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MOTION OF MOVING BOUNDARIES
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Abstract

In a recent paper the authors give upper and lower bounds for the motion of the moving
boundary for the classical Stefan problem for plane, cylindrical and spherical geometries.
On comparison with the exact Neumann solution for the plane geometry and no surface
radiation the bounds obtained are seen to be quite adequate for practical purposes except
for the lower bound at small Stefan numbers. Here improved lower bounds are obtained
which in some measure remove this inadequacy. Time dependent surface conditions are
also examined and the new lower bounds obtained for the classical problem are illustrated
numerically.

1. Introduction

A number of important problems in metallurgy and chemical engineering involve
unknown moving boundaries. In a recent paper [2] we have shown that the
motion of the moving boundary for problems arising in the freezing or chemical
reaction of spheres, cylinders and slabs can be bounded above and below. These
results are achieved by utilizing an integral formulation of the problem and
establishing the pseudo steady state solution for the temperature (concentration)
as an upper bound to the actual temperature (concentration). For large Stefan
number a, the bounds obtained in [2] are adequate as simple engineering
approximations. However in the steel industry, for example, the relevant value of
the Stefan number is approximately 0.25 and therefore it is desirable to obtain
more accurate bounds for small Stefan numbers. Further if we compare the
numerical results from [2] for the case for which the exact Neumann solution is
available then it becomes apparent that the lower bound is a considerably less
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166 James M. Hill and Jeffrey N. Dewynne [21

tight bound on the actual solution than is the upper bound. The purpose of this
paper is to extend the results in [2] by improving the lower bound for the motion
of the moving boundary.

In nondimensional variables the classical Stefan problem with Newtonian
cooling on the surface of an infinite half-space (-00,1), an infinite circular
cylinder or a sphere can be formulated as follows:

3c 32c X 3c

c(l, t) + p^(l, t) = 1, c(R(t), t) = 0, (1.2a,b)

^ l , (1.3)

where c(r, t) and R(t) denote the nondimensional temperature (concentration)
and the position of the moving boundary at time t respectively. The constants a
and /} are respectively positive and non-negative, and X is 0, 1 or 2 for the
half-space, cylinder and sphere respectively. It is important to note that the
problem is nondimensionalised such that 0 < c(r, t) < 1. The only exact solution
for the above problem is the classical Neumann solution for /? and X zero, which
is given by

where y satisfies the transcendental equation

a(7,y/2)1/2exp(Y/2)erf[(y/2)1/2] = 1. (1.5)

Of particular practical interest is the time tc for the moving boundary to reach the
origin (R(tc) = 0) which we refer to as the time to complete reaction. For the
half-space this definition is of course artificial but is nevertheless useful for
comparison purposes.

In the following section we summarise the main results of [2], but utilising the
function Kx(x, y) defined by (2.1) which avoids repeating similar formulae for
the three geometries considered. As far as the authors are aware this function has
not been employed previously. In Section 3 we outline the procedure for the
determination of the improved lower bounds to the motion of the boundary. In
the section thereafter we summarise the results obtained for the new lower bounds
for the three geometries. In Section 5 we describe how the procedure may be
adapted to obtain bounds for the classical Stefan problem with a time dependent
surface condition of the form (5.1). Numerical results are given in the final
section. Finally in this section we refer the reader to Davis and Hill [1] for
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references specifically relating to the above problem. Fo r more general moving
boundary problem references the reader may consult Rubinstein [6], Ockendon
and Hodgkins [5] and Wilson, Solomon and Boggs [7].

2. Summary of known results

The results obtained in [2] can be summarised most compactly in terms of the
function

Kx(x,y)=fz-xdZ. (2.1)
y

As described in [2] we find that c(r, t) satisfies the integral equation

dtJRU)

while the motion of the moving boundary is determined from

t = C ZX[P +Kx{\,Z)][a +c{Z,t)]dZ- (2.3)
JR(t)

We remark that from (2.3) and the inequalities 0 < c(r, t) < 1 we have im-
mediately

aEx(R) < t < (a + 1)2A(/?), (2-4)

where the function 2A(/?) is defined by

In the above terminology the standard pseudo steady state approximation to
(1.1)—(1.3) can be shown to be given by

We remark that strictly speaking in (2.6) we should distinguish the pseudo steady
state motion Rpss(t) defined by (2.6b). However in the following we need to refer
to the pseudo steady state concentrat ion and motion as functions of the actual
mot ion R(t), and therefore we dispense with the distinction. In [2] we show that

0*c(r,t)<Cpa(r,R), (2.7)

so that from (2.3) and (2.7) we obtain

[fi + Kx(l, Z?)]"1 C £x[/? + Kx(l, Z)] KX{Z, R) dZ-
JR

(2.8)
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It is interesting to note that for the three geometries considered the upper bound
in (2.8) improves that of (2.4). However for the cylinder and the sphere the upper
bounds from (2.8) and (2.4) for the time to complete reaction actually coincide.
This leads the authors to suspect that the upper bounds for tc obtained in [2] are
probably as good as can be achieved from simple considerations. From (2.4) we
find that

"(1 + 2)8)
2(X + 1) c "

(a + 1)(1 + 2j8)
(2.9)

and (2.8) yields the same result for cylinders and spheres while for the infinite
half-space we obtain

aQ_+2fil a( l + 2)8) (1 + 3/?)
2 *'«=* 2 + 6(1 + /?)

(2.10)

and the upper bound in (2.10) is an improvement on that in (2.9) for X = 0. From
the exact solution (1.4) for /? = 0 and (2.10) we have

o^y-^o + l, (2.11)

where y is a root of (1.5). These inequalities can be proved analytically and
inspection of Table 1 verifies them numerically. From Table 1 it is also apparent
that for small values of a the lower bound is considerably less tight a bound than
is the upper bound.

Lower
Bounds

o

0.20

0.25

0.50

1.00

2.00

5.00

10.00

50.00

100.00

500.00

(6.1a)

0.33

0.38

0.65

1.15

2.16

5.16

10.17

50.17

100.17

500.17

(6.1b)

0.33

0.38

0.62

1.12

2.12

5.11

10.11

50.11

100.11

500.11

Exact
Solution

y-1

0.45

0.50

0.78

1.30

2.31

5.33

10.33

50.33

100.33

500.33

Upper
Bound

« + i
0.53

0.58

0.83

1.33

2.33

5.33

10.33

50.33

100.33

500.33

TABLE 1. Demonstration of the validity and utility of bounds with exact solution for X = 0 and
j8-0.
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In attempting to improve the lower bound for the motion the most obvious
approach, at first sight, is to use the inequality

-ak(t)RxKx(r,R)^c(r,t), (2.12)

which follows immediately from (2.2) on performing the time differentiation and
noting that dc/dt is positive. This approach involves at some stage obtaining a
lower bound for the velocity -R(t) which appears to be a nontrivial problem. The
procedure adopted here is essentially one of the techniques employed by Glasser
and Kern [3] for half-space problems, although because of different notations and
terminology this correspondence is not immediately apparent. We also remark
that an alternative proof of the right-hand inequality in (2.7) is given in [4] using
Green's functions for the spatial operator in the diffusion equation.

3. Improved lower bounds

In this section we describe in general terms the procedure for obtaining
improved lower bounds while in the following section we detail specific results for
the three geometries considered. We need the inequality

Rk[fi + K { %

which follows from (2.5) and (2.6b) and differentiating (2.3) with respect to t and
again noting that dc/dt > 0. From (2.2) and (2.3) we have

if^ [P + * A ( 1 , O ] * A ( « , U ) [ « + c{r,, t)] </TJ</«,(3.2)

which, upon integration yields
,2

y-/o'

f f ( ) [ x ( 0 ] x U , - n ) [ a + c(r,,t)] d V d l (3.3)
R JR

For the first integral in (3.3) we have using (3.1)

l l ^ l (3.4)

while for the double integral in (3.3) we may use c(r, t) > 0 so that altogether we
obtain

'pssV(R) + 2a f f tt-n)X[{i + Kx(l, 0 ] KX(S, r,) dr, rff (3.5)
JR JR
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170 James M. Hill and Jeffrey N. Dewynne [6]

Since the integrand is a positive function it is apparent that (3.5) is an improve-
ment on the lower bound given in the previous section.

In principle we may continue this process. However successive bounds, al-
though always providing an improvement on tpss(R) do not always generate
tighter bounds than the previous one. On utilising (2.2) a further integration of
(3.3) yields

+ af'ff'f p
J0 JR(T) JR(T)

[ f [ n [ A ]
JR JR JR

(3-6)

which on using (3.1) and c(r, t)> 0 gives

£ f f*
+ 6af f* f (Stf)x[p + Kx(l,S)]Kx(S,r,)Kx(i,l;)dSdi,dS. (3.7)

JR JR JR

From numerical values for the bounds for tc obtained from (3.5) and (3.7) with
R = 0 given in the final section, it is apparent for all but the smallest values of a
and /? that (3.7) gives an inferior result to that obtained from (3.5). We might
expect this phenomenon since the amount 'given away' by inequality (3.1) would
eventually exceed the improvements obtained by substituting (2.2) at each step.

4. Formulae for various geometries

From (2.1), (2.2) and (2.6b) we find that (3.5) yields the following improved
lower bounds for the motion of the moving boundary. For plane, cylindrical and
spherical geometries we obtain respectively,

t2 > ^ ( 1 - R)\l + 20- R)2 + £ ( 1 - R)\l + 4fi-R) (A = 0),

(4.1)

t2 > ^ [ ( 1 + 2fi)(l - R2) + 2tf2log J?]2

+ ^ [ ( 1 - R2)(l + 4)3 +(5 + 40)R2) + 4R2(2 + 4/8 + R2)logR]

(A = l) , (4.2)
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t2 > ̂ ( 1 - *)2[(1 + 2jB)(l + R) + 2(/8 - I ) * 2 ] 2

+ ^ ( 1 - R)3[(l - R)(l + 4R) + 4/3(1 + 3R + R2)] (X = 2).

(4.3)

Similarly (3.7) simplifies to yield,

-~(l-R)\l + 6fl-R) (\ = 0), (4.4)

a2 r 2

1152 L ^

- 6 ( (

384

- D((72^2 +

+ (180)8

19 + 24)8)/?'

6)8((1 - * 2 ) l

114/8+ 19)/?4

2 + 114)8 + 19) A2

' + 72)8(1 + )8)/?2

+ 72(3(1 +

{R4 + 10/?2 + 1) +

-4(9)8

- 9 ( 1 H

2)8) +

12(R2

2 + 12)3 + 2))

h4/?))/?2log«

/?2)tf4(log/?)2]

+ l)R2\ogR)]

( A - l ) , (4.5)

2 | g V1 " / IV-1- ' "h" >\* • " / ' "VA* 1 / " J

840 v

+ 6)8(1 - /?)(7/?3 + 16R2 + 10/? + 2)

+ 702(3/?4 + 12/?3 + 10/?2 + 4R + 1)]

(4.6)
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For the time to complete reaction tc we find from (4.1), (4.2) and (4.3), with R
zero, that the first improved lower bound for the three geometries can be
summarised by the following formula,

/«(i + 2 / m «(I + 4/Q
c>\ 2(A + 1) ] + 4 ( A + l ) ( \ + 3 ) - K }

The general formula for the improved lower bound for tc resulting from (4.4),
(4.5) and (4.6) is not as apparent as (4.7). However from (2.1) and (3.7), with
arbitrary A, we may show directly, after a long calculation, that

2(X + 1) J

1 -I- fiR -4-
8(A + 1)2(A + 2)(A + 3)(A + 5) I (A2 + 5A + 10)

(4.8)+
8(A + l)(A + 3 ) (A+5) '

and this result is in agreement with those obtained from (4.4), (4.5) and (4.6), with
R zero.

5. Time dependent surface conditions

In this section we consider the problem (1.1), (1.2) and (1.3) with (1.2a)
replaced by

c(l,r)+ /*f£(l, 0 = / ( 0 , (5-1)
where/(/) is assumed to be a positive monotonically increasing function of time.
For this problem (2.2) still holds, but (2.3) is replaced by

g(t)=f e[p + Kx{l,i)][a + c(i,t)]dS, (5.2)

where g(t) is defined by

g ( 0 = / 7 ( T ) « * T . (5.3)

Upper and lower bounds for the motion of the boundary obtained from (2.7) and
(5.2) are given in [2] for the sphere. In the general notation of this paper g(t) and
g(tc) are bounded above and below by precisely the upper and lower bounds in
(2.8) and (2.9) respectively.
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191 Lower bounds of moving boundaries 173

In order to deduce an improved lower bound for the motion of the boundary,
we have from the time derivative of (5.2) and the assumed monotonicity of f{t)

-aR(t)R*[p + Kx(l, R)] </(r) «/(fc), (5.4)

and therefore that

Thus proceeding as in Section 3 we have in place of (3.5)

* ( T > d r

o
(5.6)

This equation represents the appropriate generalization for obtaining improved
lower bounds with a time dependent surface condition. However the problem of
whether (5.6) represents an improvement on g(t) > a2x(R) will in general
depend on/(?), a and /?.

For example for/(f) = t we have from (2.9) that the pseudo steady state lower
bound for tc is given by

J • p - ]

However from (5.6) we have

which, depending on the values of a and $ may or may not yield an improvement
on (5.7).

6. Discussion and numerical results

For the plane geometry (X = 0) with /} zero we may compare the improved
lower bounds of Section 4 with the exact solution (1.4). From (1.4b) and (4.1) and
(4.4) with /? zero we obtain respectively the inequalities

^f, (6.n.b)
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which are verified numerically in Table 1. It is apparent from Table 1 that the
new lower bounds (4.1) and (4.4) are both significant improvements on the
existing pseudo steady state estimate. It is also apparent that the second improve-
ment (4.4) for the given values of a is inferior to the first improvement given by
(4.1). It is perhaps worth noting that the constants appearing in the sequence of
bounds (6.1) are the same constants arising in the expansion (1.5) of a"1 in
powers of y, namely

15 105 (6-2)

I n f a c t w e m a y s h o w b y i n d u c t i o n f o r /} a n d X z e r o t h a t f o r a n y « > l w e h a v e

so that in particular for any n > 1 we have

However numerical results indicate that successive bounds generally decrease
with increasing n. That is, for all but the smallest values of a, n = 2 gives the
tightest lower bound. Thus even if corresponding general bounds for X = 1, X = 2
and /? nonzero could be established there is no reason to believe these would
substantially improve the results given in Section 4.

Tables 2 and 3 give numerical values of the various upper and lower bounds for
the times to complete reaction for the cylinder and sphere, respectively, for

a

0.01

0.10

0.50

1.00

2.00

5.00

10.00

50.00

100.00

500.00

Lower
Bounds

(2.9)

0.01

0.08

0.38

0.75

1.50

3.75

7.50

37.50

75.00

375.00

(4.7)

0.04

0.15

0.47

0.85

1.60

3.85

7.60

37.60

75.10

375.10

(4.8)

0.06

0.14

0.43

0.80

1.55

3.80

7.55

37.55

75.05

375.05

Upper
Bound

(2.9)

0.76

0.83

1.13

1.50

2.25

4.50

8.25

38.25

75.75

375.75

TABLE 2. Upper and lower bounds for time to complete reaction for \ = 1 and 0 =
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a

0.01

0.10

0.50

1.00

2.00

5.00

10.00

50.00

100.00

500.00

Lower
Bounds

(2.9)

0.01

0.05

0.25

0.50

1.00

2.50

5.00

25.00

50.00

250.00

(4.7)

0.03

0.10

0.32

0.58

1.08

2.58

5.08

25.08

50.08

250.08

(4.8)

0.04

0.11

0.30

0.54

1.04

2.54

5.03

25.03

50.03

250.03

Upper
Bound

(2.9)

0.51

0.55

0.75

1.00

1.50

3.00

5.50

25.50

50.50

250.50

TABLE 3. Upper and lower bounds for time to complete reaction for X = 2 and /? = 1.

various values of a. It is apparent from these tables that for all but the smallest
values of a the first improvement given by (4.7) is superior, as a lower bound, to
the second improvement given by (4.8). This is also the case for the plane
geometry with /} nonzero.

Finally we remark that the procedure described here is not effective for
problems with nonlinear diffusivity. For this case we refer the reader to the
bounds obtained in [2] for the nonlinear diffusivity problem with no radiation
(0 = 0).
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