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An explicit representation for mean profiles and
fluxes in forced passive scalar convection
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We derive explicit formulae for the mean profiles of passive scalars (either temperature
or concentration of a diffusing substance), and their respective wall fluxes (either heat
or mass fluxes), in forced turbulent convection, as a function of the Reynolds and Prandtl
numbers. Direct numerical simulation data for turbulent flow within a smooth straight pipe
of circular cross-section, at friction Reynolds number Reτ = 1140, in the range of Prandtl
numbers from Pr = 0.00625 to Pr = 16, are used to infer the proper analytical form of
the eddy diffusivity. This is leveraged to derive accurate predictive formulae for the mean
passive scalar profiles, and for the corresponding logarithmic offset function. Asymptotic
scaling laws result for the thickness of the conductive (diffusive) layer, and for the Nusselt
number, which significantly extend the predictive envelope of classical formulae.
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1. Introduction

The study of passive scalars within wall-bounded turbulent flows is of significant practical
importance. It has relevance in understanding the behaviour of diluted contaminants and
serves as a model for the temperature field under the assumption of low Mach number
and small temperature differences (Monin & Yaglom 1971; Cebeci & Bradshaw 1984).
However, measuring the concentration of passive tracers and small temperature differences
is challenging, resulting in limited information about even basic passive scalar statistics
(Gowen & Smith 1967; Kader 1981; Subramanian & Antonia 1981; Nagano & Tagawa
1988).

The understanding of passive scalars in turbulent flow primarily focuses on the case
where the Prandtl number (Pr) is approximately equal to 1. The Prandtl number represents
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the ratio of kinematic viscosity to thermal diffusivity (Pr = ν/α). Several studies have
verified the close analogies between the passive scalar field and the longitudinal velocity
field in this case (Kim, Moin & Moser 1987; Abe & Antonia 2009; Antonia, Abe
& Kawamura 2009). However, many fluids, such as water, engine oils, glycerol and
polymer melts, have Prandtl numbers significantly higher than unity, whereas liquid metals
and molten salts can have much lower Prandtl numbers. In the case of diffusion of
contaminants, the role of the Prandtl number is taken by the Schmidt number, which
represents the ratio of kinematic viscosity to mass diffusivity. The typical values of
the Schmidt number in applications are always much higher than unity (Levich 1962).
Under these circumstances, the similarity between velocity and passive scalar fluctuations
is substantially impaired, making predictions of even the basic flow properties quite
challenging.

Concerning wall fluxes, the most robust framework established so far is the work
of Kader & Yaglom (1972). Based on universality arguments, those authors derived a
predictive law for the non-dimensional flux (Nusselt number) as a function of the Prandtl
number. This framework mainly requires modelling the logarithmic offset function, which
is the Prandtl-dependent additive constant in the overlap-layer mean passive scalar profiles.
Despite this solid framework, semiempirical power-law correlations (Dittus & Boelter
1933; Kays, Crawford & Weigand 1980) are still widely used in engineering design.
Regarding the mean profiles of passive scalars, the most detailed study dates back to
Kader (1981), who derived an empirical interpolation formula that connects the universal
near-wall conductive layer with the outer logarithmic layer. This interpolation formula was
found to agree reasonably well with the observed behaviour of the temperature profile in
experiments available at that time.

Pirozzoli (2023) studied the statistics of passive scalars in pipe flow in the range
of Prandtl numbers from Pr = 0.00625 to Pr = 16, using direct numerical simulation
(DNS) of the Navier–Stokes equations, and found that the mean passive scalar profiles
at Pr � 0.0125 exhibit logarithmic overlap layers, and universal parabolic distributions in
the core part of the flow. A model of the eddy viscosity was used to derive semianalytical
predictions (numerical quadrature was required) for the mean passive scalar profiles, and
for the corresponding logarithmic offset function. Asymptotic scaling formulae were also
derived for the thickness of the diffusive sublayer and the heat transfer coefficient, which
are capable of accounting accurately for variations with both the Reynolds and the Prandtl
numbers, for Pr � 0.25. In this paper, we use the same DNS database, with the goal of
deriving fully explicit analytical representations for the mean passive scalar profiles and
the corresponding wall fluxes as functions of the Reynolds and Prandtl numbers. Although,
as previously pointed out, the study of passive scalars is relevant in several contexts, one of
the primary fields of application is heat transfer, and therefore from now on we will refer
to the passive scalar field as the temperature field (denoted as T), and passive scalar fluxes
will be interpreted as heat fluxes.

2. The numerical dataset

Numerical simulations of fully developed pressure-driven turbulent flow in a circular pipe
are carried out at bulk Reynolds number Reb (= 2Rub/ν) = 44 000, with R the pipe radius,
ν the fluid kinematic viscosity and ub the bulk velocity, corresponding to friction Reynolds
number Reτ (= uτ R/ν) ≈ 1140, with uτ = (τw/ρ)1/2 the friction velocity, ρ the fluid
density and τw the wall shear stress. Periodic boundary conditions are assumed along
the axial (z) and azimuthal (φ) directions. The incompressible Navier–Stokes equations
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Mean profiles and fluxes in forced passive scalar convection

Prandtl number Mesh (Nz × Nr × Nφ) Peτ Nu # ETT Line style

0.00625 1792 × 164 × 1792 7.11 8.02 21.3
0.0125 1792 × 164 × 1792 14.2 9.41 23.1
0.025 1792 × 164 × 1792 28.5 12.6 36.0
0.0625 1792 × 164 × 1792 71.1 21.5 23.1
0.125 1792 × 164 × 1792 142.2 34.2 12.9
0.25 1792 × 164 × 1792 284.4 53.8 47.7
0.5 1792 × 164 × 1792 568.8 81.7 20.6
1 1792 × 164 × 1792 1137.6 119.9 38.1
2 3584 × 269 × 3584 2275.2 168.0 14.2
4 3584 × 269 × 3584 4550.4 233.3 10.6
16 7168 × 441 × 7168 18201.6 421.2 9.51

Table 1. Flow parameters for DNS of pipe flow at various Prandtl numbers. Here Nz, Nr and Nφ denote the
number of grid points in the axial, radial and azimuthal directions, respectively; Peτ = Pr Reτ is the friction
Péclet number; Nu is the Nusselt number (as defined in (3.19)); and # ETT is the time interval considered
to collect the flow statistics, in units of the eddy-turnover time, namely R/uτ . For all DNS, Lz = 15R, Reb =
44 000 and Reτ = 1137.6.

are augmented with the transport equation for a passive scalar field (buoyancy effects are
disregarded), with different values of the thermal diffusivity (hence, various Pr), and with
isothermal boundary conditions at the pipe wall (r = R).

The computer code has been described in previous publications (Pirozzoli et al. 2022),
and the DNS database herein considered was presented in detail in a separate publication
(Pirozzoli 2023). A list of the main simulations that we have carried out is provided in
table 1. Eleven values of the Prandtl number are considered, from Pr = 0.00625 to 16.
Note that a finer mesh is used for flow cases with Pr > 1, so as to satisfy restrictions on
the Batchelor scalar dissipative scale, whose ratio to the Kolmogorov scale is about Pr−1/2

(Batchelor 1959; Tennekes & Lumley 1972).
From now on, inner normalization of the flow properties will be denoted with the ‘+’

superscript, whereby velocity is scaled by uτ , wall distance (y = R − r) by ν/uτ and
temperature by the friction temperature,

Tτ = α

uτ

〈
dT
dy

〉
w

, (2.1)

where angle brackets denote averaging in the homogeneous spatial directions and in
time, and the subscript w denotes wall properties. In particular, let θ = T − Tw; then the
inner-scaled temperature is defined as θ+ = θ/Tτ . Hereafter capital letters will be used
to denote averaged flow properties, and lower-case letters to denote fluctuations from the
mean.

3. Analysis

3.1. Mean profiles
Modelling the turbulent heat fluxes requires closures with respect to the mean temperature
gradient (see e.g. Cebeci & Bradshaw 1984) through the introduction of a thermal eddy
diffusivity, defined as

αt = 〈urθ〉
dΘ/dy

. (3.1)
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Figure 1. Distributions of inferred eddy thermal diffusivity (αt) as a function of wall distance. In (a) the
black dotted line denotes αt for the case Reτ = 6000, at Pr = 1 (Pirozzoli et al. 2022), and the grey dashed
lines denote the asymptotic trends α+

t ∼ y+3 towards the wall and α+
t = kθ y+ in the log layer (α+

t = α/ν). In
(b) the dash-dotted line denotes the fit given in (3.2). Colour codes are as in table 1.

Figure 1 shows that the turbulent thermal diffusivities inferred from the DNS data
have a rather simple behaviour. Figure 1(a) shows the near-collapse of all cases to a
common distribution, with the reminder that a log–log scale is used to better bring out the
near-wall behaviour. Cases with Pr � 0.125 fall outside the universal trend, as they show
a similarly shaped distribution of αt, but lower absolute values. In fact, universality in the
zero-Prandtl-number limit cannot be expected, as the turbulent heat flux must eventually
vanish. In agreement with asymptotic arguments (Kader & Yaglom 1972), the limiting
near-wall behaviour is αt ∼ y3. Farther from the wall, there is evidence for a narrow region
with linear growth of αt, as would be the case in the presence of a sizeable logarithmic
layer. As a reference, the distribution of αt at Reτ = 6000 and Pr = 1 is also reported
(black dotted line), which shows that, indeed, the linear region becomes wider at higher Re.
The distributions of αt in the near-wall and logarithmic regions can be closely modelled
using a suitable functional expression, which we assume to have the same structure as the
eddy viscosity considered by Musker (1979), namely

α+
t = (kθy+)3

(kθy+)2 + C2
θ

, (3.2)

where kθ ≈ 0.459 (Pirozzoli et al. 2022), which has the proper asymptotic behaviours

α+
t

y+→0≈ y+3
/C2

θ , (3.3a)

α+
t

y+→∞≈ kθy+. (3.3b)

Figure 1(b) shows that (3.2) with Cθ = 10.0 yields a nearly perfect fit of the DNS data,
with slight deviations at y+ � 10, where in any case the eddy diffusivity is much less
than the molecular one. Whereas alternative functional expressions are possible (Pirozzoli
2023), (3.2) bears the substantial advantage of being amenable to further analytical
developments.

Starting from the (once-integrated) mean thermal balance equation,

1
Pr

dΘ+

dy+ + 〈urθ〉+ = 1 − y+

Reτ

, (3.4)
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Mean profiles and fluxes in forced passive scalar convection

and under the inner-layer approximation (y+/Reτ � 1), one can in fact infer the
distribution of the mean temperature in the inner layer from knowledge of the eddy thermal
diffusivity, by integrating

dΘ+

dy+ = Pr
1 + Pr α+

t
, (3.5)

with αt given in (3.2). The result of the integration is

Θ+ = 1
2kθη0(2 + 3Pr η0)

{
2(2η0 + 3Pr2C2

θη0 + Pr(C2
θ + 2η2

0))

Δ

[
arctan

(
1 + Pr η0

Δ

)

− arctan
(

1 + Pr(2η + η0)

Δ

)]
+ 2Pr(C2 + η2

0) log
(

1 − η

η0

)

+ (Pr(2η2
0 − C2

θ ) + 2η0) log
(

Pr η2 + (1 + Pr η0)(η + η0)

η0(1 + Pr η0)

)}
, (3.6)

where η = kθy+, Δ = (3Pr2η2
0 + 2Pr η0 − 1)1/2 and η0 is the single (negative) real root

of the cubic equation

Pr η3 + η2 + C2
θ = 0, (3.7)

whose exact solution is

η0 = 1
3Pr

(
−1 + 1

z
+ z

)
, z =

[
1
2

(
−2 − 27Pr2C2

θ +
√

−4 + (2 + 27Pr2C2
θ )

2
)]1/3

.

(3.8a,b)
As figure 2 clearly shows, the quality of the resulting reconstructed temperature profiles

is generally very good, with obvious deviations of the outermost region of the flow, which
is not covered by the present analysis, but which could be easily accounted for based on
outer-layer universality arguments (Pirozzoli 2023). Deviations from the predicted trends
are observed at the lowest Prandtl numbers (Pr � 0.125), which, as previously noted,
deviate from the universal trend of αt. The quality of the interpolation formulae provided
by Kader (1981, equation (9), symbols) is overall also good. However, the behaviour in the
buffer layer is somewhat unnatural, and the log-law offset seems to be a bit overestimated.

The solution in (3.8a,b) is not particularly convenient for further developments, and it
is tricky to implement numerically, as it suffers from severe cancellation problems at high
Pr. A much more convenient approximation will be exploited in the following analysis,
based on its expansion in powers of the Prandtl number, which returns the following:

η0 = − 1
3Pr χ

(1 + χ + χ2) + O(χ2), χ = (CθPr)−2/3

3
. (3.9a,b)

The quality of this approximation can be judged from figure 3(a), which shows deviations
of less than 1 % for Pr � 0.1.

An important property to define the behaviour of passive scalars in wall-bounded flows
is the thickness of the conductive sublayer. The latter has been given several definitions
(see e.g. Levich 1962; Schwertfirm & Manhart 2007; Alcántara-Ávila & Hoyas 2021).
However, we believe that the most obvious is the wall distance at which the turbulent heat
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Figure 2. (a) Comparison of mean temperature profiles obtained from DNS (solid lines), with the predictions
of (3.6) (dashed lines) and with Kader’s (1981) empirical fit (circles). (b) A magnified view to emphasize the
behaviour of the low-Pr cases.
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Figure 3. (a) Comparison of the root of (3.7), η0, as obtained from (3.8a,b) (solid line) and from the asymptotic
solution (3.9a,b) (dashed line). The inset shows the relative deviation of the latter from the former. (b) The
predicted thickness of the conductive sublayer (δ+

t = −η0/kθ ) with the exact formula and with the asymptotic
approximation, compared with the DNS data (solid symbols), in which δt is estimated from equality of turbulent
and conductive heat flux.

flux equals the conductive one, which, based on (3.4), occurs when

α+
t (δ+

t ) = 1
Pr

. (3.10)

Assuming the validity of the closure (3.2), we find that δt must satisfy the cubic equation

Pr(kθ δ
+
t )3 − (kθ δ

+
t )2 − C2

θ = 0, (3.11)

hence δ+
t = −η0/kθ . Figure 3(b) shows that this is an excellent approximation of the DNS

data, both when the ‘exact’ formula in (3.8a,b) is used for η0, and when the expansion
given in (3.9a,b) is used instead, again with deviations at low Prandtl number.

As shown in figure 2, the inner-layer mean temperature distributions at Pr � 0.0125
exhibit a near-logarithmic behaviour, namely

Θ+ = 1
kθ

log y+ + β(Pr), (3.12)
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Mean profiles and fluxes in forced passive scalar convection

where β is a Prandtl-dependent offset, whose role is crucial in the estimation of the heat
transfer coefficient (see below). The function β(Pr) can be determined by taking the limit

β(Pr) = lim
y+→∞

(
Θ+( y+) − 1

kθ

log y+
)

, (3.13)

which, exploiting (3.6), yields

β(Pr) = 1
2kθη0(2 + 3Pr η0)

{
2(2η0 + 3Pr2C2

θη0 + Pr(C2
θ + 2η2

0))

Δ

×
[

arctan
(

1 + Pr η0

Δ

)
− π

2

]
− 2Pr(C2 + η2

0) log(−η0)

+ (Pr(2η2
0 − C2

θ ) + 2η0) log
(

Pr
η0(1 + Pr η0)

)}
+ 1

kθ

log kθ . (3.14)

Whereas (3.14) is very accurate, it does not clearly highlight trends with the Prandtl
number. A much simpler and equally accurate formula can then be derived by exploiting
(3.9a,b), and expanding all terms in (3.14) in powers of the parameter χ . After lengthy
developments, the final result is

β(Pr) = 1
kθ

[
2πC2/3

θ

3
√

3
Pr2/3 + 1

3
log Pr −

(
1
6

+ 1

2
√

3
+ 2

3
log Cθ − log kθ

)]

+ O(Pr−2/3). (3.15)

With the assumed numerical values of the constants kθ (= 0.459) and Cθ (= 10.0), (3.15)
becomes

β(Pr) = 12.2Pr2/3 + 0.726 log Pr − 6.03. (3.16)

It is remarkable that a structurally identical formula in terms of Pr dependence was
arrived at by Kader & Yaglom (1972, equation (28)) based on a crude three-layer eddy
conductivity model, which led to

β(Pr) = 12.5Pr2/3 + 2.12 log Pr − 5.3. (3.17)

In this equation, the coefficient in front of the logarithmic term was determined
analytically to be 1/kθ (with kθ = 0.47, hence a bit different than the present), and thus
fundamentally different than in (3.15), where the prefactor of the logarithmic term is
1/(3kθ ). Furthermore, the prefactor of the first term and the trailing additive constant
in (3.17) were determined empirically, by matching the experimental data available at that
time. Equation (3.15) bears the clear advantage that values of all coefficients are given
explicitly, as a function of the single parameter Cθ , which we determined once and for all
by fitting the distributions of the eddy diffusivity inferred from the DNS. All the rest of
the expression is determined analytically.

The variation of the logarithmic offset function with Pr is examined in figure 4. In
figure 4(a) we illustrate the procedure that we have followed in order to obtain estimates
of β(Pr), based on fitting the mean temperature distributions obtained from DNS with
(3.12). Near-logarithmic distributions are recovered for all cases, with the exclusion of the
Pr = 0.00625 case. Figure 4(b) then compares the log-law offset constant inferred from
the DNS temperature profiles with the prediction of (3.15) and with (3.17). The superiority
of the former is quite clear, as (3.15) yields an excellent approximation of β even at Pr � 1,
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Figure 4. (a) Determination of log-law offset function, and (b) its distribution as a function of Pr. In (a) the
dashed lines denote logarithmic best fits of the DNS data, of the form (3.12). In (b) the solid line refers to the
prediction of (3.15), the dashed line to (3.17), and symbols correspond to the DNS data.

where it is not expected to work well. As admitted in the original reference, the formula
developed by Kader & Yaglom (1972) is rather accurate at Pr � 1, at which the deviation
from the DNS data is but a few per cent, whereas it is poorly behaved at lower Pr, mainly
as a consequence of the ‘wrong’ multiplicative factor in front of the logarithmic term.

3.2. Wall fluxes
The primary subject of engineering interest in the study of thermal flows is the wall heat
transfer coefficient, which can be expressed in terms of the Stanton number,

St =
α

〈
dT
dy

〉
w

ub(Tm − Tw)
= 1

u+
b θ+

m
, (3.18)

where ub is the bulk velocity and Tm is the mixed mean temperature (Kays et al. 1980), or
in terms of the Nusselt number,

Nu = Reb Pr St. (3.19)

A predictive formula for the heat transfer coefficient in wall-bounded turbulent flows
was derived by Kader & Yaglom (1972), based on assumed strictly logarithmic variation
of the mixed mean temperature with Reτ ,

1
St

= 2.12 log(Reb
√
λ/4) + 12.5Pr2/3 + 2.12 log Pr − 10.1√

λ/8
, (3.20)

where the friction factor λ = 8/u+
b

2 was obtained from the Prandtl friction law, and the
log-law offset function was modelled after (3.17). The above formula was reported to be
accurate for Pr � 0.7. A modification to Kader’s formula was introduced by Pirozzoli
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Figure 5. Variation of inverse Stanton number (a) and Nusselt number (b) with Prandtl number. The solid
black line denotes the prediction of (3.21) with β defined as in (3.15), the dashed line refers to Kader’s formula
(3.20), and symbols correspond to the DNS data. The inset in (a) shows per cent deviations from the DNS data.
In (b) the red line denotes the correlation (3.23), and the blue line the correlation (3.24).

et al. (2022) to account more realistically for the dependence of θ+
m on Reτ , resulting in

1
St

= k
kθ

8
λ

+
(

βCL(Pr) − β2 − k
kθ

B
) √

8
λ

+ β3, (3.21)

where, for pipe flow,

βCL(Pr) = β(Pr) + 3.50 − 1.5/kθ , β2 = 4.92, β3 = 39.6, B = 1.23. (3.22a–d)

Equation (3.21) can be easily adapted to other wall-bounded flows, upon change of the
flow constants, as shown by Kader & Yaglom (1972).

The above heat transfer formulae are tested in figure 5, which shows the predicted
inverse Stanton number (a) and Nusselt number (b). With little surprise, we find that (3.21)
with β(Pr) defined as in (3.15) yields excellent prediction of the heat transfer coefficient,
with relative error of less than 1 %, for Pr � 0.0625. Larger errors are found at lower Pr, at
which the assumption of a logarithmic distribution of the mean temperature becomes less
and less accurate, as was shown in figure 4. Kader’s formula (3.20) yields errors of a few
per cent at Pr � 1. However, it clearly fails at lower Pr, where 1/St has a zero crossing,
and correspondingly the Nusselt number diverges. Figure 5(b) also shows for reference the
classical power-law correlation of Kays et al. (1980, red line), namely

Nu = 0.022Re0.8
b Pr0.5, (3.23)

which reasonably predicts the trend of the heat transfer coefficient in the range of Prandtl
numbers around unity, and the correlation developed by Sleicher & Rouse (1975, blue
line),

Nu = 6.3 + 0.0167Re0.85Pr0.93, (3.24)

which is an adequate approximation for the behaviour at very low Prandtl numbers, typical
of liquid metals and molten salts.

4. Concluding comments

We have derived explicit analytical formulae for the mean temperature profile and the heat
transfer coefficient for forced convection in a smooth pipe, which accurately reproduce
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the DNS data in a wide range of Prandtl numbers. The key observation, also reported in
our previous publication on the subject (Pirozzoli 2023), is that the inner-scaled profiles
of the eddy thermal diffusivity are very nearly universal for Pr � 0.0625. Here, we
further observe that their distribution can be closely approximated with a simple algebraic
expression. This makes it possible to integrate the mean thermal balance equation and
obtain explicit analytical expressions for the mean temperature profiles. The key predictive
equation in this sense is (3.6), which can be regarded as a generalization of the explicit
formula for the mean velocity profile derived by Musker (1979). The main difficulty with
application of (3.6) is that it involves the solution of a cubic equation for each given
Prandtl number. An important simplification is conveyed by (3.9a,b), which provide a
simple asymptotic solution, and which is extremely accurate for any practical purpose.

Since the inner-layer mean temperature profiles are nearly universal for all canonical
wall-bounded flows, we expect that the same formulae can also be applied to plane
channels and boundary layers. Flow-dependent deviations in the outer part of the
flow could be accounted for with little difficulty by leveraging on universality of the
defect temperature profiles with respect to both Reynolds- and Prandtl-number variation
(Pirozzoli et al. 2022; Pirozzoli 2023), but we leave this task for future studies.

An obvious advantage of the availability of analytical temperature profiles is that
they can be used as a benchmark in the assessment of numerical results obtained with
use of turbulence models, or for analytical manipulations, e.g. modal analysis. Another
important advantage is that an explicit form for the log-law offset function can also be
derived, as expressed in (3.15), which is in our opinion the most important result of
this study. Indeed, (3.15) has the same structure as that deduced by Kader & Yaglom
(1972). However, those authors arrived at the expression (3.17) by considering a simplistic
‘three-layer’ boundary-layer model consisting of a conductive layer, a viscous sublayer
and a logarithmic layer. The multiplicative factors then had to be adjusted by fitting
experimental data, with the exception of the logarithmic term, which is irreducibly
different than in (3.15). This difference is responsible for the early deviation and the
singular behaviour of the Nusselt number at low Pr in figure 5.

To the best of our knowledge (3.21), supplemented with (3.15), is the most accurate
expression available for the heat transfer coefficient in a wide rage of Reynolds numbers
(Pirozzoli et al. 2022) and Prandtl numbers, as shown here. Regarding this point, it is
important to have an estimate for the lowest Prandtl number at which the theory herein
developed retains its validity. Given its reliance on the presence of a logarithmic layer in
the mean temperature distribution, the theory is expected to apply as long as Pr Reτ � 11
(Pirozzoli 2023). At the Reynolds number of this study, this condition is met for Pr � 0.01,
which is in line with what is shown in figure 2. At higher Reynolds number, the theory is
then expected to apply to a wider range of Prandtl numbers. Prandtl numbers lower than
this limit, for which no clear logarithmic layer in the mean temperature profile exists, will
be the subject of follow-up studies.
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