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FROM SURFACES IN THE 5-SPHERE TO
3-MANIFOLDS IN COMPLEX PROJECTIVE 3-SPACE

J . BOLTON, C. SCHARLACH AND L. VRANCKEN

In a previous paper it was shown how to associate with a Lagrangian submanifold
satisfying Chen's equality in 3-dimensional complex projective space, a minimal sur-
face in the 5-sphere with ellipse of curvature a circle. In this paper we focus on the
reverse construction.

1. INTRODUCTION

It was proved in [7] that at each point p of a totally real submanifold Mn of a
holomorphic space form M(4c) of constant holomorphic sectional curvature 4c we have

(1) SM(P) < "zfcly&iP) + 2> + !)(" - 2)c>
where H denotes the length of the mean curvature vector and 5M is the Riemannian
invariant introduced by Chen in [6], defined by

<SW(p) = r(p)-(infA-)(p).

Here

(inf K){p) = inf {K(TT) | TT is a 2-dimensional subspace of TPM},

where K(ir) is the sectional curvature of TT, and r{p) = ^2 K[e,i A e.,) denotes the scalar
in-

curvature defined in terms of an orthonormal basis {ei , . . . , en} of the tangent space TPM.
Then Mn is said to satisfy Chen's equality if equality is attained in (1) for each

p € M. In the case where n = 3 and the surrounding space is C3 this corresponds to one
of the classes of Lagrangian submanifolds studied by Bryant in [5].

In a previous paper [2] we gave a local construction which associated to a Lagrangian
submanifold satisfing Chen's equality but having no totally geodesic points in complex
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projective space CP3(4), a minimal surface in S5(l) with ellipse of curvature a circle. In
this paper, we focus on the reverse construction.

In Section 2 we consider the case in which a minimal surface with ellipse of curvature
a circle is contained in a totally geodesic S4(l) of 55(1). The immersion is then super-
minimal [4], and our construction in this case is based on the well known correspondence
[4] between superminimal surfaces in S"*(l) and horizontal holomorphic curves in CP3(4).

In Section 3, which is the main part of the paper, we consider the case of a linearly
full minimal surface in S5(l) whose ellipse of curvature is a circle. Here we use the
theory of harmonic sequences to show how to construct locally a submanifold M3 of
50(6) whose Maurer-Cartan equations coincide with equations (9) to (14) of Section 4
of [2]. Then, since SU(4) is a double cover of 50(6), we obtain a local lift into SU(4)

for which projection onto the first column defines a Lagrangian immersion of M3 into
CP3(4) satisfying Chen's equality. It will be apparent that the constructions described
in this paper provide a local inverse of the construction described in [2].

2. SUPERMINIMAL SURFACES IN S4(l)

In this section we assume that TV2 is an oriented surface superminimally immersed
in S4(l) . The orientation, together with the metric induced on N2, enables us to give
TV2 the structure of a Riemann surface in such a way that the immersion is conformal.

We first recall the following result of Bryant [4] relating superminimal immersions
of iV2 into 54(1) to holomorphic horizontal immersions of TV2 into CP3(4).

THEOREM 1 . (Bryant) Let T : CP3(4) ->• 54(1) be the twistor Gbration and let
<f> : N2 —> 54(1) be a superminimal immersion of a simply connected Riemann surface.
Then there exists a unique horizontal holomorphic immersion 4> '• N2 —*• CP3(4) such
that To^=±cj>.

Conversely if<f> : N2 —> CP3(4) is a horizontal holomorphic curve, then T o <p -. N2

—> 54(1) is a (possibly branched) superminimal immersion.

Now, let 4> '• N2 —* CP3(4) be a horizontal holomorphic curve defined on a simply
connected Riemann surface TV2 and let pt : 57(1) —> CP3(4) denote the Hopf fibration
determined by the complex structure on R8 = C4 given by multiplication by i. It is
clear that the natural immersion ip of the pullback bundle M3 — <j>*(S7(l)), defined so
that the following diagram commutes, is invariant (and hence minimal) in the Sasakian
space form (5 7 (1) , / , ( . , . ) ) . Here, / is the Sasakian structure determined on 57(1) by
multiplication by i on R8 = C4.

M 3 —*-> 57(1) c C4 = H2

I I"
CP3(4).
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In fact, we may use multiplication by i, j , k on K8 = M2 to define corresponding Hopf
fibrations of 57(1) over CP 3 (4) , and we let Pj : 57(1) -»• C P 3 be the one determined by
multiplication by j . Since <j> is horizontal and holomorphic, the immersion ip is horizontal
with respect to pj [1] and so we may apply the following special case of a theorem of
Reckziegel [9].

THEOREM 2 . (Reckziegel) Let ip : M3 ->• 57(1) C C4 be an immersion which
is horizontal with respect to the Hopf fibration pj : S7(l) -> C P 3 . Then pjip : M3

—> CP3(4) is a Lagrangian immersion which is minimal if and only ifip is minimal.

Conversely, let ip : M3 —» CP3(4) be a Lagrangian immersion of a connected, simply
connected manifold M3. Then there exists a map ip : M3 —> S7(l), which is horizontal
with respect to p j : such that Pjtp = ip. Moreover, any two such lifts ipx and ip2 are related
by %pi = e%eipi where 9 is a constant.

Hence, combining the above two theorems, we see that starting from a supermini-
mal immersion <j> : N2 —> S4(l), we obtain a minimal Lagrangian immersion pjip : M3

—> CP3(4). Note that iip is tangential to the immersion ip of M3 into S7(l), and if D
denotes the standard flat connection on K8 then for X tangential to M,

Hence if h denotes the second fundamental form oitp in 57(1), we see that h(.,iip) = 0. It
then follows from [7] and [8] that pjip : M3 —> CP3(4) satisfies Chen's equality. Moreover,
it is clear that if we apply the construction of [2] to pjip we recover the immersion <j>.

3. LINEARLY FULL MINIMAL SURFACES IN 55(1)'

Let f : N2 -t 55(1) be a minimal immersion of an oriented surface. As in Section 2,
we use the orientation and induced metric to give iV2 the structure of a Riemann surface
in such a way that / is a conformal immersion. If / / denotes the second fundamental
form of / in S5 we recall that the image under / / of the unit circle in a tangent space of
N2 is a (possibly degenerate) ellipse called the ellipse of curvature.

From now on, we assume that / : TV2 —> 55(1) is a linearly full minimal immersion
of an oriented surface with ellipse of curvature a non-degenerate circle at each point. We
now show how to locally associate to such an immersion a unitary moving frame. The
approach we follow here is based on the theory of harmonic sequences, which we describe
briefly below for the special case of minimal surfaces in 55(1) with ellipse of curvature a
circle. The reader is referred to [3] for more details in the general situation of minimal
surfaces in 5m(l ) or CPm(4).

Fi ri
Let z = x + iy be a local complex coordinate on N 2 , and denote — by d and —

oz az
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by 9. We introduce C6-valued functions f0, / i , / 2 by

(2) /o = /,

(3) h = df,

(4) f2

where / / now denotes the complex bilinear extension of the second fundamental form of
/ in 55(1). If ( , ) is the complex bilinear extension of the standard inner product on
E6, it follows that (/o, /i) = 0 while conformality of / is equivalent to

(5) (/i,/i) = 0.

Thus /o, / i , fi are mutually unitarily orthogonal and /2 is the component of df\ unitarily
orthogonal to f0, / i , /V

If f2 = a - ib where a, b are K7 valued functions then, using minimality of / ,

d . . d Ad . , d
!>-—, cos 0 - ^ - + sin 0 - -
ay ox oy)

so that the ellipse of curvature is a circle if and only if

II(cos <j>-—h sin </>-̂ -, cos cj>-—hsin</>— ) = 2(acos2<A + 6sin2</>),
V ox ay ox oy)

(6) / 2 / 0 and (/2,/2) = 0,

so that in this case /2 and / 2 are unitarily orthogonal. Hence, f0, f\,fuf2, / 2 are mutually
unitarily orthogonal non-zero vectors.

Finally, we define fz to be the component of 9/2 which is unitarily orthogonal to
{fa, /i> / u h-< IT)- AS the immersion is contained in S5(l), we deduce that /3 and f3 are
linearly dependent.

By Takahashi's Lemma, the minimality condition for / may be written as ddf0

= A/o for some A 6 M, and an inductive argument readily shows that if we put wp

= log |/p|, p= 1,2,3, then

(7) df0 = /,,

(8) df1=h+2dwlfu

(9)

while

(10)

(11)

(12)

So far, everything is valid for an arbitrary choice of local complex coordinate but
we now pick a special coordinate to facilitate calculations. It follows from (12) that
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(9/3, /s) = 0, so that (f3, f3)dz6 is a holomorphic differential on iV2. Hence, away from
the isolated points at which f3 = 0, we can choose a local complex coordinate z for which

(13) (/3,/3) = l,

so that

(14) / 3 is real and w3 = 0.

We now introduce a unitary moving frame {Fo , . . . , F5} by setting FQ = /o, Fx

= e-Wlfu F2 = e~w*f2, F3 = f3, F_! = - F i and F_2 = F~2 (the minus sign in the
definition of F_i is there for reasons connected with the theory of harmonic sequences,
and makes no essential difference in the present paper). A straightforward computation
shows that

(15) dF0 = eWldzFx - eWldzF_u

(16) dFx = -eWldzF0 + (dwxdz - dw1dz)F1 + ew*-

(17) dF_x = eWidzF0 + {-dwxdz + dWldz)F^ - ew

(18) dF2 = -ew*-WldzFx + (dw2dz - dw2dz)F2 + e~w*dzF3,

(19) dF_2 = ew*-WldzF_x + {-dw2dz + dw2dz)F-2

(20) dF3 = -e~W2dzF2 - e'^dzF^.

We now consider the manifold W of unitary frames {Vo, Vi, V_i, V2, V-2, V3} of the
form

{V0,VuV^,V2>V_2,V3} = {F0,e
iaFue-iaF.ue

i'>F2,e-illF.i,F3}, a, 0 € R.

Thus, we may regard W as the bundle of strongly adapted unitary frames over N2, in
that Vi (respectively V2) spans the (1,0) component of the complexified tangent space
(respectively first normal space) of W2. If we use z — x + iy, a and /3 as local coordinates
on W, it follows easily from (15)-(20) that

(21) dV0 = ew'~iadzVx - ewl+iadzV-U

(22) dVi = -eWi+iadzV0 + (dwxdz - dw^dz + ida)Vx

(23) dV-X = eWl-iadzV0 + (-dwxdz + dwxdz - i

(24) dV2 = -ew*-wl-i(a-fl)dzVl + (dw2dz - dw2dz

(25) dV_2 = eW2-Wi+i{a-0)dzV.l + (-dw2dz + dw2dz - i

(26) dV3 = -e-W2~iedzV2 - e~w>+ilidzV-2.

We now wish to compare the above formulae to those obtained in Section 4 of [2]. We
recall that there, with a Lagrangian submanifold M3 of C P 3 satisfying Chen's equality
but having no totally geodesic points, we locally associated a smooth map {UQ, • • •, f/5} :
M3 -+ SO(6) such that
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(i) the image of UQ is a minimal surface in 55(1),

(ii) U\ and U2 span the tangent space to this surface,

(iii) U3 and U4 span the first normal space to this surface,

(iv) U5 is the remaining orthogonal vector such that det(U0,..., Us) = 1.

We now write

Uo = Uo,

V2

U3 = Us,

where £1,62 — ± 1 will D e chosen later. If we now rewrite equations (9)-(14) of Section 4
of [2] with respect to this frame, we find that for suitably chosen functions a, b, c, d and
orthonormal basis {^1,^2,^3} of local 1-forms on M we have

(27) dU0 = b10Ui +

(28) dUi •= -bl0U0 + iex (cex + d02 + ( l - ift)tf3 J Ux + b21U2 + b.31U-2,

(29) dU-i = -b-l0U0 - iex f c ^ + dO2 - ( l - ^b)83 J £/_j + 62_1[72 + 6_2_!t/_2,

(30) d[?2 = -Z21U1 - I2-1U.1 + ie2 (cOx + dO2 - (l + ^b)03 J [72 + 632^3,

(31) dD-2 = -b-nUt - 6-2-itLi - ie2 (cBx + d02 -

(32) dU3 = -b32U2 - 63-2^-2,

where there exists a positive function A such that

610 = _5_1 0 = -j=(-a9l + (l+b)92) - * i | ( ( l + b)01 + a92),

b2l = —6-2-1 = 2 A ( ( ! - £i£2)0i + i(ei - £2)^2),

6-21 = -&2-1 = 2 A ( ( ! + £i£2)^i + »(ei + £2)02),

b32 = 63-2 = -^=(o0i + (1 - 6)0,) + i ^ | ( ( l - 6)0! - a^2).
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We now find a hypersurface M 3 of the manifold W of strongly adapted unitary
frames over N2 described above, together with linearly independent local 1-forms 9U 82,

83, and local functions A > 0, o, b, c, d defined on M 3 , such that the systems (21)-(26)
and (27)-(32) of differential equations coincide.

So, assume that atk (respectively b(k) are the components of dVk (respectively dUk)

in the direction of Vi (respectively U(). As o_2i = 0, it follows that we need 6_2i = 0 and
thus

(33) eXE2 = - 1 .

Next, we find that if we require that

&21 = 0 2 1 ,

then we need that

(35) V2(82 - teifli) ={eWl~ia + e-W2+if3)dz.

Hence, we see that the positive function A must satisfy

X(ewi~ia + e~W2+ip) + y/2iexe
W2~Wl+i{-a-p) = 0

which, as A is real, implies that

X(eWl+ia + e~W2~0) - V2i£ieW2~Wl-i{a-p) = 0.

It follows from the two previous equations that the following conditions need to be sat-
isfied:

(36) 0 ^ ( e " " - i Q + «

(37) A = -V2fe 1 7 -

(38) eW2 cos(2a - 0) + e~m cos(2/3 - a) = 0,

where E\ = ± 1 is determined by the requirement that A be positive.

LEMMA 1 . The conditions (36) and (38) determine a hypersurface M3 of W,
which may be parametrized by z and t = a + ().

PROOF: We first introduce new coordinates s and t on W by
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Then (38) becomes

/ I 3 \ _ /I 3 \
e 2cosl -t + -s) + e l cos I -t - -si =0,

\ z It ' \Z Z /

which we can rewrite as

(P
W2 -L p-™O rn<i(—A rnsf-A — (p™2 — p~Wl\ <tin( -A <i\n(-v\(e -t- e ; cos ^ i^ cos ^ sj — (_e — e ;sini ry sini s j .

It then follows that

(39) cot(-s) = tan-£.

To determine s explicitly in terms of t (up to an initial condition), we differentiate (39)
with respect to t and find that

1 g2(TOl+tU2) _ 1
C4Q) s'(t) =K ' w Se^i+Nj) +i + 2e(""+tU2'cost'

The denominator of the right hand side vanishes only if Wi + w2 — 0 and t = (2k + 1)TT,
A; € Z, which is excluded by (36). The function s(t) is now determined (up to a addition
of an integer multiple of (27r)/3) by the condition that cos((3/2)s) = 0 when t is an
integer multiple of 2n. D

We now compute the 1-forms 01( 62, 63 and the function A on M3. As A is real

valued, we see using (37) that

A2 = AA

e2tui + e-2tu2 + 2e""- t U 2 COS *

cosh(iui + w2) + cos t'

Hence, as A is positive, it follows that

(41) A =
v

/cosh(ty1 + w2) + cost

From (35), we obtain

(42)

which determines the 1-forms 0i and 02- The 1-form &3 is determined by the condition

that

an + a22 = 611 + 622-
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Indeed, taking into (33) into account, it follows that

(43) 03 = -iex{d{wl + w2)dz - d(wi + w2)dJ) + -ey dt.

We may proceed in two different ways in order to obtain a Lagrangian immersion
of M3 into CP 3 (4) . The first possibility is to use the following existence and uniqueness
result of [8].

THEOREM 3 . Let (M", (.,.)) be an n-dimensional simply connected Riemannian
manifold. Let a be a symmetric bilinear vector-valued form on Mn satisfying

(i) (<J(X, Y), Z) is totally symmetric,

(ii) (Va){X, Y, Z) = V' xa{Y, Z) - a{VxY, Z) - a(Y, VXZ) is totally symmet-
ric,

(iii) R{X, Y)Z = (Y, Z)X- (X, Z)Y + o{o{Y, Z),X)- a(a(X, Z), Y).
Then there exists a Lagrangian isometric immersion x : (M", (.,.)) —> CP"(4) such that
the second fundamental form h satisfies h(X, Y) = Ja(X, Y). Moreover, x is determined
uniquely modulo holomorphic isometries of CPn(4).

The above result may be applied in the following way. We start with the minimal
surface N2 equipped with the special local complex coordinate z chosen so that (13)
holds. We consider the 3-dimensional manifold M3 of W constructed in Lemma 1, but
excluding those points where Wi(z) + w2(z) = 0 and cosi = — 1. We define 1-forms 6\,
#2 and 63 on M3 using (42) and (43), where £1 is determined by the two equations (37)
and (41) for A and the initial condition chosen for s. We denote the dual vector fields
corresponding to these 1-forms by E\, E2 and £3 and define a metric on M3 by requiring
that Ei, E2 and E3 form an orthonormal moving frame on M3. We define a positive
function A on M3 by (41) and introduce a symmetric bilinear vector valued form a on
M3by

a{EuEi) = XEi, a(EuE3) = 0,

a{Eu E2) = -XE2, a(E2, E3) = 0,

a{E2,E2) = -XEi, a{E3,E3) = 0.

It is then straighforward to compute that all the conditions of Theorem 3 are satisfied
and hence there exists a Lagrangian immersion with the desired properties of M3 into
CP3(4).

The second way to proceed is to continue with the comparison of the systems (21)-
(26) and (27)-(32) in order to determine the functions a, b, c and d explicitly. The
requirement that

flio — 032 = &10 — 632,
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necessitates that

= -y/2(a + iexb){ex + iex62)

- iex8x){a + iexb)

where we have used (42) for the final equality. Hence,

(a + ie\b) = iex . w _,„

^gU)l+tO2 _

/ f f l i J *!*— i

which determines a and b. Specifically, we have that

_ ewl+W2sint
a~ £l

 e2(u>i +w2) + i + 2e™i+u'2 cos t'

X _

i -j- 2eWl+u'2 cos t'

Finally, in order to obtain c and d, we consider the condition that

This yields

d{w\ — W2)dz — d(w\ — u>2)dz + ids = 2eAc6\ + d62 — -

or, equivalently,

_
— w2)dz — d(wi — w2)dz —

1 1 - e
2(«'l+u'2)

_ 1 e2(u>i+tu2) _ I
d(wi — w2)dz — d(wi — w2)dz — -i-r.—;—c— —-7—;—r dt

de2

Using (43) the above equation gives

— w2)dz — d(w\ — W2)dz~
1 1 2(un+w2) x

)dz)).

However, it follows from (35) that dz and dz may be expressed as linear combinations
of 9\ and 62, so that c and d are uniquely determined by the above equation. It is now
straightforward to check that the systems (21)-(26) and (27)-(32) coincide. Therefore,
using the double cover of 5 0 ( 6 ) by SU(4) as described in Section 4 of [2], we obtain a
Lagrangian immersion satisfying Chen's equality.

Again, it is clear that if we apply the construction of [2] to this Lagrangian im-

mersion, we obtain the linearly full minimal immersion / : TV2 —» 55(1) from which we

started.
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