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The problem of pressure driven infernal type perturbations near the plasma edge is
addressed analytically for a circular limited tokamak configuration which presents
an edge flattened safety factor. The plasma is separated from a metallic wall, either
ideally conducting or resistive, by a vacuum region. The dispersion relation for such
types of instabilities is derived and discussed for two classes of equilibrium profiles
for pressure and mass density.
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1. Introduction
Attaining high performance tokamak operation regimes is of primary interest for a

future fusion reactor. Such a condition is usually achieved in the so-called tokamak
H-mode (high confinement) regime. Besides the high confinement time, the H-mode
is characterised by large pressure gradients located near the plasma boundary. These
gradients favour the development of a particular kind of instability called the edge
localised mode (ELM). Such type of perturbations are associated with rapid and
violent bursts of energy and particles which can severely damage the plasma facing
components with intolerable heat loads. An increasing interest has been therefore
devoted to the study of the so-called quiescent high confinement mode (QH-mode).
The QH-mode regime (Burrell et al. 2002; Suttrop et al. 2003, 2005) shares with
the H-mode a large edge pressure pedestal (edge transport barrier) and high energy
confinement time but without the presence of ELMs. These are replaced by a less
dangerous continuous magnetohydrodynamic (MHD) activity called edge harmonic
oscillation (EHO). The energy loads deposited by EHOs are much lower compared
to the ones associated with ELMs. EHOs have low-n toroidal number (e.g. n= 1, 2, 3
while ELMs are instead characterised by large n values) and are always experimentally
observed during the QH-mode operation (Burrell et al. 2001, 2002, 2005; Suttrop
et al. 2004; Solano et al. 2010).
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2 D. Brunetti and others

These low-n oscillations have been linked with kink/peeling modes (Connor
et al. 1998) which are proposed as a possible candidate for the explanation
of the appearance of these perturbations. Linear and nonlinear simulations of
QH-mode DIII-D plasma discharges showed that kink/peeling modes are the main
unstable modes in the nonlinear phase whose saturation leads to a three-dimensional
stationary state with toroidal periodicity characterised by a low-n number (generally
n = 1, 2) (Liu et al. 2015). These low-n modes are not the linearly most unstable
modes in the linear phase, but they are driven by the nonlinear coupling with
medium-n (∼ 3, 4, 5) harmonics (Liu et al. 2015).

Steep edge pressure gradients are associated in the low collisionality regime with
a large edge bootstrap current contribution which produces an edge flattening of the
safety factor (q) profile. Numerical studies of low-n MHD modes in QH regime with
a plateau in q near the edge, corresponding to the peak of the bootstrap current,
have been found to have infernal-like features (Zheng, Kotschenreuther & Valanju
2013a,b). Indeed under these conditions, i.e. large pressure gradients and q flat
over and extended region, it is likely that infernal type instabilities develop. These
instabilities are characterised by a toroidicity induced coupling between neighbouring
Fourier harmonics, i.e. a dominant m0 mode is coupled with its sidebands m0 ± 1.
Three-dimensional free boundary MHD equilibria simulations of Joint European
Torus (JET) and Tokamak à Configuration Variable (TCV)-like plasmas, in which
a large edge bootstrap current flattens the safety factor, recovered saturated ideal
kink/peeling structures (Cooper et al. 2015, 2016a,b). The computed equilibrium state
is characterised by a distorted boundary with a dominant n = 1 Fourier component
where the corrugation is driven mainly by non-axisymmetric components of the
parallel current density.

Thus the main aim of this work is to study analytically the stability properties
against infernal modes of MHD equilibria which present a local flattening of the
safety factor close to the plasma boundary associated with large pressure gradients.
We follow the analysis presented in Brunetti et al. (2018) bringing out the work
more deeply, and more importantly, looking at extensions which include toroidal
mode number analysis and resistive walls. Also we extend the results previously
obtained in Brunetti et al. (2018) to different types of more realistic profiles (q
etc.). We assume a vacuum region separating the plasma and the metallic wall. The
analysis of the perturbation is split into various regions, each treated separately. The
eigensolutions for the Fourier modes in each region are matched with the appropriate
choice of the plasma–vacuum and vacuum–wall jump interface conditions. This
eventually yields the dispersion relation.

The paper is organised as follows: § 2 describes the geometry and the physical
model employed for the plasma modelling. The infernal modes equations are
introduced and a discussion on their validity in application to our problem is
given. In § 3 the eigensolutions for coupled Fourier harmonics are solved for a
particular choice of the safety factor profile and their logarithmic jumps across the
transition point between high and low-shear regions are evaluated. In § 4 we solve
for the vacuum perturbation and apply the appropriate boundary conditions at the
plasma edge and metallic wall interfaces. The solution of the equation for the main
eigenmode m0 and the matching procedure with the high-shear region eigensolutions
is presented in § 5 where two classes of equilibrium profiles for temperature and mass
density are considered. The dispersion relation is eventually derived and discussed
in § 6 with two different wall boundary conditions. Finally the findings of this work
and future outlook are summarised in § 7. The appendices include a description of
inertial corrections and residual coupling effects at the resonant surface of the m0− 1
harmonic.
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Analytic study on low-n external ideal infernal modes 3

2. Physical model
We consider a large aspect ratio tokamak of major and minor radii R0 and a

respectively (ε= a/R0� 1) with shifted circular toroidal surfaces. The vacuum region
extends for a< r< b and for r> b+ d and a metallic wall of thickness d is located
at b< r < b+ d. The equilibrium assumes a strong toroidal field (BT) and a smaller
poloidal field (BP), i.e. BP/BT ∼ O(ε) with β ∼ O(ε2) (here β = p0/B2

T where p0 is
the equilibrium pressure). We use a right-handed straight field line coordinate system
(r, ϑ, ϕ) where r is a flux label with the dimensions of length, ϑ and ϕ are the
poloidal-like (counter-clockwise) and toroidal angles respectively. The contravariant
and covariant basis vectors are denoted hereafter by ∇Ci and eCi respectively, with
Ci = (r, ϑ, ϕ).

The magnetic field in the plasma is represented in terms of flux functions
(D’haeseleer et al. 1991):

B=∇f ×∇ϑ −∇ψ ×∇ϕ. (2.1)

The equilibrium fluxes, denoted with ψ0 and f0, depend only on r, and q= f ′0/ψ
′
0 with

f ′0 ≈ B0r which follows from BT ≈ R0B0/R (Wesson 2011) (B0 is the magnetic field
strength on the axis and the prime denotes the derivative with respect to the radial
variable). Normalising µ0 = 1 (µ0 is the vacuum permeability), from Ampére’s law
J=∇×B where J is the current density, we have J0 = Jϕ0 /B

ϕ
0 = 1/R0[(rµ)′ +µ] and

J′0= 1/(mR0)[(r2k||,m)′/r]′ (Hazeltine & Meiss 1992), where µ=1/q and k||,m=mµ− n
with m and n integers.

Our stability analysis is based on the following ideal MHD equations (Hazeltine &
Meiss 1992):

ρ[∂tv + v · ∇v] =−∇p+ J×B, (2.2)
E+ v×B= 0, (2.3)

∂tp+ v · ∇p+ Γ p∇ · v = 0, (2.4)
∂tρ +∇ · (ρv)= 0, (2.5)

where Γ is the adiabatic index, E is the electric field and v is the plasma MHD
velocity. It is convenient to write v= ∂ξ/∂t where ξ is the Lagrangian perturbed fluid
displacement. Finally ρ is the mass density and p the plasma pressure. We stress
the point that we consider an ideal plasma so that the development of tearing type
instabilities is prevented. By means of (2.3) we have:

B̃=∇× (ξ ×B0), (2.6)

where B̃ is the perturbed magnetic field and B0 the equilibrium magnetic field. From
now on equilibrium quantities will be denoted with the subscript 0 and perturbed
quantities have a dependence on time and angular variables of the type exp[i(mϑ −
nϕ)+ γ t].

For our analysis we choose a safety factor which has a local edge flattening as
shown in figure 1. The gap between the safety factor and the resonance m0/n is
denoted by δq, i.e. δq= q−m0/n (δq can be either positive or negative) with δq small.
It is implicitly assumed that m0 > 1. In a more realistic geometry with separatrix the
safety factor grows to large values, although in a narrow region much smaller than the
expected radial extension of the mode. This particular case is outside of the scope of
the present work. Nevertheless, motivated by Medvedev et al. (2006), Zheng et al.
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4 D. Brunetti and others

FIGURE 1. Model safety factor with the vacuum region extending from a to b. In the
edge low-shear region (r∗ < r < a) the q profile is close to m0/n. The position of the
(m0 − 1)/n resonant surface is highlighted.

(2013a,b), we expect that the main physical ingredients for the development of an
edge infernal type MHD instability are captured. According to Turnbull & Troyon
(1989) we assume that the ratio qa/q0 is sufficiently large (q0 and qa are the values
of the safety factor on the magnetic axis and at the edge respectively) in order to be
stable against low-n external kink modes.

According to figure 1, we refer to the region which extends from the magnetic axis
to r= r∗< a as the sheared region where the magnetic shear is large (q′∼O(1)) and
the pressure gradient sufficiently small. Here mode coupling is prevented and different
Fourier harmonics behave independently according to (Mikhailovskii 1998; Brunetti
et al. 2014):

d
dr

[
r3k2
||,m

dXm

dr

]
− r(m2 − 1)k2

||,mXm = 0. (2.7)

It will be shown in § 4 that also the vacuum magnetic perturbation is described by
(2.7). Indeed in the vacuum the safety factor is expected to grow as r2 so that we
can regard also this region as a sheared region.

The low-shear region extends from r∗ to the plasma edge r = a. Here the safety
factor is almost flat and close to m0/n. In this region pressure gradients and field
line bending weakening allow for mode coupling between neighbouring poloidal
Fourier harmonics (Hastie & Hender 1988; Waelbroeck & Hazeltine 1988; Gimblett,
Hastie & Hender 1996; Brunetti et al. 2014). The presence of three Fourier modes
with mode numbers (m0, n), (m0 ± 1, n) is assumed whose relative amplitude is
Xm0±1,n ∼ O(ε)Xm0,n, where X = ξ · ∇r. For sake of simplicity hereafter we will drop
the subscript n and we introduce the notation X± = Xm0±1,n. The equations describing
the perturbation are (Hastie & Hender 1988; Waelbroeck & Hazeltine 1988; Gimblett
et al. 1996; Wahlberg, Graves & Chapman 2013; Brunetti et al. 2014):

d
dr

[
r3Q

dXm0

dr

]
+ r
[
(1−m2

0)Q+ r
(

A2

n2

)′
− α

2

2
+ αr

R0

(
1
q2
− 1
)]

Xm0

+α
2

[
r−m0

1+m0
(r2+m0X+)′ + rm0

1−m0
(r2−m0X−)′

]
= 0, (2.8)

[r−1∓2m0(r2±m0X±)′]′ = 1±m0

2
[αr∓m0Xm0]′, (2.9)

with Q= (δq/q)2+A1/n2, ωA=B0/(R0
√
ρ) and α=−(2R0p′0q2)/B2

0. Equilibrium mass
density gradients are allowed since they play an important role in the determination
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Analytic study on low-n external ideal infernal modes 5

of the pressure gradients in the narrow edge region where the perturbation we are
interested in is localised. In the limit γ /[Γ p0/(ρ0R2

0)]� 1 we approximate (Wahlberg
et al. 2013) A1 ' (ρ0γ

2)/(ρ̄ω2
A)[1 + 2q2] and A2 ≈ A1 (ρ̄ is the value of the mass

density on the magnetic axis).
Equations (2.8) and (2.9) have been derived for β∼ ε2. Then the following question

arises: are they applicable when the pressure gradient increases, i.e. when α∼ 1? We
point out that from (2.8), the requirement that the inertial term is of the same order as
the coupling term gives Q∼ (α1r/a)2 where 1r is the width of the low-shear region.
In the following analysis we assume that Q∼ ε2. If α ∼ 1 and the pressure gradient
is localised within a narrow region, the assumption of concentric circular magnetic
surfaces still holds (Greene & Chance 1981; Connor, Ham & Hastie 2016). From the
equation for the Shafranov shift ∆s (assumed of order ε):

∆′′s + 3∆′s/r= 1/R0 + α/r, (2.10)

we approximate r∆′′s ≈α and T ′0=−p′0R0/B0∼α (T0=B0,ϕ being the toroidal covariant
component of the equilibrium magnetic field (Greene & Weimer 1971; Connor et al.
2016)).

Neglecting effects linear with respect to the magnetic shear (i.e. assume a flat q) the
elements of the metric tensor in our straight field line coordinate system are evaluated
up to order ε giving:

grr = 1+ α2 sin2 ϑ − 2∆′s cos ϑ + 4
(

r
R0
−∆′s

)
α sin2 ϑ, (2.11)

grϑ =
(

rα + 2
r2

R0
− 2r∆′s

)
sin ϑ +

(
r

R0
+∆′s

)
rα sin ϑ cos ϑ, (2.12)

gϑϑ = r2 + 2r3

R0
cos ϑ + 2r2∆′s cos ϑ, (2.13)

gϕϕ = R2
0

(
1+ 2r

R0
cos ϑ

)
, 1/

√
g= 1

rR0

(
1− 2r

R0
cos ϑ

)
, (2.14a,b)

where the ratio gϕϕ/
√

g depends only on the flux label r having used (2.10) and
〈R2〉′ ≈ −R0α, where 〈· 〉:= 1/2π

∫ 2π

0 (·) dϑ . We see that grr and grϑ are modified
compared to their standard low β expressions (Lazzaro & Zanca 2003; Brunetti et al.
2014). The latter are recovered by allowing α to become small. Note that ellipticity
and triangularity have not been included since they do not play a role in the coupling
mechanism between ±1 neighbouring sidebands. This is because of the elongation and
triangularity angular dependencies of the type cos 2ϑ and sin 2ϑ respectively (Connor
et al. 2016).

For α . 1 we approximate grr ' 1 and at leading order the set of the equations
describing the perturbation is still given by (2.8) and (2.9). Conversely, assuming that
α & 1 in a narrow region of width 1r, we introduce the following orderings:

r
d
dr
∼ r
1r
∼ 1
ε
, Q∼ ε2, m0 ∼ α ∼ 1,

X±
Xm0

∼ ε. (2.15a−d)

By means of (2.15) and employing the large α metric tensor, at leading order we can
derive the following coupled equations (we approximate r∗ ∼ a):

a2[QX′m0
]′ − α

2

2
Xm0 +

α

2

[
aX′+

1+m0
+ aX′−

1−m0

]
= 0, (2.16)

aX′′± =
1±m0

2
[αXm0]′. (2.17)
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The two simpler equations above can be used as an alternative to (2.8) and (2.9)
in order to make analytically treatable more complex/realistic profiles. This will
be discussed in § 5.2. We arrive to the same set of equations also when we have
1/m ∼ 1r/r ∼ ε1/2 (in this case X±/Xm0 ∼ ε1/2). Pushing further the ordering of m,
i.e. 1/m∼ ε, we enter in a ballooning-like configuration, where the weight of all the
harmonics is approximately the same. This problem is not addressed and is beyond
the scope of the paper.

Therefore equations (2.7), (2.8) and (2.9) (or alternatively (2.16) and (2.17)) form
the basis for the analysis developed in the next sections. The solutions to this set
of equations must fulfil the boundary conditions imposed at the plasma-‘outer world’
interface at r= a. These boundary conditions are obtained by solving the perturbation
in the vacuum region. Hence the solution to the problem proceeds as follows: first the
equations for the perturbations are solved in the sheared and vacuum regions (with
the appropriate boundary conditions at the magnetic axis and at the external metallic
shell). Then equations (2.8) and (2.9) (or (2.16) and (2.17)) are solved in the low-shear
region. Matching of the eigensolutions across the transition points yields eventually the
dispersion relation.

3. Sheared region eigenfunctions
The aim of this section is to derive the shape of the main mode m0 and the

logarithmic derivative of the neighbouring X±. These quantities are required for the
derivation of the dispersion relation when matching of the eigenfunctions at r∗ is
required.

The profile of the rotational transform in 0 < r < r∗ is taken of the form
(Mikhailovskii 1998):

(m0 − 1)µ− n= S[1− (r/rs)
λ], (3.1)

where rs is the position of the resonant surface of the mode (m0− 1, n) (cf. figure 1).
This choice for the safety factor allows the eigenproblem to be analytically solvable
in terms of the hypergeometric equation. By requiring that µ(r∗) ≈ n/m0 we obtain
S = (n/m0)/[(r∗/rs)

λ − 1]. Note that in this approximation δq corrections appearing
in the logarithmic derivatives of the eigenfunctions are neglected. We shall analyse
each harmonic separately. Note that an alternative model (though less realistic) for
the safety factor which provides simpler expressions for the logarithmic jumps of the
m0 ± 1 sidebands has been used in Brunetti et al. (2018).

3.1. Main harmonic m0

We multiply (2.7) by Xm0 and integrate between 0 and r∗ (Hazeltine & Meiss 1992;
Mikhailovskii 1998) yielding:

r3k2
||,m0

Xm0

dXm0

dr

∣∣∣∣r∗
0

−
∫ r∗

0
dr

[
r3k2
||,m0

∣∣∣∣dXm0

dr

∣∣∣∣2 + r(m2
0 − 1)k2

m0,m0
|Xm0 |2

]
= 0, (3.2)

where the boundary condition Xm0(0) = 0 is assumed. Since [r3k2
||,m0

Xm(dXm/dr)]r∗ ∼
k||,m0(r∗)

2� 1 (with the reasonable assumption that the derivatives are not diverging),
we are left with an integral of positive terms which must be zero. The only possibility
is that the function under the sign of integration is vanishing, this is:

Xm0 = 0. (3.3)
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This is in accordance with numerical calculations presented e.g. in Zheng et al.
(2013a,b). Note that the equation above still holds if the q=m0/n surface is crossed,
viz. δq> 0, if the resonant point of the main m0 mode (to whom we refer with rm)
is not far from r∗ (i.e. rm ≈ r∗) (Gimblett et al. 1996).

3.2. Lower sideband (m− =m0 − 1)

With the choice of the rotational transform given by (3.1), the expressions for the
sidebands are readily obtained. Introducing the variable z = (r/rs)

λ, when z < 1, the
solution of (2.7) for the lower sideband fulfilling the boundary condition on the
magnetic axis (X−(0) <∞) is (Kuvshinov & Mikhailovskii 1991; Mikhailovskii 1998;
Brunetti et al. 2014):

X− = A<z(m−−1)/λ(1− z)−1F(η, ζ ; η+ ζ + 1; z), (3.4)

where F is the hypergeometric function (see Abramowitz & Stegun 1968, p. 555)
and we defined η = (m− − m̄−)/λ, ζ = (m− + m̄−)/λ, m̄− =

√
m2− + 2λ+ λ2.

Conversely, when z > 1, the solution of (3.3) reads (Kuvshinov & Mikhailovskii
1991; Mikhailovskii 1998; Brunetti et al. 2014):

X− = z−(1+m̄−)/λ

z− 1
(A∗>F(ζ ,−η; 1+ ζ − η; 1/z)+ B∗>zζ−ηF(−ζ , η; 1+ η− ζ ; 1/z)),

(3.5)

where A∗> = −A>(ηζΓ (−η)Γ (ζ ))/(Γ (1− η+ ζ )) and B∗> = −B>(ηζΓ (η)Γ (−ζ ))/
(Γ (1+ η− ζ )).

The asymptotic behaviour of (3.4) and (3.5) close to r∗, depends on the ratio B>/A>.
Neglecting for sake of simplicity inertial corrections, B>/A> is found by imposing that
for an ideal mode the displacement is finite at its own rational surface (modifications
of the ratio B>/A> due to inertial corrections or residual coupling effects are discussed
in appendix A). Thus we immediately obtain B>/A>→−1 and A< = 0.

In the limit (rs/r∗)λ� 1, far from the resonant surface (z� 1), we have:

X− ∼
(

r
r∗

)−(m̄−+`)
+C0

(
r
r∗

)m̄−−`
, (3.6)

with C0=−(Γ (η)Γ (−ζ )Γ (1− η+ ζ ))/(Γ (−η)Γ (ζ )Γ (1+ η− ζ )) (r∗/rs)
2m̄− and `=

λ+ 1. Thus by means of (3.6) it is straightforward to obtain:

C− = r∗X′−(r∗)
X−(r∗)

= (m̄−)C0 − 1
C0 + 1

− `. (3.7)

When (rs/r∗)λ∼ 1 it is possible to show that C−∼O(z− 1). However since generally
speaking the ratio (rs/r∗)λ is neither small nor close to unity, in the numerical
computation of the dispersion relation we shall use the complete expression obtained
from (3.5).
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3.3. Upper sideband (m+ =m0 + 1)
It is easy to show that with the safety factor given by (3.1) the resonant surface of
the mode (m0 + 1, n) occurs at r+ = rs[1+ 2m0[(r∗/rs)

λ − 1]/(m0 + 1)]1/λ. Hence the
expression for the upper sideband regular on the axis (X+ <∞) reads:

X+ ∼ z̃(m+−1)/λ(1− z̃)−1F(η̃, ζ̃ ; η̃+ ζ̃ + 1; z̃), (3.8)

where z̃= (r/r+)λ, η̃ = (m+ − m̄+)/λ, ζ̃ = (m+ + m̄+)/λ, m̄+ =
√

m2+ + 2λ+ λ2. Thus
if (r∗/rs)

λ� 1 and m0� 1 then r+/r∗ ∼ 21/λ so that from (3.8) we obtain:

C+ = r∗X′+(r∗)
X+(r∗)

≈ (m+ − 1)+ λ+ λη̃ζ̃

1+ η̃+ ζ̃
F(η̃+ 1, ζ̃ + 1; η̃+ ζ̃ + 2; 1

2)

2F(η̃, ζ̃ ; η̃+ ζ̃ + 1; 1
2)

. (3.9)

Conversely in the limit (r∗/rs)
λ ∼ 1+ δ with δ� 1 we have (r+/r∗)λ ∼ 1+ δ∗ with

δ∗ = (m0 − 1)/(m0 + 1)δ, which yields:

C+ ≈ λ
δ∗
+m+ − 1− λ− λη̃ζ̃ [2γE +Ψ (η̃+ 1)+Ψ (ζ̃ + 1)+ ln δ∗]. (3.10)

In order to avoid approximations which could introduce unphysical behaviours, as in
the case for the lower sideband, the full expression for X+ (i.e. (3.8)) is preferred
when the growth rate is computed numerically.

In the next sections the quantities C± will be matched to the low-shear region
solutions and then used for the evaluation of the dispersion relation.

4. Vacuum region
In the vacuum region the magnetic field must fulfil the conditions ∇ × B = ∇ ·

B= 0. Hence we write B=∇χ with the constraint ∇2χ = 0 (Wesson 1978). In large
aspect ratio and under the assumption m> n for each Fourier harmonic, the equation
determining the mth component of the vacuum perturbation reads:

r(rχ ′m)
′ −m2χm = 0. (4.1)

Recalling that B̃r
m = χ ′m, this gives B̃r

m ∼ (r/b)−m−1 − D(r/b)m−1 for a < r < b where
D is a constant determined by the boundary conditions at the plasma–metallic
wall interface. In the region r > b + d the solution of the vacuum perturbation is
written in terms of modified Bessel functions (Lashmore-Davies 2001). However for
r & b+ d the behaviour of the radial perturbed magnetic field is well approximated by
B̃r

m ∼ (r/b)−m−1 (Mikhailovskii 1998; Lashmore-Davies 2001).
By means of Faraday’s law E= ηJ, and assuming that the radial derivatives of the

perturbation are dominant, the equation for the perturbation within the wall is:

d2B̃r

dr2
= σγ B̃r. (4.2)

In the thin wall approximation (d/b� 1) (Gimblett 1986) we integrate (4.2) across the
wall, so that [r(B̃r

m)
′/B̃r

m]b+d
b = (γ /ωA)Sw(d/b) with Sw= σb2ωA. Here ωA is computed

in the plasma core. Requiring continuity of B̃r
m across the thin wall and employing

the wall jump condition gives D= F/(F + 2m) where F = (γ /ωA)Sw(d/b). We stress
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Analytic study on low-n external ideal infernal modes 9

the point that the constant D depends on m, thus it varies for different Fourier modes.
Note that if we consider the case of a perfectly conducting wall (i.e. η→ 0, Sw→∞)
we must have D = 1. Hence B̃r

m = 0 for any m which corresponds to the condition
n̂ ·B= 0 where n̂ is the normal vector pointing outward the r= a surface (we identify
n̂≡∇r) (Bernstein et al. 1958; Wesson 1978; Freidberg 1987).

The jump condition at the plasma–vacuum interface is (Bernstein et al. 1958;
Freidberg 1987):

Jn̂ ·BKa = 0, (4.3)

where J·Ka = (·)a+δ − (·)a−δ with δ → 0. By means of (2.6) we can extend the
definition of perturbed displacement X outside the plasma, i.e. we write B̃r in terms
of X. This yields B̃r

m ∼ k||,mXm so that since B̃r
m must be continuous (cf. (4.3)), Xm

also is continuous since k|| is continuous by hypothesis. It follows that the vacuum
perturbation fulfils (2.7). Thus it is easy to see that in the vacuum for a generic
Fourier mode m we have (Wesson 1978; Mikhailovskii 1998):

rX′m
Xm

∣∣∣∣
a+δ
= 2µ∗
µ∗ − n/m

−
m+ 1+ F

F+ 2m
(m− 1) (a/b)2m

1− F
F+ 2m

(a/b)2m
, (4.4)

where in the vacuum µ = µ∗a2/r2 (i.e. vanishing toroidal current) (Mikhailovskii
1998). Let us introduce the notation B± = (rX′m0±1/Xm0±1)|a+δ. We point out that, as
calculated in § 3, because we approximate µ∗≈ n/m0, δq corrections B± are not taken
into account.

For the Fourier mode m0, since µ∗ − n/m0 ∼ δq � 1 we set Xm(a) ≈ 0. This
can be deduced by the fact that close to a the eigenfunction behaves as Xm0(r) ∼
(Xm0(a)/δq)[1 − (a/b)2m0D], where obviously D is computed for the mode m0.
According to (4.3) the displacement is continuous across a, thus in order to prevent
Xm0 to become arbitrarily large when δq � 1, in general we must set Xm0(a) = 0.
In the case of an ideal or nearly ideal wall we note that in the vacuum region the
equation describing the perturbation is (2.7) (having introduced the quantity Xm also
in the vacuum). Thus if we multiply (2.7) by Xm0 and integrate by parts from a to
b we obtain (3.2) with the replacements r∗→ a and a→ b. Since k2

||,m0
(a)� 1 and

Xm0(b) = 0 eventually to leading order we get Xm0 = 0. We shall still approximate
Xm0(a)≈ 0 when the resonance q= m0/n is in the vacuum gap if the resonant point
is sufficiently close to a.

As in the treatment of the sheared region, the logarithmic derivatives of the sideband
harmonics are required for matching with the solutions in the low-shear region when
the dispersion relation is derived. This will be shown in the next section.

5. Low-shear region matching and dispersion relation
In this section we solve for the main mode and the sideband harmonics deriving

eventually the dispersion relation. In this region of width a − r∗ = ∆ ∼ ε� 1, large
pressure gradients drive large edge bootstrap current contributions which in turn flatten
the safety factor. There are several choices for the equilibrium profiles for p0 and ρ0
(e.g. linear, piecewise continuous polynomials etc.) which allow for an exact treatment
of the perturbation. Our analysis concentrates first on a case in which the profiles are
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step-like and then on a more realistic tanh type profiles. The step-like case has been
already treated in Brunetti et al. (2018) and it turns out to be useful when toroidal
rotation is considered (this is not discussed here). In the next subsection we limit to
summarise the findings and to show the mathematical procedure for the derivation of
the dispersion relation. Part of these techniques are employed when the tanh model is
considered, though a slightly different approach must be used.

5.1. Step-like functions
In order to mimic the abrupt decrease of the pressure and mass density in the flat-
q region (Burrell et al. 2001, 2005), following Wahlberg et al. (2013) we introduce
step-like profiles:

p0/p∗ ∼ ρ/ρ0 =Θ(rp − r), (5.1)

where Θ(x) is the Heaviside step function of argument x, rp= (a+ r∗)/2 and p∗ is the
value of plasma pressure at r∗. The mass density is assumed constant in 0< r< r∗.

By integrating once (2.9) we obtain:

(r2±m0Xm0±1)
′ = r1±2m0L± + 1±m0

2
αr1±m0Xm0 . (5.2)

Integration of (2.9) across rp gives J(r2±m0X±)′Krp = 0 implying that in (5.2) we must
have L±(r< rp)=L±(r> rp), i.e. the constant L+ (or L−) on the left and on the right of
rp must be the same. Thus plugging (5.2) into (2.8), under the assumption (1/q2−1)≈
−1, yields:

[
r3QX′m0

]′ + r
[
(1−m2

0)Q+ γ̂ 2 rρ ′0
ρ̄
− αr

R0

]
Xm0 +

α

2

[
r1+m0L+
1+m0

+ r1−m0L−
1−m0

]
= 0, (5.3)

where γ̂ 2 = γ 2(1+ 2q2)/(nωA)
2.

The three harmonics must be supplied with appropriate boundary conditions. The
solution of the main harmonic m0 in the sheared and vacuum regions (cf. §§ 3.1 and 4)
provides the constraint:

Xm0(r∗)= Xm0(a)= 0. (5.4)

The boundary conditions for the sideband harmonics are obtained by integrating (2.9)
across r∗ and a. Since the pressure and its gradient at these points are vanishingly
small, this yields:

rX′±(r)
X±(r)

∣∣∣∣
r→r+∗
=C±,

rX′±(r)
X±(r)

∣∣∣∣
r→a−
=B±, (5.5a,b)

where the quantities C± and B± have been evaluated in §§ 3 and 4 respectively.
Before solving for the main harmonic we first determine the constants L±. These

are obtained by evaluating (5.2) at r∗ and a and using the constraint (5.4). Since
the pressure gradient and Xm0 are vanishing at the plasma boundary, we obtain
X±(r∗) = r±m0∗ L±/(2 ± m0 + C±) and X±(a) = a±m0L±/(2 ± m0 + B±). By means of
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(5.1), integration of (5.2) from r∗ to a finally gives (r±m0
p L±/1±m0)= X0(β̂/εp)Λ

(±)

where β̂ = 2p∗q2/B2
0, εp = rp/R0 and (Gimblett et al. 1996):

Λ(±) = (rp/r∗)2±2m0(1±m0)[2±m0 +C±][2±m0 +B±]
(C± ∓m0)[2±m0 +B±] − (B± ∓m0)[2±m0 +C±]

(
a
r∗

)2±2m0
. (5.6)

Integration of (5.2) and (5.3) across rp with the profiles given in (5.1), shows that
the singularities arising from p′0 and ρ ′0 produce discontinuities at this point of X±,
X′± and X′m0

while Xm0 remains continuous. By means of (5.1), the equation for Xm0

is greatly simplified:

[r3X′m0
]′ + r(1−m2

0)Xm0 = 0. (5.7)

The equation above is solved separately for r < rp and r > rp imposing continuity at
rp and the constraints (5.4), giving:

Xm0 = X0 ×



(
r
r∗

)m0−1

−
(

r
r∗

)−m0−1

(
rp

r∗

)m0−1

−
(

rp

r∗

)−m0−1 , r< rp,

( r
a

)m0−1 −
( r

a

)−m0−1

(rp

a

)m0−1 −
(rp

a

)−m0−1 , r> rp.

(5.8)

Following Wahlberg et al. (2013), the dispersion relation is obtained by integrating
(5.3) across rp. This gives:

rpJQX′m0
Krp − [γ̂ 2 + β̂]X0 +

(
β̂

εp

)2

[Λ(+) +Λ(−)]X0/2= 0. (5.9)

Let us introduce g± = (rX′m0
/Xm0)|r±p . By means of (5.8), it is easy to show that if

rp ≈ a and m0 ∼ 1 then g− ≈−g+ ≈ 2a/∆. Hence (5.9) becomes:

γ̂ 2

2
+
(
δq
q

)2

= ∆

4a

[
β̂2

2ε2
p

(Λ(+) +Λ(−))− β̂
]
. (5.10)

The last term on the right-hand side of (5.10) corresponds to the Mercier term in
(2.8) and has a weak stabilising influence. It is clear that the instability drive are the
pressure gradient and the field line bending weakening. This dispersion relation has
been discussed in detail in Brunetti et al. (2018). We shall now use this result as a
reference for the more realistic tanh case presented in the next section.
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5.2. Tanh model
In this section we model p0 and ρ0 with more realistic smooth profiles. It is important
to note that since the step and the corresponding discontinuities at rp are lost, in order
to derive the dispersion relation we must adopt a different procedure compared to the
one employed in the previous case.

The total pressure is written as p0 = n0(Ti + Te) where Ts is the temperature of the
s species and n0 the numerical density (quasineutrality is imposed). Assuming that the
electron temperature profile is proportional to the density profile, i.e. Te≈Te0n0/n̄ (n̄ is
the value of the numerical density in the core), and Ti�Te0 with T ′i ∼ 0 we eventually
obtain p0 ∼ n0Ti and p′0 ∼ n′0Ti. Hence pressure and mass density have approximately
the same shape (Zheng et al. 2013a,b) in qualitative accordance with experimental
data (Burrell et al. 2001, 2005). Thus a more realistic choice for the profiles of p0
and ρ0 is the following:

p0/p∗ ∼ ρ0/ρ̄ = 1
2 [1− tanh[(r− rp)/δ]], (5.11)

where δ/∆. 1 and rp has been already defined in the previous section (we recall that
∆ is the width of the low-shear region). Note that for δ→ 0 we shall recover the
step-like case (this will be indeed shown later).

In this region we adopt the ordering presented in (2.15), and therefore we employ
(2.16) and (2.17). As in the previous section, we integrate once (2.17) and we plug
the result into (2.16) obtaining:

a2[QXm0]′ +
α

2

[
L̂+

1+m0
+ L̂−

1−m0

]
= 0, (5.12)

aX′± = L̂± + 1±m0

2
αXm0, (5.13)

where explicitly Q= Z[1− c tanh x/δ] with Z = (δq/q)2 + γ̂ 2/2 and c= γ̂ 2/2Z. The
solution of (5.12) is easily obtained and it reads:

Xm0 = c1 +
(

c2 + Hδ
c

)
x
δ
+ c2

{
c ln

[
cosh

(x
δ

)
− c sinh

(x
δ

)]}
, (5.14)

where x= r− rp and H = (q2p∗/2)/(B2
0Zε)[(L̂+/a)/(1+m0)+ (L̂−/a)/(1−m0)].

The constants c1,2 of the main harmonic are determined by imposing the boundary
conditions (5.4) yielding (h=∆/2):

c1 = hH ln[1+ (1− c2) sinh2(h/δ)]/2
h/δ − c tanh−1[c tanh(h/δ)] , c2 =− hH/c

h/δ − tanh−1[c tanh(h/δ)] .
(5.15a,b)

By integrating (2.17) across a and r∗ under the assumption that the pressure gradient
is not too large at these points, employing (5.4) we find that the sidebands fulfil (5.5).

As shown in the previous section, to compute the constants L̂± equation (5.13) is
first evaluated both at r∗ and a and then integrated from r∗ to a yielding:

L̂± = B±C±(1±m0)/(2a)
[C± −B± −B±C±∆/a]

∫ a

r∗
αXm0 dr. (5.16)
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We immediately note that L̂±(Xm0) are linear in Xm0 , i.e. for k constant kL̂±(Xm0) =
L̂±(kXm0). The expressions for L̂± are inserted into the equation for the main harmonic
(5.12) and the result is divided by the real number

∫ a
r∗ αXm0 dr. The solution to this

equation is still given by (5.14) with an appropriate rescaling of the constants c1,2
(i.e. the term H). Hence this is equivalent to solve (5.12) imposing the integral
condition (Wahlberg & Graves 2007):∫ a

r∗
αXm0 dr= 1. (5.17)

Equation (5.17) provides the dispersion relation with L̂± = (B±C±(1±m0)/(2a))/
[C± −B± −B±C±∆/a]. Plugging (5.14) and (5.15) into (5.17), some straightforward
algebra produces the following result:

γ̂ 2

2
+
(
δq
q

)2

=
(
β̂

2ε

)2 [
L̂+

1+m0
+ L̂−

1−m0

]
Aγ , (5.18)

where β̂ has been introduced in the previous section and Aγ = h/c
[(ch/δ − tanh−1(c tanh(h/δ)))/(h/δ − c tanh−1(c tanh(h/δ)))]. We shall now analyse
more in detail the dispersion relation equation (5.18) and the associated eigenfunctions.

6. Analysis of the dispersion relation of the tanh model
The main difficulty arising in the solution of (5.18) is the dependence upon the

growth rate embedded in the function Aγ , i.e. inside the coefficient c. Generally
speaking the solution of such a dispersion relation must be tackled numerically.
Nonetheless an explicit dependence of γ on the plasma parameters can be obtained
for some special cases.

Let us consider first the case of a perfectly conducting wall (σ → ∞). If the
metallic wall is directly interfaced with the plasma then B± → ∞ and because
C± > 0 we immediately have L̂± ≶ 0. Therefore, since Aγ > 0, the right-hand side
of (5.18) is negative indicating stability. Thus with ideal wall boundary conditions,
a vacuum region is necessary for the instability to develop. This also suggests a
threshold in the wall position for the growth rate in accordance with the results
presented in Zheng et al. (2013a,b).

Let us now examine the behaviour of Aγ near marginal stability (c� 1) and in
the strong instability region (c∼ 1). By taking the corresponding limits we obtain at
leading order:

Aγ ∼ h
(

1− tanh(h/δ)
h/δ

)
, c� 1 (2δq2/(qγ̂ )2� 1), (6.1a,b)

Aγ → h
(

1− 4h/δ
2h/δ + sinh(2h/δ)

)
, c∼ 1 (2δq2/(qγ̂ )2� 1). (6.2a,b)

Thus the γ dependence in Aγ is removed and an explicit expression for the growth
rate can be obtained. The resulting growth rates with respect to the plasma parameters
are shown in figure 2.

It is worth noticing that particular attention has to be devoted to the expansion of
Aγ near c = 1. Indeed a series expansion Aγ in (c − 1) cannot be performed if h/δ
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(a) (b) (c)

FIGURE 2. Ideal wall boundary condition growth rates for the main mode m0/n = 4/1
with q(r∗)=m0/n− δq, ε= 1/3, rs = 0.8, λ= 2, r∗/a= 0.95 and h/δ = 3 with respect to
δq (a), β̂ (b) and wall position (c). Note that β̂ can be moderately large due to the factor
q2. The asymptotic behaviour obtained from formulae (6.1) and (6.2) is shown in (a).

becomes sufficiently large. Therefore we decided to retain only the first term which
provides the correct asymptotic behaviour for h/δ→∞. In such a case (δ→ 0) it is
easy to see that both for c� 1 and c∼ 1 the step-like dispersion relation (cf. (5.10)) is
formally recovered substituting Λ(±)→ L̂± and without the Mercier contribution (this
has been dropped due to the ordering (2.15)). The shape of the eigenfunctions also
qualitatively reduces to the step-like case as shown in figure 3. Differences remain
due to the fact that in the system of equations (5.12) and (5.13) we dropped terms
which conversely are retained in (5.2) and (5.3). In addition we point out that in the
tanh model, contrarily to the step case, the shape of the eigenfunctions depends on
the value of δq (and so on the corresponding growth rate). We note that the radial
structure of the main and sidebands harmonics closely resembles what has been found
numerically in three-dimensional equilibria simulations (Cooper et al. 2015, 2016a,b)
and in MHD stability calculations (Medvedev et al. 2006; Zheng et al. 2013a,b).

We shall now consider the case with a resistive wall. For sake of simplicity in the
following analysis we set ωA= 1. We assume that the conductivity is sufficiently large
so that we can expand B± in 1/σ . This yields B±=B±|σ=∞+ (Bw

±/(Swγ (d/b))) with:

Bw
± =

4(m0 ± 1)2(a/b)2m0±2

1− (a/b)2m0±2
> 0. (6.3)

Inserting (6.3) into the expressions for L̂±, to leading order we obtain:

L̂±
1±m0

≈ B0
±C±/(2a)

[C± −B0± −B0±C±∆/a]
+ 1

Swγ

(
(b/d)Bw

±C2
±/(2a)

[C± −B0± −B0±C±∆/a]2
)
, (6.4)

where B0
± = B±|σ=∞. Let us formally write the expression above as (L̂±/1±m0) ≈

D± +R±/(Swγ ). Hence the equation (5.18) can be cast in the following manner:

γ̂
[
γ̂ 2 − γ̂ 2

I

]= γ 3
w, (6.5)
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(a) (b) (c)

FIGURE 3. Plot of the eigenfunctions normalised with respect to the maximum of the
main mode m0 = 4, n= 1 (XM) for the tanh (a)–(b) and the step-like model (c) with an
ideal wall boundary condition with ε = 1/3, β̂ = 3 %, rs = 0.8, λ = 2, r∗/a = 0.95 and
q∗ ≈ 4. In (a) and (b) the eigenfunctions are computed for δq = 0.03 corresponding to
γ /ωA≈ 1.4× 10−3. The dashed vertical line indicates the position of the low-shear region
middle point rp. We set in (a) h/δ=3 while in (b) h/δ=20. Qualitatively the behaviour of
the step model is recovered for large h/δ. Note that the maximum of the main harmonic
(m0 = 4) in the tanh model is slightly shifted to the right with respect to rp.

FIGURE 4. Plot of γw/ωA with respect to the toroidal mode number n with ε= 1/3, b/a=
1.3, d/a= 10−2 β̂ = 5 %, rs = 0.8, λ= 2, r∗/a= 0.95, Sw = 105 and q∗ = 4 (here we have
dropped the normalisation ωA = 1). Note that γw/ωA peaks for small values of n.

where γ̂ 2
I = 2(β̂/2ε)2h[D+ +D−] is the growth rate with the ideal wall and:

γ 3
w = 2

√
1+ 2q2

nSw

(
β̂

2ε

)2

h[R+ +R−]> 0, (6.6)

having assumed for sake of simplicity that h/δ� 1, i.e. Aγ → h.
Suppose that γ̂ 2

I > 0. Therefore if γw/γ̂I � 1, the growth rate can be written as
γ̂ = γ̂I + (γ 3

w/2γ̂
2
I ). Conversely if γw/γ̂I� 1, the growth rate is γ̂ = γw+ (γ̂ 2

I /3γw). In
both cases the destabilising effect of the resistive wall is evident. In the opposite case,
when γ̂ 2

I < 0 and γw are sufficiently small (i.e. we are in the stability region with the
ideal wall) instability is still possible with growth rate γ̂ = γ 3

w/|γ̂ 2
I |. The behaviour of

γw with respect to n is shown in figure 4.
Although toroidal rotation effects are not considered in the present work, based on

the results shown in Brunetti et al. (2018) we expect that the rotation induced Doppler
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shift should be included in the low-shear inertial contribution with a modification of
the dispersion relation (Ω is the rotation frequency evaluated at r∗):

γ̂

[
(γ − inΩ)2(1+ 2q2)

n2
− γ̂ 2

I

]
= γ 3

w . (6.7)

It is easy to see that for sufficiently large toroidal rotation, the resistive wall effects
become negligible.

7. Conclusions

In this work we addressed the linear stability properties of infernal type perturbations
with a safety factor flat and close to a rational number (q ≈ m0/n) near the edge.
This perturbation presents a main (m0, n) Fourier harmonic, resonant in the flat q
region, which is coupled with its neighbouring sidebands (m0 ± 1, n). Although it is
well known that plasma resistivity can grow to large values near the edge (Turnbull
et al. 2016), the standard ideal MHD model has been adopted. This is motivated by
the fact that the m values resonating with the edge q must be moderately large, and
thus they are expected to be stable against standard tearing perturbations (Hegna &
Callen 1994).

An exact analytic treatment of the magnetic perturbation in the inner region of
large magnetic shear has been possible with a careful choice, although rather general,
of the safety factor. In the region of the local edge flattening of the safety factor,
the equilibrium profiles for pressure and mass density have been modelled with two
simple classes of analytic functions. In one case (already discussed in Brunetti et al.
(2018)) the step-like model has been employed. In the second case we introduced
a layer ordering in the low-shear region resulting in a simplification of the coupled
equations. This allowed us to employ a more realistic tanh model. A vacuum region
with a parabolic safety factor (q∼ r2) has been included with either ideally conducting
or resistive wall boundary conditions (note that in the ideally conducting wall case,
the presence of a vacuum region separating plasma and wall is necessary for the
instability to develop). Each region has been analysed separately and the solutions
eventually matched across the transitions points. The advantage of this choice for the
equilibrium profiles, i.e. safety factor and either step or tanh-like pressure and mass
density, consists in an exact mathematical description of both the eigenfunctions and
the associated dispersion relation. We point out that additional corrections such as
inertia and residual coupling associated with the behaviour of the sidebands inside
the sheared region have been neglected (a brief description of their effects is given in
the appendices). The dispersion relation which has been derived is sufficiently simple
to show the explicit dependence of the growth rate upon the engineering plasma
parameters, i.e. plasma current profile and β.

Similarly to the peeling–ballooning (PB) modes, the drive of the instability
is the combined effect of pressure gradients and the edge current (field line
bending weakening) which translates in a toroidal coupling of neighbouring poloidal
Fourier harmonics. The structure of edge infernal modes resembles the one of PB
perturbations (Snyder et al. 2004), consisting of a non-vanishing peeling component
accompanied by an inner located bell-shaped displacement. Hence we can regard
these perturbations as very low-n PB modes. Such a model seems to be appropriate
for the description of the edge harmonic oscillations. Indeed the shape of the
eigenfunctions calculated analytically exhibits similarities with both numerical results
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(Medvedev et al. 2006; Zheng et al. 2013a,b) and with experimental findings (Chen
et al. 2016) (in particular the bell shape and the radial localisation are correctly
recovered by the model we proposed). We also note that experimental measurement of
density and temperature fluctuations show even parity (in the radial direction) (Burrell
et al. 2001; Greenfield et al. 2001), excluding the tearing character of the perturbation
and thus supporting even more the ideal plasma approximation.

It is worth emphasising the facts that this work is based on very simple ‘model’
profiles and is developed in the linear framework. Nevertheless, although the observed
perturbations are in their nonlinear stage, we shall expect that the linear structural
properties (shape, parity, location of (main) peak) may persist from the linear into the
nonlinear stage.

It is found that in the case of ideal wall boundary conditions the growth rates
become larger with increasing n (Zheng et al. 2013b; Liu et al. 2015). This might
be relevant for QH regimes with zero injected torque (Burrell et al. 2016; Chen et al.
2017). In such a case a weakly quasi-coherent MHD (broadband) activity with a
cessation of the EHO is observed. This could be linked with the nonlinear interplay
of different n values (also moderately large) which are all allowed to grow in the
linear phase (Liu et al. 2015, 2018). Consequently in the nonlinear stage they can
compete with each other without favouring a particular n to be dominant (Liu et al.
2018). The inclusion of a finite wall conductivity has a destabilising effect and near
the ideal wall marginal stability boundary the resistive wall growth rate peaks for
small values of the toroidal (poloidal) mode numbers.

We point out that from the results obtained in Brunetti et al. (2018) with
step-like profiles and an ideal wall, a subsonic toroidal rotation Doppler shifts
the eigenfrequency. Although in the present work effects of plasma rotation have
been neglected, we may argue that also with the tanh model a purely toroidal
rotation should enter through a Doppler shift of the eigenfrequencies. This predicts
a rotating mode with frequency nΩ∗ (Ω∗ is the toroidal rotation at the pedestal top)
in accordance with experimental data (see e.g. Burrell et al. 2001; Greenfield et al.
2001; Solano et al. 2010). We may also expect resistive wall effects to become
negligible for sufficiently large toroidal flows (Nave & Wesson 1990).

In addition, as shown in Brunetti et al. (2018) in the ideal wall case, the mode
stability properties are not altered by a subsonic toroidal flow. Therefore we shall
infer that the toroidal rotation alone is not sufficient to explain why in the experiments
only a single n dominant mode is observed (see e.g. (Chen et al. 2016)). Moreover
experimental findings presented in Garofalo et al. (2011), Burrell et al. (2012) show
that the key ingredient for accessing the QH mode is the shear associated with the
E×B drift. This induces us to conclude that diamagnetic drifts and sheared poloidal
flows with the associated electric field effects should play a fundamental role in
the accessibility of the QH operational space. This thus will require further analytic
investigations.

Finally we argue that the effects of the separatrix may alter the jump conditions of
the magnetic perturbation, resulting in a modification of the dispersion relation.
Shaping effects also (mainly elongation) could alter the mode dynamics. It is
envisaged that a numerical approach is required to address such a difficult problem.

Appendix A. Effects of inertial corrections on the lower sideband

The quantity B2/A2 which appears in (3.5), depends on the growth rate γ as inertial
corrections may become important when the resonant surface of the lower sideband
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is approached. We expand (3.4) and (3.5) about rs giving (we use the same notation
as in Mikhailovskii (1998), Brunetti, Lazzaro & Nowak (2017)):

X−(z< 1)∼ 1
1− z

+ ηζ ln(1− z)+∆c, X−(z> 1)∼ 1
z− 1

− ηζ ln(z− 1)+∆p,

(A 1a,b)

where ∆c = [ηζ (2γE − 1 + Ψ (ζ + 1) + Ψ (η + 1)) − m− − 1/λ] (γE is the Euler–
Mascheroni constant and Ψ the digamma function (see Abramowitz & Stegun 1968,
p. 253)), ∆p = d+ + ((B>/A>)/(1+ B>/A>))(d− − d+) and:

d± = ηζ [1− 2γE −Ψ (±ζ + 1)−Ψ (∓η+ 1)] ∓ m̄− ± 1
λ

. (A 2)

Equations (A 1) contain a logarithmic term which is generally neglected when
the inertial layer is studied in slab geometry. Following the analysis presented
in Mikhailovskii (1998), we allow for inertial effects in (2.7) close to rs so that
(′ ≡ d/dx):

[(1+ x)2/λ+1(x2 + γ̄ 2)X′]′ − (1+ x)2/λ−1 m2
− − 1
λ2
[x2 + γ̄ 2]X = 0, (A 3)

where z= 1+ x and γ̄ 2= γ 2/(SωA)
2(1+ 2q2). Let us introduce the following ordering:

x∼ γ̄ ∼ δ, d/dx∼ 1/δ with δ� 1 and (m2
− − 1/λ2)∼ S∼ 1. We write the solution as

X=X0+ δX1+O(δ2) and then expand the equation above in a series of δ. Eventually
we have:

X = c0 − c1/γ̄ arctan(x/γ̄ )± c3 ln(x2 + γ̄ 2), (A 4)

where ± is for x ≶ 0. As x/γ̄ →∞ the logarithmic terms in (A 4) are immediately
matched with (A 1) by choosing c3 = ηζ/2, while the non-logarithmic part of (A 4)
behaves as:

X ∼ c0 ± c1

|x|
(

1− π

2
|x|/γ̄

)
, (A 5)

where ± is for x ≶ 0 as before. Matching (A 5) with (A 1) gives π/γ̂ +∆c +∆p = 0
and eventually we obtain:

B>/A> =−1− [ηζ cot(πη)]γ̄
1− [ηζ cot(πζ )]γ̄ ≈−1+ γ̄ ηζ [cot(πη)− cot(πζ )], (A 6)

where the last approximation holds if γ̂ � 1. For sufficiently small growth rates we
have B>/A> =−1.

Appendix B. Allowance for residual coupling effects at the resonant layer of the
lower sideband

We assume that a small coupling contribution remains near the resonant point rs of
the lower harmonic X−. This corresponds to the fact that the main harmonic m0 and
pressure gradients can be non-exactly vanishing for r< r∗. For sake of simplicity we
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FIGURE 5. Step current model: the q profile is assumed parabolic (i.e. vanishing current)
for r0 < r< r∗.

write m=m0−1. Thus we modify the (2.7) by adding the constant U which represents
the coupling corrections similar to the ones appearing in (2.8) and (2.9):

d
dr

[
r3Q

dX−
dr

]
− r(m2 − 1)QX− +U = 0, (B 1)

where here Q = k2
|| + γ 2(1 + 2q2)ω2

A. We assume that U is small far from rs, but
sufficiently large close to this point.

To simplify the analysis we employ a safety factor which is constant 1/q=µ0 for
0< r < r0 and 1/q= µ∗ ∼ n/m0 < µ0 for r∗ < r < a, while in the region r0 < r < r∗
behaves as (Brunetti et al. 2018):

µ≈ n/m0(r∗/r)2. (B 2)

This corresponds to a current profile of the form (the profiles for q and J0 are shown
in figure 5):

R0J0 =
2µ0, 0< r< r0

0, r0 < r< r∗,
2µ∗, r∗ < r< a,

(B 3)

In the region r0 < r< r∗, sufficiently far from rs we neglect the terms proportional
to γ , hence the solution of (B 1) reads:

X− = T≶
(r/rs)

m−1

k||
+K≶

(r/rs)
−m−1

k||
− U

2m

[
rm−1

k||

∫
r−m−1

k||
dr− r−m−1

k||

∫
rm−1

k||
dr
]
,

(B 4)

where K≶ and T≶ are constants and the integrals in the expression above can be easily
represented in terms of the Gauss hypergeometric function. Note that a more careful
treatment is needed when m is even.

When the resonant surface is approached we have:

X−(r ≶ rs) = ±(K≶ + T≶)

2n|x̂| − K≶(1/2−m)+ T≶(1/2+m)
2n

− U
4n2rs

ln |x̂|

∓ U
4m2n2rs|x̂| −

U
4n2rs

(
γE − 1+ ln 2+Ψ

(m
2

)
+ 1

m
− 1

2m2

)
, (B 5)

where x̂ = (r − rs)/rs. Far from rs, neglecting the term proportional to U, K< is
expressed in terms of T< by imposing smoothness at r0 (if r0� r∗ and m0 sufficiently
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large we can approximate K< ≈ 0). If the inertial layer is thin, we may assume that
the poloidal flux ψ− ∼ x̂X− is continuous across rs. This implies that (K< + T<) =
(K> + T>). The part of (B 5) which does not contain the logarithm can be written
as:

X−(r ≶ rs)∼ 1
|x̂|
(
1+∆∓|x̂|

)
, (B 6)

where we defined:

∆± =±
1
2
+m+

(
1/2−m
1/2+m

)
K≶

T≶
+ U/T≶

2m2nrs
H

1+ K≶

T≶
− U/T≶

2m2nrs

, (B 7)

with H =m2[γE − 1+ ln 2+Ψ (m/2)] +m− 1/2.
In the inertial layer we approximate (B 1) as:

d
dx̂

[
(x̂2 + γ̄ )2 dX−

dx̂

]
+U1 = 0, (B 8)

where γ̄ 2= γ 2(1+ 2q2)/(ωAmrsµ
′
s)

2 and U1= (1/rs)U/(mrsµ
′
s)

2. The solution of (B 8)
is X−= c0+ c1 arctan(x̂/γ̄ )− (U1/2) ln(x̂2+ γ̄ 2), where d0,1 are constants of integration.
The logarithmic terms in (B 5) and in the solution of (B 8) are automatically matched.
If x̂/γ̄→∞, the asymptotic behaviour of the non-logarithmic part of the layer solution
behaves as (A 5). Matching gives π/γ̂ +∆+ +∆− = 0 (see previous section).
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