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Intersection theory on Shimura surfaces

Benjamin Howard

Abstract

Kudla has proposed a general program to relate arithmetic intersection multiplicities of
special cycles on Shimura varieties to Fourier coefficients of Eisenstein series. The lowest
dimensional case, in which one intersects two codimension one cycles on the integral
model of a Shimura curve, has been completed by Kudla, Rapoport and Yang. In the
present paper we prove results in a higher dimensional setting. On the integral model of
a Shimura surface we consider the intersection of a Shimura curve with a codimension
two cycle of complex multiplication points, and relate the intersection to certain cycle
classes constructed by Kudla, Rapoport and Yang. As a corollary we deduce that our
intersection multiplicities appear as Fourier coefficients of a Hilbert modular form of
half-integral weight.

1. Introduction

Suppose that B0 is an indefinite quaternion division algebra over Q. Let G0 be the algebraic
group over Q whose functor of points is G0(A) = (B0 ⊗Q A)× for any Q-algebra A, fix a maximal
order OB0 ⊂B0, and set Umax

0 = Ô×B0
and

Γmax
0 =G0(Q) ∩ Umax

0 .

After fixing an isomorphism G0(R)∼= GL2(R) the group G0(R) acts on the complex manifold
X0 = C r R, and the quotient

M0(C) = Γmax
0 \X0

is isomorphic to the complex points of a Shimura curve over Q which parametrizes abelian
surfaces over Q-schemes with an action of OB0 . Extending the moduli problem over Spec(Z)
one obtains an algebraic (Deligne–Mumford) stack M0. Let Sym2(Z) denote the Z-module of
symmetric 2× 2 matrices with entries in Z and set

Sym2(Z)∨ =
{(

a b/2
b/2 c

) ∣∣∣∣ a, b, c ∈ Z
}
.

For every T ∈ Sym2(Z)∨ Kudla, Rapoport and Yang [KRY06] have constructed an arithmetic
cycle class

Ẑ(T, v) ∈ ĈH
2

R(M0)
in the Gillet–Soulé arithmetic Chow group (with real coefficients and modified for stacks, as in
[KRY06, ch. 2]) of the arithmetic surface M0. Here v ∈M2(R) is a symmetric positive definite
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parameter. Letting τ = u + iv ∈ h2 denote the variable on the Siegel half-space of genus two,
these classes have the remarkable property that the generating series

φ̂2(τ) =
∑

T∈Sym2(Z)∨

d̂eg Ẑ(T, v) · qT

is a non-holomorphic Siegel modular form of weight 3/2. Here the isomorphism

d̂eg : ĈH
2

R(M0)−→ R

is the arithmetic degree of [KRY06, (2.4.10)]. Pulling φ̂2 back to the product of two upper half-
planes via the diagonal embedding h1 × h1 −→ h2 results in a modular form of parallel weight
3/2 for a congruence subgroup of SL2(Z)× SL2(Z), and Kudla, Rapoport and Yang express the

Fourier coefficients of the pullback in terms of the arithmetic intersections of classes in ĈH
1

R(M0).
More precisely, for each t ∈ Z and v ∈ R+ they define a class

Ẑ(t, v) ∈ ĈH
1

R(M0)

and prove that the pullback of φ̂2 by the diagonal embedding has Fourier expansion

φ̂2(τ1, τ2) =
∑

t1,t2∈Z
〈Ẑ(t1, v1), Ẑ(t2, v2)〉qt11 q

t2
2 (1)

where τj = uj + ivj is a variable in the upper half-plane h1, qj = e2πiτj , and the pairing 〈·, ·〉 is
the Gillet–Soulé intersection pairing

ĈH
1

R(M0)× ĈH
1

R(M0)−→ ĈH
2

R(M0)
d̂eg−−→ R.

The proof of (1) amounts to proving the decomposition [KRY06, Theorem C]

〈Ẑ(t1, v1), Ẑ(t2, v2)〉=
∑
T

d̂eg Ẑ(T, v) (2)

in which the sum is over all T ∈ Sym2(Z)∨ of the form T =
(
t1 ∗
∗ t2

)
, and v is the diagonal matrix

with diagonal entries v1, v2.
The question which motivates this paper is the following. Given a real quadratic field F ⊂ R

and a Z-basis {$1, $2} of OF (which we now fix once and for all) one can define, as in
Equation (50), a twisted embedding h1 × h1 −→ h2 in such a way that the pullback of φ̂2 to
h1 × h1 is a half-integral weight Hilbert modular form. Can one interpret the Fourier coefficients
of the twisted pullback as arithmetic intersection multiplicities of cycles on a Shimura variety?
To answer this, let

B =B0 ⊗Q F, OB =OB0 ⊗Z OF .
Throughout this paper we assume the following equivalent conditions on F and B0.

Hypothesis A. We assume that:

(a) disc(B0) · OF = disc(B);

(b) OB is a maximal order of B;

(c) every prime divisor of disc(B0) splits in F .

Let G be the algebraic group over Q whose functor of points is

G(A) = {g ∈ (B ⊗Q A)× |Nm(g) ∈A×}
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Intersection theory on Shimura surfaces

for any Q-algebra A, where Nm denotes the reduced norm on B. Define a maximal compact
open subgroup Umax ⊂G(Af ) by

Umax = {g ∈ Ô×B |Nm(g) ∈ Ẑ×}

and set

Γmax =G(Q) ∩ Umax.

Let σ be the nontrivial Galois automorphism of F/Q and identify

F ⊗Q R∼= R× R (3)

using the map x⊗ 1 7→ (x, xσ). The earlier choice of isomorphism G0(R)∼= GL2(R) together
with (3) determine an isomorphism

G(R)∼= {(x, y) ∈GL2(R)×GL2(R) | det(x) = det(y)}

in such a way that the subgroup G0(R)⊂G(R) is identified with the diagonal. Let X ⊂X0 ×X0

be the subset of pairs whose imaginary parts are either both positive or both negative. The
compact complex manifold

M(C) = Γmax\X
is then identified with the complex points of a Shimura surface which parametrizes abelian
fourfolds over Q-schemes with an action of OB (and some additional polarization data which we
ignore in this introduction). The obvious embedding M0(C)−→M(C) induced by the inclusion
of X0 into X has a moduli theoretic meaning: an abelian surface A0 with OB0 action is taken
to the abelian fourfold A=A0 ⊗OF (Serre’s tensor construction [Con04, § 7]) with its induced
action of OB =OB0 ⊗Z OF . Extending the moduli problems over Spec(Z) we obtain a closed
immersion M0 −→M of an arithmetic surface into an arithmetic threefold.

On the other hand, the complex surface M(C) comes equipped with a natural family of
cycles of dimension zero. For each totally positive α ∈ OF we consider the finite set Y(α)(C) of
isomorphism classes of abelian fourfolds over C equipped with commuting actions of OB and
OF [
√
−α]. There is an evident function

Y(α)(C)−→M(C)

which forgets the OF [
√
−α]-action. Extending the moduli problem across Spec(Z) one obtains a

finite morphism Y(α)−→M in which Y(α) is an algebraic stack over Z of dimension at most two,
and which has dimension one after restricting to Z[disc(B0)−1]. At a prime p dividing disc(B0),
the stack Y(α)/Zp may (depending on α) have vertical components of dimension two. Our central
object of study is a certain class

Ŷ(α, v) ∈ ĈH
2
(M)

in the codimension two Gillet–Soulé arithmetic Chow group of M (with rational coefficients)
whose construction is based on the moduli problem Y(α). Here v ∈ F ⊗Q R is an auxiliary totally
positive parameter. This class is obtained by first modifying the vertical components of Y(α)
at the prime divisors of disc(B0) to obtain a cycle class in the codimension two Chow group
CH2
Y(α)(M) with support on Y(α), and then augmenting this cycle with a Green current of the

type constructed by Kudla [Kud97] and Kudla, Rapoport and Yang [KRY06]. It is the definition
of the cycle class, and especially of the construction of the vertical components at primes dividing
disc(B0) carried out in § 4, which is the primary original contribution of this work.
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The closed immersion M0 −→M induces the Q-linear functional

d̂egM0
: ĈH

2
(M)−→ R

called the arithmetic degree along M0. Our main result, which appears in the text as
Theorem 5.1.4, is a twisted form of the decomposition (2).

Theorem B. Suppose that α ∈ OF and v ∈ F ⊗Q R are totally positive and that F (
√
−α)/Q is

not biquadratic. Then

d̂egM0
Ŷ(α, v) =

∑
T∈Σ(α)

d̂eg Ẑ(T, v)

where v = (v1, v2) ∈ R× R and v are related by (48). The set Σ(α) appearing in the sum is
defined as

Σ(α) =
{(

a b/2
b/2 c

)
∈ Sym2(Z)∨

∣∣∣∣ α= a$2
1 + b$1$2 + c$2

2

}
(4)

where {$1, $2} is the Z-basis of OF fixed above, and used in the definition of the embedding
h1 × h1 −→ h2 of (50).

The assumption that F (
√
−α)/Q is not biquadratic in the theorem is made to ensure that

(Y(α)×MM0)/Q = ∅,

i.e. that Y(α) andM0 do not meet in the generic fiber. The theorem should remain true without
this assumption; see [How] for results in this direction. As a corollary of the theorem we deduce
in § 5.2 the following partial generalization of (1).

Corollary C. The pullback of φ̂2 via the twisted embedding h1 × h1 −→ h2 has a Fourier
expansion of the form

φ̂2(τ1, τ2) =
∑
α∈OF

c(α, v) · qα

where v = (v1, v2) is the imaginary part of (τ1, τ2) and qα = e2πiτ1αe2πiτ2ασ . If α is totally positive
and F (

√
−α)/Q is not biquadratic then

c(α, v) = d̂egM0
Ŷ(α, v).

Allowing ourselves the luxury of speculation, we now explain how these results fit into the
program of generalized Gross–Zagier style theorems proposed by Kudla [Kud04]. Suppose first
that one can extend the definition of the arithmetic class Ŷ(α, v) to all α ∈ OF , as opposed to
restricting only to totally positive α, in such a way that (passing to arithmetic Chow groups
with real coefficients) the generating series

θ̂(τ1, τ2) =
∑
α∈OF

Ŷ(α, v) · qα ∈ ĈH
2

R(M)[[q]]

is a non-holomorphic vector-valued Hilbert modular form of parallel weight 3/2 for the
congruence subgroup (51). If Theorem B were extended to every α ∈ OF then (after extending
the arithmetic degree alongM0 to arithmetic Chow groups with real coefficients) we would have
the equality of q-expansions

d̂egM0
θ̂(τ1, τ2) = φ̂2(τ1, τ2).
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Given another Hilbert modular form f of parallel weight 3/2 for (51), now with real coefficients,
one could then define the arithmetic theta lift of f as the Petersson inner product

Θ̂(f) def= 〈f(τ1, τ2), θ̂(τ1, τ2)〉Pet ∈ ĈH
2

R(M),

and then

d̂egM0
Θ̂(f) = 〈f(τ1, τ2), d̂egM0

θ̂(τ1, τ2)〉Pet = 〈f(τ1, τ2), φ̂2(τ1, τ2)〉Pet.

On the automorphic side, one may attach to f and B0 a Rankin L-function obtained by
integrating f against the twisted pullback of the genus two Eisenstein series E2(τ, s, B0) studied
by Kudla, Rapoport and Yang (see § 5.2),

L(f, s, B0) = 〈f(τ1, τ2), E2(τ1, τ2, s, B0)〉Pet.

The Eisenstein series vanishes at s= 0, and a fundamental result of Kudla, Rapoport and
Yang [KRY06, Theorem B] is that

E ′2(τ, 0, B0) = φ̂2(τ).

Pulling back this equality to h1 × h1, it follows that

〈f(τ1, τ2), φ̂2(τ1, τ2)〉Pet = L′(f, 0, B0).

Thus Theorem B may be viewed as a first step toward the Gross–Zagier style result

d̂egM0
Θ̂(f) = L′(f, 0, B0).

The L-function L(f, s, B0) is somewhat mysterious. One would like to know, for example, if it
admits an Euler product, and if so what form the Euler factors take. We hope to address this
question in a subsequent article.

1.1 Notation
Throughout this paper the symbols F , σ, G, and G0 have the same meanings as above, D denotes
the different of F/Q, Hypothesis A is assumed, and the Z-basis {$1, $2} of OF is fixed. We
choose the maximal order OB0 ⊂B0 to be stable under the main involution and, as on [BC92,
p. 127], choose an s ∈ OB such that s2 =−disc(B0). Define a positive involution of B0,

b 7→ b∗ = s−1 · bι · s.

Extend b 7→ b∗ to a positive involution of B, trivial on F . Let Af denote the ring of finite adeles
of Q.

2. Arithmetic intersection theory

Our basic references for stacks are [Gil84, LM00], and [Vis89]. By an algebraic stack we always
mean a Deligne–Mumford stack in the sense of [LM00]. If S is a scheme and X is an algebraic
stack then we denote by X (S) the fiber of X over S. The goal of § 2 is to develop a rudimentary
(and somewhat ad-hoc) extension to stacks of the Gillet–Soulé arithmetic intersection theory
[GS91, Sou92].

2.1 Chow groups
Throughout all of § 2.1 we fix an algebraic stack M separated and of finite type over a regular
Noetherian scheme S. We describe below the basics of the theory of Chow groups of such a stack.
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If we assume thatM is a scheme, then the theory is described in [Ful98] and [Sou92]. If instead
we assume that S is the spectrum of a field, then the theory is described in [Gil84] and [Vis89],
but for the very rudimentary results described below the methods extend easily to the case of S
regular and Noetherian.

An irreducible cycle onM is a nonempty integral closed substack ofM. For any nonnegative
k ∈ Z let Zk(M) be the free Q-module generated by the codimension k irreducible cycles onM.
Elements of Zk(M) are called cycles of codimension k. Define the group of rational equivalences
in codimension k,

Rk(M) =
⊕
D
k(D)× (5)

where the direct sum is over all irreducible cycles D of codimension k − 1 on M, and k(D) is
the field of rational functions on D (i.e. the quotient field of [Vis89, Definition 1.14]). There is a
Z-module map

∂ :Rk(M)−→ Zk(M)

which takes f ∈ k(D) to its Weil divisor viewed as a cycle on M (defined for schemes in [Ful98]
or [Sou92] and extended to algebraic stacks as in [Gil84, § 4.4]). Define the codimension k Chow
group (with rational coefficients)

CHk(M) = coker
(
Rk(M)⊗Z Q ∂−→ Zk(M)

)
.

There is also a notion of Chow group with support along a closed subscheme, or, slightly more
generally, with support along a proper map. Suppose we are given an algebraic stack Y over S
and a proper map φ : Y −→M. Let ZkY(M)⊂ Zk(M) be the subspace generated by the irreducible
cycles supported on the image of Y. Similarly, let RkY(M)⊂Rk(M) be defined exactly as in (5),
but where the direct sum is over only those irreducible cycles D supported on the image of Y.
The map ∂ defined above restricts to a map ∂ :RkY(M)−→ ZkY(M), and the codimension k Chow
group with support along Y (again, with rational coefficients) is defined as

CHk
Y(M) = coker(RkY(M)⊗Z Q ∂−→ ZkY(M)).

Suppose that Y and M0 are algebraic stacks and that there is a finite type flat morphism
f :M0 −→M and a proper morphism Y −→M. As in [Gil84, Proposition 4.6(i)] or [Vis89,
Proposition 3.7] there is an induced flat pullback on Chow groups

f∗ : CHk
Y(M)−→ CHk

Y0
(M0)

in which Y0 = Y ×MM0.

Definition 2.1.1. Let T be a regular Noetherian scheme over S. A T -uniformization of M is
an isomorphismM/T

∼= [H\M ] of stacks in which M is a scheme over T and H is a finite group
of automorphisms of M .

Lemma 2.1.2. Suppose we have a T -uniformizationM/T
∼= [H\M ] and let f :M −→M/T be the

canonical morphism. If Y −→M is any proper morphism of algebraic stacks and Y = Y ×MM ,
then the flat pullback

f∗ : CHk
Y/T (M/T )−→ CHk

Y (M)H (6)

is an isomorphism.
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Proof. As in [Gil84, Proposition 4.6(iii)] or [Vis89, Proposition 3.7] there is a push-forward
homomorphism f∗ : CHk

Y (M)−→ CHk
Y/T (M/T ) which satisfies

(f∗ ◦ f∗)(C) = |H| · C

and

(f∗ ◦ f∗)(C) =
∑
h∈H

h · C.

Therefore, the flat pullback (6) has inverse |H|−1 · f∗. 2

Suppose S = Spec(R) with R a discrete valuation ring. Let η and s be the generic point and
closed point of S, respectively, and assume that M is proper and flat over S. An irreducible
cycle C on M is horizontal if it is flat over S, and is vertical if it is supported on the special
fiber M/k(s). Let

CHk
ver(M) def= CHk

M/k(s)
(M)

denote the Chow group with support along the special fiberM/k(s) −→M, and define Zkver(M) in
the same way. If Y −→M is any morphism of algebraic stacks there is a canonical homomorphism

ZkY(M)−→ Zkver(M)⊕ ZkY/k(η)(M/k(η))

which takes an irreducible cycle C to (C, 0) if C is vertical, and to (0, C/k(η)) if C is horizontal.
If the image of Y/k(η) −→M/k(η) has codimension at least k (including possibly Y/k(η) = ∅) then
this homomorphism descends to a map

CHk
Y(M)−→ CHk

ver(M)⊕ ZkY/k(η)(M/k(η)) (7)

as in [Sou92, Remark III.2.1].

2.2 A little K-theory
For any algebraic stack M we let K0(M) denote the Grothendieck group of the category of
coherent OM-modules (denoted by K ′0(M) in [GS87] and [Sou92]). That is, the free abelian
group generated by coherent OM-modules, modulo the subgroup generated by the relations
F = F1 + F2 whenever there is an exact sequence 0−→F1 −→F −→F2 −→ 0. The class in K0(M)
of a coherent sheaf F will be denoted [F ]. If φ : Y −→M is a proper morphism of algebraic
stacks we define KY0 (M) to be the Grothendieck group of the category of coherent OM-modules
supported on the image of Y. There is an obvious homomorphism KY0 (M)−→K0(M) (which is
typically not injective). There is a higher direct image map

Rφ∗ : K0(Y)−→KY0 (M) (8)

defined by

Rφ∗[F ] =
∑
k≥0

(−1)k[Rkφ∗F ].

If φ is a closed immersion or a finite map, so that φ∗ is an exact functor from coherentOY -modules
to coherent OM-modules, then Rφ∗[F ] = [φ∗F ]. If Z −→M is a proper map with image contained
in the image of Y −→M then there is an evident change of support map KZ0 (M)−→KY0 (M).
Define a decreasing filtration on KY0 (M),

F kKY0 (M) =
⋃
Z

image(KZ0 (M)−→KY0 (M)),
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where the union is over the closed substacks Z −→M of codimension at least k which are contained
in the image of Y.

Let M be a regular scheme which is separated and of finite type over a regular Noetherian base
S, and let Y −→M be a proper map of schemes. Define KY

0 (M) to be the free group generated
by quasi-isomorphism classes of finite complexes Pk −→ · · · −→ P0 of coherent locally free OM -
modules whose homology sheaves H i(P•) are supported on the image of Y , modulo the subgroup
generated by the relations P• =Q•1 +Q•2 if there is an exact sequence 0−→Q•1 −→P• −→Q•2 −→ 0.
The class in KY

0 (M) of a complex P• is denoted [P•]. If F is a coherent sheaf on M supported
on the image of Y then by [GS87, § 1.9] there is a finite resolution

P• −→F −→ 0

of F by coherent locally free OM -modules. The rule [F ] 7→ [P•] then defines an isomorphism
KY

0 (M)∼=KY
0 (M) with inverse [P•] 7→

∑
i(−1)iH i(P•). In particular, the group KY

0 (M) inherits
a filtration F kKY

0 (M) from the filtration on KY
0 (M) defined above. Suppose that i :M0 −→M is

a finite type morphism of schemes with M0 regular and separated over S, and set Y0 = Y ×M M0.
If i is flat then the functor i∗ from coherent OM -modules to coherent OM0-modules is exact, and
so the rule [F ] 7→ [i∗F ] is a well-defined homomorphism i∗ : KY

0 (M)−→KY0
0 (M0). The groups

KY
0 (M) admit pullback maps even when i is not flat: according to [Sou92, Theorem I.3(iii)] the

rule [P•] 7→ [i∗P•] defines a homomorphism

i∗ : F kKY
0 (M)−→ F kKY0

0 (M0).

Keeping M and Y as in the preceding paragraph, if Z −→M is an irreducible cycle of
codimension k supported on Y then we may define α(Z) to be the image of [OZ ] under

K0(Z)−→KZ
0 (M)−→ F kKY

0 (M)∼= F kKY
0 (M).

By a theorem of Gillet–Soulé, see [GS87, Theorem 8.2] or [Sou92, § 3.3], the rule Z 7→ α(Z)
defines an isomorphism

CHk
Y (M)∼=GrkKY

0 (M)⊗Z Q, (9)

where GrkKY
0 (M) = F kKY

0 (M)/F k+1KY
0 (M). Combining this with the pullback on K-theory

constructed above, we obtain a pullback homomorphism on Chow groups,

i∗ : CHk
Y (M)−→ CHk

Y0
(M0). (10)

If i is flat then this homomorphism is the flat pullback constructed in § 2.1.

Lemma 2.2.1. Let S be a Noetherian scheme and let η ∈ S be the generic point of an irreducible
component D of S. We give D its reduced subscheme structure and view OD as a quotient sheaf
of OS . For any coherent sheaf F on S there is a closed subscheme Z −→ S not containing D such
that

[F ]− lengthOS,η(Fη) · [OD] ∈ Im(K0(Z)−→K0(S)).

Proof. Let U be an open affine neighborhood of η. By [Mat89, Theorem 6.5(iii)], any coherent
OU -module A which satisfies Aη 6= 0 contains a subsheaf isomorphic to OD|U . Taking A= F|U
and using induction on lengthOS,η(Fη), we find a coherent OU -module G with trivial stalk at η
and satisfying

[F|U ] = lengthOS,η(Fη) · [OD|U ] + [G]
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in K0(U). But G|V = 0 for some open neighborhood V ⊂ U of η. Thus [F ]− lengthOS,η(Fη) · [OD]
lies in the kernel of restriction K0(S)−→K0(V ), and hence is contained in the image of
K0(S r V )−→K0(S) by the exact sequence of [Sou92, Lemma I.3.2]. 2

Lemma 2.2.2. Let S be a Noetherian scheme and let Ω denote any subset of the set of irreducible
components of S. There is an exact sequence⊕

Z

K0(Z)−→K0(S)−→
⊕
D∈Ω

K0(Spec(OS,η))−→ 0

in which the first sum is over all closed subschemes of S having no components contained in Ω,
and in the second sum η is the generic point of the component D.

Proof. By induction it suffices to treat the case in which Ω consists of a single irreducible
component of S with generic point η. As OS,η is Artinian there is a canonical isomorphism

K0(Spec(OS,η))∼= Z

given by [Fη] 7→ lengthOS,η(Fη), and so the claim follows easily from Lemma 2.2.1. 2

2.3 Arithmetic Chow groups
Definition 2.3.1. An arithmetic stack is an algebraic stack M over Z satisfying the following
properties:

(a) M is regular;

(b) the structure map M−→ Spec(Z) is flat and projective;

(c) for every prime ` one can find a positive integer N which is not divisible by ` and a Z[1/N ]-
uniformization M/Z[1/N ]

∼= [H\M ] in the sense of Definition 2.1.1.

Throughout all of § 2.3 we work with a fixed arithmetic stack M, equidimensional of
dimension d= dim(M), and choose a Q-uniformizationM/Q ∼= [HQ\MQ]. Thus MQ is a smooth
projective variety over Q of dimension d− 1. There is a notion of a Green current [Sou92, § III.1]
for a cycle in Zk(MQ), and as a consequence of [Gil84, § 4] there are canonical isomorphisms

Zk(M/Q)∼= Zk(MQ)HQ , Rk(M/Q)∼=Rk(MQ)HQ .

Hence we may define a Green current for a cycle CQ ∈ Zk(M/Q) to be an HQ-invariant Green
current for the corresponding cycle CQ ∈ Zk(MQ)HQ . This definition does not depend on the
choice of Q-uniformization: if M/Q ∼= [H ′Q\M ′Q] is another Q-uniformization then one may form
a third Q-uniformization,

M/Q ∼= [(HQ ×H ′Q)\(MQ ×M/Q M
′
Q)],

which allows one to identify HQ-invariant currents on MQ with H ′Q-invariant currents on M ′Q,
as both are identified with HQ ×H ′Q-invariant currents on MQ ×M/Q M

′
Q. Using the notation

of [Sou92, § III.1], if C ∈ Zk(M) and Ξ, Ξ′ ∈Dk−1,k−1(MQ) are two Green currents for C/Q, we
will say that Ξ and Ξ′ are equivalent if there are HQ-invariant currents u ∈Dk−2,k−1(MQ) and
v ∈Dk−1,k−2(MQ) such that Ξ− Ξ′ = ∂(u) + ∂(v).

Let Ẑk(M) be the Q-vector space of pairs (C, Ξ) in which C ∈ Zk(M) and Ξ is an equivalence
class of Green currents for C/Q. For each irreducible cycle D ∈ Zk−1(MQ) and f ∈ k(D)× there is
an associated Green current, constructed in [Sou92, § III.1] and denoted [− log |f |2], for the Weil
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divisor div(f) ∈ Zk(MQ). Thus every element of Rk(MQ) has a canonically associated Green
current. Taking HQ-invariants yields a Z-module map

∂̂ :Rk(M)−→ Ẑk(M),

and we define the codimension k arithmetic Chow group (with rational coefficients) by

ĈH
k
(M) = coker(Rk(M)⊗Z Q ∂̂−→ Ẑk(M)).

For every prime p there is a homomorphism

CHk
ver(M/Zp)−→ ĈH

k
(M) (11)

defined by endowing a cycle on M/Fp with the trivial Green current.
Fix a prime p. For any irreducible cycle C on M/Zp of codimension d (necessarily vertical)

define

degp(C) =
∑

x∈C(Falgp )

1
|AutM(x)|

where the sum is over all isomorphism classes of objects in the category C(Falg
p ). By AutM(x) we

mean the automorphism group of x in the category M(Falg
p ). Extending the definition of degp

linearly to all of Zdver(M/Zp), there is an induced homomorphism

degp : CHd
ver(M/Zp)−→Q.

Suppose (C, Ξ) ∈ Ẑd(M). By definition Ξ is a (d− 1, d− 1)-current (up to equivalence) on the
compact complex manifold MQ(C) of dimension d− 1. Thus we may define

deg∞(Ξ) =
1

2 · |H|

∫
MQ(C)

Ξ

where the integral means evaluation of the current Ξ at the constant function 1. The function
on Ẑd(M) defined by

d̂eg(C, Ξ) = deg∞(Ξ) +
∑
p

degp(C/Zp) · log(p)

then descends to a Q-linear map, the arithmetic degree,

d̂eg : ĈH
d
(M)−→ R.

Indeed, it suffices to check that if W is an irreducible cycle of dimension one on M and f is a
rational function on W, then the arithmetic degree of the pair (div(f), [−log |f |2]) is 0. If W is
a horizontal cycle then this is precisely the calculation of [KRY06, (2.1.11)]. If W is a vertical
cycle supported in characteristic p, then one chooses a Zp-uniformization [H\M ]∼=M/Zp , sets
W =M ×MW, and uses the fact that principal Weil divisors on W have degree 0.

Now suppose that M0 is another arithmetic stack, equidimensional of dimension d0 =
dim(M0), and that i :M0 −→M is a closed immersion. We will define a Q-linear functional,
the arithmetic degree along M0,

d̂egM0
: ĈH

d0
(M)−→ R.

Morally speaking, the arithmetic degree along M0 should be the composition

ĈH
d0

(M) i∗−→ ĈH
d0

(M0)
d̂eg−−→ R
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of the pullback i∗ as constructed in [GS91, § 4.4] and [Sou92, § III.3] with the arithmetic degree
defined above. This requires extending the theory of pullbacks in [GS91] from schemes to
arithmetic stacks, and is further complicated by a error in the construction of i∗ identified
and corrected by Gubler [Gub02]. Presumably this extension can be successfully done, but we
will avoid the issue by borrowing a trick from Bruinier, Burgos and Kühn [BBK07]. Suppose
we have an integer N and a Z[1/N ]-uniformization M/Z[1/N ]

∼= [H\M ]. Set M0 =M0 ×MM .
There is an obvious homomorphism

δM/M : ĈH
d0

(M)−→ ĈH
d0

(M)

induced by pullback of cycles through the composition M −→M/Z[1/N ] −→M, and the full force of
the theories of [GS91] and [BKK07] (both of which include arithmetic Chow groups of schemes

over Z[1/N ]) may be applied to the arithmetic Chow group ĈH
d0

(M). In particular, there is a
homomorphism of Q-vector spaces

∆N : ĈH
d0

(M)−→ ĈH
1
(Z[1/N ])

obtained as the composition

ĈH
d0

(M)
δM/M−−−−→ ĈH

d0
(M)

|H|−1

−−−→ ĈH
d0

(M)−→ ĈH
d0

(M0)−→ ĈH
1
(Z[1/N ])

in which the third arrow is the pullback of [GS91, § 4.4] and the final arrow is the push-forward
of [GS91, § 3.6]. The map ∆N depends on N but not on the choice of Z[1/N ]-uniformization M .
If we define RN to be the quotient of R by the additive subgroup generated of all rational linear
combinations of {log(p)}, as p ranges over the prime divisors of N , then there is a canonical
Q-linear map

d̂eg Z[1/N ] : ĈH
1
(Z[1/N ])−→ RN

obtained by imitating the construction of the arithmetic degree ĈH
1
(Z)−→ R. As in [BBK07,

§ 6.3] there is a canonical isomorphism

R∼= lim←−
N∈Z+

RN ,

and our definition of an arithmetic stack guarantees that one can find a coterminal familyN ⊂ Z+

of this inverse system such that for every N ∈N the stack M admits a Z[1/N ]-uniformization.
This allows us to define

d̂egM0
: ĈH

d0
(M)−→ R

by

d̂egM0
= lim←−
N∈N

d̂eg Z[1/N ] ◦∆N .

Now suppose Y −→M is a proper morphism of algebraic stacks such that the image of
Y/Q −→M/Q has codimension k. If p is a prime, by a local cycle datum at p of codimension
k with support on Y we mean a triple (CQ, Ξ, Cp) in which

CQ ∈ ZkY/Q(M/Q),

Ξ is an equivalence class of Green currents for CQ, and

Cp ∈ CHk
Y/Zp (M/Zp)

is a cycle class which maps to CQ ×Q Qp under the homomorphism

CHk
Y/Zp (M/Zp)−→ ZkY/Qp (M/Qp) (12)
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deduced from (7). The image of Cp under

CHk
Y/Zp (M/Zp)−→ CHk

ver(M/Zp),

denoted Cver
p , is the vertical component of the local cycle datum. By a global cycle datum of

codimension k with support on Y we mean a triple (CQ, Ξ, C•) in which CQ and Ξ are as above
and C• = {Cp} is a collection indexed by the primes such that each (CQ, Ξ, Cp) is a local cycle
datum at p of codimension k with support along Y. We further require that Cver

p = 0 for all but
finitely many p. Any global cycle datum (CQ, Ξ, C•) determines an arithmetic cycle class

Ĉhor +
∑
p

Ĉver
p ∈ ĈH

k
(M) (13)

in which Ĉver
p is the image of Cver

p under the map (11) and Ĉhor is the arithmetic cycle consisting
of the Zariski closure of CQ in M with its Green current Ξ.

Set Y0 = Y ×MM0 and assume that the image of Y0/Q −→M0/Q again has codimension k.
There is a pullback global cycle datum (i∗CQ, i∗Ξ, i∗C•) of codimension k with support along
Y0 defined as follows. For every prime p choose a Zp-uniformization M/Zp

∼= [H\M ] and define
Zp-schemes

Y = Y ×MM,

M0 =M0 ×MM, (14)
Y0 = Y0 ×M0 M0.

There is a pullback map

i∗ : CHk
Y/Zp (M/Zp)−→ CHk

Y0/Zp
(M0/Zp)

defined as the composition

CHk
Y/Zp (M/Zp)∼= CHk

Y (M)H −→ CHk
Y0

(M0)H ∼= CHk
Y0/Zp

(M0/Zp)

in which the middle arrow is (10). In the exact same way one defines a pullback

i∗ : ZkY/Q(M/Q)∼= CHk
Y/Q(M/Q)−→ CHk

Y0/Q
(M0/Q)∼= ZkY0/Q

(M0/Q)

using the hypotheses on the codimensions of Y/Q and Y0/Q for the isomorphisms. This defines
i∗CQ and i∗C•. The current i∗Ξ is defined as in [Sou92, § § II.3.2 and II.3.3]: after replacing Ξ by
an equivalent Green current we may assume that Ξ is a Green form of logarithmic type on MQ,
and the pullback current i∗Ξ is then just the usual pullback of Ξ to M0Q =M0 ×MMQ in the
sense of differential forms.

As before let M0 be an arithmetic stack, equidimensional of dimension d0, and suppose we
have a closed immersion i :M0 −→M. Let Y −→M be a proper morphism of algebraic stacks such
that the image of Y/Q −→M/Q has codimension d0 and assume that Y0/Q = ∅, where we again
set Y0 = Y ×MM0. In particular, the image of Y0/Q −→M0/Q has codimension d0. If (CQ, Ξ, C•)
is a global cycle datum on M of codimension d0 supported on Y then we have defined above a
pullback global cycle datum (i∗CQ, i∗Ξ, i∗C•) onM0 of codimension d0 supported on Y0. Denoting
by

Ĉ ∈ ĈH
d0

(M), Ĉ0 ∈ ĈH
d0

(M0)
the arithmetic cycle classes corresponding to these cycle data, one may easily check that

d̂egM0
Ĉ = d̂eg Ĉ0.
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In other words,

d̂egM0
(CQ, Ξ, C•) = d̂eg(i∗CQ, i∗Ξ, i∗C•). (15)

3. A Shimura surface and its special cycles

We take [Mum65, ch. 6] as our basic reference for abelian schemes. We will be dealing with integral
models of the Shimura varieties associated to the algebraic groups G0 and G of the introduction.
These have been dealt with thoroughly in the literature: for the Shimura curve associated to
G0 we point out the articles of Buzzard [Buz97] and Boutot and Carayol [BC92], and for the
Shimura surface associated to G we point out the volume [BBGGLMS79], as well as the articles of
Milne [Mil79], Kottwitz [Kot92], Rapoport and Zink [RZ82, RZ96], Boutot and Zink [BZ], Kudla
and Rapoport [KR99], and Hida [Hid04]. These Shimura surfaces are closely related to classical
Hilbert modular surfaces, whose integral models are dealt with in work of Rapoport [Rap78],
Deligne and Pappas [DP94], Pappas [Pap95], Stamm [Sta97], and Vollaard [Vol05]. General
references on Hilbert modular varieties include the books of Goren [Gor02], Hida [Hid06], and
van der Geer [van88]. The theory of Shimura varieties, from Deligne’s points of view, can be
found in the works of Milne [Mil90, Mil05].

3.1 Moduli problems

Let S be a scheme. By a QM abelian fourfold over S we mean a pair A = (A, i) in which A is an
abelian scheme over S of relative dimension four, and i :OB −→ End(A) is a ring homomorphism
taking 1 7→ 1 and satisfying the Kottwitz condition (see, for example, [Kot92, § 5], [Hid04, § 7.1],
or [Vol05]), everywhere locally on S. This last condition means that for every s ∈ S there is an
open affine neighborhood U over which Lie(A) is a free OU -module satisfying the equality of
polynomials in OU [x],

charOU (i(b); Lie(A)) = fb(x) · fb(x)σ

for every b ∈ OB. Here

fb(x) = (x− b)(x− bι) ∈ OF [x]

is the reduced characteristic polynomial of b. Define End(A) to be the OF -algebra of
endomorphisms of A which commute with the action of OB, and set End0(A) = End(A)⊗OF F .
For a good theory of the moduli of QM abelian fourfolds we must introduce polarization data
as well. By a D−1-polarized QM abelian fourfold we mean a pair (A, λ) in which A = (A, i) is a
QM abelian fourfold and λ :A−→A∨ is a polarization satisfying:

(a) λ ◦ i(b∗) = i(b)∨ ◦ λ for every b ∈ OB;

(b) the kernel of λ is A[D].

DefineM to be the category, fibered in groupoids over the category of schemes, whose objects are
D−1-polarized QM abelian fourfolds. A morphism from (A′, λ′) to (A, λ), defined over schemes
S′ and S, respectively, in the category M is a commutative diagram

A′ //

��

A

��
S′ // S
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such that the induced map A′ −→A×S S′ is an isomorphism of abelian schemes over S respecting
the action of OB and identifying the polarizations λ and λ′. The category M is an arithmetic
stack (in the sense of Definition 2.3.1) of dimension three with geometrically connected fibers.
Furthermore,M is smooth over Z[1/D], where D = disc(F ) · disc(B0). The existence of a smooth
projective models for M over Zp for primes p -D is explained in [Kot92, Mil79], and in much
greater detail in Chapters 6–7 of [Hid04]. When p | disc(B0), the regularity of the integral model
follows from the Cerednik–Drinfeld uniformization described in [BC92] and [RZ96]; see § 4.1.
The higher dimensional case needed here is dealt with in [BZ] and [RZ96]. Finally, for primes
dividing disc(F ) one proves the existence of regular projective models using the methods of
Deligne and Pappas [DP94], who treat the case of classical Hilbert–Blumenthal moduli (e.g.,
the case B ∼=M2(F ), which we exclude). Deligne and Pappas use a different type of polarization
data in the statement of their moduli problem, and do not impose the Kottwitz condition. The
equivalence of moduli problems of the type defined above and those considered by Deligne and
Pappas is explained in the work of Vollaard [Vol05].

By a QM abelian surface over a scheme S we mean a pair A0 = (A0, i0) in which A0 is an
abelian scheme over S of relative dimension two and i0 :OB0 −→ End(A0) is a ring homomorphism
satisfying 1 7→ 1. Again we require that A0 satisfies the Kottwitz condition everywhere locally
on S: for any b0 ∈ OB0 the equality of polynomials in OU [x],

charOU (i(b0), Lie(A0)) = (x− b0)(x− bι0),

holds over any sufficiently small open affine neighborhood U of any point s ∈ S. Define End(A0)
and End0(A0) as above. By a principally polarized QM abelian surface we mean a pair (A0, λ0)
in which A0 is a QM abelian surface and λ0 :A0 −→A∨0 is a polarization satisfying:

(a) λ ◦ i0(b∗) = i0(b)∨ ◦ λ0 for every b ∈ OB0 ;

(b) λ0 is an isomorphism.

We remark that in fact every QM abelian surface admits a unique such λ0. This follows by
combining the argument used in [Buz97] to prove the claim when disc(B0) is invertible on
the base, with [BC92, Proposition III.3.3]. Let M0 be the category, fibered in groupoids over
the category of schemes, whose objects are principally polarized QM abelian surfaces (A0, λ0)
over schemes. Morphisms are defined exactly as in M. The category M0 is then an arithmetic
stack of dimension two with geometrically connected fibers, and is smooth over Z[disc(B0)−1].
See [BC92, Buz97] and the references therein for details.

Let A0 = (A0, i0) be a QM abelian surface over a scheme S with a polarization λ0 as above.
The abelian fourfold A0 ⊗OF ∼= HomZ(D−1, A0) (see [Con04, § 7] for background on Serre’s
tensor construction) is then equipped with commuting actions of OB0 and OF , and hence with an
action i :OB −→ End(A0 ⊗OF ). To be very concrete, we may define A0 ⊗OF =A0 ×A0 withOB0

acting diagonally and OF acting through the ring homomorphism κ :OF −→M2(Z) determined
by the Z-basis {$1, $2} of OF . We obtain a QM abelian fourfold

A0 ⊗OF = (A0 ⊗OF , i)

and an isomorphism of OF -algebras

End(A0 ⊗OF )∼= End(A0)⊗Z OF . (16)

The identification A0 ⊗OF =A0 ×A0 determines an isomorphism

(A0 ⊗OF )∨ ∼=A∨0 ×A∨0
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in which the action of OB0 on the right-hand side is again diagonal, but the action of OF is
through the transpose of the homomorphism κ. This transpose tκ :OF −→M2(Z) is the embedding
determined by the action of OF on D−1 with respect to the dual basis {$∨1 , $∨2 } relative to the
trace form on F , and allows us to identify

(A0 ⊗OF )∨ ∼=A∨0 ×A∨0 ∼=A∨0 ⊗D−1.

If we denote by λ0 ⊗OF the isogeny

A0 ⊗OF
λ0⊗1−−−→A∨0 ⊗D−1 ∼= (A0 ⊗OF )∨,

then the pair (A0 ⊗OF , λ0 ⊗OF ) is a D−1-polarized QM abelian fourfold. We check that
λ0 ⊗OF is a polarization. Let ∆ be the matrix of the trace form on OF relative to the basis
{$1, $2}. Identifying A0 ⊗OF ∼=A0 ×A0 and (A0 ⊗OF )∨ ∼=A∨0 ×A∨0 as above, the isogeny
λ0 ⊗OF is identified with

A0 ×A0
λ0×λ0−−−−→A∨0 ×A∨0

∆−→A∨0 ×A∨0 . (17)

As ∆ is positive definite there is some positive integer multiple m∆ = tE∆′E with ∆′, E ∈M2(Z)
and ∆′ diagonal with diagonal entries d1, d2 > 0. The pullback of the polarization

A0 ×A0
d1λ0×d2λ0−−−−−−−→A∨0 ×A∨0

by the isogeny

A0 ×A0
E−→A0 ×A0

is then m times the isogeny (17). As m times the isogeny (17) is a polarization, so is (17). We
now have a functor

i :M0 −→M

defined by

(A0, λ0) 7→ (A0, λ0)⊗OF = (A0 ⊗OF , λ0 ⊗OF ).

This functor induces a proper morphism of algebraic stacks. Combining the properness with the
following lemma (which implies that the morphism i is injective on geometric points) shows that
i :M0 −→M is a closed immersion.

Lemma 3.1.1. For any principally polarized QM abelian surfaces (A0, λ0) and (A′0, λ
′
0) over a

common base scheme S, the natural function

IsomM0(S)((A0, λ0), (A′0, λ
′
0))−→ IsomM(S)((A0, λ0)⊗OF , (A′0, λ′0)⊗OF )

is a bijection.

Proof. Abbreviate A = A0 ⊗OF and λ= λ0 ⊗OF and similarly for A′0 and λ′0. The isomorphism
of OF -modules

Hom(A0,A′0)⊗OF ∼= Hom(A,A′)

proves the injectivity of the function in question. For surjectivity, suppose we start with an
isomorphism f : (A, λ)∼= (A′, λ′) inM(S). The condition that f identifies λ with λ′ is equivalent
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to the commutativity of the diagram

A0 ×A0
//

∆◦λ0

��

A
f //

λ

��

A′ //

λ′

��

A′0 ×A′0

∆◦λ′0
��

A∨0 ×A∨0 A∨oo A′∨
f∨

oo A′∨0 ×A′∨0oo

in which all horizontal arrows are isomorphisms. The composition of arrows along the top row
is given by some matrix

Φ ∈Hom(A0,A′0)⊗M2(Z)
which lies in the Z-submodule Hom(A0,A′0)⊗ κ(OF ). The composition of arrows in the bottom
row, from right to left, is then given by the transpose dual

tΦ∗ ∈Hom(A′0,A0)⊗M2(Z)

where Φ∗ denotes the entry-by-entry dual of the matrix Φ. Using the relation ∆ · κ(x) = tκ(x) ·∆
for all x ∈ OF , the commutativity of the above diagram is equivalent to(

λ0

λ0

)
= Φ∗ ·

(
λ′0

λ′0

)
· Φ. (18)

We now choose a ρ ∈GL2(Q) such that

ρκ(F )ρ−1 =
{(

a bD
b a

) ∣∣∣∣ a, b ∈Q
}

with D > 1 a square free integer. Suppose first that D ≡ 1 (mod 4). Then there are f1, f2 ∈
Hom(A0,A′0) for which

ρΦρ−1 =
1
2

(
2f1 + f2 f2D

f2 2f1 + f2

)
.

Conjugating both sides of (18) by ρ and comparing the upper left entries on each side yields

4λ0 = (2f1 + f2)∨ ◦ λ′0 ◦ (2f1 + f2) + f∨2 ◦ λ′0 ◦ f2D

= deg(2f1 + f2)λ0 + deg(f2)Dλ0

where the second equality uses the fact that the Z-module of symmetric homomorphisms
A0 −→A∨0 satisfying λ0 ◦ i0(b∗) = i0(b)∨ ◦ λ0 for all b ∈ OB0 is free of rank one and generated
by λ0, with the polarizations corresponding to positive multiples of λ0. From this equality it is
clear that f2 = 0, and hence

Φ =
(
f1

f1

)
as desired. The case D ≡ 2, 3 (mod 4) is similar. 2

Lemma 3.1.2. If A0 is a QM abelian surface over a connected scheme S then End0(A0) is either
Q, a quadratic imaginary field, or a definite quaternion algebra over Q. If A is a QM abelian
fourfold over S then End0(A) is either F , a totally imaginary quadratic extension of F , or a
totally definite quaternion algebra over F .

Proof. Fix a geometric point s−→ S, and let A = (A, i) be a QM abelian fourfold over S.
By [Mum65, Corollary 6.2], the reduction map

End0(A)−→ End0(A/k(s))
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is injective, and so it suffices to treat the case in which S = Spec(k) with k a field. One then further
reduces to the case of k of finite transcendence degree over its prime subfield, and by considering
the Néron model of A over a valuation ring inside of k and again invoking the injectivity of the
reduction map on endomorphism algebras, one is reduced to the case of k finite over its prime
subfield. If char(k) = 0 then A(C) is isogenous to (B ⊗Q R)/OB for some complex structure
on B ⊗Q R, and from this one can show that End(A) is either F or a quadratic imaginary
extension of F . If char(k) 6= 0 then [Mil79, Proposition 5.2] shows that either A is isogenous to
the fourth power of a supersingular elliptic curve, or A has no isogeny factor isomorphic to a
supersingular elliptic curve. In the first case End0(A) is isomorphic to the quaternion algebra B
over F satisfying

[B] + [B] = [H ⊗Q F ]

in the Brauer group of F , where H is the rational quaternion algebra of discriminant p. In
the second case End0(A) is a quadratic imaginary extension of F . Note that in the statement
of [Mil79, Proposition 5.2] it is assumed that char(k) is prime to both disc(F ) and to disc(B0).
This hypothesis is not used in the proof until the sentence ‘It splits B because. . .’ and so has
no bearing on the results cited above. The case of a QM abelian surface is identical (in this case
one may also invoke [BC92, Proposition III.2] for primes dividing disc(B0)). 2

Fix a finite set of rational primes Σ and let S be a scheme such that

` 6∈ Σ =⇒ `−1 ∈ OS .

Let U0 ⊂ Umax
0 be a compact open subgroup which factors as U0 =

∏
` U0,` with U0,` = Umax

0 for
every ` ∈ Σ. Write

Umax,Σ
0 =

∏
`6∈Σ

Umax
0,` UΣ

0 =
∏
`6∈Σ

U0,`.

Let Λ0 =OB0 be viewed as a left OB0-module, and define a perfect alternating bilinear form
ψ0 : Λ0 × Λ0 −→ Z as on [BC92, p. 130] by

ψ0(x, y) =
1

disc(B0)
Tr(xsy∗)

where Tr is the reduced trace on B0 and s ∈ OB0 is the element fixed in the introduction. Extend
ψ0 to an alternating form

ψ0 : Λ̂Σ
0 × Λ̂Σ

0 −→ ẐΣ (19)

on the restricted topological product

Λ̂Σ
0 =

∏
`6∈Σ

(Λ0 ⊗Z Z`).

We now define the notion of a U0 level structure on a principally polarized QM abelian surface
(A0, λ0) defined over S. Fix a geometric point s−→ S and let

TaΣ(A0) =
∏
`6∈Σ

Ta`(A0/k(s))

be the prime-to-Σ adelic Tate module of A0, equipped with the action of (ÔB0)Σ defined by i0
as well as the action of the étale fundamental group π1(S, s). A U0 level structure on A0 is then
a U0 equivalence class of (ÔB0)Σ-module isomorphisms

ν0 : Λ̂Σ
0 −→ TaΣ(A0)
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(here ν0 and ν ′0 are U0 equivalent if there is a u ∈ U0 such that ν0(x) = ν ′0(xu) for all x ∈ Λ̂Σ
0 )

which satisfy:

(a) ν0 identifies the Weil pairing

TaΣ(A0)× TaΣ(A0)−→ ẐΣ(1)

induced by λ0 with the pairing (19) up to a (ẐΣ)×-multiple;

(b) for any σ ∈ π1(S, s) there is a u ∈ U0 such that σ · ν0(x) = ν0(xu); that is to say, the
equivalence class of ν0 is defined over S.

Set Λ = Λ0 ⊗Z OF . For a compact open subgroup U ⊂ Umax (factorizable and maximal at
primes in Σ) one defines the notion of U level structure on a D−1-polarized QM abelian fourfold
(A, λ) in the same way, replacing Λ̂Σ

0 by Λ̂Σ = Λ̂Σ
0 ⊗Z OF and replacing ψ0 with the alternating

form

ψ : Λ× Λ−→ Z
defined by extending ψ0 to a OF -bilinear form ψ0 : Λ× Λ−→OF and setting ψ = TrF/Q ◦ ψ0.

If S is a scheme and (A0, λ0) is an object ofM0(S) then the polarization λ0 induces a Rosati
involution τ 7→ τ † on End0(A0). The trace of an endomorphism τ ∈ End0(A0) is defined to be
Tr(τ) = τ + τ †, and we define a bilinear form on the trace zero elements of End0(A0) (with values
in the commutative subalgebra of Rosati-fixed elements) by

[τ1, τ2] =−Tr(τ1τ2).

The associated quadratic form is denoted by Q0(τ) =−τ2. Similar remarks and definitions hold
for any object (A, λ) ofM(S), and on the trace zero elements of End0(A) we have the quadratic
form Q(τ) =−τ2.

For every α ∈ OF define a category Y(α), fibered in groupoids over the category of schemes,
whose objects are triples (A, λ, tα) in which (A, λ) is a D−1-polarized QM abelian fourfold over
a scheme and tα is a trace zero element of End(A) satisfying Q(tα) = α. There is an obvious
functor

φ : Y(α)−→M
which forgets the endomorphism tα. Using the methods of [Hid04, chs 6-7] to prove the relative
representability of φ, one can show that the category Y(α) is an algebraic stack over Z, finite
over M.

Lemma 3.1.3. The stack Y(α)/Q is étale over Spec(Q). In particular, the generic fiber of Y(α)
is reduced of dimension zero.

Proof. Choose a prime ` which does not divide disc(B0) and with the property that

OF [
√
−α]⊗Z Z` ∼= Z4

` .

We abbreviate W =W (Falg
` ) for the ring of Witt vectors of Falg

` and M = Frac(W ) for the fraction
field of W . Suppose z : Spec(Falg

` )−→Y(α) is a geometric point corresponding to a triple (A, λ, tα)
and let g denote the `-Barsotti–Tate group of A. The completion R of the strictly Henselian
local ring of Y(α) at z classifies deformations of (A, λ, tα) to Artinian local W -algebras with
residue field Falg

` , and by the Serre–Tate theorem (and [BBGGLMS79, p. 51] or [Vol05] to see
that the polarization λ deforms uniquely through Artinian thickenings of Falg

` ) the W -algebra R
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is identified with the deformation space of the `-Barsotti–Tate group g with its action of

(OB ⊗OF OF [
√
−α])⊗Z Z` ∼=M2(Z4

` ).

Using the usual idempotents on the right-hand side, we may decompose g∼= g0 × g0 in which g0

is an `-Barsotti–Tate group of height four and dimension two with an action of Z4
` , and then

R classifies deformations of g0 with its action of Z4
` . The Kottwitz condition on A implies that

the usual idempotents in Z4
` induce a decomposition g0

∼= (Q`/Z`)2 × µ2
`∞ , and the theory of

Serre–Tate coordinates as in [Gor02, Theorem 4.2] or [Hid04, Theorem 8.9] then implies that
R∼=W .

If Y −→Y(α)/W is a finite étale morphism with Y a W -scheme then, by the previous
paragraph, the local ring of Y at any closed point is isomorphic to W . It follows that Y itself is
simply a disjoint union of copies of Spec(W ), and hence that Y/M is a disjoint union of copies
of Spec(M). We deduce that Y(α)/M is étale over Spec(M), and it follows that Y(α)/Q is étale
over Spec(Q). 2

Remark 3.1.4. By Lemma 3.1.2, for any object (A, λ) of M the F -valued quadratic form Q is
totally positive on the trace zero elements of End0(A). Thus, for any α ∈ OF ,

Y(α) 6= ∅ =⇒ α totally positive.

For any T ∈ Sym2(Z)∨, let Z(T ) be the category, fibered in groupoids over schemes, whose
objects are quadruples (A0, λ0, s1, s2) in which (A0, λ0) is an object ofM0 and s1, s2 ∈ End(A0)
are trace zero endomorphisms of A0 which satisfy

T =
1
2

(
[s1, s1] [s1, s2]
[s2, s1] [s2, s2]

)
. (20)

We also define

Y0(α) = Y(α)×MM0

so that an object of Y0(α) is a triple (A0, λ0, tα) in which (A0, λ0) is an object ofM0 and tα is a
trace zero element of End(A0 ⊗OF ) satisfying Q(tα) = α. Fixing such a triple over a connected
scheme S, (16) implies that tα has the form

tα = s1$1 + s2$2

for some trace zero s1, s2 ∈ End(A0). The condition Q(tα) = α is equivalent to the relation

α=−s2
1$

2
1 − (s1s2 + s2s1)$1$2 − s2

2$
2
2.

Recalling (4), this last relation is equivalent to

1
2

(
[s1, s1] [s1, s2]
[s2, s1] [s2, s2]

)
∈ Σ(α).

It follows easily that for each α ∈ OF the rule (A0, λ0, tα) 7→ (A0, λ0, s1, s2) identifies

Y0(α)∼=
⊔

T∈Σ(α)

Z(T ). (21)

Lemma 3.1.5. Suppose α ∈ OF is totally positive and let T be an element of Σ(α).

(a) If Z(T ) 6= ∅ then T is positive semi-definite.

(b) If Z(T )/Q 6= ∅ then det(T ) = 0.
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(c) If F (
√
−α) is not a biquadratic extension of Q then det(T ) 6= 0.

In particular, if Y0(α)/Q 6= ∅ then F (
√
−α)/Q is biquadratic.

Proof. For part (a), if Z(T ) 6= ∅ then there is some object (A0, λ0, s1, s2) of Z(T ) defined over
a connected scheme, and Lemma 3.1.2 implies that the quadratic form represented by (20)
is positive definite. Part (b) follows from [KRY06, Theorem 3.6.1]. For part (c) suppose that
det(T ) = 0. Then there is a one-dimensional Q-vector space V0 equipped with a Q-valued
symmetric bilinear form [·, ·] and vectors s1, s2 ∈ V0 for which the relation (20) holds. Let
V = V0 ⊗Q F and extend [·, ·] to an F -valued symmetric bilinear form on V . The relation (20)
then implies that the vector tα = s1$1 + s2$2 satisfies [tα, tα] = 2α. As V0 is one-dimensional
we may write s1 = n1s, s2 = n2s as Q-multiples of a common vector s ∈ V0, and then

2α= [tα, tα] = [s(n1$1 + n2$2), s(n1$1 + n2$2)] = (n1$1 + n2$2)2 · [s, s]

shows that α ∈Q× · (F×)2. Hence F (
√
−α)/Q is biquadratic.

The final claim follows by combining parts (b) and (c) with the decomposition (21). 2

For the remainder of § 3 we fix a totally positive α ∈ OF and abbreviate Y = Y(α) and
Y0 = Y0(α) for the algebraic stacks over Z constructed above. Define j and φ0 by the requirement
that the diagram

Y0
φ0 //

j

��

M0

i

��
Y

φ
// M

is cartesian.

3.2 Green currents
Let M/Q ∼= [H\M ] be a Q-uniformization of M, define Q-schemes

Y = Y ×MM, M0 =M0 ×MM,

and let φ : Y −→M and i :M0 −→M be the projections to the second factors. By Lemma 3.1.3
the scheme Y is a disjoint union of reduced zero-dimensional components, and we define

CQ =
∑
y∈Y

φ(y) ∈ Z2
Y (M). (22)

As CQ is H-invariant it may be identified, using [Gil84, Lemma 4.3], with a cycle CQ ∈ Z2
Y/Q(M/Q)

which is independent of the choice of Q-uniformization of M.
The remainder of § 3.2 is devoted to the construction of a Green current for CQ. In order to

construct such a current we will use the Q-uniformizations of M which come from the theory
of canonical models of Shimura varieties. Let Nm :B× −→ F× denote the reduced norm on B.
Define a real algebraic group S = ResC/RGm and pick a z ∈G0(R) with z2 =−1. The point z
determines a map of R-algebras C−→B0 ⊗Q R by a+ bi 7→ a+ bz, which in turn determines a
map of real algebraic groups hz : S−→G0/R. Let X0 denote the G0(R)-conjugacy class of any
such map (all are conjugate by the Noether–Skolem theorem). We may also view hz as a map
S−→G/R and let X be the G(R)-conjugacy class of hz. The set X0 is naturally identified with
the subset of X consisting of those maps S−→G/R which factor through the subgroup G0/R. The
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isomorphism of R-algebras (3) determines an isomorphism

B ⊗Q R∼= (B0 ⊗Q R)× (B0 ⊗Q R) (23)

which in turn determines an injection G(R)−→G0(R)×G0(R) and an injection X −→X0 ×X0

taking the subset X0 ⊂X bijectively onto the diagonal. If we fix an isomorphism B0 ⊗Q R∼=
M2(R) then we may identify the set X0 with the complex manifold C r R in the usual way [Mil05,
Example 5.6]. The resulting complex manifold structure on X0 is independent of the choice of
isomorphism B0 ⊗Q R∼=M2(R). The topological space X0 has two connected components, say
X0 =X+

0 ∪X
−
0 , and the injection X −→X0 ×X0 identifies

X ∼= (X+
0 ×X

+
0 ) ∪ (X−0 ×X

−
0 ). (24)

The groups G0(R) and G(R) act on X0 and X, respectively, through conjugation. In particular,
the complex manifold X ×G(Af ) admits a left action by G(Q) (acting on both factors) and a
right action (on the second factor) by the maximal compact open subgroup Umax ⊂G(Af ).

Fix a normal compact open subgroup U ⊂ Umax small enough that the algebraic stack of
D−1-polarized QM abelian fourfolds over Q with level U structure is a scheme, M , so that there
is a Q-uniformization of M,

M/Q ∼= [H\M ]
where H = Umax/U . By Shimura’s theory [Mil79, Mil05] there is an isomorphism of complex
manifolds

M(C)∼=G(Q)\X ×G(Af )/U. (25)
To (briefly) make the isomorphism (25) explicit, fix a point (x, g) ∈X ×G(Af ) and use strong
approximation to factor g = γu with γ ∈G(Q) and u ∈ Umax. The point γ−1x ∈X determines
(in fact, is) a map of real algebraic groups S−→G/R. Setting Λ =OB, the group G(R) acts by
right multiplication on Λ⊗Z R, and the induced Hodge structure

S−→AutR(Λ⊗Z R)

determines a complex structure on the real vector space Λ⊗Z R. Recall the alternating pairing
ψ : Λ× Λ−→ Z of § 3.1. It follows from [Mil79, Lemma 1.1] that either ψ or −ψ, depending on the
connected component of X containing γ−1x, determines a D−1-polarization λ of the complex
torus A= (Λ⊗Z R)/Λ with its left OB-action, and, in the notation of § 3.1, the isomorphism of
left ÔB-modules

ν : Λ̂∅ ·u−→ Λ̂∅ ∼= Ta∅(A)
is a U level structure on A = (A, i). The isomorphism (25) then identifies the double coset of
(x, g) with the isomorphism class of the triple (A, λ, ν). Similarly, one can show that

M0(C)∼=G0(Q)\X0 ×G0(Af )Umax/U.

Let V0 and V denote the trace zero elements of B0 and B, respectively, with G0(Q) and
G(Q) acting on V0 and V by conjugation . Then V is endowed with the G(Q)-invariant F -valued
quadratic formQ(τ) =−τ2, and V0 is endowed with theG0(Q)-invariant Q-valued quadratic form
Q0 defined by the same formula. Each nonzero τ ∈ V0 ⊗Q R, viewed as an element of G0(R), acts
by conjugation on X0 with fixed point set

X0(τ) = {x ∈X0 | τ · x= x}

consisting of two points if Q0(τ) is positive and no points otherwise. Assuming that Q0(τ)
is positive, let x+

0 (τ) ∈X+
0 and x−0 (τ) ∈X−0 be the two points in X0(τ). Identify V ⊗Q R∼=
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(V0 ⊗Q R)2 using (23). If τ = (τ1, τ2) ∈ V ⊗Q R with Q(τ) totally positive, then we define points
x+(τ), x−(τ) ∈X by

x±(τ) = (x±0 (τ1), x±0 (τ2))

using the isomorphism of (24), and set X(τ) = {x+(τ), x−(τ)}. If Q(τ) is not totally positive
then set X(τ) = ∅.

Given a positive parameter u ∈ R, Kudla has defined (see [KRY06, Proposition 7.3.1
and (7.3.42)]; these functions were first constructed in [Kud97]) a symmetric G0(R)-invariant
Green function g0

u(z1, z2) for the diagonal X0 ⊂X0 ×X0, identically zero off of the subset
X ⊂X0 ×X0. For each τ0 ∈ V0 ⊗Q R with Q0(τ0)> 0, define a function ξ0(τ0) on X0 by

ξ0(τ0)(z) =
∑

x∈X0(τ0)

g0
Q0(τ0)(x, z).

The function ξ0(τ0) is a Green function for the 0-cycle X0(τ0) on X0. Now suppose τ ∈ V ⊗Q R
with Q(τ) totally positive and write (τ1, τ2) for the corresponding element of (V0 ⊗Q R)2. Define
functions ξ1(τ), ξ2(τ) in the variables (z1, z2) ∈X0 ×X0 by

ξ1(τ)(z1, z2) = ξ0(τ1)(z1), ξ2(τ)(z1, z2) = ξ0(τ2)(z2).

These functions are Green functions for the divisors X0(τ1)×X0 and X0 ×X0(τ2) (respectively)
on X0 ×X0. It follows that the star product [Sou92, II.3] of Green functions on X0 ×X0,

ξ(τ) = ξ1(τ) ∗ ξ2(τ),

is a Green current for the 0-cycle X0(τ1)×X0(τ2)⊂X0 ×X0, and restricting to a current on X
yields a Green current for the 0-cycle X(τ).

Now fix a totally positive v ∈ F ⊗Q R and write v1/2 for the totally positive square root of v.
Define an OF -lattice in V by L= V ∩ OB and a (1, 1)-current on X,

Ξv(α) =
∑
τ∈L

Q(τ)=α

ξ(v1/2τ).

For simplicity, we abbreviate Ξv = Ξv(α). It follows from the G0(R)-invariance of the Green
function g0

u(z1, z2) that

γ∗ξ(τ) = ξ(γ · τ)

for any γ ∈G(R) and τ ∈ V . From this and the stability of L under Γmax one sees that Ξv
is Γmax-invariant. Viewing Ξv as a current on the subset X × {1} ⊂X ×G(Af ) and using the
factorization G(Af ) =G(Q)Umax of strong approximation, we see that Ξv extends uniquely to a
left G(Q)-invariant and right Umax-invariant current on X ×G(Af ), which then descends to an
H-invariant current on M(C). If for each τ ∈ V we define

Ω(τ) = {g ∈G(Af ) | τ ∈ gÔBg−1}

then there is a bijection of zero-dimensional complex manifolds

Y (C)∼=G(Q)\
⊔
τ∈V

Q(τ)=α

(X(τ)× Ω(τ))/U (26)
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for which the map φ : Y −→M is induced by the evident map

X(τ)× Ω(τ)−→X ×G(Af ).

Here the action of G(Q) permutes the summands in the disjoint union through the conjugation
action of G(Q) on V . Indeed, suppose we are given a triple (τ, x, g) with τ ∈ V , Q(τ) = α, and
(x, g) ∈X(τ)× Ω(τ). We again factor g = γu with γ ∈G(Q) and u ∈ Umax, so that (τ, x, g) and
(γ−1τ, γ−1x, u) have the same image in the right-hand side of (26). To (τ, x, g) we associate the
quadruple (A, λ, ν, tα) in which (A, λ, ν) is the D−1-polarized QM abelian fourfold over C with
U level structure attached to (x, g) as above, and tα is the trace zero endomorphism of A,

tα : (Λ⊗Z R)/Λ−→ (Λ⊗Z R)/Λ,

defined by tα(b) = b · (γ−1τ). Note that the · is multiplication in B.

If we define an infinite formal sum on X,

D =
∑
τ∈L

Q(τ)=α

∑
x∈X(τ)

x,

then D, viewed as a formal sum on X × {1}, extends uniquely to a left G(Q)-invariant and right
Umax-invariant formal sum on X ×G(Af ) whose associated 0-cycle on M(C) is (22). Comparing
D with the definition of Ξv and using the fact that ξ(v1/2τ) is a Green current for the 0-cycle
X(τ) shows that Ξv is a Green current for CQ ∈ Z2(M/Q).

The quadratic form Q0 determines a bilinear form [s1, s2] =−Tr(s1s2) on V0, where Tr is
the reduced trace on B0. For any T ∈ Σ(α), let V0(T )⊂ V0 × V0 be the set of pairs (s1, s2) for
which (20) holds. Given any (s1, s2) ∈ V0(T ), set

τ = s1$1 + s2$2 ∈ V

and let τ1, τ2 ∈ V0 ⊗Q R be defined as above. Define L0 = V0 ∩ OB0 and L0(T ) = (L0 × L0) ∩
V0(T ). Let v = (v1, v2) under the isomorphism (3) and let T ∈ Σ(α) be nonsingular. Then {s1, s2}
is a linearly independent set, as is {τ1, τ2} which implies that the 0-cycles X0(τ1) and X0(τ2)
on X0 have no common components. Hence the star product ξ0(v1/2

1 τ1) ∗ ξ0(v1/2
2 τ2) is a Green

current for the empty cycle on X0.

Proposition 3.2.1. Assume that F (
√
−α)/Q is not biquadratic, so that, by Lemma 3.1.5, Σ(α)

contains no singular matrices and Y0/Q = ∅. Then

deg∞(i∗Ξv) =
1
2

∑
T∈Σ(α)

(s1,s2)∈Γmax
0 \L0(T )

1
|stab(s1, s2)|

∫
X0

ξ0(v1/2
1 τ1) ∗ ξ0(v1/2

2 τ2)

where stab(s1, s2) is the stabilizer of (s1, s2) in Γmax
0 .
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Proof. Formally one has

deg∞(i∗Ξv) =
1

2 · [Γmax
0 : Γ0]

∫
Γ0\X0

i∗Ξv

=
1

2 · [Γmax
0 : Γ0]

∑
τ∈Γ0\L
Q(τ)=α

∫
X0

i∗(ξ1(v1/2τ) ∗ ξ2(v1/2τ))

=
1

2 · [Γmax
0 : Γ0]

∑
τ∈Γ0\L
Q(τ)=α

∫
X0

(i∗ξ1(v1/2τ)) ∗ (i∗ξ2(v1/2τ))

=
1

2 · [Γmax
0 : Γ0]

∑
τ∈Γ0\L
Q(τ)=α

∫
X0

ξ0(v1/2
1 τ1) ∗ ξ0(v1/2

2 τ2) (27)

where Γ0 = Γ ∩ Γmax
0 for any sufficiently small subgroup Γ⊂ Γmax of finite index. These

calculations require some caution, as the definition of pullback of currents is slightly subtle. Recall
from § 2.3 that to define i∗Ξv we first replace the Green current Ξv on Γ\X by an equivalent
Green form of logarithmic type along (the pullback to Γ\X of) the 0-cycle Y(α)(C). Such a form
exists by [Sou92, II.3.3], but the argument given there makes use of the compactness of Γ0\X0.
As we cannot apply this argument to currents on X, we in fact do not even have a definition of
the current i∗

(
ξ1(v1/2

1 τ1) ∗ ξ2(v1/2
2 τ2)

)
on X0. We avoid this issue by making use of the methods

of [GS91, § 2.1.5]. For each ε > 0 one can construct from Kudla’s Green function g0
u a smooth

Γ0-invariant (1, 1)-form ωε on X which is supported on the hyperbolic tube of radius ε around
X0, satisfies limε→0[ωε] = δX0 as currents on X, and such that for each P ∈X0 the restriction of
ωε to X0 × {P} (as well as to {P} ×X0) converges to the current δP on X0. The integral in the
second line of (27) is then interpreted as the limit as ε→ 0 of the current ξ1(v1/2

1 τ1) ∗ ξ2(v1/2
2 τ2)

evaluated at the smooth form ωε. If we now define a smooth (1, 1)-form

Ωε =
∑

γ∈Γ0\Γ

γ∗ωε

on Γ\X then limε→0[Ωε] = δΓ0\X0
as currents on Γ\X, and the integral in the first line of (27) is

equal to the limit as ε→ 0 of the value of the current Ξv on the form Ωε. From this the second
equality of (27) is clear. It is now an easy exercise in the definition of the star product to verify
that if we are given Green functions of logarithmic type a0 and b0 for disjoint divisors on X0

and define a= π∗1a0 and b= π∗2b0 (in which π1, π2 :X −→X0 are the two projections), then∫
X
i∗(a ∗ b) =

∫
X

(i∗a) ∗ (i∗b) =
∫
X0

a0 ∗ b0

(compare with [GS91, p. 159]). Taking

a0 = ξ0(v1/2
1 τ1), b0 = ξ0(v1/2

2 τ2)

yields the final two equalities of (27).

We have now established

deg∞(i∗Ξv) =
1

2 · [Γmax
0 : Γ0]

∑
τ∈Γ0\L
Q(τ)=α

∫
X0

ξ0(v1/2
1 τ1) ∗ ξ0(v1/2

2 τ2).
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The Γ0-invariant function

L0 × L0 −→ L0 ⊗Z OF ∼= L

defined by (s1, s2) 7→ s1$1 + s2$2 restricts to a Γ0-invariant bijection⋃
T∈Σ(α)

L0(T )−→ {τ ∈ L |Q(τ) = α},

and the proposition follows easily. 2

3.3 Cycle classes at primes of good reduction
Let p be a prime at which B0 is unramified. Fix a Zp-uniformization M/Zp

∼= [H\M ] of M and
define Zp-schemes Y , M0, and Y0 by (14). Let φ : Y −→M be the projection.

Proposition 3.3.1. The scheme Y is at most one-dimensional. In particular,

KY
0 (M) = F 2KY

0 (M).

Proof. The horizontal components of Y are all Zariski closures of points of the (zero-dimensional)
generic fiber Y/Qp , and so are of dimension one. We must therefore show that Y

/Falgp
has

dimension at most one. One can easily show that the Serre–Tate canonical lift gives an injection
from the set of ordinary points of Y (Falg

p ) to the finite set Y (W (Falg
p )), and so it suffices to

show that the locus of nonordinary points of Y
/Falgp

is of dimension at most one. As the map
Y −→M is finite, we are now reduced to proving that the nonordinary locus of M

/Falgp
is of

dimension one. We give only a sketch of the proof; the idea is to reduce the question to the
setting of the Hilbert–Blumenthal surface where it follows from calculations of Goren and others
[AG03, AG04, AG05, GO00]. Briefly, an abelian variety A over Falg

p is ordinary if and only if the
Verschiebung Ver : Lie(A(p))−→ Lie(A) is an isomorphism of Falg

p -modules. Thus the nonordinary
locus of M

/Falgp
is defined locally by a single equation, the determinant of the Hasse–Witt matrix

encoding the action of Verschiebung on Lie algebras.
Fix a nonordinary point x ∈M(Falg

p ) and denote by (A, λ) the D−1-polarized QM abelian
fourfold determined by x. Let R be the completion of the local ring of M

/Falgp
at x. By

the Serre–Tate theory the functor of deformations of the QM-abelian surface (A, λ) to local
Artinian Falg

p -algebras with residue field Falg
p is isomorphic to the functor of deformations of the

associated polarized p-Barsotti–Tate group (Ap, λp) of height eight and dimension four with its
action of OB ⊗OF OF,p ∼=M2(OF,p), and this functor is pro-represented by R. Here we have set
OF,p =OF ⊗Z Zp. Using the action of the idempotents in M2(OF,p) to decompose Ap one can
identify this deformation functor with the deformation functor of a quasi-polarized p-Barsotti–
Tate group (Bp, ηp) of height four and dimension two equipped with an action of OF,p. This is
exactly the type of deformation problem considered by Goren et al. in their study of local rings
of Hilbert–Blumenthal surfaces.

When p is inert in F then contemplation of the possible slope sequences shows that Bp

is supersingular. One can apply Zink’s theory of displays [Zin02] of connected p-Barsotti–Tate
groups exactly as in [Gor02, ch. 6] or [GO00] to show that R is a power series ring in two variables
over Falg

p , while the determinant r ∈R of the Hasse–Witt matrix of the universal deformation is
nonzero. The quotient ring R/(r) is therefore of dimension one as desired. When p is ramified in
F then again Bp is supersingular. In this case the Falg

p -algebra R may not be smooth, but one
can deduce from calculations of [AG03] that the quotient of R by the determinant of the Hasse–

447

https://doi.org/10.1112/S0010437X09003935 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003935


B. Howard

Witt matrix has dimension one. When p splits in F then the idempotents in OF,p ∼= Zp × Zp
further split (Bp, ηp) into a product of two polarized p-Barsotti–Tate groups H1 ×H2 each of
height two and dimension one. The formal deformation ring R splits as the completed tensor
product R∼=R1⊗̂Falgp R2 of the formal deformation rings of H1 and H2, and the determinant of the
Hasse–Witt matrix of the universal deformation is a pure tensor r1 ⊗ r2. If Hi

∼= (Qp/Zp)× µp∞
is ordinary then Ri ∼= Falg

p [[xi]] by the theory of Serre–Tate coordinates, and ri ∈R×i . If Hi is the
unique connected p-Barsotti–Tate group of dimension one and height two over Falg

p then again
Zink’s theory of displays shows that Ri ∼= Falg

p [[xi]] and ri is a uniformizing parameter of Ri.
From this we deduce that the quotient of R by the determinant of the Hasse–Witt matrix has
dimension one. 2

Suppose F is a coherent OY -module. We denote by cl(F) ∈ CH2
Y (M) the class determined

by Rφ∗[F ] ∈ F 2KY
0 (M) under the Gillet–Soulé isomorphism (9). Note that the finiteness of

φ : Y −→M implies Rkφ∗F = 0 for all k > 0, and so we have simply Rφ∗[F ] = [φ∗F ]. As cl(OY )
is H-invariant, Lemma 2.1.2 shows that cl(OY ) arises as the flat pullback of a class

Cp ∈ CH2
Y/Zp (M/Zp). (28)

Lemma 3.3.2. The homomorphism (12) takes Cp to the cycle CQ ×Q Qp of (22).

Proof. The construction F 7→ cl(F) from coherent sheaves to cycle classes is compatible with flat
base change, so we may compute the image of Cp in

CH2
Y/Qp

(M/Qp)∼= Z2
Y/Qp

(M/Qp)

by repeating the construction of Cp with Zp replaced by Qp. As Y/Qp is zero-dimensional and
reduced, it is a disjoint union of field spectra. One can easily check that the composition

K0(Y/Qp)
Rφ∗−−→ F 2K

Y/Qp
0 (M/Qp)−→ CH2

Y/Qp
(M/Qp)∼= Z2

Y/Qp
(M/Qp)

takes

[F ] 7→
∑

y∈Y/Qp

lengthk(y)(Fy) · φ(y)

and the claim follows. 2

Definition 3.3.3. A coherent OY -module F is skyscraper-free at a closed point y ∈ Y if

HomOY,y(k(y), Fy) = 0.

That is to say, y is neither an embedded point of F nor an irreducible component of sppt(F).

Lemma 3.3.4. A coherent OY -module F is skyscraper-free at y if and only if the stalk Fy is
either trivial or a one-dimensional Cohen–Macaulay OY,y-module.

Proof. Fix a closed point y ∈ Y in the support of F . By Proposition 3.3.1 the OY,y-module
Fy has dimension at most one, and hence is Cohen–Macaulay of dimension one if and only if
depth(Fy)≥ 1. The condition depth(Fy)≥ 1 is equivalent to HomOY,y(k(y), Fy) = 0. 2

By mild abuse of notation we denote again by degp the composition

CH2
Y0

(M0)−→ CH2
ver(M0)

degp−−−→Q. (29)
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Lemma 3.3.5. Suppose that F is a coherent OY -module which is skyscraper-free at each closed
point y ∈ Y0, and assume that the support of the coherent OY0-module j∗F has dimension zero.
Then, recalling the pullback i∗ of (10),

degp(i
∗cl(F)) =

∑
y∈Y0(Falgp )

lengthOY0,y
(j∗Fy).

Proof. Suppose we are given coherent OM -modules G1, G2 such that G1 ⊗OM G2 is supported in
dimension zero. Define the Serre intersection multiplicity [Ser00, ch. V] at a closed point x ∈M
by

ISerre
OM,x(G1, G2) =

∑
`≥0

(−1)`lengthOM,xTorOM,x` (G1,x, G2,x).

Lemma 3.3.4 implies that Fy is trivial or a one-dimensional Cohen–Macaulay OY,y-module for
every closed point y ∈ Y0, and it follows that at every closed point x ∈M0 the stalk (φ∗F)x is
either trivial or a one-dimensional Cohen–Macaulay OM,x-module. For a closed point x ∈M0 the
local ring OM0,x is regular, hence Cohen–Macaulay, and so (abbreviating OM0 = i∗OM0) OM0,x

is a two-dimensional Cohen–Macaulay OM,x-module. Applying the corollary of [Ser00, p. 111]
we find that

TorOM,x` ((φ∗F)x,OM0,x) = 0

for all ` > 0, and so

ISerre
OM,x(φ∗F ,OM0) = lengthOM,x((φ∗F)x ⊗OM,x OM0,x).

By examination of the construction of (9), the composition

F 2KY0
0 (M0)−→ CH2

Y0
(M0)

degp−−−→Q

is given by

[G] 7→
∑

x∈M0(Falgp )

lengthOM0,x
(Gx).

Putting this all together gives

degp(i
∗cl(F)) =

∑
x∈M0(Falgp )

ISerre
OM,x(φ∗F ,OM0)

=
∑

y∈Y0(Falgp )

lengthOY0,y
(Fy ⊗OM,φ(y)

OM0,φ(y))

and the claim follows. 2

We now examine the local rings of Y at closed points of Y0. Let W =W (Falg
p ) denote the

ring of Witt vectors of Falg
p , and denote by Art the category of local Artinian W -algebras with

residue field Falg
p . Let G∗0 be a Barsotti–Tate group of dimension one and height two over Falg

p .
Thus G∗0 is isomorphic to the p-divisible group of an elliptic curve. Abbreviate O =OF ⊗Z Zp.
The Zp-basis {$1, $2} of O determines an injection O −→M2(Zp), and we define

G∗ = G∗0 ×G∗0

with the action of O induced by the map O −→M2(Zp). Thus for any Falg
p -algebra R we have

G∗(R)∼= G∗0(R)⊗Zp O. Let D be the functor on Art which classifies deformations of G∗. More
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precisely, for an object R of Art let D(R) be the set of isomorphism classes of pairs (G, ρ) in
which G is a Barsotti–Tate group over R with an action of O and

ρ : G∗ −→G
/Falgp

is an isomorphism of Barsotti–Tate groups over Falg
p respecting O-actions. Let τ ∈ End(G∗) be

an endomorphism of G∗ which commutes with the action of O. For each object R of Art let
Dτ (R)⊂D(R) to be the subset consisting of those deformations for which the endomorphism
τ lifts: that is to say, those deformations (G, ρ) ∈D(R) for which there exists a (necessarily
unique) τ̃ ∈ End(G) which commutes with the action of O and satisfies

τ̃ ◦ ρ= ρ ◦ τ

as elements of Hom(G∗,G
/Falgp

).

Proposition 3.3.6. The functor D is pro-represented by a W -algebra Runiv isomorphic to a
power series ring in two variables over W , and Dτ is pro-represented by Runiv/Jτ for some ideal
Jτ ⊂Runiv.

Proof. The first claim follows from work of Rapoport [Rap78] and Deligne and Pappas [DP94],
who have determined the non-smooth locus of Hilbert–Blumenthal schemes. Briefly, by the
Serre–Tate theorem the functor D is represented by the completion of the local ring of a
Hilbert–Blumenthal scheme of relative dimension two over W . The smoothness of the local
ring at this point is a consequence of the fact that

Lie(G∗)∼= Lie(G∗0)⊗Zp O

is free of rank one over Falg
p ⊗Zp O, and so satisfies the Rapoport condition of [Vol05]. See

especially [Vol05, Remark 3.8]. The representability of Dτ follows from [RZ96, Proposition 2.9]. 2

Proposition 3.3.7. Suppose that G∗0 is isomorphic to the Barsotti–Tate group of an ordinary
elliptic curve. Then the ideal Jτ ⊂Runiv can be generated by two elements.

Proof. This follows from the theory of Serre–Tate coordinates as in [Gor02, Theorem 4.2]
or [Hid04, Theorem 8.9]. If we define rank one O-modules

P = lim←−G∗(Falg
p )[pk], Q= lim←−Hom(G∗, µpk)

then there is a canonical isomorphism of functors on Art,

D∼= HomZp(P ⊗O Q, µp∞).

The endomorphism τ of G induces an O-linear endomorphism x 7→ tP (x) of P and an O-linear
endomorphism x 7→ tQ(x) of Q, and there is an isomorphism

Dτ
∼= HomZp((P ⊗O Q)/I, µp∞)

where I is the Zp-submodule of P ⊗O Q,

I = {tP (x)⊗ y − x⊗ tQ(y) | x ∈ P, y ∈Q}.

After choosing an appropriate Zp-basis of P ⊗O Q we find that Dτ
∼= µps × µpt for some

0≤ s, t≤∞. The claim follows. 2

Proposition 3.3.8. Suppose that G∗0 is isomorphic to the Barsotti–Tate group of a
supersingular elliptic curve. Then the ideal Jτ ⊂Runiv can be generated by two elements.
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Proof. We modify the argument of [Wew07, Proposition 5.1], and use Zink’s theory of
displays [Zin02] in order to avoid the messy language of formal group laws (and formal group
cohomology) in dimension two. Denote by Guniv the universal deformation of G∗ over Runiv, and
let m denote the maximal ideal of Runiv. Thus the endomorphism τ of G∗ lifts to an O-linear
endomorphism of Guniv over Runiv/Jτ (which we again denote by τ), but not over

R=Runiv/mJτ .

Let a = Jτ/mJτ be the kernel of the surjection

R−→Runiv/Jτ

so that m · a = 0. To the Barsotti–Tate group Guniv over Runiv Zink’s theory attaches a universal
display (P, Q, F, V −1)univ over Runiv, and we denote by (P, Q, F, V −1) the reduction of the
universal display to R. For our purposes, we need only know that P is a free module of rank
four over the Witt vectors W (R) with an action of O, that Q⊂ P is an O ⊗Zp W (R)-submodule
with the property that P/Q is annihilated by the kernel IR of W (R)−→R, and that

Q/IRP and P/Q

are each free of rank two over R. We claim that, in addition, Q/IRP is generated as an
O ⊗Zp R-module by a single element. Indeed, let (P ∗0 , Q

∗
0, F

∗
0 , V

−1∗
0 ) and (P ∗, Q∗, F ∗, V −1∗) be

the displays of G∗0 and G∗, respectively. Then, letting IFalgp
denote the kernel of W −→ Falg

p , we
have

(Q/IRP )⊗R Falg
p
∼=Q∗/IFalgp

P ∗ ∼= (Q∗0/IFalgp P ∗0 )⊗Zp O.

As Q∗0/IFalgp P ∗0 is free of rank one over Falg
p , we see that (Q/IRP )⊗R Falg

p is free of rank one over

O ⊗Zp Falg
p . By Nakayama’s lemma it follows that Q/IRP is generated by a single element

over O ⊗Zp R.
By Zink’s theory [Zin02, Definition 72] the obstruction to lifting the endomorphism τ from

Runiv/Jτ to R is given by a nontrivial homomorphism of O ⊗Zp R-modules,

Obst :Q/IRP −→ a⊗R P/Q.

Let γ generate Q/IRP as an O ⊗Zp R-module. If we pick an R-module basis {e1, e2} ⊂ P/Q then

Obst(γ) = a1 ⊗ e1 + a2 ⊗ e2

for some a1, a2 ∈ a, and the composition

Q/IRP
Obst−−−→ a⊗R P/Q−→ (a/(a1, a2))⊗R P/Q

is the trivial map. This implies [Zin02, (119)] that τ can be lifted from an endomorphism
over Runiv/Jτ to an endomorphism over R/(a1, a2), and therefore (a1, a2) = a. Thus Jr/mJr
is generated as an Runiv-module by two elements, and so Nakayama’s lemma implies that the
ideal Jr is also generated by two elements. 2

Corollary 3.3.9. Let y be a closed point of Y0. The structure sheaf OY is skyscraper-free at y.

Proof. As above let W denote the ring of Witt vectors of Falg
p and choose a point z ∈ Y/W lying

above y. By Lemma 3.3.4 and standard results in commutative algebra (e.g. [Mat89, Theorem
17.5 and the corollary to Theorem 23.3]) it suffices to prove that the completed local ring O∧Y/W ,z

is Cohen–Macaulay of dimension one. The geometric point Spec(k(z))−→ Y/W corresponds to a
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triple (A, λ, tα) with A = A0 ⊗OF for some QM abelian surface A0 over k(z) = Falg
p . Using the

splittingOB0 ⊗Z Zp ∼=M2(Zp) the Barsotti–Tate group of A0 splits as G∗0 ×G∗0, and the Barsotti–
Tate group of A splits as G∗ ×G∗. As the Barsotti–Tate group of any deformation of A admits a
similar splitting into two isomorphic deformations of G∗, it follows from the Serre–Tate theorem
that the formal deformation space of the pair (A, λ) is isomorphic to Spf(Runiv), while the formal
deformation space of the triple (A, λ, tα) is isomorphic to Spf(Runiv

τ ) for a suitable τ ∈ EndO(G∗)
(the polarization λ lifts uniquely to any deformation of A by the Corollary to [Vol05, Theorem 3]
or by [BBGGLMS79, p. 51]). In other words O∧Y/W ,z

∼=Runiv
τ . Thus Propositions 3.3.6, 3.3.7,

and 3.3.8 imply that

O∧Y/W ,z
∼=W [[s1, s2]]/(f1, f2) (30)

for some power series f1, f2 ∈W [[s1, s2]]. We know from Proposition 3.3.1 that the ring on
the left-hand side of (30) has dimension at most one, and it follows from (30) that O∧Y/W ,z is
Cohen–Macaulay of dimension exactly one (by, for example, [Liu02, Exercise 6.3.4 and Corollary
8.2.18]). 2

Proposition 3.3.10. If Y0 is zero-dimensional then the class Cp satisfies

degp(i
∗Cp) =

∑
y∈Y0(Falgp )

lengthOY0,y
(OY0,y).

Proof. Set F =OY in Lemma 3.3.5 and combine with Corollary 3.3.9. 2

4. Construction of cycles at primes of bad reduction

Throughout § 4 we fix a prime p at which B0 is ramified, and a totally positive α ∈ OF . By
Hypothesis A the prime p splits in OF , say as pOF = p1p2. Our goal is to construct and examine
a cycle class

Cp ∈ CH2
Y(α)/Zp

(M/Zp).

The definition used in (28) breaks down for p | disc(B0) as the algebraic stack Y(α)/Zp may have
vertical components of dimension two. Our modified construction will make use of calculations
of Kudla and Rapoport [KR00] (and of Kudla, Rapoport and Yang [KRY04, KRY06] for the
case p= 2).

The following notation will be used throughout § 4. Abbreviate Y = Y(α) and Y0 = Y0(α).
Let W =W (Falg

p ) be the ring of Witt vectors of Falg
p . Denote by NilpZp (respectively NilpW ) the

category of Zp-schemes (respectively W -schemes) on which p is locally nilpotent. Let Ap
f denote

the prime-to-p finite adeles of Q. Let U ⊂ Umax be a normal compact open subgroup which
factors as U = UpU

p with Up = Umax
p and Up ⊂G(Ap

f ). Let M denote the algebraic stack over Zp
whose objects are triples (A, λ, ν) in which (A, λ) is a D−1-polarized QM abelian fourfold over
a Zp-scheme S and ν is a level U structure on (A, λ). Define Y , M0, and Y0, by (14) and assume
that Up is chosen small enough that the algebraic stack M (and hence also Y , M0, and Y0) is a
scheme. Set H = Umax/U so that M/Zp

∼= [H\M ]. Let M̂ and Ŷ denote the formal completions
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of M and Y along their special fibers. As in § 3.1 we have the cartesian diagram

Y0
φ0 //

j

��

M0

i

��
Y

φ
// M

and similarly with M, M0, Y, and Y0 replaced by M , M0, Y , and Y0.

4.1 The Cerednik–Drinfeld uniformization
We first describe some simple generalizations of the Cerednik–Drinfeld uniformization of M0. As
in § 3.1 let

Λ̂p0 =
∏
`6=p

(OB0 ⊗Z Z`)

be the restricted topological product, and define Λ̂p in the same way, replacing B0 by B. Fix
a principally polarized QM abelian surface (A∗0, λ

∗
0) over Falg

p , let A∗0 be the abelian surface
underlying A∗0), and choose an isomorphism

ν∗0 : Λ̂p0 −→ Tap(A∗0)

of left ÔpB0
-modules, where Tap(A∗0) is the prime-to-p adelic Tate module of A∗0, in such a way

that the Weil pairing

Tap(A0)× Tap(A0)−→ Ẑp(1)

induced by λ∗0 agrees with the pairing (19) up to a (Ẑp)×-multiple. Define a D−1-polarized QM
abelian fourfold

(A∗, λ∗) = (A∗0 ⊗OF , λ∗0 ⊗OF ).

Letting A∗ denote the abelian fourfold underlying A∗, ν∗0 induces an isomorphism

ν∗ : Λ̂p −→ Tap(A∗)

of left ÔpB-modules which is a U -level structure on (A∗, λ∗). Define totally definite quaternion
algebras over Q and F , respectively,

B0 = End0(A∗0), B = End0(A∗).

Let G0 ⊂G be the algebraic groups over Q defined in the same way as G0 ⊂G, but with B0 and
B replaced by B0 and B.

Let G∗0 denote the p-divisible group of A∗0 equipped with its action of OB0 ⊗Z Zp. For any
object S of NilpW with special fiber S

/Falgp
, denote by hm(S) the set of isomorphism classes of

pairs (G0, ρ0) in which G0 is a special formal OB0 ⊗Z Zp-module of dimension two and height
four over S in the sense of [BC92, § II.2], and

ρ0 ∈Hom(G∗0 ×Falgp S
/Falgp

,G0 ×S S/Falgp )⊗Zp Qp

is a height 2m quasi-isogeny of p-divisible groups over S
/Falgp

respecting the action of OB0 ⊗Z Zp.
By a theorem of Drinfeld [BC92, Théorème II.8.2] there is a formal W -scheme hm whose functor
of points is S 7→ hm(S), and we set

X0 =
⊔
m∈Z

hm.
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The group G0(Qp) acts on X0 by

γ · (G0, ρ0) = (G0, ρ0 ◦ γ−1),

taking the component hm to the component hm−ordpNm(γ). The isomorphism (16) provides an
isomorphism B0 ⊗Q F ∼=B, and so, as p splits in F , an isomorphism

G(Qp)∼= {(x, y) ∈G0(Qp)×G0(Qp) |Nm(x) = Nm(y)}.

This determines an action of G(Qp) on

X =
⊔
m∈Z

(hm ×W hm).

There is a unique isomorphism

ι0 :B0 ⊗Q Ap
f −→B0 ⊗Q Ap

f

of Ap
f -modules such that for every prime ` 6= p and every g ∈B0 ⊗Q Q` the diagram

B0 ⊗Q Q`
ν∗0 //

·ι0(g)

��

Ta`(A∗0)⊗Z` Q`

g·
��

B0 ⊗Q Q`
ν∗0 // Ta`(A∗0)⊗Z` Q`

commutes, where the vertical arrow on the left is x 7→ x · ι0(g). The function ι0 satisfies
ι0(gh) = ι0(h)ι0(g). Let

ι :B ⊗Q Ap
f −→B ⊗Q Ap

f

be the F ⊗Q Ap
f -module map obtained by tensoring ι0 with F . There are induced isomorphisms

ι0 :G0(Ap
f )−→Gop

0 (Ap
f ) and ι :G(Ap

f )−→Gop(Ap
f ) where op denotes the opposite group. For any

compact open subgroup C ⊂G(Ap
f ) define

C = ι−1(C)⊂G(Ap
f ).

Proposition 4.1.1. There is an isomorphism of formal W -schemes

M̂/W
∼=G(Q)\X×G(Ap

f )/Up.

Proof. This follows from the general p-adic uniformization results of [Bou97, BZ, RZ96], although
in this simple case the proof is a straightforward imitation of the proof of the Cerednik–Drinfeld
uniformization as in [BC92]. We describe the isomorphism on Falg

p -valued points. First let us show
that there is a single OB-linear isogeny class of QM abelian fourfolds over Falg

p . Let A = (A, i)
be a QM abelian fourfold over Falg

p with p-divisible group G =A[p∞]. As p splits in F there is a
decomposition G∼= G1 ⊕G2 in which OF acts on Gi through the map OF −→OF,pi ∼= Zp, and a
corresponding decomposition of the Lie algebra

Lie(A)∼= Lie(G1)⊕ Lie(G2).

The Kottwitz condition on the action ofOB on Lie(A) implies that each Gi has dimension two and
is a special formal OB0 ⊗Z Zp-module in the sense of [BC92, § II.2]. By [BC92, Proposition II.5.1]
each Gi has height four, and so is isogenous to the square of the p-divisible group of a
supersingular elliptic curve by [BC92, § III.4]. Now let F be a finite field of q = pk elements
chosen large enough that A, all simple isogeny factors of A, and all endomorphisms of A are
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defined over F. Let A′ be a simple isogeny factor of A defined over F and let π ∈ End(A′)
be the q-power Frobenius endomorphism. As the slopes of the p-divisible group of A′ are all 1/2,
the argument of [BC92, Proposition III.2] shows that π2/q is a root of unity in the field Q(π),
and so by enlarging the field F we have π2 = q. By the Honda–Tate theory A′ is a supersingular
elliptic curve. Thus A is isogenous to the fourth power of a supersingular elliptic curve, and so
any two QM abelian fourfolds are isogenous. The argument of [Mil79, Remark 5.3] shows that
this isogeny can be chosen to be OB-linear.

Now suppose we are given a D−1-polarized QM abelian fourfold (A, λ) over Falg
p . The claim

is that an OB-linear quasi-isogeny ρ ∈Hom(A∗,A)⊗OF F can be chosen in such a way that
ρ∨ ◦ λ ◦ ρ= λ∗. Arguing as in [BC92, § III.4] or [Vol05, Proposition 1.3], the polarization module
P of A∗, defined as the OF -module of all φ ∈Hom(A∗, A∗∨) such that

(a) φ is OB-linear,
(b) φ= φ∨,
(c) φ ◦ i(b∗) = i(b)∨ ◦ φ for all b ∈ OB,

is projective of rank one, with the subset of polarizations P+ ⊂ P forming a positive cone (this is
also stated without proof on [BBGGLMS79, p. 54]). Therefore, λ∗ and ρ∨ ◦ λ ◦ ρ differ by the
action of the group of totally positive elements of F×. Write ρ∨ ◦ λ ◦ ρ= λ∗ ◦ i(β) with β ∈ F×
totally positive. Viewing B as an F -algebra we may pick b ∈B of reduced norm β. As B is the
centralizer of B in End(A∗)⊗Z Q, it is stable under the Rosati involution determined by λ∗, and
the Rosati involution induces the main involution on B (the only positive involution of a totally
definite quaternion algebra). It follows that

ρ∨ ◦ λ ◦ ρ= b∨ ◦ λ∗ ◦ b

and so replacing ρ by ρ ◦ b−1 gives ρ∨ ◦ λ ◦ ρ= λ∗.
We now make the isomorphism of the proposition explicit on geometric points. Fix a triple

(A, λ, ν) ∈M(Falg
p ) and (denoting by A the abelian scheme underlying A) let ρ :A∗ −→A be an

OB-linear isogeny chosen so that ρ∨ ◦ λ ◦ ρ is an integer multiple of λ∗. Attached to ρ :A∗ −→A
is an OB ⊗Z Zp-linear isogeny of p-divisible groups ρ : G∗ −→G which, using the splittings

G∗ ∼= G∗0 ×G∗0, G∼= G1 ×G2

induced by OB ⊗Z Zp ∼= (OB0 ⊗Z Zp)2, determines an element

(G, ρ) = ((G1, ρ1), (G2, ρ2)) ∈ X0(Falg
p )× X0(Falg

p ).

As the polarizations λ and λ∗ each have degree prime to p, the equality ρ∨ ◦ λ ◦ ρ=mλ∗ with
m ∈ Z implies that deg(ρ1) = deg(ρ2), and so the pair (G, ρ) lies in X(Falg

p ). There is a unique
(up to right multiplication by U) g ∈G(Ap

f ) for which the diagram

Λ̂p
ν∗ //

·ι(g−1)
��

Tap(A∗)

ρ

��

Λ̂p
ν // Tap(A)

commutes. The isomorphism of the proposition then takes the triple (A, λ, ν) to the double coset
of ((G, ρ), g)).

The inverse function is constructed as follows. Starting from ((G, ρ), g) we may act on the
left by an element of G(Q) to assume that ρ : G∗ −→G is an isogeny (as opposed to merely a quasi-
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isogeny) and that left multiplication by ι(g−1) stabilizes Λ̂p. There is then a unique choice of
QM abelian fourfold A = (A, i) over Falg

p , ÔpB-linear isomorphism ν : Λ̂p −→ Tap(A), isomorphism
A[p∞]∼= G, and extension of ρ to an isogeny ρ : A∗ −→A for which the above diagram commutes.
Define a quasi-polarization λ ∈Hom(A, A∨)⊗Z Q by ρ∨ ◦ λ ◦ ρ= λ∗. The claim is that there is
a positive integer multiple of λ which is a D−1-polarization of A. If such a multiple exists, it
is clearly unique. First pick any positive integer m large enough that mλ is a polarization, and
consider the induced polarization mλ : G−→G∗. Using the splitting G∼= G1 ×G2 and [BC92,
Lemme III.4.2] we see that the kernel of mλ has the form G1[pa1 ]×G2[pa2 ] for some integers a1

and a2, but from the fact that ρ1 and ρ2 have the same degree one deduces that a1 = a2. Thus
after dividing m by a power of p we may assume that mλ is a polarization of degree prime to p.
Recalling that the pairing

ψ : Λ̂p × Λ̂p −→ Ẑp

of § 3.1 agrees with the pairing induced by ν∗, the isogeny λ∗, and the Weil pairing on Tap(A∗),
one can show that the pairing on Λ̂p induced by ν, the polarization mλ, and the Weil pairing
on Tap(A) is exactly m ·Nm(g) · ψ. Choosing a positive integer k prime to p and satisfying
ord`(k) = ord`(Nm(g−1)) for every prime ` 6= p, we deduce that (m/k)D⊂OF and that mλ has
kernel A[(m/k)D]. It follows that kλ is a D−1-polarization of A. 2

Definition 4.1.2. Suppose Σ is a finite set of prime ideals of OF and let

OF,Σ = {x ∈ F | ordq(x)≥ 0 ∀q 6∈ Σ}

be the ring of Σ-integers in OF . If A is a QM abelian fourfold over a Zp-scheme S and
τ ∈ End0(A), we say that τ is integral away from Σ if τ lies in the image of the inclusion

End(A)⊗OF OF,Σ ↪→ End0(A).

Define set-valued functors on NilpW as follows. For S an object of NilpW let M(S)
be the set of isomorphism classes of quadruples (A, λ, ν, tα) in which (A, λ, ν) ∈M(S) and
tα ∈ End0(A) is trace zero, integral away from {p1, p2}, and satisfies Q(tα) = α. For k ∈ {1, 2}
we let M k(S)⊂M(S) be the subset of quadruples (A, λ, ν, tα) for which tα is integral away
from pk. There are evident morphisms

M 1

  AA
AA

AA
AA

A

Ŷ/W

!!DD
DD

DD
DD

==zzzzzzzz

M // M̂/W

M 2

>>}}}}}}}}}

(31)

and the square is cartesian. Fix a connected object S of NilpW and let V0 and V be trace zero
elements of B0 and B, respectively. If for each τ ∈ V we define

Ω(τ) = {g ∈G(Ap
f ) | Λ̂p · ι(g−1τg)⊂ Λ̂p}

then Proposition 4.1.1 generalizes to a uniformization

M∼=G(Q)\
⊔
τ∈V

Q(τ)=α

(X× Ω(τ)/Up) (32)
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where Q is the quadratic form Q(τ) =−τ2. On geometric points the isomorphism is defined as
follows. Given a quadruple

(A, λ, ν, tα) ∈M(Falg
p ),

fix, as in the proof of Proposition 4.1.1, an OB-linear isogeny ρ :A∗ −→A for which ρ∨ ◦ λ ◦ ρ is
an integer multiple of λ∗. Let

((G, ρ), g) ∈ X(Falg
p )×G(Ap

f )

be the pair associated to ρ and (A, λ, ν) as in the proof of Proposition 4.1.1, and define

τ = ρ−1 ◦ tα ◦ ρ ∈ End0(A∗).

Then τ is trace zero and satisfies Q(τ) =−α, and the condition that tα be integral away from
p is equivalent to the condition that g ∈ Ω(τ). The isomorphism (32) now takes the quadruple
(A, λ, ν, tα) to the point on the right-hand side of (32) corresponding the pair ((G, ρ), g) lying
in the component of the disjoint union indexed by τ .

For every τ0 ∈ V0 ⊗Q Qp, viewed as a quasi-endomorphism

τ0 ∈ End(G∗0 ×S S/Falgp )⊗Zp Qp,

let hm(τ0)(S)⊂ hm(S) be the subset consisting of those pairs (G0, ρ0) for which the quasi-
endomorphism

ρ0 ◦ τ0 ◦ ρ−1
0 ∈ End(G0 ×S S/Falgp )⊗Zp Qp

lies in the image of the (injective) reduction map

End(G0)−→ End(G0 ×S S/Falgp ).

The set-valued functor hm(τ0) on NilpW is represented by a closed formal subscheme of hm
(see [KR00, § 2] and [RZ96, ch. 2] for details) and we set

X0(τ0) =
⊔
m∈Z

hm(τ0).

For each τ ∈ V , let (τ1, τ2) be the image of τ under the isomorphism

V ⊗Q Qp
∼= (V0 ⊗Q Qp)× (V0 ⊗Q Qp). (33)

Define closed formal subschemes of X by

X1(τ) =
⊔
m∈Z

(hm(τ1)×W hm), X2(τ) =
⊔
m∈Z

(hm ×W hm(τ2)).

As with the isomorphism of functors (32), the functor M k is represented by the closed formal
subscheme of M,

M k ∼=G(Q)\
⊔
τ∈V

Q(τ)=α

(Xk(τ)× Ω(τ)/Up). (34)
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If we now set X(τ) = X(τ1)×X X(τ2) then there is a diagram

X1(τ)

!!CC
CC

CC
CC

C

X(τ)

##GGGGGGGG

;;wwwwwwww
X // Spf(W )

X2(τ)

=={{{{{{{{{

in which the square is cartesian, and an isomorphism of functors

Ŷ/W ∼=G(Q)\
⊔
τ∈V

Q(τ)=α

(X(τ)× Ω(τ)/Up).

Lemma 4.1.3. For any x ∈M k the local ring OM,x is regular and

dimOM k,x < dimOM,x. (35)

Proof. The regularity of the formal scheme X is clear from its construction (and from the
construction of hm as in [BC92, ch. I] or [KR00, § 1]), and so the regularity of M follows from
the uniformization (32). Using the uniformizations (32) and (34), to prove the inequality (35) it
suffices to prove

dimOXk(τ),x < dimOX,x

for every closed point x ∈ Xk(τ). For such an x, dimOX,x = 3 while the explicit local equations
for the closed formal subscheme hm(τk) ↪→ hm computed by Kudla and Rapoport [KR00, § 3]
(and, for p= 2, by Kudla, Rapoport and Yang in the appendix to [KRY04, § 11]) show that
OXk(τ),x has dimension at most two. 2

4.2 The construction of Cp
Continue with the notation of the previous subsection. We have defined formal schemes M

and M k over W which represent particular functors on NilpW . The definitions of these functors
extend verbatim to functors on NilpZp , and presumably these functors are represented by formal
schemes over Zp. However, we will avoid this issue by keeping track of additional descent datum.
Let Frob :W −→W be the continuous Zp-algebra isomorphism whose reduction modulo pW is
the absolute Frobenius x 7→ xp. Define a formal W -scheme MFrob as the pullback of M by Frob,
so that

MFrob Frob //

��

M

��
Spf(W ) Frob // Spf(W )

is cartesian. If for any r ∈ Z+ we set Wr =W/prW then the Wr-scheme M/Wr
carries a

universal quadruple (A, λ, ν, tα) which we may pull back by Frob to yield a quadruple
(AFrob, λFrob, νFrob, tFrob

α ) over the scheme MFrob
/Wr

. By the universal property of M this quadruple
determines a morphism of Wr-schemes MFrob

/Wr
−→M/Wr

which is easily seen to be an isomorphism.
Letting r→∞ we obtain a canonical isomorphism of formal W -schemes MFrob ∼= M. If F is a
coherent OM-module we say that F is Frob-invariant if this isomorphism identifies the pullback
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Frob∗F with F. Similarly, we may speak of Frob-invariant coherent sheaves on M k or Y/W , and
Grothendieck’s theory of faithfully flat descent [BLR90, ch. 6] implies that there is a canonical
bijection between Frob-invariant coherent OY/W -modules and coherent OY -modules.

Let Fk be a Frob-invariant coherent OM k -module, which we view also as a Frob-invariant
coherent OM-module annihilated by the ideal sheaf of the closed formal subscheme M k.
It follows from (31) that the Frob-invariant coherent OM-module TorOM

` (F1, F2) on M is
annihilated by the ideal sheaf of the formal subscheme Ŷ/W −→M for every `≥ 0. Thus
we may view TorOM

` (F1, F2) as a Frob-invariant coherent O
Ŷ/W

-module and also, by formal
GAGA [FGIKNV05, Theorem 8.4.2] and faithfully flat descent, as a coherent OY -module. Thus
we may define

[F1 ⊗LOM
F2] def=

∑
`≥0

(−1)`[TorOM
` (F1, F2)] ∈K0(Y ). (36)

Our next goal is to prove that the class (36) is supported in dimension one, in the following
sense.

Definition 4.2.1. Let S be a Noetherian scheme and [F ] ∈K0(S). We will say that [F ] is
supported in dimension m if [F ] lies in the kernel of the localization map

K0(S)−→K0(Spec(OS,η))

defined by [F ] 7→ [Fη] for every point η ∈ S with dim {η}>m.

Lemma 4.2.2. Suppose D is a local Noetherian domain and N1 and N2 are finitely generated
torsion D-modules with N2 of finite length. Then∑

`≥0

(−1)`lengthDTorD` (N1, N2) = 0.

Proof. The proof is based on that of [KR00, Lemma 4.1]. Let

· · · −→Dn1 −→Dn0 −→N1 −→ 0

be a finite resolution of N1 by free D-modules of finite rank. As N1 is torsion we must have∑
(−1)ini = 0. As N2 has finite length, the alternating sum of the lengths of the homology

modules of
· · · −→Dn1 ⊗D N2 −→Dn0 ⊗D N2 −→ 0

is equal to ∑
i≥0

(−1)i · lengthD(Dni ⊗D N2) = lengthD(N2) ·
∑
i≥0

(−1)ini = 0. 2

Proposition 4.2.3. For k ∈ {1, 2} let Fk be a Frob-invariant coherent OM k -module. The
class (36) is supported in dimension one.

Proof. Let κ ∈ Y be the generic point of any two-dimensional component, so that OY,κ is Artinian
and κ ∈ Y/Fp . Choose a point η ∈ Y/W above κ and consider the commutative diagram

K0(Y ) //

��

K0(Spec(OY,κ))

��

// Z

id

��
K0(Y/W ) // K0(Spec(OY/W ,η)) // Z
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in which the arrows are as follows: the left and middle vertical arrows are flat pullback of coherent
sheaves, the upper and lower horizontal arrows on the left are localization, the horizontal arrow
on the upper right is the isomorphism [F ] 7→ lengthOY,κ(F), and the horizontal arrow on the lower
right is defined similarly. Thus, to check that a class [F ] ∈K0(Y ) is supported in dimension one,
it suffices to check that [F ] satisfies

lengthOY/W ,η
(F/W,η) = 0

for every two-dimensional component {η} ∈ Y/W . As the residue field of η has characteristic p we
may identify η with a point of the formal scheme Ŷ/W . Lemma 4.1.3 implies that OM,η is regular
of dimension one, and so is a discrete valuation ring; the same lemma implies that OM k,η, and
hence also Fkη, is a finite length OM,η-module. Applying Lemma 4.2.2 we find∑

`≥0

(−1)` lengthOM,η
(TorOM,η

` (F1
η, F

2
η)) = 0.

This implies lengthOY/W ,η
(F1 ⊗LOM

F2) = 0, completing the proof. 2

Lemma 4.2.4. Suppose [F ] ∈K0(Y ) is supported in dimension one. Then the image of [F ] under
the homomorphism

Rφ∗ : K0(Y )−→KY
0 (M)

of (8) lies in F 2KY
0 (M).

Proof. Lemma 2.2.2 implies that [F ] lies in the image of K0(Z)−→K0(Y ) for some closed
subscheme Z −→ Y of dimension one. But then Rφ∗[F ] lies in the image of

KZ
0 (M) = F 2KZ

0 (M)−→ F 2KY
0 (M). 2

We now have a machine for producing elements of CH2
Y (M). If [F ] ∈K0(Y ) is supported in

dimension one we define, using Lemma 4.2.4,

cl(F) ∈ CH2
Y (M)

to be the image ofRφ∗[F ] under the map F 2KY
0 (M)−→ CH2

Y (M) induced by the isomorphism (9).
In particular, if Fk is a Frob-invariant coherent OM k -module for k ∈ {1, 2} then we may form,
using Proposition 4.2.3,

cl(F1 ⊗LOM
F2) ∈ CH2

Y (M). (37)

The issue is which coherent sheaves to choose, and we make the obvious choice Fk =OM k .
Applying the construction (37), define

Cp = cl(OM 1 ⊗LOM
OM 2) ∈ CH2

Y (M).

The group H = Umax/U acts on M and M k by permuting U -level structures, and the cycle
class Cp is H-invariant by construction. By Lemma 2.1.2, Cp arises as the flat pullback of a
cycle class

Cp ∈ CH2
Y/Zp (M/Zp). (38)

Proposition 4.2.5. The homomorphism (12) takes Cp to the cycle CQ ×Q Qp constructed
from (22).

Proof. First suppose that we have a closed point x0 ∈ X0 and a τ0 ∈ V0 ⊗Q Qp. In the language
of [KR00] the point x0 is either ordinary or superspecial. Let R0 denote the completion of the local
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ring OX0,x0 under the topology induced by its maximal ideal, and let N0 denote the completion
of the stalk OX0(τ0),x0

. Let P0 denote the quotient of N0 by its maximal W -torsion submodule.
Kudla and Rapoport [KR00, § 3] and Kudla, Rapoport and Yang (in the case p= 2; see the
appendix to [KRY04, § 11]) determine the structure of N0, and hence also P0, quite explicitly. If
x0 is ordinary then R0

∼=W [[s]] and either P0 = 0 or P0
∼=W [[s]]/(s). If x0 is superspecial then

R0
∼=W [[s, t]]/(st− p) and either P0 = 0 or

P0
∼=W [[s, t]]/(st− p, s+ ap+ ut)

for some a, u ∈W with u a unit.
Now fix a closed point x ∈ X contained in both X1(τ) and X2(τ), let R be the completed local

ring of OX at x, let Nk be the completed stalk of OXk(τ) at x, and let P k be the quotient of Nk

by its maximal W -torsion submodule. The geometric point

Spf(k(x))−→ X−→ X0 ×W X0

determines an ordered pair of points (x1, x2) of X0, and we consider separately the four
possibilities for the pair of points appearing. First suppose both points are ordinary. Then

R∼=W [[s1, s2]], P 1 ∼=R/(s1), P 2 ∼=R/(s2).

Using the projective resolution

0−→R
s1−→R−→ P1 −→ 0

of P1 we find that the R-modules TorR` (P 1, P 2) are equal to the homology modules of the complex

0−→R/(s2) s1−→R/(s2)−→ 0

and therefore

TorR` (P 1, P 2) = 0 ∀` > 0. (39)

Next suppose that x1 is ordinary and x2 is superspecial. Then

R∼=W [[s1, s2, t2]]/(s2t2 − p), P 1 ∼=R/(s1), P 2 ∼=R/(s2 + a2p+ u2t2)

and using the same projective resolution of P1 as in the ordinary/ordinary case we find that
TorR` (P 1, P 2) is given by the homology of

0−→R/(s2 + a2 + u2t2) s1−→R/(s2 + a2p+ u2t2)−→ 0.

Again we see that (39) holds. Obviously the case of x1 superspecial and x2 ordinary is similar.
Finally suppose that x1 and x2 are both superspecial. Then

R∼=W [[s1, t1, s2, t2]]/(s1t1 − p, s2t2 − p), P k ∼=R/(sk + akp+ uktk)

for some ak ∈W×. Using the projective resolution

0−→R
s1+a1p+u1t1−−−−−−−−→R−→ P 1 −→ 0

of P 1 one again verifies (39). We deduce that, in all cases, whenever ` > 0 the R-module
TorR` (N1, N2) is W -torsion. Using the p-adic uniformizations (32) and (34) it follows that

TorOM,x

` (OM 1,x,OM 2,x)

is W -torsion for all ` > 0 and all closed points x ∈M.
Fix ` > 0 and abbreviate

T = TorOM
` (OM 1 ,OM 2)
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viewed either as a coherent OY -module or a coherent O
Ŷ/W

-module. A closed point y ∈ Y is
contained in the special fiber of Y , and so may be viewed as a point of Ŷ . For any point x ∈ Ŷ/W
above y, the previous paragraph shows that Tx is W -torsion, and it follows that Ty is Zp-torsion.
As this holds for all closed points y ∈ Y , it holds for all points y ∈ Y , including those contained
in the generic fiber. But if y ∈ Y lies in the generic fiber then Ty is a Qp-vector space, and hence
Ty = 0. Thus the pullback T/Qp of T by Y/Qp −→ Y has trivial stalks, and so is trivial. In particular,
[T ] lies in the kernel of the flat pullback K0(Y )−→K0(Y/Qp) and so the class

[OY ] = [OM 1 ⊗OM
OM 2 ] = [TorOM

0 (OM 1 ,OM 2)]

has the same image as [OM 1 ⊗LOM
OM 2 ] under K0(Y )−→K0(Y/Qp). The claim now follows

exactly as in the proof of Lemma 3.3.2. 2

4.3 Computing the pullback

We assume throughout § 4.3 that Y0/Qp = ∅. Continuing with the notation of the previous
subsections, our next task is to compute degp(i∗Cp) where i∗ is the pullback of (10) and degp
is the composition (29). Let µ : Y0 −→ Spec(Zp) be the structure map. The assumption that
Y0/Qp = ∅ implies that for any coherent OY0-module F the higher direct image R`µ∗F is a
torsion Zp-module, and so there is a push-forward

Rµ∗ : K0(Y0)−→K{p}0 (Spec(Zp))

defined by

Rµ∗[F ] =
∑
`≥0

(−1)`[R`µ∗F ].

The composition of the push-forward with the isomorphism K{p}0 (Spec(Zp))∼= Z defined by
[G] 7→ lengthZp(G) defines the Euler characteristic χ : K0(Y0)−→ Z,

χ(F) =
∑
`≥0

(−1)`lengthZp(R
`µ∗F).

Let M̂0 and Ŷ0 denote the formal completions of M0 and Y0 along their special fibers,
respectively. Define formal W -schemes (k ∈ {1, 2})

M 0 = M̂0/W ×M̂/W
M, Mk

0 = M̂0/W ×M̂/W
M k,

so that there is an isomorphism

Ŷ0/W
∼= M 0 ×M Ŷ/W

and a diagram

M 1
0

!!BB
BB

BB
BB

B

Ŷ0/W

!!DD
DD

DD
DD

==zzzzzzzz

M 0
// M̂0/W

M 2
0

>>|||||||||
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in which the square is cartesian. For each (s1, s2) ∈ V0 we view τ = s1$1 + s2$2 as an element
of V ∼= V0 ⊗Q F and let (τ1, τ2) ∈ (V0 ⊗Q Qp)2 denote the image of τ under (33). If we define

Ω0(s1, s2) = Ω(τ) ∩G0(Ap
f )

then, as in the discussion surrounding [KR00, (8.17)], there is a Cerednik–Drinfeld style
uniformization

M 0
∼=G0(Q)\

⊔
(s1,s2)∈V0

Q(τ)=α

(
X0 × Ω0(s1, s2)Umax,p

/U
p)
. (40)

One obtains a similar uniformization of M k
0 by replacing X0 with X0(τk), and a uniformization

of Ŷ0/W by replacing X0 with X0(τ1)×X0 X0(τ2).
Define a homomorphism K0(Y )−→K0(Y0) as follows. If F is a coherent OY -module then,

by pulling back to Y/W and passing to the formal completion, we may view F as a σ-invariant
coherent OM-module annihilated by the ideal sheaf of the closed formal subscheme Ŷ/W −→M.
For each `≥ 0 the coherent OM-module TorOM

` (F ,OM 0) is Frob-invariant and is annihilated by
the ideal sheaf of the closed formal subscheme Ŷ0/W −→M, and so by formal GAGA and faithfully
flat descent may be viewed as a coherent OY0-module. Thus we may define

[F ⊗LOM
OM 0 ] def=

∑
`≥0

(−1)` [TorOM
` (F ,OM 0)] ∈K0(Y0),

and one checks that [F ] 7→ [F ⊗LOM
OM 0 ] defines a map K0(Y )−→K0(Y0).

Proposition 4.3.1. If [F ] ∈K0(Y ) is supported in dimension one then the class [F ⊗LOM
OM 0 ]

is supported in dimension zero and

degp(i
∗cl(F)) = χ(F ⊗LOM

OM 0) (41)

where i∗ is the pullback of (10) and degp is the composition (29).

Proof. Using Lemma 2.2.2 we are reduced to the case where F is supported in dimension one in
the usual sheaf-theoretic sense. To show that [F ⊗LOM

OM 0 ] is supported in dimension zero we
must show that it lies in the kernel of

K0(Y0)−→K0(Spec(OY0,κ))∼= Z

for every κ ∈ Y0 satisfying dim {κ}= 1, where the isomorphism is

[G] 7→ lengthOY0,η
(G).

As we assume that Y0/Qp = ∅, such a κ must lie in the special fiber of Y0, and thus we may view
κ as a point of the formal completion Ŷ0. Given a point η ∈ Ŷ0/W lying above κ the hypothesis
that F is supported in dimension one implies that F/W,η is a finite length O

Ŷ/W ,η
-module, and

Lemma 4.2.2 then shows that∑
`≥0

(−1)`lengthOM,η
(TorOM,η

` (F/W,η,OM 0,η)) = 0.

Exactly as in the proof of Proposition 4.2.3, it follows that

lengthOY0,κ
([F ⊗LOM

OM 0 ]) = 0.

This completes the proof of the first claim.
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It remains to prove (41). Let K̃0(Y )⊂K0(Y ) be the subgroup of classes supported
in dimension one, and similarly let K̃0(Y0)⊂K0(Y0) be the subgroup of classes supported in
dimension zero. There is a commutative diagram

K̃0(Y ) //

Rφ∗
��

K̃0(Y0)

Rφ0∗
��

F 2KY
0 (M) i∗ //

��

F 2KY0
0 (M0)

��
CH2

Y (M) i∗ // CH2
Y0

(M0)

in which the top horizontal arrow is [F ] 7→ [F ⊗LOM
OM 0 ] and the middle horizontal arrow is the

pullback of § 2.2, given by

[G] 7→ [G ⊗LOM OM0 ] =
∑
`≥0

(−1)`[TorOM` (G,OM0)].

Thus the left-hand side of (41) is equal to the image of [F ⊗LOM
OM 0 ] under the composition

K̃0(Y0)
Rφ0∗−−−→ F 2KY0

0 (M0)−→ CH2
Y0

(M0)
degp−−−→Q.

Using Lemma 2.2.2 to reduce to the case in which G is a skyscraper sheaf supported at a closed
point of Y0, one checks that this composition is simply [G] 7→ χ(G), completing the proof. 2

Given Frob-invariant coherent OMk
0
-modules Fk0 for k ∈ {1, 2}, define

[F1
0 ⊗LOM 0

F2
0] =

∑
`≥0

(−1)`[Tor
OM 0
` (F1

0, F
2
0)] ∈K0(Y0)

as in the construction (36). This class is supported in dimension zero, by imitating the proof of
Proposition 4.2.3.

Lemma 4.3.2. We have the equality of Euler characteristics

χ((OM 1 ⊗LOM
OM 2)⊗LOM

OM 0) = χ(OM 1
0
⊗LOM 0

OM 2
0
).

Proof. Elementary homological algebra shows that

(OM 1 ⊗LOM
OM 2)⊗LOM

OM 0

= (OM 1 ⊗LOM
OM 0)⊗LOM

(OM 2 ⊗LOM
OM 0)

in the derived category of locally free quasi-coherent OM-modules. From this it follows that

χ((OM 1 ⊗LOM
OM 2)⊗LOM

OM 0)

=
∑
i,j,`

(−1)i+j+`χ(Tor
OM 0
`

(
TorOM

i (OM 1 ,OM 0), TorOM
j (OM 2 ,OM 0))).

We claim that

TorOM
i (OM 1 ,OM 0)∼=

{
OM 1

0
if i= 0,

0 otherwise,

for all i≥ 0 (and similarly forOM 2). When i= 0 this is clear from M 1 ×M M 0
∼= M 1

0. When i > 0
it suffices to check the vanishing at stalks of the sheaf on the left. Using the uniformization (32)
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we are then reduced to proving the vanishing of

Tor
Ohm×W hm

i (Ohm(τ1)×W hm ,Ohm) = 0 (42)

for every τ1 ∈ V0 ⊗Q Qp. Here we view hm as a closed formal subscheme of hm ×W hm using the
diagonal embedding, and hence view Ohm as a coherent Ohm×W hm-module. The key observation is
that the flatness of hm −→ Spf(W ) implies the flatness of the first projection π1 : hm ×W hm −→ hm.
Choosing a resolution

P• −→Ohm(τ1)

of Ohm(τ1) by locally free quasi-coherent Ohm-modules the pullback complex

π∗1P• −→Ohm(τ1)×W hm

is a locally free resolution of Ohm(τ1)×W hm . Using this resolution to compute the left-hand side
of (42) and using the isomorphism

(π∗1P)⊗Ohm×W hm
Ohm

∼= P

for any quasi-coherent Ohm-module P, (42) follows.
Combining the previous two paragraphs we are now left with

χ((OM 1 ⊗LOM
OM 2)⊗LOM

OM 0) =
∑
`

(−1)`χ(Tor
OM 0
` (OM 1

0
,OM 2

0
))

as desired. 2

Corollary 4.3.3. We have

degp(i
∗Cp) = χ(OM 1

0
⊗LOM 0

OM 2
0
).

Proof. Combine Proposition 4.3.1 and Lemma 4.3.2. 2

We now turn to the calculation of the right-hand side of the equality of Corollary 4.3.3, which
we reduce to calculations of Kudla, Rapoport and Yang. Let Tr be the reduced trace on B0.
Define a Q-valued bilinear form on V0,

[s1, s2] =−Tr(s1s2),

and for each T ∈ Sym2(Z)∨ let V0(T )⊂ V0 × V0 be the set of pairs (s1, s2) such that (20) holds.
It follows from [Lam05, Theorem III.3.1] that the group G0(Q) acts transitively on V0(T ) by
conjugation. Define a Z[1/p]-lattice L0 ⊂ V0,

L0 = {v ∈ V0 | Λ̂p0 · ι0(v)⊂ Λ̂p0},

and let L0(T ) = V0(T ) ∩ (L0 × L0). Define also a discrete subgroup,

Γ0 = {γ ∈G0(Q) | Λ̂p0 · ι0(γ) = Λ̂p0, }

and note that Γ0 acts on L0 and on L0(T ) by conjugation.
Let Q0(τ0) =−τ2

0 be the quadratic form on V0 associated to [·, ·]. Suppose that T ∈ Sym2(Z)∨

is nonsingular, and that s1, s2 ∈ V0 ⊗Q Qp satisfy both Q0(sk) ∈ Zp − {0} and the relation (20).
In particular, this implies that s1 and s2 are linearly independent. Letting µ : hm −→ Spf(W )
denote the structure map, a theorem of Kudla and Rapoport [KR00, Theorem 6.1] (and using
the appendix to [KRY06, ch. 6] for the case p= 2) shows that for any m ∈ Z the integer

ep(T ) def=
∑
k,`≥0

(−1)k+`lengthWR
`µ∗TorOhm

k (Ohm(s1),Ohm(s2))
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depends only on the isomorphism class of the rank two quadratic space

(Zp ⊕ Zp, T )∼= (Zps1 + Zps2, Q0)

and not on s1, s2 themselves (and all W -modules appearing in the sum have finite length).
Furthermore, ep(T ) is independent of m by the argument following [KR00, (8.40)]. In the notation
of [KRY06, ch. 6.2] we have νp(T ) = 2 · ep(T ).

For each T ∈ Σ(α), define Z(T ) = Z(T )/Zp ×M/Zp
M. The decomposition (21) induces an

analogous decomposition of Y0, and hence an isomorphism

K0(Y0)∼=
⊕

T∈Σ(α)

K0(Z(T )). (43)

For any [G] ∈K0(Y0), let χT (G) denote the Euler characteristic of the projection of [G] to the
summand K0(Z(T )).

Proposition 4.3.4. Assume that F (
√
−α)/Q is not biquadratic, so that Y0/Qp = ∅ and Σ(α)

contains no singular matrices by Lemma 3.1.5. If T ∈ Σ(α) satisfies (20) for some s1, s2 ∈ V0 then

1
|H|
· χT (OM 1

0
⊗LOM 0

OM 2
0
) = ep(T ) · |Γ0\L0(T )|.

Proof. The proof is based on that of [KR00, Theorem 8.5]. Abbreviate [FT ] for the projection of
[OM 1

0
⊗LOM 0

OM 2
0
] to the summand of (43) indexed by T and let

µ : Y0 −→ Spec(Zp)

be the structure map so that

χT (OM 1
0
⊗LOM 0

OM 2
0
) = lengthZp(Rµ∗FT ).

Let Ẑ(T ) denote the formal completion of Z(T ) along its special fiber. After formal completion
and base change to W the morphism Z(T )−→M0 admits a factorization

Ẑ(T )/W −→M 0(T )−→ M̂0/W

in which the open and closed formal subscheme M 0(T ) of M 0 is defined, following (40)
and [KR00, (8.17)], as

M 0(T )∼=G0(Q)\
⊔

(s1,s2)∈V0(T )

(X0 × Ω0(s1, s2)Umax,p
/U

p).

The closed formal subscheme Ẑ(T )/W −→M 0(T ) is obtained by replacing X0 with

X0(τ1)×X0 X0(τ2)

as in the comments following (40), where (τ1, τ2) ∈ (V0 ⊗Q Qp)2 is the image of τ = s1$1 +
s2$2 ∈ V under (33) . Similarly, we define

M k
0 (T )∼=G0(Q)\

⊔
(s1,s2)∈V0(T )

(X0(τk)× Ω0(s1, s2)Umax,p
/U

p)
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so that there is a diagram

M 1
0(T )

$$IIIIIIIIII

Ẑ(T )/W

99ttttttttt

%%JJJJJJJJJ
M 0(T ) // M 0

M 2
0(T )

::uuuuuuuuuu

in which the square is cartesian. We have the equality in K0(Z(T )),

[FT ] =
∑
`≥0

(−1)`[Tor
OM 0(T )

` (OM 1
0(T ),OM 2

0(T ))].

Fix one pair (s1, s2) ∈ V0(T ). As all such pairs are conjugate by G0(Q) with stabilizer Q×
(using the linear independence of {s1, s2}), there are isomorphisms

M 0(T ) ∼= Q×\(X0 × Ω0(s1, s2)Umax,p
/U

p)
∼= (h0 t h1)× (Q[\Ω0(s1, s2)Umax,p

/U
p)

where Q[ = {x ∈Q× | ordp(x) = 0}. For the second isomorphism we have used the fact that the
action of z ∈Q× on X0 takes hm isomorphically to hm−2ordp(z). Under these identifications we
have

Mk
0(T )∼= (h0(τk) t h1(τk))× (Q[\Ω0(s1, s2)Umax,p

/U
p)

and it follows that lengthZp(Rµ∗FT ) is equal to

lengthZp(Rµ∗FT ) = |Q[\Ω0(s1, s2)Umax,p
/U

p|

×
[∑
k,`≥0

(−1)k+`lengthWR
kµ∗Tor

Oh0
` (Oh0(τ1),Oh0(τ2))

+
∑
k,`≥0

(−1)k+`lengthWR
kµ∗Tor

Oh1
` (Oh1(τ1),Oh1(τ2))

]
= 2 · |Q[\Ω0(s1, s2)Umax,p

/U
p| · ep(T )

where we have used the equality Zps1 + Zps2 = Zpτ1 + Zpτ2 of lattices in V0 ⊗Q Qp for the final
equality. It now suffices to prove

2 · |Q[\Ω0(s1, s2)Umax,p
/U

p|= |H| · |Γ0\L0(T )|. (44)

By strong approximation any element of Ω0(s1, s2)Umax,p has the form γu with

γ ∈G0(Q) ∩ Ω0(s1, s2)

and u ∈ Umax,p. The element γ then satisfies

(γ−1s1, γ
−1s2) ∈ L0(T )

and we have a well-defined function

Q[\Ω0(s1, s2)Umax,p
/U

p −→ Γ0\L0(T )

which takes the double coset of γu to Γ0 · (γ−1s1, γ
−1s2). The surjectivity of this function follows
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easily from the transitivity of G0(Q) on V0(T ). The fiber over Γ0 · (γ−1s1, γ
−1s2) is in bijection

with {±1}\γUmax,p
/U

p, and (44) follows. 2

5. Pullbacks of arithmetic cycles

5.1 Construction of arithmetic cycles

Throughout § 5.1 we fix α ∈ OF and v ∈ F ⊗Q R, both totally positive, and let v = (v1, v2) be
the corresponding element under the isomorphism (3). Abbreviate Y = Y(α) and Y0 = Y0(α) as
in earlier sections. For each prime p let

Cp ∈ CH2
Y/Zp (M/Zp)

be the cycle class (28) if p does not divide disc(B0), or the cycle class (38) if p does divide
disc(B0). Let CQ ∈ Z2

Y/Q(M/Q) be the cycle constructed in § 3.2 with Green current Ξv = Ξv(α).
By Lemmas 3.3.2 and 4.2.5 each triple (CQ, Ξv, Cp) is a local cycle datum of codimension two
with support on Y in the sense of § 2.3, and it is easy to see that Cver

p = 0 for any prime p with
the property that Y has no components supported in characteristic p. Hence (CQ, Ξv, C•) is a
global cycle datum. Applying the construction of (13) to (CQ, Ξv, C•) yields an arithmetic cycle
class

Ŷ(α, v) = Ŷ(α, v)hor +
∑
p

Ŷ(α)ver
p ∈ ĈH

2
(M)

in which Ŷ(α, v)hor is the Zariski closure of CQ endowed with the Green current Ξv and Ŷ(α)ver
p

is the image of Cver
p under the map (11).

For the remainder of § 5.1 we assume that F (
√
−α)/Q is not biquadratic. By the final claim

of Lemma 3.1.5 the stack Y0/Q is empty, and so (15) allows us to compute the arithmetic
degree along M0 of the arithmetic cycle class Ŷ(α, v) in terms of the global cycle datum
(i∗CQ, i∗Ξv, i∗C•) of codimension two supported on Y0. Indeed, (15) tells us that

d̂egM0
Ŷ(α, v) = deg∞(i∗Ξv) +

∑
p prime

degp(i
∗Cp) · log(p) (45)

where, slightly abusing notation, degp is the composition

CH2
Y0/Zp

(M0/Zp)−→ CH2
ver(M0/Zp)

degp−−−→Q.

For every T ∈ Sym2(Z)∨ and symmetric positive definite v ∈M2(R), Kudla, Rapoport and
Yang have defined (see § 3.6 of [KRY06] and Chapter 6 of loc. cit.) an arithmetic zero cycle

Ẑ(T, v) ∈ ĈH
2

R(M0)

in the R-arithmetic Chow group as defined in [KRY06, § 2.4]. Furthermore, when det(T ) 6= 0 they
define a finite set of places Diff(T, B0) of Q with the property

Z(T )(Falg
p ) 6= ∅ =⇒ Diff(T, B0) = {p} (46)

for each finite place p. When T ∈ Sym2(Z)∨ is nonsingular and |Diff(T, B0)|> 1 then Ẑ(T, v) = 0
by definition. Recall that det(T ) 6= 0 for every T ∈ Σ(α) by Lemma 3.1.5 and also our hypothesis
that F (

√
−α)/Q is not biquadratic.
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Recalling our fixed Z-basis {$1, $2} of OF set

R=
(
$1 $σ

1

$2 $σ
2

)
(47)

and abbreviate

v =R

(
v1

v2

)
tR. (48)

According to [KRY06, § 2.4] the R-arithmetic Chow group admits an arithmetic degree
isomorphism

d̂eg : ĈH
2

R(M)∼= R
defined in exactly the same way as the arithmetic degree constructed in § 2.3 for arithmetic Chow
groups with rational coefficients.

Lemma 5.1.1. We have

deg∞(i∗Ξv) =
∑

T∈Σ(α)
Diff(T,B0)={∞}

d̂eg Ẑ(T, v).

Proof. Return to the notation of § 3.2. For any nonsingular T ∈ Sym2(Z)∨ we have Diff(T, B0) =
{∞} if and only if the matrix T is represented by the quadratic space V0. Assume that this is
the case. For each pair (s1, s2) ∈ V0(T ) set

τ = s1$1 + s2$2 ∈ V ∼= V0 ⊗Q F

and write (τ1, τ2) for the image of τ under V ⊗Q R∼= (V0 ⊗Q R)2. The matrix

u =R

(
v

1/2
1

v
1/2
2

)

satisfies v = u · tu and (s1, s2) · u = (v1/2
1 τ1, v

1/2
2 τ2). Therefore, the real number ν∞(T, v)

of [KRY06, Corollary 6.3.4] is given by

ν∞(T, v) =
1
2

∫
X0

ξ0(v1/2
1 τ1) ∗ ξ0(v1/2

2 τ2)

and does not depend on the choice of (s1, s2) ∈ V0(T ). But then by definition (see [KRY06,
(6.3.2)]) we have

d̂eg Ẑ(T, v) =
∑

(s1,s2)∈Γmax
0 \L0(T )

1
2 · |stab(s1, s2)|

∫
X0

ξ0(v1/2
1 τ1) ∗ ξ0(v1/2

2 τ2) (49)

where stab(s1, s2) is the stabilizer of (s1, s2) in Γmax
0 . When Diff(T, B0) 6= {∞} the sum on the

right-hand side of (49) is empty, and so the claim follows from Proposition 3.2.1. 2

Lemma 5.1.2. If p - disc(B0) then

degp(i
∗Cp) log(p) =

∑
T∈Σ(α)

Diff(T,B0)={p}

d̂eg Ẑ(T, v).

469

https://doi.org/10.1112/S0010437X09003935 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003935


B. Howard

Proof. As p - disc(B0), Proposition 6.11 and Corollary 6.1.2 of [KRY06] imply that, for every
T ∈ Σ(α) with Diff(T, B0) = {p},

d̂eg Ẑ(T, v) =
∑

z∈Z(T )(Falgp )

log(p)
|AutZ(T )(z)|

lengthOsh
Z(T ),z

(Osh
Z(T ),z)

where the sum is over the isomorphism classes of objects in Z(T )(Falg
p ) and Osh

Z(T ),z is the
strictly Henselian local ring of Z(T ) at z. On the other hand, as we assume that F (

√
−α)/Q is

not biquadratic Lemma 3.1.5, the decomposition (21) and [KRY06, Theorem 3.6.1] imply that
Y0/Zp is zero-dimensional. Thus we may apply Proposition 3.3.10 to obtain

degp(i
∗Cp) =

∑
y∈Y0(Falgp )

1
|AutY0(y)|

lengthOsh
Y0,y

(Osh
Y0,y)

(by dividing both sides of the equality of Proposition 3.3.10 by |H|). Combining this with the
decomposition (21) and using (46) we arrive at the desired equality. 2

Lemma 5.1.3. Suppose p | disc(B0). Then

degp(i
∗Cp) log(p) =

∑
T∈Σ(α)

Diff(T,B0)={p}

d̂eg Ẑ(T, v).

Proof. Return to the notation of § 4. By Corollary 4.3.3 we have

degp(i
∗Cp) = χ(OM 1

0
⊗LOM 0

OM 2
0
).

For each T ∈ Σ(α) either Diff(T, B0) 6= {p} or Diff(T, B0) = {p}. In the former case Z(T )(Falg
p ) =

∅. In the latter case the matrix T is represented by the quadratic space V0 of § 4.1, and so the
hypotheses of Proposition 4.3.4 are satisfied. Therefore,

1
|H|
· degp(i

∗Cp) =
∑

T∈Σ(α)
Diff(T,B0)={p}

ep(T ) · |Γ0\L0(T )|.

By [KRY06, Theorem 6.2.1] we have, for any T appearing in the sum,

d̂eg Ẑ(T, v) = ep(T ) · |Γ0\L0(T )| · log(p)

which completes the proof. 2

Theorem 5.1.4. Suppose we are given α ∈ OF and v ∈ F ⊗Q R, both totally positive. If the
extension F (

√
−α)/Q is not biquadratic then

d̂egM0
Ŷ(α, v) =

∑
T∈Σ(α)

d̂eg Ẑ(T, v)

where v is defined by (48).

Proof. This is immediate from the decomposition (45), Lemmas 5.1.1, 5.1.2, and 5.1.3, and, by
definition of Ẑ(T, v), the implication

|Diff(T, B0)|> 1 =⇒ Ẑ(T, v) = 0

for each nonsingular T ∈ Sym2(Z)∨. 2
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5.2 A genus two Eisenstein series
Let Jn be the 2n× 2n matrix

Jn =
(

In
−In

)
.

Recall our fixed basis {$1, $2} for the Z-module OF and let {$∨1 , $∨2 } be the dual basis relative
to the trace form (x, y) 7→ TrF/Q(xy). The F -vector space VF = F 2 comes equipped with the
standard F -valued symplectic form 〈v, w〉F = twJ1v, while the Q-vector space VQ underlying VF
is equipped with the symplectic form

〈v, w〉Q = TrF/Q〈v, w〉F .

With respect to the Q-basis {[
$∨1
0

]
,

[
$∨2
0

]
,

[
0
$1

]
,

[
0
$2

]}
of VQ, the symplectic form 〈v, w〉Q is given by 〈v, w〉Q = twJ2v. In this way we obtain a
homomorphism

Sp1(F )∼= Sp(VF ) ↪→ Sp(VQ)∼= Sp2(Q)

which is given explicitly by(
a b
c d

)
7→
(
R

tR−1

) (
a b
c d

) (
R−1

tR

)
where R is defined by (47) and

x=
(
x

xσ

)
for x ∈ F . If Γ0(M)⊂ Sp2(Z) is the usual subgroup of matrices congruent modulo M to (∗ ∗0 ∗)
then

Sp1(F ) ∩ Γ0(M) =
{(

a b
c d

)
∈ Sp1(F )

∣∣∣ a, d ∈ OF , b ∈D−1, c ∈MD

}
.

The group Sp1(F ) acts in the usual way on the product of two upper half-planes h1 × h1 via
the embedding

Sp1(F ) ↪→ SL2(R)× SL2(R)

defined by A 7→ (A, Aσ). Similarly, the rank two symplectic group Sp2(Q) acts in the habitual
manner on the Siegel half-space h2 of genus two. If we let Sp1(F ) act on h2 through the above
homomorphism Sp1(F )−→ Sp2(Q) then the embedding of complex manifolds

h1 × h1 ↪→ h2, (τ1, τ2) 7→R

(
τ1

τ2

)
tR (50)

respects the actions of Sp1(F ).
To the quaternionic order OB0 , Kudla [Kud97] attaches a Siegel Eisenstein series of weight

3/2,

E2(τ, s, B0) =
∑

T∈Sym2(Q)

E2,T (τ, s, B0),

where τ = u + iv ∈ h2 and s ∈ C. See [KRY06, (5.1.44)] for the precise definition. The Eisenstein
series satisfies a function equation which forces E2,T (τ, 0, B0) = 0 for every T , and one of the
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main results of Kudla, Rapoport and Yang [KRY06, p. 12, Theorem B] is the equality

d

ds
E2,T (τ, s, B0)|s=0 = d̂eg Ẑ(T, v) · qT

for every T ∈ Sym2(Q), in which qT = e2πi·Tr(Tτ) and

Ẑ(T, v) ∈ ĈH
2
(M0)

is the arithmetic cycle class appearing in § 5.1 and defined in [KRY06, ch. 6]. When T 6∈ Sym2(Z)∨,
both sides of the stated equality are zero. In particular, if we denote by φ̂2(τ) Kudla’s q-expansion

φ̂2(τ) =
∑

T∈Sym2(Z)∨

d̂eg Ẑ(T, v) · qT

then E ′2(τ, 0, B0) = φ̂2(τ) is a (non-holomorphic) Siegel modular form of weight 3/2 for the
congruence subgroup Γ0(4mo)⊂ Sp2(Z) where

mo = disc(B0) ·
{

1 if disc(B0) is odd,
1/2 if disc(B0) is even.

It follows that the pullback of φ̂2 to h1 × h1 is a Hilbert modular form of parallel weight 3/2 for
the congruence subgroup{(

a b
c d

)
∈ SL2(F )

∣∣∣ a, d ∈ OF , b ∈D−1, c ∈ 4moD

}
. (51)

Lemma 5.2.1. The pullback of φ̂2 to h1 × h1 has Fourier expansion

φ̂2(τ1, τ2) =
∑
α∈OF

( ∑
T∈Σ(α)

d̂eg Ẑ(T, v)
)
· qα

where we have set qα = e2πiτ1α · e2πiτ2ασ . The positive definite matrix v defined by (48), with
v1 and v2 the imaginary parts of τ1 and τ2 respectively, is the imaginary part of the image of
(τ1, τ2) in h2.

Proof. If we set τ =R
(
τ1
τ2

)
tR then for every α ∈ OF and T ∈ Σ(α) we have

Tr(Tτ) = ατ1 + αστ2.

It follows now from Sym2(Z)∨ =
⋃
α∈OF Σ(α) that

φ̂2(τ1, τ2) =
∑
α∈OF

∑
T∈Σ(α)

d̂eg Ẑ(T, v) · e2πiατ1e2πiαστ2 ,

proving the claim. 2

Corollary 5.2.2. Suppose α ∈ OF is totally positive and that F (
√
−α)/Q is not biquadratic.

Then the αth Fourier coefficient of φ̂2(τ1, τ2) is

d̂egM0
Ŷ(α, v) =

∑
T∈Σ(α)

d̂eg Ẑ(T, v)

where v = (v1, v2) ∈ R× R is the imaginary part of (τ1, τ2) and v is defined by (48).

Proof. This is immediate from Lemma 5.2.1 and Theorem 5.1.4. 2
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Variétés de Shimura et fonctions L, Publications Mathématiques de l’Université Paris
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GS87 H. Gillet and C. Soulé, Intersection theory using Adams operations, Invent. Math. 90
(1987), 243–277.

GS91 H. Gillet and C. Soulé, Arithmetic intersection theory, Publ. Math. Inst. Hautes Études
Sci. 72 (1990), 93–174.

473

https://doi.org/10.1112/S0010437X09003935 Published online by Cambridge University Press

http://www.mathematik.uni-bielefeld.de/~zink
https://doi.org/10.1112/S0010437X09003935


B. Howard

Gor02 E. Z. Goren, Lectures on Hilbert modular varieties and modular forms, CRM Monograph
Series, vol. 14 (American Mathematical Society, Providence, RI, 2002). (With the
assistance of Marc-Hubert Nicole.)

GO00 E. Z. Goren and F. Oort, Stratifications of Hilbert modular varieties, J. Algebraic Geom.
9 (2000), 111–154.

Gub02 W. Gubler, Moving lemma for K1-chains, J. Reine Angew. Math. 548 (2002), 1–19.
Hid04 H. Hida, p-adic automorphic forms on Shimura varieties, Springer Monographs in

Mathematics (Springer-Verlag, New York, 2004).
Hid06 H. Hida, Hilbert modular forms and Iwasawa theory, Oxford Mathematical Monographs

(The Clarendon Press; Oxford University Press, Oxford, 2006).
How B. Howard, Intersection theory on Shimura surfaces II. Preprint.
Kot92 R. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5

(1992), 373–444.
Kud97 S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. of Math. (2)

146 (1997), 545–646.
Kud04 S. Kudla, Special cycles and derivatives of Eisenstein series, in Heegner points and Rankin

L-series, Mathematical Science Research Institute Publications, vol. 49 (Cambridge
University Press, Cambridge, 2004), 243–270.

KR99 S. Kudla and M. Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math.
515 (1999), 155–244.

KR00 S. Kudla and M. Rapoport, Height pairings on Shimura curves and p-adic uniformization,
Invent. Math. 142 (2000), 153–223.

KRY04 S. Kudla, M. Rapoport and T. Yang, Derivatives of Eisenstein series and Faltings heights,
Composito Math. 140 (2004), 887–951.

KRY06 S. Kudla, M. Rapoport and T. Yang, Modular forms and special cycles on Shimura curves,
Annals of Mathematics Studies, vol. 161 (Princeton University Press, Princeton, NJ, 2006).

Lam05 T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics,
vol. 67 (American Mathematical Society, Providence, RI, 2005).

LM00 G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und
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