is a tense, transversally symplectic flow. By
virtue of Lemma 3.3 we denote the restriction of δ0,1 to�∗

B(F) by δB . Then we define
the space

Hk
B(F) := {α ∈�∗

B(F) | dBα = δB = 0}, (3.6)

which is called the transversally symplectic harmonic space for F .

REMARK. In the presence of the Riemannian metric g on a manifold M , we can
defined an ordinary basic harmonic space H∗

g(F) for a flow with transversal mean
curvature and transversal volume forms [18]. In general, H∗

g(F) does not coincide
withH∗

B(F).

From now on we prove Theorem B by a similar argument as in [27] for the point
foliation. We need an operator A :=

∑2n
0 (n − k)πk, where πk :�∗

B(F)−→�k
B(F)

is the natural projection. From (1.3), Lemmas 3.2 and 3.3, we know that the operators
dB, δB, L , 3 and A preserve �∗

B(F). Furthermore, we have the following lemma.

LEMMA 3.4. On �∗

B(F), it holds that:

(1) [3, L] = A, [A, L] = −2L, [A, 3] = 23;
(2) [L , dB] = 0, [3, dB] = δB .

PROOF. (1) By applying induction on p we can show a more general formula on
�k(M)

[3, L p
] = p[(n + 1 − p − k)L p−1

+ e(ω)ι(T )L p−1
],

where p is any nonnegative integer and L−1
:= 0 (see [19] for the case of a contact

manifold). The proof of the rest of (1) is trivial.
The first part of (2) is obvious since 8 is closed. The second part of (2) is due

to [5, 27]. 2

Lemma 3.4 means that {A, L , 3} spans the Lie algebra sl(2). Thus, the space
�∗

B(F) is a sl(2)-module on which A acts diagonally with only finitely many different
eigenvalues. The next result follows.

COROLLARY 3.5 (Duality on transversally symplectic harmonic forms).

Lk
:Hn−k

B (F)−→Hn+k
B (F)

is an isomorphism.

Now we are in a position to complete the proof of Theorem B. Assume that
H∗

B(F)= H∗

B(F). Consider the following the commutative diagram.
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Hn−k
B (F)

��

Lk
// Hn+k

B (F)

��
Hn−k

B (F) Lk
// Hn+k

B (F)

Since the two vertical arrows are surjective by means of (1) in Theorem B,
Corollary 3.5 implies that the second horizontal arrow is also surjective.

Conversely, assume that for any k ≤ n, Lk
: Hn−k

B (F)−→ Hn+k
B (F) is surjective.

We apply an induction on the degree of the basic cohomology classes for F . It
is obvious that any 0-cocycle and 1-cocycle are transversally symplectic harmonic
forms. Suppose that the assertion (1) is true for r -cocycle with r < n − k. We must
show that any class in Hn−k

B (F) also contains a transversally symplectic harmonic
representative.

To begin with, we observe that

Hn−k
B (F)= im L + Pn−k,

where Pn−k := {[α] ∈ Hn−k
B (F) | Lk+1([α])= 0}. Indeed, by virtue of (2) in

Theorem B there exists [β] ∈ Hn−k−2
B (F) with Lk+1([α])= Lk+2([β]). Then [α]

− L([β]) ∈ Pn−k .
Next, it can be shown from Lemma 3.4 that any class in im L contains a

transversally symplectic harmonic representative. Therefore, it remains to verify that
any class in Pn−k contains a transversally symplectic harmonic representative.

Let [z] ∈ Pn−k . Then Lk+1([z])= 0 in Hn+k+2
B (F). Thus, there exists γ

∈�n+k+1
B (F) such that Lk+1z = dBγ . By virtue of (2), we can take θ ∈�n−k−1

B (F)
such that γ = Lk+1θ . Then β := z − dBθ is as desired, that is, a transversally
symplectic harmonic form satisfying [β] = [z].

4. Transversally Kähler flows

In this section we consider the case of special tense, transversally symplectic flows.
By a tense, transversally Kähler flow (F , 8) on a Riemannian manifold (M, g)
we mean:

(1) (F , 8) is tense, transversally symplectic on M ;
(2) g is a bundle-like metric for F which induces a transversally Kähler structure

(gD, J, 8) on the distribution D := ker ω, where ω denotes its characteristic
form.

THEOREM 4.1. Let (F , 8) be a tense, transversally Kähler flow on a closed
Riemannian manifold (M, g) of dimension 2n + 1. Then any basic cohomology class
for F has a transversally symplectic harmonic representative.

PROOF. Since (F , 8) is transversal Kähler with respect to g, g induces a Kähler
structure (gD, J, 8) on the distribution D.
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Now we compare two star operators ∗D given in (2.7) and ∗gD associated to
gD. Since the complex structure J is integrable, J naturally yields an orthogonal
decomposition of complexified forms on D, so an orthogonal decomposition of
complexified basic forms

�k
B(F)⊗ C =

⊕
p+q=k

�
p,q
B (F).

Then a similar computation as in [5] gives rise to

∗D = (
√

−1)p−q
∗gD on �p,q

B (F). (4.1)

It follows that the codifferential δgD := (−1)k+1
∗gDd∗gD on �k

B(F) associated to gD
is equal to a multiple of δB given in (3.4). Hence,

H∗

B(F)= ker1gD on �∗

B(F), (4.2)

where 1gD := dBδgD + δgDdB denotes the ordinary transversal Laplacian associated
to gD.

On the other hand, it was obtained in [10] that the tense Riemannian foliation F on
a closed Riemannian manifold holds the basic Hodge decomposition

�∗

B(F)= ker1gD ⊕ im dB ⊕ im δgD . (4.3)

This implies that

H∗

B(F)= ker1gD . (4.4)

Therefore, we conclude from (4.2) and (4.4) that any basic cohomology class for F
has a transversally symplectic harmonic representative. 2

REMARKS.

(1) Theorem 4.1 is found in [6] for the case where F is the contact flow on a
closed cosymplectic manifold. When F is the contact flow on a Sasakian
manifold, (4.3) was established in [7].

(2) The assumption of tenseness ofF in Theorem 4.1 is redundant. Indeed, all of the
arguments in Theorem 4.1 go through if, instead of the assumption κ ∈�1

B(F),
we use the basic component κB of the mean curvature form κ arising from the
orthogonal decomposition

�∗(M)=�∗

B(F)⊕�∗

B(F)⊥, κ = κB + κ⊥

B ,

for a Riemannian foliation on a closed Riemannian manifold [1].
(3) We can easily find counter-examples of contact manifolds which do not

satisfy the transversal hard Lefschetz theorem (Theorem B(2)) via constructing
principal circle bundles over symplectic manifolds (see section 1 for such
manifolds). For almost cosymplectic manifolds, we take the products of
symplectic manifolds with circles (refer to [6, 9]).
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