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Understanding how turbulence enhances irreversible scalar mixing in density-stratified
fluids is a central problem in geophysical fluid dynamics. While isotropic overturning
regions are commonly the focus of mixing analyses, we here investigate whether
significant mixing may arise in anisotropic statically stable regions of the flow. Focusing
on a single forced direct numerical simulation of stratified turbulence, we analyse spatial
correlations between the vertical density gradient ∂ρ/∂z and the dissipation rates of kinetic
energy ε and scalar variance χ , the latter quantifying scalar mixing. The domain is
characterized by relatively well-mixed density layers separated by sharp stable interfaces
that are correlated with high vertical shear. While static instability is most prevalent within
the mixed layers, much of the scalar mixing is localized to the intervening interfaces,
a phenomenon not apparent if considering local static instability or ε alone. While the
majority of the domain is characterized by the canonical flux coefficient Γ ≡ χ/ε = 0.2,
often assumed in ocean mixing parametrizations, extreme values of χ within the statically
stable interfaces, associated with elevated Γ , strongly skew the bulk statistics. Our findings
suggest that current parametrizations of turbulent mixing may be biased by undersampling,
such that the most common, but not necessarily the most significant, mixing events are
overweighted. Having focused here on a single simulation of stratified turbulence, it is
hoped that our results motivate a broader investigation into the role played by stable
density interfaces in mixing, across a wider range of parameters and forcing schemes
representative of ocean turbulence.
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1. Introduction

In a density-stratified fluid, turbulence enhances the rate at which scalars are irreversibly
diffused throughout the flow, a process of great interest in a variety of geophysical,
environmental and industrial settings (e.g. Fernando 1991). Of particular importance
is characterizing the role of turbulence in the vertical transport of heat within the
ocean, a crucial mechanism for driving the required upwelling of cold bottom waters
to maintain the ocean’s vertical stratification profile and to complete global circulation
currents (Wunsch & Ferrari 2004). Turbulence in the ocean generates dynamically relevant
motions of the order of millimetres, which cannot currently be resolved in numerical
circulation models and must therefore be parametrized, with the choice of parametrization
found to influence future climate projections strongly (Whalen et al. 2020). Considerable
observational, numerical and theoretical work has thus been focused on developing more
accurate and universal mixing models which account for the wide range of turbulent
processes observed in different flow regimes within the ocean (Caulfield 2020).

The rate at which turbulence mixes a non-uniform density field is often defined in terms
of an appropriately averaged vertical density flux B ≡ 〈ρ′w′〉, where ρ′ and w′ denote
fluctuations in density and vertical velocity away from the mean flow, respectively. If B is
to be used as a robust indicator of irreversible mixing, it is critical that measurements of B
are averaged over sufficiently large spatial volumes or time intervals to isolate irreversible
diffusive processes from reversible stirring motions (Villermaux 2019). Stirring, occurring
on relatively large scales, may be thought of as the adiabatic rearrangement of fluid parcels
of different density induced by the underlying turbulence, which in principle is reversible.
Hence, a pointwise measurement of B would not be a sufficient indicator that irreversible
mixing had occurred, as the sign of B could subsequently switch direction yielding a
net flux of zero. Thus, we here use the term mixing to refer specifically to the diffusive
transport of density across gradients that have been enhanced by such macroscopic stirring
motions, irreversibly leading the system towards a state of greater homogenization. To
isolate only irreversible contributions to mixing, Lorenz (1955) introduced the concept of
an available potential energy (APE). The APE quantifies the difference between a system’s
current potential energy and its minimum background potential energy (BPE) that could
be achieved if fluid parcels were adiabatically sorted into their most stable configuration.
For a Boussinesq fluid, Winters et al. (1995) demonstrated that irreversible mixing may be
described as the conversion of APE into BPE, with a system’s BPE increasing in time as it
homogenizes. Generalizing this mixing framework to compressible flows, Tailleux (2009)
argued that the mixing of a thermally stratified fluid should most rigorously be defined
as the conversion of APE into internal energy, which in the Boussinesq limit then exactly
matches the generation of BPE.

Given a variety of sampling limitations involved with collecting turbulence data within
the ocean, it is exceedingly difficult to perform the averaging required to extract the
irreversible component of density fluxes from direct observational measurements of B.
Therefore, a number of indirect methods have been proposed that infer such fluxes from
more readily available quantities, which may be computed locally (Gregg et al. 2018).
Two such quantities, associated with what is conventionally referred to as the turbulent
microstructure, are the dissipation rates of kinetic energy ε and scalar variance χ ,

ε = ν

2

(
∂u′

i
∂xj

+
∂u′

j

∂xi

)2

, χ = g2κ

ρ2
0N2

(
∂ρ′

∂xi

∂ρ′

∂xi

)
, (1.1a,b)

representing the rates at which viscosity ν and molecular diffusivity κ smooth gradients
in the turbulent velocity u′ and density ρ′ fields, respectively. In (1.1a,b), g denotes the
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gravitational acceleration, ρ0 a reference background density and N = √
(−g/ρ0)∂ρ̄/∂z

the buoyancy frequency, defined by an appropriately averaged ambient density gradient
∂ρ̄/∂z against which the turbulence acts. The quantities ε and χ are intimately related to
the irreversible processes associated with the conversion of kinetic energy and available
potential energy into internal energy, respectively, as is further described by Caulfield
(2021). In particular, for the class of direct numerical simulation considered here,
characterized by an imposed uniform background stratification N2

0 , Howland, Taylor &
Caulfield (2021) demonstrated that χ computed using N2 = N2

0 in (1.1a,b) provides an
excellent approximation for the destruction rate of APE and is therefore a good measure
of local irreversible mixing.

As discussed by Ivey, Bluteau & Jones (2018), χ also arguably provides the most
robust method for estimating irreversible mixing from oceanographic measurements, since
〈B〉 � 〈χ〉 in the steady state provided that averaging is performed over sufficiently long
times and large volumes so that reversible processes and transport terms are negligible
(Osborn & Cox 1972). Importantly, χ is both directly proportional to the scalar diffusivity
κ and sign-definite, providing a robust local measure of the irreversible fluxes associated
with molecular diffusion, which does not require the averaging of the density flux B
needed to filter our reversible local stirring motions in the turbulent flow. Due to a scarcity
of χ measurements, however, ε is more commonly used to infer mixing following the
method of Osborn (1980), which requires the introduction of a flux coefficient Γ ≡ χ/ε

to prescribe the fraction of turbulent kinetic energy that leads to irreversible mixing, as
opposed to being directly dissipated by viscosity. A constant value Γ = 0.2 is commonly
assumed when estimating global patterns of oceanic mixing (MacKinnon et al. 2017),
which has been found to be in agreement with tracer release experiments (Gregg et al.
2018). However, there is significant evidence suggesting that Γ varies appreciably in
different flow regimes (Caulfield 2021) and so a clear physical picture has not yet emerged
explaining why Γ = 0.2 is a reasonable assumption.

In the absence of measurements of ε or χ , mixing locations are primarily inferred from
the presence of unstable overturns in vertical density profiles, as proposed by Thorpe
(1977). Assuming that the vertical extent of an overturn is correlated with the Ozmidov
length LO =

√
ε/N3, ε may be inferred from the measurement of overturns which can then

be converted into a flux via Γ . However, this assumed correlation between the vertical
overturning scale and LO is not always robust, as has recently been discussed, for example,
by Ivey et al. (2018), Ijichi et al. (2020) and Mashayek, Caulfield & Alford (2021). Using
a forced direct numerical simulation (DNS) similar to that considered here, Taylor et al.
(2019) quantified the errors associated with the indirect flux estimates of Osborn & Cox
(1972), Osborn (1980) and Thorpe (1977) by sparsely sampling vertical profiles of the
computational domain to mimic oceanographic measurements.

Spatio-temporal intermittency in stratified turbulence greatly reduces the applicability
of classical turbulence modelling assumptions, including the common assumption of
log-normal distributions for ε and χ (de Bruyn Kops 2015). Cael & Mashayek (2021)
found that global ocean measurements of ε were not well approximated by an assumed
log-normal distribution but instead had a skewed right tail, indicating that a small number
of extreme events dominated the bulk statistics. By considering local correlations between
direct ocean measurements of ε and χ , Couchman et al. (2021) further emphasized the
importance of extreme events, finding that while the majority of the sampled domain was
characterized by the canonical flux coefficient Γ = 0.2, isolated mixing events containing
the largest χ were not reflected by a corresponding local increase in ε, yielding a dramatic
increase in Γ .
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Vertical layering is also known to be a canonical feature of stratified turbulent flows, with
the density field often forming ‘staircases’ of deep, relatively well-mixed layers separated
by thin interfaces with strong gradients (Caulfield 2021). For sufficiently stratified
environments, vertical shearing induced by the decoupling of horizontal and vertical
motions in such a layered structure becomes an important mechanism for triggering
instability and the ensuing generation of turbulence (Lilly 1983; Billant & Chomaz 2001).
Parametrizations of mixing based on simple domain averages are thus unlikely to be
accurate as rare extreme events and spatial heterogeneity within the flow will be missed, a
potential cause of the highly scattered mixing statistics currently reported throughout the
literature (Gregg et al. 2018).

In an attempt to classify such intermittency in an automatic, yet robust and interpretable
manner, Portwood et al. (2016) devised an algorithm for splitting a snapshot from a forced
DNS into three dynamically distinct regions: quiescent regions, intermittent layers and
turbulent patches. These regions were distinguished by an increasing degree of local
overturning, as determined by computing the fraction of unstable points ∂ρ/∂z > 0 within
an extended neighbourhood. Local overturning fractions and dissipation rates ε were found
to be strongly correlated, in agreement with the arguments of Thorpe (1977). For the
relatively large filter sizes used to segment the domain, of the order of a buoyancy length
LB = 2πuh/N (where uh denotes a characteristic horizontal velocity scale), distributions
of χ associated with each region were also found to be correlated with ε, although the
finer spatial distributions of ε and χ within each region, and the resulting flux coefficient
Γ , were not considered.

Motivated by the automated flow segmentation of Portwood et al. (2016) in terms
of unstable local density gradients ∂ρ/∂z > 0, and the observation of Couchman et al.
(2021) that, within the ocean, extreme events in χ are not necessarily correlated with
those in ε, we here analyse spatial mixing distributions within a computational domain
by considering local correlations among ε, χ and ∂ρ/∂z. In particular, we wish to probe
whether overturning alone provides a robust indicator for local mixing, or if significant
mixing as revealed by χ might occur in other regions that would seem inconspicuous
based on consideration of only ε or ∂ρ/∂z.

In line with the previous investigations of Portwood et al. (2016) and Taylor et al. (2019),
we consider a forced DNS of stratified turbulence using the methodologies presented by
Almalkie & de Bruyn Kops (2012). In § 2, we summarize the DNS dataset considered
here and highlight the presence of a (previously unreported) robust vertically aligned
vortex generated by the forcing scheme, that injects energy into the domain at large scales
and induces vertical layering in the surrounding flow. In § 3, we then consider pointwise
correlations among ∂ρ/∂z, ε, χ and the flux coefficient Γ , which suggests that mixing
occurs not only in overturning regions, but also in areas of local static stability. In § 4,
we move beyond pointwise statistics to consider extended mixing structures within the
flow, highlighting two ways in which local static instability in the density gradient fails
to be a sufficient indicator of mixing: within the vortex, a lateral density gradient is
correlated with the majority of χ , and outside the vortex, extreme values of χ are localized
to relatively ‘sharp’ stable density interfaces at the bounding edges between overturning
layers. Finally, in § 5, we summarize our results and discuss implications for parametrizing
turbulent mixing within the ocean.

2. Summary of DNS dataset

We consider a statistically steady, forced DNS of stratified turbulence from the simulation
campaign originally reported by Almalkie & de Bruyn Kops (2012), and subsequently
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analysed by Portwood et al. (2016) and Taylor et al. (2019). Using a characteristic
root-mean-square horizontal velocity scale uh, length scale L and background buoyancy
frequency N0, the non-hydrostatic Boussinesq approximation of the Navier–Stokes
equations may be written in the following dimensionless form:

∇ · u = 0,
∂u
∂t

+ u · ∇u = −
(

2π

Fr

)2

ρẑ − ∇p + ∇2u
Re

+ F ,

∂ρ

∂t
+ u · ∇ρ − w = ∇2ρ

RePr
.

(2.1a–c)

The governing equations (2.1a–c) are numerically integrated using a pseudospectral
technique in a triply periodic domain, as detailed by Almalkie & de Bruyn Kops (2012).
The dimensionless parameters governing the flow are the Prandtl number Pr = ν/κ ,
Froude number Frh = 2πuh/(N0L) and Reynolds number Reh = uhL/ν. The density field
satisfies

ρ(x, t) = ρ0(1 − N2
0z/g) + ρ′(x, t), (2.2)

where ρ0(1 − N2
0z/g) defines a time-independent, linear background density gradient

characterized by a reference density ρ0 and an imposed constant background buoyancy
frequency N0. Density perturbations ρ′ away from this linear background state satisfy
the periodic boundary conditions and are used to compute χ in (1.1a,b). The imposed
constant background buoyancy frequency N0 is used as the characteristic ‘appropriately
averaged’ buoyancy frequency N required to compute χ in (1.1a,b), as is widely considered
the natural choice when quantifying irreversible mixing in numerical simulations with
an imposed background stratification (see e.g. Shih et al. 2005; Maffioli, Brethouwer
& Lindborg 2016; Garanaik & Venayagamoorthy 2019; Portwood, de Bruyn Kops &
Caulfield 2019). By explicitly computing the APE of a triply periodic domain with an
imposed uniform background stratification N0, Howland et al. (2021) confirmed that
normalizing χ by N0 indeed provides an excellent approximation to the true irreversible
mixing rate as computed through changes in the system’s APE. The forcing term F is
governed by the deterministic scheme denoted ‘Rf’ by Rao & de Bruyn Kops (2011),
which adds energy to horizontal motions larger than 1/8th of the horizontal box size so as
to match a target kinetic energy spectrum at small wavenumbers. We consider a simulation
characterized by Pr = 1, Frh = 2.23 and Reh = 1271, in a domain of size 2π × 2π × π
with 4096 × 4096 × 2048 grid points, resulting in a grid spacing of Δ ≈ LK/2, with
LK denoting the Kolmogorov length scale. For reference, the characteristic buoyancy
Reynolds number of the simulation is Reb = 〈ε〉/νN2

0 = 50. We consider a single snapshot
of the flow in time and all figures are displayed on grids that have been sparsed by a factor
of eight in each dimension.

The main characteristics of the dataset are summarized in figure 1. The vertically
averaged dissipation rate ε (figure 1a) reveals a dominant patch of elevated turbulence
that is generated by a large-scale vertically aligned vortex in the velocity field, rotating
counterclockwise (figure 1b). Radial averages, centred on the vortex, of the angular
velocity uθ and vertical component of vorticity ωz = ∂v/∂x − ∂u/∂y are plotted in
figure 1(c), indicating a Rankine-type vortex that is approximately characterized by
rigid-body rotation at small radii r from the vortex core, followed by a transition to roughly
irrotational flow at larger r. It is important to note that such a description characterizes
the radially averaged flow, and that smaller-scale vortical motions will still certainly be
present in the turbulent patch surrounding the vortex. A series of horizontal currents
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Figure 1. Large-scale characteristics of the velocity and density fields within the computational domain.
(a) Vertical average of the dissipation rate ε at gridpoint (x, y), normalized by the domain average. The whole
domain is shown, with gridpoints sparsed by a factor of eight in each dimension. The dashed circle highlights a
region of elevated ε, coinciding with a vortex in the velocity field, as is further examined in figure 3. A vertical
slice of the domain at y = 200 is considered in figure 4. (b) Horizontal velocity normal to the plane for a vertical
slice at constant y passing through the centre of the dashed circle in panel (a), revealing a vertically aligned
vortex rotating counterclockwise. The grid has been shifted in x relative to panel (a) so as to centre the vortex.
The buoyancy length LB and Taylor length LT ≈ 25LK (where LK is the Kolmogorov length) are marked for
reference, as were the filter sizes used in the segmentation analysis of Portwood et al. (2016). Green contours
mark stable interfaces in the density field, as shown in panel (d). (c) Radially averaged angular velocity uθ and
vertical component of vorticity ωz as a function of the distance r from the centre of the vortex. The dashed line
at r ≈ 80 corresponds to the dashed circle plotted in panel (a). (d) Density field corresponding to the vertical
slice of velocity plotted in panel (b). The green lines in panels (b) and (d) illustrate contours at the minimum
values of the histogram of the density field in panel (e), as are marked with vertical green lines, delineating the
interfaces between relatively well-mixed density layers in the flow surrounding the vortex.

travelling in alternating directions are found to emanate from the vortex, characterized
by a vertical scale of the order of a buoyancy length LB. In figure 1(d), we plot the
vertical slice of the density field that corresponds to the velocity field shown in figure 1(b),
highlighting an analogous vertically layered structure outside of the vortex, with relatively
well-mixed density layers separated by sharp, stable interfaces. The approximate locations
of these density interfaces (delineated by green contours) correspond to minima in the
histogram of ρ (figure 1e), which highlights a strong perturbation of the density field
away from its uniform background gradient. Superimposing these density contours on the
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velocity field in figure 1(b) highlights that the sheared interfaces in the velocity field are
strongly correlated with the stable interfaces in the density field. This correlation is further
demonstrated in supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.253,
where rotations of the slices in figure 1(b,d) around the centre of the vortex are shown.
In § 4, we demonstrate that these interfaces, characterized by both high shear and a strong
statically stable density gradient, are critically important for the mixing generated outside
of the vortex.

The spontaneous formation of a persistent vortex is a key, yet previously unreported
feature of the forcing scheme of Rao & de Bruyn Kops (2011) used to generate statistically
steady turbulence. In particular, the identification of the vortex in figure 1 provides insight
into how the segmentation results of Portwood et al. (2016) (see their figure 2c), who
used an identical forcing scheme, are related to the background flow field. Specifically, the
roughly cylindrical patch of most vigorous turbulence detected by Portwood et al. (2016),
using a filter of size LB, extends across the entire vertical domain and almost certainly
corresponds to an analogous vortical structure in their DNS. Similarly, their ‘intermittent
layers’ are primarily composed of horizontal offshoots from the central vertically aligned
turbulent patch, and are shaped by a similar pattern to the sheared velocity interfaces
observed in figure 1(b). As it is now evident that Portwood et al. (2016) have broadly
identified such a vortex to be a turbulent hotspot, a goal of this study is to perform a
finer analysis of mixing patterns both within and outside of the vortex to determine how
patterns in the small-scale turbulent microstructure, as described by ε and χ , are related
to the larger-scale layered structure of the flow.

3. Pointwise statistics conditioned on local density gradient

Motivated by the flow segmentation of Portwood et al. (2016) in terms of the local fraction
of overturning ∂ρ/∂z > 0, we first consider how the pointwise distributions of ε, χ and
Γ = χ/ε depend on the magnitude of ∂ρ/∂z, for both statically stable and unstable points,
as shown in figure 2. For illustration, in figure 2(a), we split the distribution of ∂ρ/∂z into
three regions: two tails containing 10 % by volume of the most stable and unstable points
(coloured blue and red, respectively), and the remaining 80 % of the intermediate values
(green). For such a division, we then consider the distributions of ε, χ and Γ within each
region, as shown in figure 2(b–d). Although the distribution characterizing the bulk of the
domain (green) is centred around the canonical flux coefficient Γ = 0.2 (see figure 2d),
such points contain the lowest χ (figure 2c) and are thus not of primary importance for the
total mixing arising within the computational domain. Instead, it is the extreme tails of the
∂ρ/∂z distribution that must be considered, containing the most significant values of χ .
While both the blue and red tails contain elevated but similar distributions of ε, they may
be distinguished by their asymmetry in χ ; the stable tail (blue) contains disproportionately
elevated χ as compared to ε, and therefore some of the highest values of Γ within the
domain.

In figure 2(e–g), we then analyse how the medians of the ε, χ and Γ distributions change
as a function of the volume contained within the blue and red tails, and additionally plot
the relative contributions of these tails to the domain total. Comparing the right panels
of figures 2(e) and 2( f ) reveals that χ is far more dominated by extreme events than ε,
in agreement with the analysis of oceanographic data by Couchman et al. (2021). For
instance, when each tail contains 10 % volume, the stable (blue) and unstable (red) tails
each contain approximately 20 % of the total ε in the domain, but 45 % and 30 % of the
total χ , respectively. Furthermore, while the contributions to ε from both tails are roughly
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Figure 2. Pointwise mixing statistics of the DNS data, conditioned by the local vertical density gradient.
(a) Histogram of the perturbed density gradient ∂ρ ′/∂z normalized by the magnitude of the imposed uniform
background gradient, with values greater than one indicating local overturning. The distribution is split into
three regions, by assigning a fixed volume (here 10 %) to each tail. Panels (b–d) illustrate the distributions of ε,
χ and Γ , respectively, for the whole domain (black) and the subdomains encompassed by the coloured regions
in panel (a). Circles mark the median values of each distribution, and the dashed line in panel (d) indicates
the canonical flux coefficient Γ = 0.2 for reference. Panels (e–g) illustrate how the medians of the respective
distributions in panels (b–d) vary with the tail volume selected in panel (a). The circles mark the medians for
the segmented distributions shown in panels (b–d) for the case of 10 % tail volume. For panels (e) and ( f ), the
fraction of each quantity (ε, χ) contained within each tail relative to the entire domain is also indicated. The
dashed diagonal lines mark what would be expected for a uniform distribution of each quantity throughout the
domain.

equal, the contribution to χ from the stable tail is always roughly 50 % greater than for
the unstable tail. While Γ = 0.2 may thus be a suitable approximation for the bulk of the
domain, it may here not be relied upon for capturing the most extreme events in χ , which
dominate the bulk mixing statistics.

Additionally, the statistics in figure 2 suggest that local instability may not be a sufficient
indicator for mixing, given the significance of the blue stable tail. However, we note that
such a conclusion cannot definitively be drawn from the pointwise distributions of ∂ρ/∂z,
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as such a distribution provides no information about the extended spatial environment
around each point. For example, in regions of fully developed turbulence that might
emerge after the collapse of a shear-induced billow, there is likely a random mixture of
neighbouring unstable and stable points in close proximity (roughly a 50 % mixture as
identified by Portwood et al. (2016) in their most turbulent patches), and so points within
the red and blue tails of figure 2(a) could be direct neighbours in space. Therefore, in
§ 4, we extend our pointwise analysis by identifying spatially extended and coherent stable
regions, which appear to take the form of ‘interfaces’ with enhanced density gradients.
We then assess the significance of these non-overturning structures to the overall mixing
statistics.

4. Extended mixing structures

We now consider coherent spatial distributions of the microstructure quantities ε and χ ,
and their relation to the large-scale flow patterns observed in figure 1, by focusing on
mixing structures arising both within and outside of the vortex. We first perform a closer
examination of mixing within the vortex, as shown in figure 3. Vertical averages of ε, χ ,
w and ρ′ are plotted in figures 3(a)–3(d), respectively, highlighting clear differences in the
spatial distributions of ε and χ . Such differences are further illustrated in figures 3(e)–3(h),
which show the respective radial distributions of the azimuthal velocity uθ , ε, χ and Γ

with respect to the vortex core. These radial distributions illustrate that the inner section
of the vortex, characterized by roughly rigid-body rotation, is well mixed and contains the
largest values of ε despite having minimal scalar diffusion rates χ . This observation is
consistent with the density field shown in figure 1(d), where initially horizontal contours
of constant density (green lines) are strongly deflected towards the vertical before reaching
the centre of the vortex, resulting in a vertically extended core of roughly constant density
(seen predominantly in the vertical interval 25 � z � 175). Conversely, the majority of χ is
found outside the core at radii where the angular velocity begins to decay, and is distributed
in a roughly spiral pattern (figure 3b). Examination of the vertically averaged perturbed
density field ρ′ (figure 3d) reveals the presence of a strong lateral density gradient, induced
by the alternating upwelling of dense fluid and downwelling of lighter fluid within the
vortex as a function of r. Superimposing the position of this lateral gradient (grey) onto
the distribution of χ in figure 3(b) reveals that this gradient is strongly correlated with
the spiral distribution of the most intense χ . While the vortex was identified by Portwood
et al. (2016) to be a patch of vigorous turbulence with elevated ε due to its generation of
significant local vertical overturning, our analysis suggests that much of the mixing within
the vortex, as quantified by χ , instead results from diffusion across a strong lateral gradient
in the perturbed density field.

Outside of the vortex, the vertical homogeneity of the velocity and density fields
collapses, forming a vertically layered structure. In figure 4, we consider a vertical (x, z)
slice of the domain at position y = 200 in figure 1(a), to understand how this large-scale
layering pattern gives rise to mixing at the microscale. Motivated by the significance of the
stable tail (blue) in the pointwise distribution of ∂ρ/∂z in figure 2(a), and the observation
of horizontally extended stable filaments of ∂ρ/∂z in figure 4(a), we examine whether such
structures contribute substantially to mixing in the layered flow surrounding the vortex. To
isolate these stable filaments, we apply a Gaussian filter to the density field with standard
deviation σ ≈ 6LK (corresponding to two grid points in figure 4), where LK denotes the
Kolmogorov length scale. The intent of such a filter is to isolate spatially coherent stable
structures from patchy overturning regions that would contain a random assortment of
stable and unstable neighbouring points. We note that our filter length is of the order of
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Figure 3. Mixing patterns within the vortex. Vertical averages of the (a) dissipation rate of kinetic energy
ε, (b) dissipation rate of scalar variance χ , (c) vertical velocity w and (d) density perturbations ρ ′, for the
vortex region delineated in figure 1(a). The outer green circle in panels (a–d) coincides with the black circle in
figure 1(a). The grey curve in panel (d) delineates the sharp lateral gradient separating regions of positive and
negative ρ′ and is found to be correlated with the spiral distribution of χ observed in panel (b). Radial averages
of (e) the azimuthal velocity uθ , ( f ) ε, (g) χ and (h) Γ , as a function of the distance r from the centre of the
vortex, with shading denoting the standard deviation around the radial mean. In panel (h), 〈Γ 〉r = 〈χ〉r/〈ε〉r is
the ratio of the red lines in panels ( f ) and (g). The vertical green dashed lines in panels (e–h) mark the radial
locations of the maximum and first zero of the radially averaged azimuthal velocity, and correspond to the radii
of the green dashed circles in panels (a–d).

10LK as suggested by Kuo & Corrsin (1971) for removing internal intermittency. Further,
it is significantly finer than the Taylor length LT ≈ 25LK , which was the smallest filter
size considered by Portwood et al. (2016) in their identification of ‘intermittent layers’,
allowing us to examine the importance of finer-scale structures within the flow.

Having filtered the density field (figure 4b), we then extract the most stable density
structures by considering points in the bottom (most stable) q percent of the filtered
∂ρ/∂z distribution. For illustration, we here extract structures comprising the most stable
q = 15 % of points (figure 4c), and in the Appendix demonstrate the effect of changing
this percentage. The green contours from figure 1(b,d) are overlaid on figure 4(c),
demonstrating that the extracted filaments correspond to segments of the sharp interfaces
separating relatively well-mixed layers in the density field. Importantly, figure 4(d)
highlights that the concentration of locally overturned points (the segmentation indicator
used by Portwood et al. 2016) is greatest in the regions between these stable interfaces.
In figure 4(e, f ), we again highlight that these stable interfaces are also roughly correlated
with regions of high vertical shear in the layered velocity field, as are generated by the
vortex. Corresponding slices of the dissipation rates of kinetic energy ε and scalar variance
χ are shown in figure 4(g,h), respectively. The spatial distribution of ε is seen to be
much more diffuse than that of χ , with extreme values of χ being primarily concentrated
within thin filamentary structures such as those identified in figure 4(c). Crucially, there
are many examples of locations in the flow (see green crosses, figure 4g,h) where the stable
interfaces identified in figure 4(c) contain highly elevated local signatures of χ without a
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Figure 4. Characteristics of the layered flow outside the vortex. Vertical slices at y = 200 in figure 1(a) of:
(a) the density field ∂ρ/∂z normalized by the magnitude of the imposed background gradient; (b) the result
of applying a Gaussian filter with a standard deviation of two gridpoints (≈ 6LK ) to the density field in panel
(a); (c) extracted stable filaments from panel (b) obtained by retaining points in the bottom (most stable) 15 %
of the filtered density distribution; (d) the local fraction of unstable overturned points computed with a filter
size corresponding to the Taylor length (LT ≈ 25LK ), following the method of Portwood et al. (2016); (e, f )
the x and y horizontal components of velocity, respectively; and (g,h) the dissipation rates of kinetic energy
ε and scalar variance χ , respectively. The stable filaments from panel (c) are overlaid on panels (d– f ) for
reference. The contours coloured green in panels (c– f ) and white in panels (g,h) correspond to those plotted
in figure 1(b,d), marking the stable interfaces separating relatively well-mixed density layers. Green crosses
in panels (g,h) indicate examples of locations where χ is locally high, due to the presence of a stable density
interface, without a corresponding increase in local ε.
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Figure 5. Mixing contributions of the vortex and stable interfaces. (a) Fractional contributions to the domain
total of the dissipation rates of kinetic energy ε and scalar variance χ , from within the vortex (red), stable
interfaces outside the vortex (dark blue), as illustrated in figure 4(c), and the rest of the domain outside both
the vortex and interfaces (light blue). Histograms of (b) ε, (c) χ and (d) Γ outside the vortex (black), further
split according to whether points are contained within a stable interface (dark blue) or not (light blue). Dashed
lines indicate median values of the respective distributions.

proportional local increase in ε. Such an observation thus raises the question as to whether
these stable interfaces contribute significantly to the total mixing within the domain, in
addition to the mixing occurring in more conventionally studied isotropic overturning
regions (such as the large overturn located in the vicinity of (x, y) = (450, 125) in
figure 4).

We address the question of whether the identified stable filaments contribute
substantially to the total mixing occurring within the domain in figure 5, where we
consider the relative contributions of both the vortex and the isolated stable interfaces to
the domain totals of ε and χ . In agreement with Portwood et al. (2016), despite occupying
less than 10 % of the domain volume, the vortex contributes approximately a third of the
entire domain’s ε and χ (red bars, figure 5a). Outside of the vortex, however, it is the
stable interfaces that play a key role in the overall mixing, contributing

(% in interface) ∩ (% outside vortex)
(% outside vortex)

= 26 %
26 % + 40 %

= 39 % (4.1)

of the total χ outside the vortex, despite appearing unremarkable based on their much
smaller contribution to ε (11 %/(11 % + 55 %) = 17 %). Figure 4( d) thus highlights
a key conclusion of this study: while the concentration of overturned points is most
prevalent within the well-mixed density layers, relatively thin stable interfaces between
such relatively deep layers, which are also correlated with high vertical shear, yield a
crucial component of the bulk scalar mixing rate χ . In particular, figure 5(b,c) highlights
that while these interfaces may be strongly distinguished by their distributions of χ ,
where the median values differ by almost an order of magnitude, they are virtually
indistinguishable based on their distributions of ε. This mismatch between the spatial
distributions of ε and χ results in significantly elevated Γ within the interfaces, well above
the canonical value Γ = 0.2 (figure 5d). It thus appears crucial to consider the independent
information provided by the distributions of ε and χ within a domain when quantifying
mixing, particularly for identifying the locations of the most extreme scalar mixing events.
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5. Discussion

We have considered local correlations between the vertical density gradient ∂ρ/∂z and
the dissipation rates of kinetic energy ε and scalar variance χ to characterize the spatial
distributions of mixing within a forced direct numerical simulation of density-stratified
turbulence. The forcing scheme is found to generate a vertically aligned vortex within
the domain, largely explaining the concentrated ‘patch’ region of vigorous turbulence
reported by Portwood et al. (2016). Outside of the vortex, the flow is characterized by a
layered density profile, with thin, highly stable interfaces separating relatively well-mixed
layers. While a mixing analysis based solely on the identification of local overturning
would deem the well-mixed layers to be of primary importance, as in the identification
of ‘intermittent layers’ with elevated ε by Portwood et al. (2016), we have demonstrated
that a significant fraction of χ is localized to the edges of such layers, within the stable
intervening interfaces. Notably, these interfaces appear unremarkable if looking at ε alone
(see figure 5b), emphasizing the importance of χ as an independent indicator of local
mixing. A number of other studies have also highlighted that significant mixing rates
may be found in regions devoid of local overturning, emphasizing the importance of
considering other mixing mechanisms present within stratified flows. For instance, by
considering a different class of forced direct numerical simulations to those analysed here,
Basak & Sarkar (2006) demonstrated that horizontal shear is able to generate a complex
pattern of vorticies which efficiently mix the density field without local overturning. A
striking experimental demonstration of dye being transported across stationary, highly
stable density interfaces has been demonstrated by Oglethorpe, Caulfield & Woods (2013),
where a ‘scouring’ rather than overturning dynamic generates the mixing. As the flux
coefficient Γ = χ/ε has been found to strongly depend on the time history of a turbulent
event (Mashayek et al. 2021), it would be instructive to now consider the time evolution
and formation of the stable interfaces identified in our study, characterized by strongly
elevated Γ . For instance, as the density interfaces are correlated with regions of high
vertical shear, it is conceivable that they might be remnants of the previous collapse of
shear-induced billows that are now only visible in signals of χ but not ε, as coined ‘fossil
turbulence’ by Nasmyth (1970).

Our findings have two potential implications for the parametrization of ocean mixing.
First, our analysis highlights the importance of adequately sampling rare, yet extreme
mixing events in a turbulent flow, as was also recently discussed by Cael & Mashayek
(2021). In agreement with the analysis of oceanographic data by Couchman et al. (2021),
figure 2(d) demonstrates that although the majority of the domain indeed appears to
be well characterized by the canonical flux coefficient Γ = 0.2, significantly elevated
Γ is associated with the most extreme events in χ , events that are not reflected by a
corresponding local increase in ε. Given the current relative sparsity of measurements
within the ocean, mixing parametrizations may thus be biased towards the most commonly
measured events, which are not necessarily the most significant. Second, even with
perfect sampling, different proxies for mixing are likely to yield contrasting predictions
for the amount and spatial distribution of mixing within the highly anisotropic layered
flow considered here. For example, if measurements of χ were not available, the stable
filaments at the edges of the overturning layers (figure 4d) would appear unremarkable, as
they appear locally quiescent based on their density gradient and are not correlated with
any discernible increase in ε. Further, given the strong spatial variability of Γ within the
vertically layered flow (see figure 5d), it is unclear what value of Γ should be used in the
method of Osborn (1980) if trying to infer a flux from values of ε measured directly by a
microstructure profiler or derived from a Thorpe overturning analysis.

961 A20-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.253


M.M.P. Couchman, S.M. de Bruyn Kops and C.P. Caulfield

As discussed by Caulfield (2021), an accurate parametrization of the flux coefficient
Γ is likely to depend on multiple dimensionless groups characterizing the underlying
flow, such as the buoyancy Reynolds number Reb, Froude number Fr and Prandtl number
Pr. For instance, DNS studies have demonstrated that bulk-averages of Γ decrease with
increasing Pr (Salehipour, Peltier & Mashayek 2015) and decreasing Fr (Maffioli et al.
2016). A promising future direction of inquiry would be to try and rationalize such
variations in Γ in terms of differences in the prevalence and structure of smaller-scale
extreme events within the flow, such as analysing changes in the morphology of the stable
filaments considered here. It would also be instructive to extend our analysis to simulations
of decaying turbulence which also develop layered structures (de Bruyn Kops & Riley
2019) to establish whether the spatial distribution of mixing events observed here changes
significantly in forced versus unforced scenarios.

Finally, following Portwood et al. (2016) and typical oceanographic measurements, we
have here primarily relied upon the local density gradient ∂ρ/∂z to inform our analysis of
spatial mixing patterns. However, there are likely more optimal flow variables, or linear
combinations thereof, that could lead to a more robust segmentation of the turbulent
domain into distinct regimes. For example, one could imagine constructing more insightful
indicator functions of mixing from components of the velocity gradient tensor ∂ui/∂xj,
as suggested by de Bruyn Kops et al. (2019). Applying data-driven techniques, such
as unsupervised clustering or dimensionality reduction, to the wealth of observational,
experimental and numerical stratified turbulence data currently available has the potential
to discover automatically optimal mixing indicators free of human bias. Such an analysis
would hopefully further our understanding of the dominant mixing mechanisms present in
different flow regimes, along with their prevalence, guiding the search for a more universal
and accurate mixing parametrization.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.253.
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Appendix. Thresholding of stable filaments

The stable filaments (black) plotted in figure 4(c) were extracted by identifying points
within the bottom (most stable) q = 15 %, by volume, of the Gaussian-filtered distribution
of the density gradient ∂ρ/∂z (figure 4b). We here briefly consider how changing this
thresholding percentage q influences the characteristics of the extracted stable structures.

In figure 6, we plot the stable structures that are identified by varying the percentage
q from 5 % to 30 %. As q is increased, meaning that more points in the stable tail of the
filtered ∂ρ/∂z distribution are considered, the identified stable structures are found to grow
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discussion in § 4). The filaments detected using values of q between 5 % and 30 % are shown in panels (a– f ),
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Figure 7. Percent contributions of ε and χ contained within the stable interfaces identified in figure 6,
normalized by the domain totals outside of the vortex, as a function of the thresholding percentage q. The
statistics at q = 15 % correspond to those presented in figure 5(a), noting that in figure 5(a) the contributions
are normalized by the total domain including the vortex.

primarily in the horizontal direction, tracing out more of the stable interfaces identified by
the green contours from figure 1(b,d). Figure 6 thus highlights that the magnitude of the
vertical density gradient along such stable contours is not uniform, with certain segments
having stronger gradients (as identified by using a smaller q) and thus being characterized
by a larger local χ .

It is also natural to consider how the mixing statistics presented in figure 5(a) depend
on the thresholding percentage q. In figure 7, considering only the computational domain
outside of the vortex, we plot the percent contribution of the extracted interfaces to ε and
χ , as a function of q. The points at q = 15 % correspond to the statistics presented in
figure 5(a), noting that in figure 7, the percent contributions are normalized by the domain
total outside the vortex, and not the entire domain including the vortex as in figure 5(a).
Figure 7 demonstrates that over a wide range of threshold percentages q, the identified
stable filaments always contribute over twice the amount of χ as compared to ε.
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