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THE JULIA SET OF A RANDOM ITERATION SYSTEM

Ji ZHOU

This paper presents two properties of the Julia set of a random iteration system of
rational functions, which are similar to the well-known results in the classical case.

1. INTRODUCTION

Let H = {.Ri, R2, • • ., RM} be a collection of rational functions. In [7], Zhou and
Ren first introduced the random iteration system formed by TZ. Recently, Hinkkanen
and Martin [1] developed the rational semigroup generated by H with the semigroup
operation being functional composition. Some properties of their Julia sets have been
investigated.

This paper is devoted to developing two properties of the Julia set of the random
iteration system, which are similar to the well-known results in the classical case.

oo

Suppose that Y = {1,2, ...,M} and T,M = YIY. A metric d' on EM is given
o

by d'[{ji},{Jl}) = E |jfi - jjl/2* , where {ji} and {j[} are in EM- For any a =

UuJ2, • • •, j n , • • •) € E M . we define

(1) W°(z) = z, W^(z)=RinoRin_lo...oRil{z),

and its inverse W~n{z),

W;niz) = (W?)-'(z) = R-loRr^o...0 / £ ( * ) . n = 1 , 2 , . . . .

It is known [6] that if B C T,M, the Julia set Ja(T^) associated with B is the closure of
the union of the sets of non-normality of the sequences (W"(z) j for all orbits a in B.
Specifically, we denote by J{TZ) the Julia set associated with EM and by F(TZ) the Fatou
set associated with EM, the complement of J(1l). (We often call J(7l) the Julia set of
the random iteration system.) For a random orbit a € Y,M, denote by J(a) the Julia set
associated with a. If R is a rational function, we often denote by J(R) the Julia set of
R.

Received May 9, 2000
This paper was supported by the Foundation of Zibo Institute. I would like to thank Professor F.Y.
Ren for his kind guidance during my study at Fudan University.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 SA2.00+0.00.

45

https://doi.org/10.1017/S0004972700018451 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018451


46 J. Zhou [2]

Assume that z € J(TZ), and U is a neighbourhood of z. Set

n>0

By the Montel theorem, Eu contains at most two points. Put Ez =\JEu. We call Ez the
u

exceptional set of TZ at z and each point in Ez is called the exceptional point of 71. From

[7], it is seen that Ez is independent of z. Hence we omit the subscript z and denote by
E(TZ) the exceptional set of TZ. Moreover we let E(R) denote the exceptional set of a
rational function R.

It is well-known that if R is a rational function of degree at least two, and U is any
non-empty open set which meets the Julia set J(R) of R, then for any compact V which
contains no exceptional points of R, there exists an integer I such that i?n(£/) D V, for
n> I. For the random iteration system we arrive at

THEOREM 1 . Let J{TZ) denote the Julia set of the random iteration system
formed by TZ and E(1Z) be the exceptional set of11. Suppose that U is an open subset
of C satisfying U l~l J{TZ) ^ 0. If V CC is a compact set and V f~l E(TZ) = 0, then
there exist an open set N C £ M and an integer a > 0 such that for n > a and a € N,
W?(U) D V.

Let C be the Riemann sphere. By a uniformly perfect set A we mean that A CC
contains at least one point and there is an m > 0 such that every annulus that divides
A has modulus ^ m (see [4]). In [3], Mane and Da Rocha showed that the Julia set of
a rational function is uniformly perfect. Concerning the Julia set of rational semigroup
generated by 71, a finite set of rational functions, Hinkkanen and Martin [2] also obtained
a similar result. Here we consider the Julia set of the random iteration system formed
by a finite set of rational functions and obtain the following result using Marie and Da
Rocha's ideas in [3] different from that in [2].

THEOREM 2 . Suppose that J(7Z) denotes the Julia set of the random iteration
system formed by TZ, then J(TZ) is uniformly perfect.

2. LEMMAS

We begin by defining the backward orbit of TZ at z € C as follows:

O~(z,TZ) = {W~n(z) : a € E M and n € N+},

where N+ is the set of all positive integers.

We can show that if z € E(TZ), then the backward orbit O~(z,TZ) contains at most

two points. Since if z € E(TZ), there must be an open set U with C/D J(TZ) ^ 0 such that

Z 6 C - (J \JW?{U),
n>0
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or

** U \J
n>0

Hence for any £ € O~(z,TZ), we have C £ U U W"(U). Otherwise there are ai,a2 6
<7€EM n>0

E M and n i ,n 2 6 N+ such that W£'(C) = z and W"2
l(u/) = £ for some w elf, thus there

is a € E M such that W^ni+n2\w) = z, which is a contradiction. Hence if z 6 ECU), we
have U U W£(I/) n C>-(z,ft) = 0. Again since 1/ n J{R.) ^ 0, the Montel theorem

T 0
implies that O~(z,1Z) contains at most two points.

At the same time, if O~(z,"R) contains at most two points, we have z € E(TZ). For

if it is not true, then z € U U W?(U), for any open set with U n J{U) ± 0. Now

take three mutually disjoint open sets t/i,£/2,i/3 with the properties that Ui n J(Tt) ^
0, i = 1,2,3. We have O~(z,1Z) D C/, / 0 and O~(z,7l) contains at least three points,
which leads to a contradiction.

From the above discussion, we conclude

LEMMA 1 . The following statements are equivalent:

(1) z is an exceptional point ofTZ;

(2) the backward orbit O~(z, 7V) ofR, at z contains at most two points.

Using the above lemma, we can obtain the following result.

LEMMA 2 . Let n = {Ri,R2,...,RM}, then

M n>0

where W" is as defined in (1).

P R O O F : If z e E(TZ), then 0~{z,~R) contains at most two points. Thus for any

a e E M and any n € N+, {{W")~m(z) m € N + } contains at most two points and

2 € £ ( W ; ) since z G S(V7ff
n) if and only if {(W^)~m(z) | m 6 N + } contains at most two

points. Thus we have z e fl D ^(W"")-
CTSEM n>0

Conversely, if z € fl (1 ^ ( W " ) , but is not in E(H), then for each a € EM
€E n>0

and any n € N + , {(W")~m(z) m > o} contains at most two points and O~(z,Tt)
contains at least two points. Take arbitrarily two points in O~(z, R) different from z,
say, z, € W~ni(z), i = 1,2, for some CTI,CT2 € E M and some n i ,n 2 € N + . Since for any
a € E M and any n € N+, z € £(W£), this implies that z € {(W^" o W?)~l(z)}. Thus we

have {z, zu z^} c { (W^1 o ly^1 o M^s o W£J)~ (z)} and z is not an exceptional point of

{% o W;/ o W^1 o W^), a contradiction. Therefore the lemma follows. D

To prove our theorems we need the following results.

LEMMA 3 . Let E(Tl) denote the exceptional set ofU.
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(1) If E(TZ) contains only one point, then each Ri € K is conjugate to a
polynomial by the same Mobius transformation.

(2) If E(R.) contains two points, then each Ri € It is conjugate to the map
z H* CiZ±di by the same Mobius transformation, where dt = deg (Ri).

Moreover, all exceptional points lie in F(TV).

This is due to Zhou and Ren [7].

Let
Sprd = {cr eZM • Sp{a) = a, for some p € N+}

where S is the one-sided shift on T,M.

Combining [6, Theorem 1] with [5, Theorem 1], we have

LEMMA 4 .

(1) Let J{TZ) and JzprdCR-) be the Julia set associated with 2 M and the Julia
set associated with Eprd respectively. Then J(TZ) = JsprdCR-)-

(2) If a 6 E M and for some integer p, Sp(a) — a, then we have J(a) ~ J(g)
where g(z) = W£(z) is the characteristic function of a.

3. PROOFS OF THEOREMS

P R O O F OF THEOREM 1: By Lemma 3 we can take the neighbourhood % of E(Tl)
to be small enough such that for any R,; € K, Ri(H) C H and V C K = C\H (if
E(TZ) = 0, we may assume that H = 0). Hence for each Ri € H,Ri(K) D K. From
Lemma 4 it follows that there is an orbit <7o and an integer p such that 5p(cro) = °o and
J(a0) n U ^ 0.

Note that for any rational function R of degree more than one, the exceptional
set E(R) contains at most two points. Hence by Lemma 2 there must be three orbits

3 / \
Oi e E M , i = 1,2,3, and integers ni,n2,n3 such that E{U) = f] E[W£).

From Lemma 4, we have J(<7o) = J{g) where g(z) = Wgo(z) is the characteristic func-
tion of a0. By the classical Fatou-Julia theory, noting that j{w%\ i = 1,2,3 are perfect,
we have that gl(U) for a large enough / covers the FUemann sphere C with the possible ex-
ception of (arbitrarily) small neighbourhoods of E(g) and gl(U)nj(W?f) / 0, i = 1,2,3.

Hence for ly large enough, (W"A ' °gl(U) covers C with the possible exception of (arbi-

trarily) small neighbourhoods of E(\V^ and for l2 large enough, (w%) ' ° (W",1)'' o

g'(U) covers C with the possible exception of (arbitrarily) small neighbourhoods of

E(W%)nE(W%). Thus for l3 large enough, (W%)'3o(w%)ho(w%)liog'(U) covers C

with the possible exception of (arbitrarily) small neighbourhoods of E(1Z) — f\ E{w^\

and (W£3)'3 o (W£) ' 2 o (w^ 1 ) ' ' o g'(U) D K because E{Tl) D K = 0. Note that for any
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R, e n,Ri(K) D K, so we have Ri o (W%)'3 o (W%)h o (W™)'1 o (?'(£/) D if. Now
3

choose a — £ riik+pl and

iV =

' l fa '3

<7 = f ( 7 o | p i , a i | n i , . - . , 0 P l | n i ! ^ 2 | n 2 , - • • i ^ I n j , ^ I n s i • • • i CT3|ns) j o + 1 . • • • ) \

where a\k denotes the first k elements of a and j n € {1,2 , . . . , M}, for n> a. Therefore
the lemma follows. D

PROOF OF THEOREM 2: Suppose, by way of contradiction, that there is a sequence
of annuli An, n — 1,2,..., which divide J{H) and satisfy lim mod(.An) = oo. This
implies that for each n, a connected complementary component Kn of An can be chosen
so that lim diam Kn = 0. Now denote by K' the other complementary component of

n—KX>

An, then infndiamK'n > 0 because otherwise we could take a subsequence {K'n.} with

lim diamK'n. = 0 and points p'j € K'n. n J(Tl) and p € Knj n J(TC) converging to

points p' and p in J('ft-) respectively, and so, by lim diam Knj — lim di&mK'n = 0 and

J(7l) C Knj U /C^. for all j , we obtain that J(1l) =p\Jp'. This leads to a contradiction.

Let us denote by A the unit disk and by (pn : A -> j4nU/fn a conformal representation

with y>n(0) € Kn. Then mod(A - ip-l{Kn)^ = mod(.4n) and J.im)diami/j-1(A'n) = 0

because lim mod(>ln) = CXD. Take 1 > rn > pn > 2 diam^TM-Kn) satisfying lim rn = 0
n—>oo n—>oo

and lim pn/rn = 0. Set Dn = \z \z\ < pn\. The family of functions ipn : A —»• C is

normal because infndiam{C — y>n(A)} = infndiam/<r^ > 0. Hence lim diam<^n(Dn) =

0. But tpn{Dn) is an open set containing points of J(Tl). Thus, from Theorem 1 it

follows that there are an integer A;n > 0 and an orbit an S E M such that for r >
k"' Waa{

tP^Dn)) covers J{Tl). Take c with 0 < c < d iamJ(^) and let mn be the

minimal positive integer satisfying diam V7™" (ipn(Dn)\ ^ c. Since lim diam(pn(Dn) = 0

and 71 is a finite set of rational functions, we obtain that lim mn — +oo. Moreover,
n—*oo

since diam W™B"1(^n(Dn)) < c, it follows that diamW™n(v?n(£)n)) < Lc, where L is
the maximum of the Lipschitz constants of all R^ € TZ.

Let G be a set of four different points in J(R) and take c so small that that no set
of diameter < Lc contains two of them. Then W£jn \ipn{Dn)J does not cover three points
of G. Define ipn : A -> C by ^n(z) = V7™»(vjn(rnz)). Next we shall show that the
family ipn is normal. It suffices to show that for all n, r/>n(A) does not cover three points
of G. U pn/2rn < \z\ < 1, then pn/2 < \rnz\ < rn and, since d i a m ^ 1 ( ^ n ) ^ P«/2 and
0 € <p~l(Kn), it follows that rn2 ^ ^ l ( J f n ) and v?n(rnz) ^ Kn. Hence </?n(rnz) ^ J(7e)
because Kn 3 J(7?.) n yn(A). Noting that F(7^) is forward invariant under Ri £ 71
(see [7]), we obtain ipn{z) = W™»(yn{rnz)) e W^n"{F{7l)) C F(Tl) and therefore
ipn(z) & G when pn/2rn < \z\ < 1. On the other hand, if \z\ ^ pn/2rn, it follows that
\rnz\ ^ pn/2 ^ pn and then ipn{z) = W^»(^n(rn2)) € W^"( V n (D n )) that does not
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cover three points of G. This proves the normality of the family {ipn}. Then, given
e > 0, there is a neighbourhood No of 0 such that diam^n(iVo) ^ e for all n. But for n
sufficiently large, No D {z \z\ ^ pn/rn} and

diam </>„({* | \z\ < p n / r n } ) = diamW™"(<pn(£>„)) ^ c.

Since £• > 0 is arbitrary, this is a contradiction that proves the theorem.
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