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On complete interpolating sequences and sampling expansions

Kevin Smith

Abstract

Complete interpolating sequences for L2(−π, π) are considered under the condition that the
real parts of the sequence are a subsequence of the scaled integers xZ, x > 0. It is found that
this condition leads to very specific and restrictive conditions on the existence and structure of
complete interpolating sequences for L2(−π, π). Further general results in the case of bunched
sampling of Bernstein functions are also given.

1. Introduction

A sequence of complex numbers {zm} ⊂ C, with zm = xm + iym and m ∈ Z, is a complete
interpolating sequence for L2(−π, π) if the set {e−izm·} is complete in L2(−π, π) and if there
exists an f in the Bernstein space B2

π such that am = f(zm) whenever (am) ∈ `2 (see [4]).
Complete interpolating sequences for L2(−π, π) are of particular significance because a set of
complex exponentials {e−izm·/

√
2π} is a Riesz basis for L2(−π, π) if and only if the sequence

{zm} is a complete interpolating sequence for L2(−π, π) (see [4]). Since the Fourier transform
is an isometry of L2, this yields a series expansion in a Riesz basis of the functions f belonging
to the Bernstein space B2

π (the image of L2(−π, π) under the Fourier transform) in which the
samples f(zm) arise as the coefficients. A detailed account of this procedure and the theory of
Riesz bases can be found in [1], [2] or [4].

Complete interpolating sequences for L2(−π, π) are also significant in all of the Bernstein
spaces Bpπ−ε, with p 6∞ and ε > 0, in the sense that the following holds (a proof based on an
extension of Hermite’s interpolation formula is given in [1]).

Theorem 1.1. Let f belong to Bpπ−ε, with p 6∞ and ε > 0, and let {zm} be a complete
interpolating sequence for L2(−π, π); then f may be expanded in a series of Lagrange form:

f(z) =
∑
m

f(zm)
L(z)

L′(zm)(z − zm)
, (1)

where

L(z) = (z − z0)
∞∏
n=1

(
1− z

zn

)(
1− z

z−n

)
. (2)

In this paper we consider the existence of complete interpolating sequences for L2(−π, π)
under the restriction that the real parts of the sequence {zm}, m ∈ Z, are a subsequence of the
scaled integers xZ = {xn}, n ∈ Z, where x > 0 is a fixed real number. Under this restriction,
we find that for x > 1/2, the sequence {zm} is a complete interpolating sequence for L2(−π, π)
if and only if x= (2n+ 1)/(4n+ 1) for n ∈ N0. It is also found that when 1/4< x < 1/2, xZ
contains a unique complete interpolating sequence for L2(−π, π) if and only if x= (2n+ 1)/
(4n+ 3) for n ∈ N0. Moreover, it is proved that these complete interpolating subsequences
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2 K. SMITH

of xZ are the bunched sequences {xjk}= x{j(4n+ 1) + 2k} and {xjk}= x{j(4n+ 3) + 2k},
respectively, where j ∈ Z and k = 0,±1, . . . ,±n in both cases. These results are stated and
proved as Theorems 2.2 and 2.3 in the next section.

The sequences in Theorems 2.2 and 2.3 are special cases of a general type known as
bunched sequences. In general, the elements of a bunched sequence take the form zjk = ja+ bk
where j ∈ Z, a ∈ C, {bk} ⊂ C and |bk|<∞. The sequences in Theorems 2.2 and 2.3 also have
the property that bk =−b−k. It is shown in this paper that the condition bk =−b−k has the
consequence that the function L(z) of Theorem 1.1 is an odd periodic function with period
2a, and that this fact leads to a particularly simple Lagrange form which can be expressed in
terms of the Fourier series of L(z). An interesting property of the Fourier coefficients of L(z)
in this case is also noted. As an example in the general case of bunched sampling, we consider
the situation where f is a periodic function in B∞π−π/(2n+1) with period 2n+ 1, such that the
Lagrange form collapses to a finite sum.

2. Complete interpolating sequences

2.1. Preliminaries

The following relevant necessary and sufficient condition for the set {zm} to be a complete
interpolating sequence for L2(−π, π) was stated by Kadec [3] (although there was an error in
the proof of the general case, with ym 6= 0, which was corrected by Young).

Theorem 2.1. A sequence of complex numbers {zm} is a complete interpolating sequence
for L2(−π, π) if and only if there exist constants C and D such that |ym| 6 C <∞ and

|xm −m| 6D < 1/4 (3)

for all m ∈ Z.

Considering a sequence of complex numbers such that {xm} ⊂ xZ and |ym| 6 C <∞, the
following questions arise.

(i) For which x does there exist a subsequence {xm} ⊂ xZ that is a complete interpolating
sequence for L2(−π, π)?

(ii) When such a subsequence exists, is it unique? (In other words, can there exist a distinct
subsequence that is also a complete interpolating sequence for L2(−π, π)?)

(iii) Can such subsequences be determined explicitly?
The following corollaries serve as a useful starting point.

Corollary 2.1. If x > 1, then xZ does not contain a complete interpolating sequence for
L2(−π, π).

Proof. Since x > 1, we can find an n0 such that xn0 > n0 + 1/4 and n0 − 1< x(n0 − 1)<
n0 − 3/4. Thus there does not exist an m ∈ N such that |n0 − xm|< 1/4.

Corollary 2.2. If 1/2 6 x 6 1 and xZ contains a complete interpolating sequence for
L2(−π, π), then the sequence is unique.
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COMPLETE INTERPOLATING SEQUENCES 3

Proof. If 1/2 6 x 6 1, then every open interval of the form (n− 1/4, n+ 1/4) contains at
most one element of xZ.

Corollary 2.3. If 1/4 6 x < 1/2, then xZ contains at least one complete interpolating
sequence for L2(−π, π).

Proof. If 1/4 6 x < 1/2, then every open interval of the form (n− 1/4, n+ 1/4) contains
at least one element of xZ.

Corollary 2.4. If 0< x < 1/4, then xZ contains infinitely many distinct complete
interpolating sequence for L2(−π, π).

Proof. If 0< x < 1/4, then every open interval of the form (n− 1/4, n+ 1/4) contains at
least two elements of xZ.

Corollary 2.5. If xZ contains two distinct complete interpolating sequences for
L2(−π, π), then it contains infinitely many.

Proof. The assumption that xZ contains two distinct complete interpolating sequences
implies that there exists a pair of integers, say m0 and n0, such that |n0 − xm0| 6D < 1/4
and |n0 − x(m0 + 1)| 6D < 1/4. Writing nk = n0 + kp and mk =m0 + kq, we observe that
the same equations hold for every x= p/q and every pair mk and nk. This establishes the
result for rational x. For irrational x, recall that Kronecker’s approximation theorem asserts
that the fractional parts of the numbers {xn}, n ∈ Z, are dense in [0, 1]. This implies the result
for irrational x.

2.2. Theorems on complete interpolating subsequences of the scaled integers

In view of the questions and corollaries arising from Theorem 2.1, we now state and prove the
following two theorems.

Theorem 2.2. If 1/2 6 x 6 1, the sequence xZ contains a (necessarily unique) complete
interpolating sequence for L2(−π, π) if and only if x= (2n+ 1)/(4n+ 1) for n ∈ N0, and the
elements of this subsequence are

xjk = x(j(4n+ 1) + 2k), (4)

where j ∈ Z and k = 0,±1, . . . ,±n.

Proof. Note that the set (2n+ 1)/(4n+ 1), n ∈ N0, partitions the closed interval x ∈ [1/2, 1]
into open subsets (2n+ 1)/(4n+ 1)< x < (2n− 1)/(4n− 3), n ∈ N. We shall prove that when
x belongs to one of these open subsets, the sequence xZ does not contain a subsequence that
satisfies the conditions of Theorem 2.1. This is achieved by showing that for every such x
there exists an open interval (m− 1/4, m+ 1/4), for some integer m, that does not contain
an element of xZ. The proof is completed by showing that for x= (2n+ 1)/(4n+ 1) with
n ∈ N0, xZ does in fact contain a (necessarily unique) subsequence that satisfies the conditions
of Theorem 2.1 and which is explicitly determined by (4).
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To this end, note that the mid-points of the open intervals ((2n+ 1)/(4n+ 1), (2n− 1)/
(4n− 3)) are 2(4n2 − n− 1)/((4n+ 1)(4n− 3)), and for each n ∈ N the inequality

2(2n− 1)(4n2 − n− 1)
(4n+ 1)(4n− 3)

< n− 1
4
< n+

1
4
<

2(2n)(4n2 − n− 1)
(4n+ 1)(4n− 3)

(5)

holds. Setting x= 2(4n2 − n− 1)/((4n+ 1)(4n− 3)), this shows that there does not exist an
xm ∈ xZ that satisfies |xm − n|< 1/4, so xZ fails to satisfy (3) in this case. We proceed to
rectify this problem in the open interval (n− 1/4, n+ 1/4) by adjusting x in increasing and
decreasing increments. Setting

x=
4n− 1 + ε

4(2n− 1)
or x=

4n+ 1− ε
8n

(6)

gives (2n− 1)x= n− 1/4 + ε or 2nx= n+ 1/4− ε; thus for sufficiently small ε the problem is
rectified. We may re-phrase this statement by stipulating that x > α0 = (4n− 1)/(4(2n− 1))
or x < β0 = (4n+ 1)/(8n). Now observe that the inequalities

(6n− 4)α0 < 3n− 1− 1
4 < 3n− 1 + 1

4 < (6n− 3)α0 (7)

and
6nβ0 < 3n+ 1− 1

4 < 3n+ 1 + 1
4 < (6n+ 1)β0 (8)

hold. Therefore we must choose x such that x > α1 = (12n− 5)/(4(6n− 4)) or x < β1 =
(4n+ 5)/(4(6n+ 1)). Repeating this procedure for the sequences α1Z and β1Z, we find that
we must choose x > α2 = (20n− 9)/(4(10n− 7)) or x < β2 = (20n+ 9)/(4(10n+ 2)).

Continuing in this way yields that for any positive integer k, we must have

x > αk =
(8k + 4)n− 4k − 1

4((4k + 2)n− 3k − 1)
or x < βk =

(8k + 4)n+ 4k + 1
4((4k + 2)n+ k)

; (9)

and since

lim
k→∞

αk =
2n− 1
4n− 3

and lim
k→∞

βk =
2n+ 1
4n+ 1

, (10)

we conclude that there does not exist an x in the open intervals ((2n+ 1)/(4n+ 1),
(2n− 1)/(4n− 3)), n ∈ N, such that the sequence xZ contains a subsequence that satisfies
Theorem 2.1.

To prove that for x= (2n+ 1)/(4n+ 1), n ∈ N0, the sequence xZ contains a subsequence as
in Theorem 2.1 which is given by (4), let

xjk = x(j(4n+ 1) + 2k)

= j(2n+ 1) +
2k(2n+ 1)

4n+ 1
, (11)

where j ∈ Z and k = 0,±1, . . . ,±n, and observe that the inequality

|j(2n+ 1) + k − xjk|=
∣∣∣∣ k

4n+ 1

∣∣∣∣< 1
4

(12)

holds. Since Z = {j(2n+ 1) + k} when j ∈ Z and k = 0,±1, . . . ,±n, the result follows from
Corollary 2.2.

Theorem 2.3. If 1/4< x 6 1/2, the sequence xZ contains a unique complete interpolating
sequence for L2(−π, π) if and only if x= (2n+ 1)/(4n+ 3) for n ∈ N0, and the elements of this
subsequence are

xjk = x(j(4n+ 3) + 2k), (13)

where j ∈ Z and k = 0,±1, . . . ,±n.
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Proof. Note that the set {1/4, (2n+ 1)/(4n+ 3)}, n ∈ N0, partitions the closed interval
x ∈ [1/4, 1/2] into open subsets {1/4< x < 1/3, (2n+ 1)/(4n+ 3)< x < (2n+ 3)/(4n+ 7)},
n ∈ N0. We shall prove that when x belongs to one of these open subsets, the sequence xZ
contains at least two, and hence by Corollary 2.5 infinitely many, distinct subsequences that
satisfy the conditions of Theorem 2.1. This is achieved by showing that for every such x there
exists an open interval (m− 1/4, m+ 1/4), for some integer m, that contains two elements of
xZ. The proof is completed by showing that for x= (2n+ 1)/(4n+ 3) with n ∈ N0, xZ does
in fact contain a unique subsequence that satisfies the conditions of Theorem 2.1 and which is
explicitly determined by (13).

To this end, note that the mid-points of the open intervals ((2n+ 1)/(4n+ 3), (2n+ 3)/
(4n+ 7)) are 2(4n2 + 9n+ 4)/((4n+ 3)(4n+ 7)), and for each n ∈ N0 the inequality

n+
3
4
<

2(2n+ 2)(4n2 + 9n+ 4)
(4n+ 3)(4n+ 7)

<
2(2n+ 3)(4n2 + 9n+ 4)

(4n+ 3)(4n+ 7)
< n+

5
4

(14)

holds. Setting x= 2(4n2 + 9n+ 4)/((4n+ 3)(4n+ 7)), this shows that there exist two elements
xm ∈ xZ that satisfy |xm − n− 1|< 1/4, so in this case xZ contains infinitely many distinct
subsequences that satisfy (3). We proceed to rectify this problem, so that one element of xZ
remains in the open interval (n+ 3/4, n+ 5/4), by adjusting x in increasing and decreasing
increments. Setting

x=
4n+ 5

4(2n+ 3)
or x=

4n+ 3
2(2n+ 2)

(15)

gives (2n+ 3)x= n+ 5/4 or (2n+ 2)x= n+ 3/4. We may re-phrase this statement by
stipulating that x > α0 = (4n+ 5)/(4(2n+ 3)) or x 6 β0 = (4n+ 3)/(4(2n+ 2)). Now observe
that the inequalities

3n+ 4− 1
4 < (6n+ 9)α0 < (6n+ 10)α0 < 3n+ 4 + 1

4 (16)

and

3n+ 2− 1
4 < (6n+ 5)β0 < (6n+ 6)β0 < 3n+ 2 + 1

4 (17)

hold. Therefore we must choose x such that x > α1 = (12n+ 17)/(4(6n+ 10)) or x 6 β1 =
(12n+ 7)/(4(6n+ 5)). Repeating this procedure for the sequences α1Z and β1Z, we find that
we must choose x > α2 = (36n+ 53)/(4(18n+ 31)) or x 6 β2 = (36n+ 19)/(4(18n+ 14)).

Continuing in this way yields that for any positive integer k, we must have

x > αk =
2 · 3k(2n+ 3)− 3
2(3k(4n+ 7)− 3)

or x 6 βk =
2 · 3k(2n+ 1)− 3
2(3k(4n+ 3)− 3)

; (18)

and since

lim
k→∞

αk =
2n+ 3
4n+ 7

and lim
k→∞

βk =
2n+ 1
4n+ 3

, (19)

we conclude that for every x in the open intervals ((2n+ 1)/(4n+ 1), (2n− 1)/(4n− 3)),
n ∈ N0, the sequence xZ contains infinitely many distinct subsequences that satisfy (3).

We now deal with the open interval (1/4, 1/3), the mid-point of which is 7/24. Setting
x= 7/24, we observe that the sequence xZ contains the elements 7/8> 3/4 and 7/6< 5/4,
so two elements satisfy |xm − 1|< 1/4. To rectify this so that one element remains in the
open interval (3/4, 5/4), we must choose x > 5/16 or x 6 1/4. Thus, by Corollary 2.4, we are
done with the decreasing sequence of increments. For 5Z/16, note that 45/16> 3− 1/4 and
50/16< 3 + 1/4 both belong to 5Z/16, thus we must choose x > 13/40. Continuing in this way,
we obtain the sequence 13/40, 17/52, . . . , (4k + 9)/(12k + 28), . . . , 1/3. This demonstrates
that for 1/4< x < 1/3, the sequence xZ contains infinitely many distinct subsequences that
satisfy (3).
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To complete the proof, we now show that for x= (2n+ 1)/(4n+ 3) with n ∈ N0, the sequence
xZ contains a unique subsequence as in Theorem 2.1 which is given by (13). Since the existence
follows from Corollary 2.3, it remains to demonstrate uniqueness. To this end, consider the
following finite subsequence of xZ:{

k(2n+ 1)
4n+ 3

}2n

k=−2n−1

=
{

2k(2n+ 1)
4n+ 3

}n
k=−n

∪
{

(2k − 1)(2n+ 1)
4n+ 3

}n
k=−n

. (20)

Noting that ∣∣∣∣ (2k − 1)(2n+ 1)
4n+ 3

− k
∣∣∣∣=
∣∣∣∣2n+ k + 1

4n+ 3

∣∣∣∣> 1
4
, (21)

Corollary 2.3 gives that the remaining 2n+ 1 elements consisting of the even multiples
xk = 2k(2n+ 1)/(4n+ 3) must satisfy |xk − k|< 1/4 for k = 0,±1, . . . ,±n. Letting

xjk = x(j(4n+ 3) + 2k)

= j(2n+ 1) +
2k(2n+ 1)

4n+ 3
, (22)

where j ∈ Z and k = 0,±1, . . . ,±n, we identify the unique subsequence of xZ that satisfies (3)
by a one-to-one correspondence.

3. The Lagrange form in the case of bunched sampling

The sequences in Theorems 2.2 and 2.3 are special cases of a general type known as bunched
sequences. In general, the elements of a bunched sequence take the form zjk = ja+ bk where
a ∈ C, {bk} ⊂ C, j ∈ Z and |bk|<∞. A particularly simple case (and one which applies to the
sequences obtained in Theorems 2.2 and 2.3) occurs when bk =−b−k for k = 0,±1, . . . ,±n.

Theorem 3.1. Let {zjk} be a bunched complete interpolating sequence for L2(−π, π) such
that zjk = ja+ bk where bk =−b−k for k = 0± 1, . . . ,±n and j ∈ Z; then

L(z)
L′(zm)(z − zm)

=
a(−1)j

∑n
m=0 dm sin(π(2m+ 1)z/a)

π(z − ja− bk)
∑n
m=0 dm(2m+ 1) cos(π(2m+ 1)bk/a)

(23)

with

dm = cm − cm+1, cm = (−1)m
n∑

l=m

4−l
(

2l
l −m

)
el, (24)

where el denotes the lth elementary symmetric polynomial in the n variables sin2(πb1/a), . . . ,
sin2(πbn/a).

Proof. Supposing initially that z is real, that zjk = ja+ bk satisfies the conditions of
Theorem 2.1 and that bk =−b−k with |bk|<∞, the infinite product

L(z) = (z − z0)
∞∏
m=1

(
1− z

zm

)(
1− z

z−m

)
(25)

reduces to the finite trigonometric product

L(z) =
a

π
sin
(
πz

a

) n∏
k=1

sin(π(bk − z)/a) sin(π(bk + z)/a)
sin2(πbk/a)

, (26)
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COMPLETE INTERPOLATING SEQUENCES 7

a proof of which is obtained by substituting Euler’s product formula for the sine in Theorem 1.1.
Upon changing variables to w = 2πz/a, we have

L

(
aw

2π

)
=
a

π
sin
(
w

2

) n∏
k=1

sin((wk − w)/2) sin((wk + w)/2)
sin2(wk/2)

=
a sin(w/2)G(w)

πG(0)
, (27)

where

G(w) =
n∏
k=1

sin
wk − w

2
sin

wk + w

2

=
n∏
k=1

sin2 wk
2
− sin2 w

2
(28)

is an even periodic function with period 2π. The trigonometric product G(w) is the linear
factorization of an nth order polynomial in sin2(w/2) and, as such, may be written as

G(w) =
n∑

m=0

em sin2m w

2
, (29)

where em denotes the mth elementary symmetric polynomial in the variables
sin2(w1/2), . . . , sin2(wn/2). Since G(w) is an even periodic function with period 2π, it can
be expanded in a Fourier series of the form

G(w) = c0 + 2
n∑

m=1

cm cos(mw), (30)

where the Fourier coefficients are easily calculated from the polynomial in sin2(w/2) as follows:

cm =
1

2π

∫2π

0

G(w)eimw dw

=
1

2π

n∑
k=0

ek

∫2π

0

sin2k

(
w

2

)
eimw dw

= (−1)m
n∑

k=m

4−k
(

2k
k −m

)
ek. (31)

Changing variables back to z = aw/2π gives

L(z) =
a

πG(0)
sin
(
πz

a

)
G

(
2πz
a

)
=
a

π

∑n
m=0 dm sin(π(2m+ 1)z/a)∑n

m=0 dm(2m+ 1)
, (32)

where we have written dm = cm − cm+1 and G(0) = c0 + 2
∑n
m=1 cm =

∑n
m=0(cm − cm+1)

(2m+ 1). This is the required Fourier expansion of L(z) for real z. Differentiating once with
respect to z yields

L′(z) =
∑n
m=0 dm(2m+ 1) cos(π(2m+ 1)z/a)∑n

m=0 dm(2m+ 1)
. (33)

Since the sums on the right-hand side are finite sums of entire functions, these representations
hold for all z ∈ C.
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3.1. An example: periodic functions

Since the set of all functions with a representation

p(z) =
n∑

m=−n
cme

2πimz/(2n+1) (34)

belongs to B∞2πn/(2n+1) =B∞π−π/(2n+1), it follows that Theorem 1.1 applies to any function of
this form with n <∞, and we find that

p(z) =
∑
j∈Z

n∑
k=−n

p((2n+ 1) + bk)
(−1)jL(z)

L′(bk)(z − j(2n+ 1)− bk)

=
n∑

k=−n

p(bk)
L(z)
L′(bk)

∑
j∈Z

(−1)j

z − j(2n+ 1)− bk

=
π

2n+ 1

n∑
k=−n

p(bk)
L(z)

L′(bk) sin(π(z − bk)/(2n+ 1))
. (35)

This kind of expansion is particularly useful in applications when a trigonometric
interpolating function is required to interpolate 2n+ 1 non-uniformly spaced points in the
vertical strip −n− 1/2< <(z)< n+ 1/2. The result asserts that the sampling series coincides
with the corresponding Fourier series whenever the points (bk) satisfy |<(bk)− k| 6D < 1/4
and =(bk) 6 C <∞ for k = 0,±1, . . . ,±n.

A special case of this formula occurs when bk = k (uniform sampling); a little algebra gives

p(z) =
1

2n+ 1

n∑
k=−n

p(k)Dn

(
2π(z − k)

2n+ 1

)
, (36)

where Dn(z) = 1 + 2
∑n
m=1 cos(mz) is the Dirichlet kernel. This is the series analogue of the

integral formula

p(z) =
1

2n+ 1

∫n+1/2

n−1/2

p(x)Dn

(
2π(z − x)

2n+ 1

)
dx, (37)

which is easily obtained on substituting the formula for the Fourier coefficients of p(z) into the
corresponding Fourier series.

3.2. The inverse coefficient mapping

Theorem 3.1 uses the fact that the Fourier coefficients cm are expressible as linear combinations
of the elementary symmetric polynomials em in the n variables sin2(πb1/a), . . . , sin2(πbn/a),
which are the coefficients of the polynomial in sin2(πz/a). The formula which represents this
relationship, namely

cm = (−1)m
n∑

l=m

4−l
(

2l
l −m

)
el, (38)

is equivalent to the (n+ 1)-dimensional matrix equation


c0
−c1
c2
−c3

...

=



1 2 6 20 70 252 . . .
1 4 15 56 210 . . .

1 6 28 120 . . .
1 8 45 . . .

1 10 . . .
1 . . .

. . .




e0

4−1e1
4−2e2
4−3e3

...

 , (39)

where the (n+ 1)-dimensional unit-diagonal upper triangular matrix is invertible for all n.
Inverting the matrix, we have
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
e0

4−1e1
4−2e2
4−3e3

...

=



1 −2 2 −2 2 . . .
1 −4 9 −16 . . .

1 −6 20 . . .
1 −8 . . .

1 . . .
. . .




c0
−c1
c2
−c3

...

, (40)

which is equivalent to the formula

el = (−4)l
n∑

m=l

[(
m+ l
m− l

)
+
(
m+ l − 1
m− l

)]
cm (41)

for the inverse mapping.
As an example, we may use this formula to calculate the coefficients em in the uniform

sampling case, that is, when wk = 2πk/(2n+ 1). In this case we have

G(w) = (−1)n
n∏
k=1

sin
(
w

2
+

πk

2n+ 1

)
sin
(
w

2
− πk

2n+ 1

)

=
(−1)n

sin(w/2)

2n∏
k=0

sin
(
w

2
+

πk

2n+ 1
− πn

2n+ 1

)
=

4−n sin(n+ 1/2)w
sin(w/2)

= 4−nDn(w) (42)

where Dn(w) is the Dirichlet kernel, which has the Fourier series

Dn(w) = 1 + 2
n∑

m=1

cos(mw) (43)

in which cm = 1. Putting these values into the formula that defines the inverse mapping, we
obtain

el

(
sin2 2π

2n+ 1
, . . . , sin2 2πn

2n+ 1

)
=

(−1)l4l−n(2n+ 1)
2l + 1

(
n+ l
n− l

)
. (44)

By using elementary trigonometric identities it is also straightforward to obtain

el

(
cos2

2π
2n+ 1

, . . . , cos2
2πn

2n+ 1

)
= (−1)l4l−n

(
n+ l
n− l

)
. (45)
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