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On the transcendency of the solutions

of a special class of

functional equations

Kurt Mahler

Let a{z) and b{w) be two rational functions in z or W

with algebraic coefficients, where a(0) = 0 and let

fl for n = 0 ,

b(u, n) = j
[b{w+l)b{w+2) ... b(w+n) for n > 1 .

Assume that 0 < \z\ < 1 , that s is not a pole of a\z for

n 5 0 , that W is neither a pole nor a zero of b(w, n) for

n 5 1 , and that the series

f{z, w) = ; a\z \b(w, n)
n=0 *• '

for fixed W is a transcendental function of z . Then, if z

and W are algebraic numbers, f(z, w) is a transcendental

number.

In several papers of almost half a century ago (Mahler [J35 [ 2 ] , [ 3 ] ;

see also Mahler [4]) I studied the transcendency of the solutions of a

general class of functional equations in one or more var iables . In the

case of one var iable , these functional equations were of the form
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390 Kur t Mahler

a (z)+a (z)f{zg)+...+a (z)f{z9)
f{z) = -5 i £

(< 7) { g Y

where g - 2 and r are integers such that 1 - r 2 ^-1 , and the factors

a.{z) and b.(z) are polynomials in z with algebraic coefficients. By
d 0

way of example, the results of this work implied the transcendency of the

series

n=0 2.2'
= i , 2 , 3 , . . . :

for a l l algebraic numbers s satisfying 0 < | s | < 1 , hence for z = —r-2-

the transcendency of

L n\ \K - 1, d, 3, . . . )

n=0 *• 2 '

where F denotes the wth Fibonacci number.

Recently, Mignotte [5] has proved that also the series

\n\.F
„ I .n

n=C
F [n\.F I"

is transcendental. His proof is based on Schmidt's deep generalisation of

Roth's Theorem (Schmidt [6]), and this new result of his is not contained

in my old theorems.

I have therefore recently extended my old method, but in the present

paper I restrict myself to a special case. The new method can almost

certainly be much generalised, and i t would have interest to investigate

such generalisations and in particular to work out the extension to an

arbitrary number of variables.

I deal here only with functions f{z, w) which satisfy the functional

equation

f{z, w) = a{z) + b(w)f{z2, w+l) .

Here a(z) $ 0 and b(u) £ 0 are two rational functions in z or w
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Transcendency 39 I

with algebraic coefficients, and the method requires that a(0) = 0 . On

putting

b{w, 0) = 1 , b{w, n) = b{w+l)b(w+2) . . . b{w+n) for n = 1, 2, 3, . . . ,

the functional equation has the convergent solution

f{z, w) = y, a\z \b{w, n)
n=0

whenever 0 < \z\ < 1 , a is not a pole of any function a\z , and w

is not a pole of any function b{w, n) . If W is a zero of one of the

functions b{w, n) , the series breaks off after finitely many terms;

this trivial case is therefore also excluded. Let now (3, w) be a pair

of algebraic complex numbers satisfying these restrictions, and assume in

addition that this pair is such that /(£, w) is a transcendental function

of the variable c; . Then the new method allows to prove that the function

value f{z, w) is transcendental. In the special case when

a{z) = Z p and b{w) = —
1-3

and when s and W have the algebraic values

a = ~ and w = 0 ,

this result immediately gives the theorem by Mignotte.

1 .

Throughout this paper, 3 and W are two complex variables, and

a{z) \ 0 and b{w) \ 0

are two rational functions which, for the present, may have arbitrary

complex coefficients. We define a sequence of rational functions b(w, n)

b(w, 0) = 1 , b{w, n) = b(w+l)b(w+2) ... b(w+n) for n = 1, 2, 3, ... ,

and a function f{z, w) by

00 ( ^

(1) fiz, w) = £ a\z \b{w, n) .
n=0 *• '
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392 Kur t Mahler

The convergence of t h i s ser ies will be assured by the following

assumptions.

(A) a(0) = 0 , and z is not a pole of any one of the functions

a I s I ( n = 0 , 1 , 2 , . . . ) .

(B) w is not a zero or a pole of any one of the functions

b(w, n) [n = 1, 2, 3, . . . ) .

By the f i r s t assumption, a{z) can be written as a power series

00

(2) a{z) = X k.z3

J=l °

which converges for | a | < |^ | where C, is a pole of a(z) closest to

the origin or i s the point at inf ini ty if a{s) i s a polynomial. From

t h i s representation i t follows that i f | z | < 1 and n •*•<*>,

a\z
2

= 0 z
,2

On the other hand, by the res t r i c t ion (B), b(w, n) remains f in i t e for a l l

n , and as n -*• °° does not become larger in absolute value than a constant

power of n . I t follows that the series ( l ) converges in a neighbourhood

of 3 = 0 .

Now, from ( l ) , f{z, w) sa t i s f ies for every posit ive integer N the

functional equation

#-1 ( p«i
(3) f(z, w) = Y_ a\zd \b(w, n) + b(w, N-l)f

n=0 *• 'n=0

By means of t h i s equation, f(z, w) can be continued into the whole of

| a | < 1 as a meromorphic function, with poles at the poles of the

functions T J •
Since W by (B) is not a zero of one of the functions b{w, n) , the

series (l) does not break off after finitely many terms, which would have

meant that f{z, w) was a rational function of z . We require a stronger

restriction.
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Transcendency 39 3

(C) If w satisfies the condition (B), then f(z, w) is a trans-
cendental function of z .

2.

By means of the series (2), it follows from (l) that

co oo n .

n=0 3=1 3

and hence that

CO

ih) f(z, w) = £ Fj(w)z3 ,

where the new Taylor coefficients F.{w) are rational functions of w
3

given by

with the summation extending over all pairs of integers r, s such that

r 2 1 , s 5 o , 2Sr = j .

More generally, let k be any non-negative integer. Then f(.z, w)
can be written as a power series

CO

f(z, u)k = I F.Aw)z3' .
3=0 J

Here, for k = 0 ,

for fc > 1 and 0 5 j 5 fe-i ,

and for j 2: k 2 1 ,

( 5 ) F . , ( w ) = y ^ A . . . A b [ w , s ) . .. b ( w , s - , )

with the sijimaation extended over all sets of 2k integers r , ..., r, ,
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394 K u r t M a h l e r

s , . . . , s,, which satisfy the conditions

(6) rx > 1, . . . , rk > 1 , s1 > 0, ..., sk > 0 ,

S l sk
2 \ + . . . + 2 \ = 3

Thus all Taylor coefficients F.Aw) are rational functions of w .

It has advantages to define F .Aw) also for J < 0 by putting

(7) Fjfe(w) = ° i f 3 < 0 -

3.

Next l e t m be a posi t ive integer, and le t

C = { e ^ } {h, k = 0, 1, . . . , m)

o

be a set of (m+X) unknowns which will soon be selected.

We form the polynomial

(8) r{z, w) = y I c,,znf{z, wf
h=o k=0 nK

in s and f(z, w) with C as the set of coefficients. It can be

written as a power series

(9) Hz, w) = Y RAw)zJ .
3=0 J

Here, by the power ser ies for f(z, w) ,

mm™ , .
r(z,w)=l I I a kF Aw)zh+3 ,

h=o k=0 3=0 H 3K

whence

(10) RAW) = I I oh]F (W) .

In the sum on the right-hand side, the convention (7) i s applied for
h > j .
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Transcendency 395

These formulae show that the Taylor coefficients R-(w) of r ( s , u)
3

are linear forms in the (m+l) elements of C , with coefficients that

are rational functions of W .

Consider now the system of (m+l) - 1 homogeneous linear identities

(11) R.(w) = 0 for j = 0, 1, ..., (m+l)2-2 .
3

Since the number of identities is smaller than the number of unknowns

o
a., , we can find (m+l) polynomials

° h k ~ c h k ^ W ^ ^h' k = ° ' l j •"•' "^

of w not all -identically zero so as to satisfy all the identities (11).

Now, by hypothesis (C), f(z, w) is a transaendental function of z .

This implies that r(z, w) as just chosen cannot vanish identically in

z . Hence not all the coefficients R .(w) are zero identically in w .

3
There exists thus a smallest suffix M such that

(12) RM(w) | 0 ,

and here necessarily

(13) M 2 (m+l)2 - 1 .

With this definition of M ,

00

Hz, w) = RM(w)zM + T R.(w)zJ .
M j=M+l 3

4.

From now on let s and W have fixed values where

0 < |3| < 1 ,

and where z and w satisfy the conditions (A) and (B).

Denote by N a large positive integer and by e, , c , a , ...

positive constants which are independent of N , but may depend on z, W ,

and m .

https://doi.org/10.1017/S0004972700024643 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024643


396 K u r t M a h l e r

The preceding formula for r(z, w) implies that

!

N \ N °° N.

s2 , W+N] = R {W+N)z2 M + Y, R-(w+N)s2 °' .

Here , by ( 1 0 ) ,

m m
(15) R.(w+N) = Y, T c.Aw+N)F. , Aw+N) ,

3 h=0 k=0 hli J-h>k

and by ( 5 ) ,

(16) F j k { w + N ) = y - A r ••• A r h(W+N' s l ^ ••• b ( W + N > s l J '

where the summation i s as in (6).

Since a(z) i s regular in a cer tain neighbourhood of z = 0 and

vanishes at t h i s point , there exis ts a posit ive constant e, independent

of z, w , and m such that the Taylor coefficients A. in (2) sat isfy
3

the inequalities

(IT) \Aj\ 2 o{ U = 1 . 2 , 3 , . . . ) .

The summation conditions (6) imply that in (l6),

(18) r + . . . + r~ S j and max [s^, ..., s, ) 2 J-l

where J is the function of j defined by

log ,7J = + 1 .
log 2_

Further the number of terms in (16) does not exceed

because each of the suffices r^, . . . , r. has at most j possibilites and

each of the suffices s . , . . . , s, at most J .

These properties enable us to determine an upper estimate for the

right-hand side of (16). Firstly, by (17) and (18),

... A
r s a

,3
1 "
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Next, there evidently exist two positive constants o^ and a such

that for all n i 0 and for al l sufficiently large positive integers N ,

o
\b(w+N+n)| < a (N+n) J .

Since

b(w+N, n) = b(w+N+l)b(w+N+2) ... b(w+N+n) ,

t h i s means that

an
\b(w+N, n)\ * c"{N+n) i ,

and since in (16) a l l the integers s . , . . . , s, ' are less than J , that

-j a kJ
\b{w+N, s j . . . b[w+N, sk)\ S a^{N+J) J

It follows therefore from (l6) that

(19) \Fjk(w+N)\ 5 UJ)k.c(.cf(N+J) 3 .

Since (l6) was proved under the restriction that j - k - 1 , to begin with

the same restriction holds for this estimate. But in fact it holds also in

the excluded cases since then F .-.(w+N) is either 0 or 1 .

5.

An upper estimate for the coefficients R .(.W+N) in (lU) is now easily

J
obtained. In the formulae (15) the coefficients e,,(w+N) are fixed

polynomials in w+N which depend only on m . Hence two further

posit ive constants Cv and e_ exist such that for a l l sufficiently large

H ,

\chk(w+N)\ 5 ckN
5 (h, k = 0, 1, . . . , m) .

On combining this with the formulae (15) and (19) i t follows then that

(20) \R.(W+N)\ 5 ' — n i - « •> /^-.•T^'"„J_^/•»7J.T^ J

3
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This upper bound will be used only for suffices j at least equal to

M , hence, by (13), not less than 3 • For such values of 3 , J is at

least 2 , so that

N+J £ NJ ,

a mJ Q mJ a mJ
(N+J) * £ N 3 J J

Further, by definition,

J = 0(log 3) ,

and therefore

^ -[4-
Hence (20) can be replaced by the simpler estimate

. a logj
(21) \R.(W+N)\ £ oJ

6N ' i f 3 > M

for all sufficiently large N ; here Cr and e are two further

positive constants.

In particular, the rational function R (w+N) of w + N is known not

to be identically zero. It follows that there exist another pair of

positive constants Co and a such that also

(22) N ° £ \RM(w+N)\ £ N
 9

for all sufficiently large N .

6.

We apply now the estimates (21) and (22) to the successive terms on

the right-hand side of (ik). It follows immediately that

j y .

3=M+1

N
3

j=M+l

whence, on replacing 3 by M + 1 + n ,
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N.

log(l+(M/(*KL))) ^

j=M+l

Here

and therefore

n=0 y

as soon as N i s so large that

a,/(AM)

- o

0 6

c /(M+l)
7

i .

Now increase N s t i l l further such that also

l?

Then from (lU) and from the l a s t estimates,

(23) 2*M 2 #
W

provided iV is sufficiently large.

In this formula,

Further by (22), for all sufficiently large N ,

RMiw+N)s
2.2

and therefore

2NM

J

Hence the inequali ty (23) leads to the following basic est imate.
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400 Kurt Mahler

Taere exists a positive integer N depending on z, w , and m ,

such that

(2k) 0 < r\z" , w+N\ | S \z\m "2 for N > NQ .

7.

So far, the method used was analytical, and

z, W , and f = f(z, w)

could assume arbitrary complex values. From now on we add an arithmetical

restriction and make use of number-theoretical ideas.

The new restriction is as follows.

(D) z, w, f j and all the coefficients of a(z) and b{w) are

algebraic numbers.

Now each of the rational functions a(z) and b{w) has only finitely

many coefficients. Therefore (D) requires only that a certain finite set

of numbers are algebraic. Hence the operation of adjoining all the numbers

of this set to the rational number field Q. is equivalent to a simple

algebraic extension of Q. and leads to a certain algebraic number field

K , say of the finite degree d over Q. . Denote by 0 the ring of all

algebraic integers in K .

For every element a of K let

be the set of i t s real or complex algebraic conjugates over Q. , and as

u sual put

[a] = max | a ^ | .
j=O,l,...,d-l

8.

The functional equation (3) can be solved for f\z , W+N\ and allows

us to express this function value in terms of / = f(z, w) as
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N - l ( N,
f - £ a\zd \b(w, n)

n=0 l >

f 2N 1
f\z , w+N\ = b(w, N-l]

We combine this formula with the definition (8) of r(z, w) , but

replace in the latter 2 by 3 and W by W + N . Since e,7> in (8)

a r e now polynomials e , , ( u ) of W , i t follows t h a te, ,

(25)
N N

nb(w, ff-l

n=0
n)

This representation together with the new arithmetic assumption (D) allow

to establish a lower estimate for r \z
2 , W+N\ whitwhich by a suitable

choice of m and N can be made larger than the upper estimate in

so giving a contradiction.

For this purpose we first replace (25) by an equivalent formula in

which the rational functions that occur have been replaced by polynomials,

all with coefficients in 0 .

Since a(z) and b{w) lie in K(z) and K{w) , respectively, these

rational functions can be written as the quotients

_ b'M, . a'(z) ,a(z) = a»/A
 and

of polynomials in z and U , respectively, with coefficients in 0 .

Denote by A the maximum of the degrees of a'(z) and a"{z) , and

similarly by B the maximum of the degrees of b'(w) and b"(w) .

Further put

a"{z, N) =

w=C

and

b'(w, 0) = 1 , b'(w, n) = b'(w+l)b'(w+2) . . b'(w+n)

for n = 1, 2, 3,
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b"{w, 0) = 1 , b"(w, n) = b"(w+l)b"(w+2) ... b"{w+n)

for n = 1, 2, 3, ... ,

so that for all n 2 0 ,

b{w, n) =

These definitions mean that

is a factor of a"(z, N) for 0 2 n 5 tf-1 ,

and similarly that

b"(u, M ) is a factor of b"(w, N-l) for. 0 5 « 5 ff-1 .

Further, by the hypotheses (A) and (B) all the values a"(z, N) and

b"{w, N-l) are distinct from zero.

In this new notation, the formula (25) is now equivalent to

(26) a"(z, N)mb'(w, N-l)mr\z2 ,

= I I chAw+N)z2 ha"{z, N)m-kb'(w, N-l)m~k

^=0 k=0

We have not yet made any statement about the coefficients of the

polynomials o^Aw+N) of w + N that occur in this relation. How, since

a(z) belongs to K(z) , i t s Taylor coefficients A. l ie in K .
3

.Therefore, by (5), the coefficients of the rational functions F.Aw) and

so in particular those of the rational functions F. , Aw) that occur in

J — tl 9K

the system of homogeneous linear identities ( l l) for the polynomials

CfAw) are elements of K . We are thus allowed to assume that the
coefficients of these polynomials a.. Aw) and hence also those of the

polynomials

(27) ahk(-W+N) (h, k = 0, 1, ..., m)
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l i e in 0 , jus t as the coef f ic ien t s of a'(z), a"(z), b'{w) , and b"(w) .

For shortness denote by C the maximum of the degrees of the poly-

nomials (27); t h i s number C depends on m , but not on N .

9 .

Since the three numbers z, W , and / are elements of K , there

ex i s t s a smallest pos i t ive r a t i o n a l integer D such tha t the products

Dz, Du> , and Df

are algebraic integers in 0 .

With this definition of D , all the factors in (26) become elements

of K with denominators that divide certain integral powers of D . Upper

estimates for these powers are tabulated in the following table; the

numbers on the right-hand side are the exponents of D .

a'{z)

a'f/1 4.2*

a"(z) A

A{l + 2 + 2 2

A{2N-1)

b'(w) B

b'(w, n) Bn

b'iw, N-l) SU-I)

b"(w) B

b"(w, n) Bn

b"(w, N-l) BiN-1)

fc"(,f?iV~V where 0 5 n 5 M B(N-l)
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a"(z, N)mb'(w, N-lf Am[2N-l) + Bm(N-l)

N
chk(w+N)3

2 ha"{z, N)m-kb'(w, N~lf-k 2Nm + Am{2N-l) + Bm(N-l) + C

for h, k = 0, 1, ..., m

a"{z, N)b'(w, N-l).f 4(2^-1) + B(N-X) + 1 2A.2N + 2BN

2A.2 + 2BN
for 0 - n £ N-l

By the last two lines,

is an algebraic integer in 0 .

Fur the r fo r h, k = 0, 1, ..., m ,

{2Nm+Am{2N-l)+Bm(N-l)-K:) + k[2A.2N+2BN) < 5Am.2N

for all sufficiently large N , and then naturally also

Am[2N-l) + Bm(N-l) < 5Am.2N .

It follows therefore that the two expressions

(27) r' =V^Am-2\ I I chAw+N)z2\»{z,N)m-h'{w,N-l)m-k*
72=0 *=o " "

and

n=0 v , .., o - , J (w,n)

-2 .a"(z, N)mb(28) r" = D5Am-2 .a"(z, N)mb'{w, A?-l

are algetraic integers in 0 and that
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(29) r\z , w+N\ = pr

Here the assumptions (A) and (B) ensure that

r" * 0 .

10.

As before, we are only concerned with the case when z, W , and m

remain fixed, while N becomes very large. But now z and W are

elements of K , and therefore the new letters a-,n> °-,-i > enp> ••• will

denote positive constants which depend on the d algebraic conjugates of

z , the d algebraic conjugates of W , and on m , but which still are

independent of N . In particular, c and a are the constants at

least equal to 1 which are defined by

c10 = max(l, [F| ) and c = max(l, fu| ) .

If x is any element of K and p(x) any polynomial in K[x] , then

p(x) denotes the jth conjugate of the value p(x) ; it is obtained

by replacing x by x and all the coefficients of p by their jth

conjugate. Hence

[pjxl] = max |p(x)(j'}| .
OSj^d-1

In this notation, the following estimates are easily obtained. In

them, j runs from 0 to d - 1 and n from 0 to N - 1 .

< 2"
- e i o •

5 2N if N > ci;L .

2"
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a"(z,N)

\b'{w+n)\ S

'(u, n)\ 2

, N-l)\ 5

b"(w,N-1)
b"{w,n) 15

i f /V 2 c.
1 1

i f

m =
Hence, for a l l suff icient ly large N , by (27),

'13

C m.2N mN Am{2N-l) Bm(N-l)
#C10 "C13G10 'Clh

17

a n d

'13 10

In these estimates the constant a does not depend on m or

An inspection of the right-hand sides shows therefore that there exis ts a
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positive constant E independent of both m and N such that for al l

sufficiently large N ,

N N
(30) P I 5 f-2 and P I 5 Z'-2 .

11 .

Since v' is an algebraic integer in 0 which does not vanish, its

norm

d-1 . .}

3=0

is a rational integer distinct' from 0 and so has at least the absolute

value 1 . Therefore, by (3.1),

|r'| 2 P]-^-1) > E-(d-l)m.2
N ^

while on the other hand

It follows therefore finally from (29) that

(31)

for all sufficiently large N .

In the opposite direction we found already that

(2U) v\z2 , V+N\\ S \z\m '^ for N> N
0

where 0 < |s| < 1 . Here m was up to now a fixed but otherwise

arbitrary positive integer. We are thus allowed to assume that m is so

large that

\z\n < E~d .

Then

1 . 1 ^ < ^ ,
and hence the two estimates (2k) and (31) contradict each other.
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This contradiction proves that the four hypotheses (A), (B), (C), and

(D) cannot all hold simultaneously. Hence we have proved the following

result.

THEOREM 1. Let a(z) £ 0 and b{w) \ 0 be two rational functions

in z and w with algebraic coefficients where

a(0) = 0 .

Put

b{w, 0) = 1 , b(w, n) = b(w+l)b(w+2) ... b(w+n) for n > 1

and

f{z, w) = I a\z \b{w, n) .
n=0 l >

Assume that if 0 < |s| < 1 , if z is not a pole of any one of the

functions a\z where n 2; 0 , and if w is neither a zero nor a ipole

of any one of the functions b{w, n) where n > 1 , then f(z, w) is a

transcendental function of z .

Then, if z and w still satisfy these restrictions and in addition

are algebraic numbers, the function value f(s, w) is transcendental.

12.

Let us consider one example. Choose

a[z) =
1-z2

and take

r s

r r (w%-i) • FT
p=l V 0=1

1-1

where r and s are arbitrary non-negative integers, and the constants

a and $ are algebraic numbers which, for reasons that will soon become

clear, are assumed to be real. Since in terms of the Gamma function,

r r(u+a ) s r(u+B - l )
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it follows that for n > 0 ,

r
b(w, n) =

Here let w be fixed and not a zero or pole of b{w, n) for any n - 0 .

Then for large n the value of b(w, n) is real if W is real, and it

has a fixed sign. This means that, if 0 < z < 1 , then all terms of the

series f{z, w) have finally the same sign, and hence f{z, w) tends to

plus or minus infinity as z tends to 1 . But then, from the form of the

series, the same is true if z tends radially to a 2 th root of unity

for any positive integer k • These roots of unity lie dense on the unit

circle and so this circle is a natural boundary for f(z, w) , and hence

f(z, w) is a transcendental function of z .

When the numbers w, o. , and $ are not all real, this simple

proof breaks down, and there may possibly be cases when f(z, w) becomes

rational in z .

In any case, on putting w equal to zero which now is not an

essential restriction, we obtain the following result.

THEOREM 2. Let r and s be non-negative integers, and let

a , ..., a 3 B , ..., 3 be real algebraic numbers which are all

distinct from 0 and the negative integers; let further z be any

algebraic number satisfying

0 < |2| < 1 .

Then the infinite series

2n

is a transcendental number.

By way of example, l e t us choose

, = ±f , so that -XIz -

Then, for n 2 1 ,

https://doi.org/10.1017/S0004972700024643 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024643


4 I 0 Kurt MahIer

2n

where F denotes the mth Fibonacci number. Hence Theorem 2 implies the
m

transcendency of the series

r T[a +n) s r (Pa) f "I"1

In the special case when r = 0 , s = 1 , ( 3 = 1 , this result is that "by

Mignotte referred to in the introduction.
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