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A GENERALISATION OF KRAMER’S THEOREM
AND ITS APPLICATIONS

YANMING WANG, HUAQUAN WEI AND YANGMING L1

The main purpose of this paper is to generalise a supersolvability theorem of O.
U. Kramer to a saturated formation containing the class of supersolvable groups.
As applications, we generalise some results recently obtained by some scholars.

1. INTRODUCTION

As two dual concepts of a finite group, the maximal subgroups and the minimal
subgroups have been studied by many scholars in determining the structure of a finite
group. For instance, B. Huppert’s well known theorem shows that a finite group G is
supersolvable if and only if every maximal subgroup of G has prime index in G ([3]).
A theorem of O. U. Kramer shows that a finite solvable group G is supersolvable if and
only if, for every maximal subgroup M of G, either M > F(G), the Fitting subgroup
of G, or MNF(G) is a maximal subgroup of F(G) (see [4, Theorem 1.3.3]). Buckley in
[2] proved that a finite group G of odd order is supersolvable if all minimal subgroups
of G are normal in G. The main purpose of this paper is to generalise this theorem of
Kramer to a saturated formation containing the class of supersolvable groups. Ballester
Bolinches, Wang and Guo introduced the concept of c-supplementation of a finite group
in (1], which is weaker than c-normality or suplementation. They generalised Buck-
ley’s theorem by replacing normality with c-supplementation. More recently, Li and
Guo in [6] obtained two supersolvability theorems on complemented subgroups of finite
groups. By using the theory of formations, Wei in [9] obtained two results with respect
to c-normal subgroups of finite groups. As applications of our main result, we gener-
.alise the above theorems to a saturated formation containing the class of supersolvable
groups by minimising the number of c-supplemented minimal subgroups or replacing
complementation and c-normality with c-supplementation.
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Let F be a class of finite groups. We call F a formation provided:

(1) IfGe€F and N<G, then G/N aF;
(2) If Ny, N «G such that G/N1,G/N; € F, then G/(NiNNz) € F.

A formation F is said to be saturated if G/®(G) € F implies that G € F (refer to [7]).
All groups considered in this paper are finite; i and 7m(G) denote, respectively,
the class of all supersolvable groups and the set of prime divisors of |G].

2. PRELIMINARIES

DEFINITION 2.1: ([1]) A subgroup H of a group G is said to be c-supplemented
in G if there exists a subgroup N of G such that G = HN and HN N <€ Hg
= Coreg(H). We say that N is a c-supplement of H in G.

Recall that a subgroup H of G is c-normal in G if there exists a normal subgroup
N of G such that G = HN and HNN < Hg ([8]). Also a subgroup H of G
is complemented in G if there exists a subgroup N of G such that G = HN and
HNN=1.

A c-normal or complemented subgroup must be a c-supplemented subgroup. But
examples in [1] showed that the converses are not true.

LEMMA 2.2. ([1,Lemma 2.1]) Let G be a group. Then

(1) If H is c-supplemented in G,H € M < G, then H is c- supplemented
in M.

(2) Let K<G and K £ H. Then H is c-supplemented in G if and only if
H/K is c-supplemented in G/K .

(3) Let m be a set of primes, H a wm subgroup of G and K a normal
n' subgroup of G. If H is c-supplemented in G, then HK/K is c-
supplemented in G/K . If furthermore K normalises H, then the con-
verse also holds.

(4) Let H < G and L £ ®(H). If L is c-supplemented in G, then LG
and L € ®(G).

LEMMA 2.3. (Gaschutz, refer to [3].) Let G be a group. Suppose that H and
D are normal subgroups of G, and also D < H,D € ®(G). Then H/D is nilpotent if
and only if H is nilpotent. .

LEMMA 2.4. ([5, Lemma 2.3].) Let H be a non-identity solvable normal sub-
group of G. If every minimal normal subgroup of G which is contained in H is not
contained in ®(G), then the Fitting subgroup F(H) of H is the direct product of
minimal normal subgroups of G which are contained in H .

LEMMA 2.5. Let p be a prime, £ a p-element of G and m an integer. If
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(zP™) is c-supplemented in G, then (zP™) is normal in G. In particular, if (zP™) is
complemented in G, then zP = 1.

PROOF: By Definition 2.1, there is a subgroup N of G with G = (zP™)N and
(zP™y N N £ (zP™)¢. Then z = (zP™)"y, that is, z!7P™® = y, for some integer
n and some element y in N. Furthermore, (zP™) < (z) = (#'"P™") < N. Hence
(xP™) = (2P™) g < G. 0

LEMMA 2.6. A group G is 2-nilpotent if every cyclic subgroup of order 2 or 4
of G is c-supplemented in G.

PRrOOF: Suppose that G is not 2-nilpotent, so that G contains a minimal non-
2-nilpotent subgroup H. Then by a theorem of Ito ([3, IV, 5.4 Satz]), every proper
subgroup of H is nilpotent and H = [Hy)H, with Hs € Syly(H) and H, € Syl,(H)
(p # 2), and the exponent of Hj is at most 4. Let z be an element of H,; then o(z) = 2
or 4. Since (z) is c-supplemented in H by Lemma 2.2(1), there is a subgroup N of H
with H = (z) N and (z) "N < (z)m by Definition 2.1. Again, by Lemma 2.5, (z?)<H,
so (2?) < (z)x and (z?)N is a group. If (z?)N = H, then (z) = (z%)((z)NN) < (z)#,
that is, (x) = (z)g < H. In this case, if (z)H, = H, then (z) = H; is cyclic, H is
certainly 2-nilpotent, which is contrary to the above hypothesis of H. If (z)H, < H,
then (z)H,, is nilpotent, which implies that H; normalises H, by the arbitrariness of z
in H,. Furthermore, H,<H and so H is nilpotent, a contradiction. Hence (z?)N < H
and (z?)N is nilpotent. Note that |H : (z?)N| = 2, so (z?)N < H. Then H, char
(z?)N as is easy to see, so H,<H and H is nilpotent, a final contradiction. a0

LEMMA 2.7. ([2, Theorem 1].) Let G be a PN -group (that is, a finite group
in which every minimal subgroup is normal) of exponent p™ with p an odd prime. Let
1< k< n. Then

(1) G/Qx(G) is a PN -group of exponent p™~%;
k
(2) U(G)=zeG|zr =1;
3) 1< 9(G) € N%G) < - <€ Q(G) =G is a central series and hence
class of G € n;
n—1 n— n— .
4) (zy)? ==z 'y?" " for all z,y in G.
LEMMA 2.8. Let M be a maximal subgroup of G, P a normal p- subgroup of
G such that G = PM, where p a prime. Then
(1) PN M isa normal subgroup of G.
(2) If p > 2 and all minimal subgroups of P are normal in G, then M has
index p in G.

Proor: (1) Clearly, PN M < P. Let P; be a subgroup of P such that PN M
is a maximal subgroup of P;. Then P, € M, otherwise PNM < P, { PNM, a
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contradiction. Now that PN M is normal in both P; and M, we have M < (P, M) £
Ng{P N M). By the maximality of M in G,Ng(PNnM) =G, that is, PNM aG as
desired.

(2) By Lemma 2.7(2), 0y (P) =2z€ P|2? =1. So Q;(P) is normal in G. We
consider the following two cases:

Case 1: 1(P) € M. In this case, there exists an element r in Q;(P) such that z is
not in M. By hypothesis, (z) is normal in G and so G = (z)M with ()" M =1,
which implies that |G : M| = [(z)]| = p.

CAse 2: Q(P) < M. We shall show that G/Q;(P) satisfies the hypothesis of the
Lemma. Obviously, G/ (P) = (P/4(P))(M/Q(P)), where P/Q;(P) normal and
M/Q.(P) maximal in G/Q;(P). Now, let (z)Q2;(P)/Q1(P) be a minimal subgroup
of P/Q1(P), where z is an element of P; then zP € Q;(P). Furthermore, z? =
1 and so (zP) is normal in G by hypothesis. Let ¢ be an element of G. Then
(z9)P = (zP)? = (2P)* = (z*)” for some integer t. Since both z9 and z! lie in Qy(P),
it follows that (z9z7%)" = (29)P(z~*)® = 1 by Lemma 2.7(4), which implies that
9zt lies in 1(P). Set z9z~t = u € Q;(P). Then z9 = uzt € (x)Q;(P) and so
(z) > Q1 (P)/Q(P) aG/Qi(P). By induction, |G/ (P) : M/Q.(P)| = p, that is,
|G : M| = p. The proof of Lemma 2.8 is complete.

3. MAIN RESULT

THEOREM 3.1. Let F be a saturated formation containing U,G a group with
a solvable normal subgroup H such that G/H € F. If for any maximal subgroup M
of G, either F(H) < M or F(H)N M is a maximal subgroup of F(H), then G € F.
The converse also holds, in the case where F = U4 .

PROOF: Suppose that the “if” part is false and let G be a counterexample of
minimal order. Then we have

(1) HN®(G)=1.

If not, then 1 # HN ®(G) < G. Let R be a minimal normal subgroup of G that
is contained in H N ®(G). Then R is an elementary Abelian p-group for some prime
p and hence R < F(H). We shall show G/R satisfies the hypothesis of the theorem:

(1.1) (G/R)/(H/R)=G/H € F.

(1.2) For any maximal subgroup M/R of G/R, either F(H/R) < M/R or
F(H/R)N (M/R) is maximal in F(H/R).

By Lemma 2.3, F(H/R) = F(H)/R. 1If F(H/R) € M/R, then F(H) ¢ M.
Since M is maximal in G, F{H)N M is maximal in F(H) by hypothesis. Therefore
F(H/R)N (M/R) = (F(H)NM)/R is maximal in F(H/R). By the minimality of
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G,G/R € F. Since G/®(G) = (G/R)/(®(G)/R) € F and F is a saturated formation,
it follows that G € F, a contradiction.

(2) F(H)= Ry x -+ % Ry, where all R; normal in G of prime order.

From (1) and Lemma 2.4, F(H) = Ry X --- X Ry,, where R;(i=1,...,m) are
minimal normal subgroups of G. Now that HN®(G) =1, for each i, =1,2,... ,m,
there is a maximal subgroup M; of G with G = R;M; and R; N M; = 1. Moreover,
F(H) = R(F(H)N M;) as is easy to see. By hypothesis, F(H) N M; is maximal in
F(H) and, since F(H) is nilpotent, F/(H) N M; has prime index in F(H). Note that
R, M; =1, so R; has prime order for i =1,2,... ,m

(3) G/F(H)e F.

Because G/Cg(R;) is isomorphic to a subgroup of Aut(R;), G/Cg(R;) is cyclic and

so it lies in U for each ¢. This implies that G/( ﬂ Ce(Ri)) € U. Again, Cg(F(H)) =
m Cc(R:), so we have G/Ce(F(H)) €U C F Smce both G/Cg(F(H)) and G/H

lie in F, so does G/(H n CG(F(H))) = G/Cu(F(H)). Since F(H) is Abelian,
F(H) < Cy(F(H)). On the other hand, Cy(F(H)) < F(H) as H is solvable. Thus
F(H)=Cy(F(H)) and so G/F(H) € F.

(4) m=1, thatis, F(H) =

For each i, G/R; satisfies the hypothesis of the theorem:

(4.1) From (3), (G/R;)/(F(H)/R;) = G/F(H) € F.

{(4.2) For any maximal subgroup M/R; of G/R;, (F(H)/R:;)N(M/R;) is maximal
in F(H)/R; if F(H)/R; ¢ M/R;.

In fact, M is maximal in G and F(H) € M,so F(H)NM is maximal in F(H) by
hypothesis. Hence (F(H)/R;)N (M/R;) = (F(H)N M)/R; is maximal in F(H)/R;.

m
By the minimality of G,G/R; € F. Hence G/([) Ri) € F. This implies that
i=1

G € F if m # 1, a contradiction. (4) is true.

(5) Final contradiction.

First, we shall show that R; is the only minimal normal subgroup of G. Suppose
that N # R; is another minimal normal subgroup of G and we consider G/N. Then
R, N/N is a normal subgroup of G/N and (G/N)/(R1N/N) is isomorphic to G/R;N
which is in F because G/R; is in F by (3) and (4). For any maximal subgroup M/N of
G/N not containing Ry N/N, since R{N/N = R, has prime order, (RiN/N)N(M/N)
is an identity group, which is certainly maximal in Ry N/N. By the minimal choice of G,
G/N € F,so G € F, acontradiction. Hence R, is the unique minimal normal subgroup
of G. By (1), ®(G) = 1. Let M be a maximal subgroup of G such that Ry € M. Then
G=RiM and RiNnM =1.If R, < Cg(R;), then 1 < Ce(R;)NMaRM =G. By
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the unique minimal normality of Ry, R; < Cg(R;) N M < M, a contradiction. Hence
R; = Cg(Ry). Thus G/R; = G/Cg(R;) is cyclic of order dividing |R;] — 1 and so
G € U C F, a final contradiction. '

In the case where F = U, if G € F,that is, G is supersolvable, then by Huppert’s
Theorem, any maximal subgroup M of G has prime index in G. And for any normal
subgroup H of G, since F(H) is normal in G,G = F(H)M if F(H) is not contained
in M. This shows that |F(H): F(H)NM| = |G : M| is a prime and hence F(H)NM
is a maximal subgroup of F(H).

The proof of Theorem 3.1 is complete. 1]

4. APPLICATIONS

THEOREM 4.1. Let F be a saturated formation containing U . Suppose that G
is a group with a solvable normal subgroup H such that G/H € F. If all minimal
subgroups and all cyclic subgroups with order 4 of F(H) are c-supplemented in G,
then G € F.

PRrROOF: For any maximal subgroup M of G not containing F(H), we only need
to prove that F(H) N M is a maximal subgroup of F(H). First, since F(H) € M,
there exists a prime p such that O,(H) € M. Then G = O,(H)M as O,(H) is normal
in G. We consider the following two cases:

CASE 1: p > 2. If Oy(H) has at least one minimal subgroup (z) non-normal in G,
then by hypothesis, (z) is c-supplemented in G, that is, there is a subgroup K with
G = (z)K and (z) N K = 1. Furthermore, K is a maximal subgroup of G and
Op(H) N K is a normal subgroup of G by Lemma 2.8(1). Again, Op,(H) = Op(H)
N(z)K = (z)(0Op(H)NK). If Op(H)NK < M, then G = Op(H)M = (z)M with
(zy N M = 1. This deduces |F(H) : F(H)N M| = |F(H)M : M| = |G : M| = |(z)|
= p. Hence F(H) N M is a maximal subgroup of F(H). If O,(H)N K € M, then
G = (Op,(H)N K)M , where z not in Op,(H) N K. With the same argument we may
assume that all minimal subgroups of O,(H)N K are normal in G. By Lemma 2.8(2),
|F(H): F(HYNM| = |G : M| =p, so F(H)N M is a maximal subgroup of F(H).

CASE 2: p=2. Let n(G) = p1,p2,... ,Pn, Mp, be a Sylow p;-subgroup of M, where
i=1,2,...,n and p; = 2. Then we know easily that Ox(H)M,; = G, is a Sylow
2-subgroup of G. Now, let P, be a maximal subgroup of G2 containing M, and, set
P, = PL,NnOz(H). Then P, = P;M,;. Moreover, P, N My = O(H) N M,, so
|O2(H) : P2| = |O2(H)M; : P,M,| = |G, : Py| = 2. Again, for each i # 1,05(H) My,
is 2-nilpotent by Lemma 2.2(1) and Lemma 2.6, so Ox(H)M,, = O2(H) x M,,. Fur-
thermore, P,Mp,; forms a group, where i=1,2,...,n. Hence Py(My,, Mp,,... ,M,,)
= P,M also forms a group. Since |02(H) : P2| =2and PB,NM = Oz(H)NM, it
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follows that P,M < O.(H)M = G. By the maximality of M in G,PAM = M and

hence P, < M. Thus O(H)NM = P,NM = P; and |G : M| = |02(H) : Oz(H)N M|

= |Oy(H) : P3| = 2. This implies that F(H) N M is a maximal subgroup of F(H).
By Theorem 3.1, G € F. The proof of Theorem 4.1 is complete. 1]

COROLLARY 4.2. ([1, Theorem 4.1].) Let G be a group and let H be the
supersolvable residual of G. If all minimal subgroups and all cyclic subgroups with
order 4 of H are c-supplemented in G, then G is supersolvable.

ProOF: H is 2-nilpotent by Lemma 2.6, so it is solvable, and G is supersolvable
by Theorem 4.1. 0

COROLLARY 4.3. ([6, Theorem1.1].) Suppose that G is a solvable group with
a normal subgroup H such that G/H is supersolvable. If all minimal subgroups of
F(H) are complemented in G, then G is supersolvable.

PROOF: By hypothesis and Lemma 2.5, every Sylow subgroup of F(H) is elemen-
tary Abelian. That is F(H) has not any element of order p? for any p € n(F(H)).
Corollary 4.3 is certainly true by Theorem 4.1. 0

COROLLARY 4.4. ([9, Theorem 2].) Let F be a saturated formation contain-
ing U. Suppose that G is a group with a solvable normal subgroup H such that
G/H € F. If all minimal subgroups and all cyclic subgroups with order 4 of F(H) are
c-normal in G, then G € F.

THEOREM 4.5. Let F be a saturated formation containing U. Suppose that G
is a group with a solvable normal subgroup H such that G/H € F. If all maximal
subgroups of all Sylow subgroups of F(H) are c-supplemented in G, then G € F.

PRrROOF: For any maximal subgroup M of G not containing F(H), we shall show
F(H)N M is a maximal subgroup of F(H). First, since F(H) ¢ M, there is a
prime p with Op(H) ¢ M. Then G = Op(H)M as Oy(H) is normal in G. Let M,
be a Sylow p-subgroup of M. Then we see easily that O,(H)M, = G, is a Sylow
p-subgroup of G. Now, let P, be a maximal subgroup of G, containing M, and,

set P, = PN Oy(H). Then P, = P,M,. Moreover, P, N M, = O,(H) N M,, so
[O,,(H) : P2| = lOp(H)M,, : P2Mpl = |Gp : P| = p, that is, P, is a maximal subgroup
of Op(H). Hence P>(O,(H) N M) is a subgroup of Oy(H). By the maximality of P,
in Op(H), P2(Op(H) N M) = P, or Op(H).

(1) If P,(Op(H)NM) = Op(H), then G = Op(H)M = P;M. Note that O,(H)
NM=P,NM, so O,(H) = P2, a contradiction. Hence

(2) P = P,(Op,(H)N M), that is, Op(H)N M < P,. By Lemma 2.8(1), O,(H)
NM4G,s0 Op(H)NM < (P2)g - On the other hand, since P, is c-supplemented in G,
there exists a subgroup N of G such that G = P,N and P,NN < (P:); by Definition

https://doi.org/10.1017/50004972700020517 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700020517

474 Y. Wang, H. Wei and Y. Li (8]

2.1. Set K = (Pz)GN; then Pz NK = P2 N (Pz)GN = (Pz)G(Pg n N) = (P2)G' NOW,
we consider the following two cases:

Case 1: K < G. Suppose that K; is a maximal subgroup of G containing K. Then
O,(H) N K; 4G, which implies that (O,(H) N K1)M is a group. If (O,(H) N K;)M
= G = O,(H)M , then O,(H)NK, = O,(H) because (O,(H)NK;)NM = O,(H)NM.
This implies that Op(H) < K, and therefore G = O,(H)K; = K, which is contray
to the above hypothesis on K;. Thus (O,,(H) n Kl)M = M,O,(H)N K, £ M.
Furthermore, P, N K < Op(H)NK € Op(H)NM < (P2)g = Py N K, that is,
Op(H)NK = Op(HYNM = P, N K. This is contrary to G = P,K = O,(H)K .

CASE 2: K =(@G. In this case, P, <G . By the maximality of M in G,M = P,M or
P,M = G. With the same argument in (1), we see .M # G, so M = P,M, that is,
P, < M. Thus O,(H)NM = P,N M = P; and hence |F(H): F(H)NM| = |G :
M| = |Op(H) : Op(H) N M| = p. This means that F(H) N M is a maximal subgruop
of F(H). By Theorem 3.1, G € F. The proof of Theorem 4.5 is complete. 1]

COROLLARY 4.6. ([6, Theorem1.2].) Suppose that G is a solvable group with
a normal subgroup H such that G/H is supersolvable. If all maximal subgroups of
every Sylow subgroup of F(H) are complemented in G, then G is supersolvable.

COROLLARY 4.7. ([9, Theorem 1].) Let F be a saturated formation contain-
ing U. Suppose that G is a group with a solvable normal subgroup H such that
G/H € F. If all maximal subgroups of all Sylow subgroups of F(H) are c-normal in
G, then G € F.
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