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HILBERT’S SEVENTEENTH PROBLEM AND
HYPERELLIPTIC CURVES

VALÉRY MAHÉ

Abstract

This article deals with a constructive aspect of Hilbert’s seven-
teenth problem: producing a collection of real polynomials in
two variables, of degree 8 in one variable, which are positive
but are not sums of three squares of rational fractions.

To do this we use a reformulation of this problem in terms of
hyperelliptic curves due to Huisman and Mahé and we follow
a method of Cassels, Ellison and Pfister which involves the
computation of a Mordell–Weil rank over R(x).

Introduction

Let P ∈ R[X1, . . . , Xn] be a polynomial. If P is a sum of squares in R(X1, . . . , Xn)
then P is a positive polynomial (that is, P (x1, . . . , xn) is nonnegative for every
element (x1, . . . , xn) ∈ Rn). Conversely, when P is a positive polynomial one
can ask whether P is a sum of squares in R(X1, . . . , Xn). This question is called
Hilbert’s seventeenth problem and was answered positively by Artin in 1927 (see
[1]).

A related question is how to compute the minimal number r such that every
positive polynomial can be written as a sum of r squares in R(X1, . . . , Xn). The
answer is not completely known. Hilbert proved that every positive polynomial
P ∈ R[X,Y ] is a sum of four squares in R(X,Y ) (see [13]). He proved a little more:
every positive polynomial P ∈ R[X,Y ] of total degree at most 4 is a sum of three
squares of polynomials. The first of these two results was generalized by Pfister
in the following way: every positive polynomial P ∈ R[X1, . . . , Xn] is a sum of 2n

squares in R(X1, . . . , Xn) (see [25]).
There is no known effective characterization of sums of three squares in R(X,Y ).

However, in 1971, Cassels, Ellison and Pfister showed that Motzkin’s polynomial

M(X,Y ) = 1 +X2Y 4 +X4Y 2 − 3X2Y 2

is positive (thus a sum of four squares in R(X,Y )), but is not a sum of three
squares in R(X,Y ) (see [7]). To prove this theorem, they consider, for each positive
polynomial

F (X,Y ) = 1 + A(X)Y 2 + B(X)Y 4

with A,B ∈ R(X) such that B(A2 − 4B) �= 0, the elliptic curve EF defined over
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Hilbert’s seventeenth problem and hyperelliptic curves

R(x) by the equation

−β2 = α(α2 − 2A(x)α +A(x)2 − 4B(x))

and they show that F is a sum of three squares in R(X,Y ) if and only if the elliptic
curve EF has an R(x)-point (α, β) such that both

α and − (
α2 − 2A (x)α+A (x)2 − 4B(x)

)
are sums of two squares in R(x) (i.e., take only nonnegative values on R). A similar
method allowed Christie (in 1976, see [9]), then Macé (in 2000, see [18]), and
then Macé and Mahé (in 2005, see [19]) to construct other families of positive
polynomials in two variables that are not sums of three squares of rational fractions.

Using a totally different strategy (based on the Noether–Lefschetz theorem [11]),
Colliot-Thélène proved in 1993 the existence of positive polynomials in two vari-
ables, of degree in one of the variables even and greater than or equal to 6, that are
not sums of three squares of rational fractions.

Using the method of Cassels, Ellison and Pfister one can only study polynomials
of the form F (X,Y ) = 1+A(X)Y 2 +B(X)Y 4; we need the elliptic curve EF above.
In 2001, Huisman and Mahé generalized the construction of EF by introducing
the concept of antineutral point (see Definition 3.1.3). In [15], they showed that
a nonconstant monic squarefree polynomial P (X,Y ) of degree in Y divisible by 4
is a sum of three squares in the field R(X,Y ) if and only if an R(x)-point of the
Jacobian variety associated to the hyperelliptic curve C defined over R(x) by the
equation z2 + P (x, y) = 0 is antineutral.

In this article we generalize the method of Cassels, Ellison and Pfister using the
results of Huisman and Mahé in order to construct families of positive polynomials
in two variables, of degree 8 in one variable, that are not sums of three squares in
R(x, y). As a corollary we get a positive polynomial with coefficients in Q, of degree
8 in one variable, that is not a sum of three squares in R(x, y) (such an example was
not known before). Using the notion of antineutral point, we also give examples of
products of four sums of three squares in R(x, y) that are sums of three squares in
R(x, y).

1. Notation

All the hyperelliptic curves we consider are smooth and projective. To simplify
our statements we consider an elliptic curve as a genus 1 hyperelliptic curve (i.e.,
we do not assume a hyperelliptic curve to have genus at least 2).

The Jacobian variety associated to a curve C is denoted by Jac(C). For back-
ground on Mumford representation, semi-reduced divisors, reduced divisors and
Cantor’s algorithm we refer to [23] and [5] (see also [10] and [12]). A semi-reduced
divisor with Mumford representation (u, v) is denoted by div(u, v). A linear equiv-
alence class with Mumford representation (u, v) is denoted by <u, v>.

When D is a divisor on a curve C defined over a field k and K is an extension of
k we denote by SuppK(D) the support of D considered as a divisor on C ×k K.

For every abelian group A and for every n ∈ N∗ we denote by [n]A (or [n]) the
multiplication-by-n endomorphism of A, by A[n] the kernel of [n]A and by Ators

the torsion subgroup of A.
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For background on places of function fields we refer to [28] (we use notation
from there; in particular by a function field over a field k we mean a transcendence
degree 1 extension of k). When F1 is a function field and F2/F1 is a finite extension
and P is a place of F2 above a place p of F1, we denote by e(P|p) the ramification
index of P above p and by f(P|p) the relative degree.

2. Statement of the results

Notation 2.1. Let η, ω and ρ be real numbers. We assume that |ω| and |η| are
distinct. Denote by b1 the element

b1 :=
ρ2 − η2

ω2 − η2
+
η2 − ω2

4
.

In this article we consider the polynomial

P (x2, y2) :=
(
y2 + 1

) (
y2 + C

(
x2

)) (
y4 +

(
1 + C

(
x2

))
y2 +B

(
x2

))
with

B(x) := (x+ b1)2 − η2 and C(x) := 2(x+ b1) + ω2 − η2 − 1.

This polynomial is defined over the field k := Q(η, ω, ρ). We denote by C the
hyperelliptic curve defined over k(x) by the affine equation z2 + P (x2, y2) = 0.

Assumption 2.2. We assume the following three inequalities:

ω > 1 + |η|, ω2 − η2 > 2ω and b1 > 1 +
ω2 − η2

2
.

Assumption 2.3. We assume that all the following elements are different from 0:

η, ρ,
(
ω2 − η2 − 2)2 − 4η2,

(
ω2 − η2 − 2

)2 − 4η2 − 4,
(
ω2 − η2 − 1

)2 − 4η2,(
ω2 − η2 − 1

)2 − 4η2 − 1 and
(
ω2 − η2

)2 − 4η2.

Assumptions 2.4. We assume that none of the following elements is a square in k:

(1)
(
ω2 − η2

)2 − 4ω2 =
(
ω2 − η2 − 2ω

) (
ω2 − η2 + 2ω

)
,

(2) (2b1 − 2 + ω2 − η2)(ω2 − η2 − 2ω),
(3) (2b1 − 2 + ω2 − η2)(ω2 − η2 + 2ω),
(4) 2(ω2 − η2 − 2ω)(b1 − 1 − ω),
(5) 2(ω2 − η2 + 2ω)(b1 − 1 + ω),
(6) 2

(
2b1 − 2 + ω2 − η2

)
(b1 − 1 + ω),

(7) 2
(
2b1 − 2 + ω2 − η2

)
(b1 − 1 − ω),

(8)
(
(b1 − 1)2 − ω2

)( (
ω2 − η2

)2 − 4ω2
)
,

(9) 2
(
ω2 − η2

) (
ω2 − η2 − 2ω

) (
(ω + 1)2 − η2

)n (for each n ∈ {0, 1}),
(10) 2

(
ω2 − η2

) (
ω2 − η2 + 2ω

) (
(ω − 1)2 − η2

)n (for each n ∈ {0, 1}),
(11)

(
(b1 − 1)2 − ω2

)n1( (ω − 1)2 − η2
)n2( (ω + 1)2 − η2

)n3 ,
(for each (n1, n2, n3) ∈ {0, 1}3 − {(0, 0, 0)}),

(12) 2
(
ω2 − η2

) (
2b1 − 2 + ω2 − η2

)
,
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(13) 2n1
(
ω2 − η2 + 2ω

)
(b1 − 1 + ω)

(
ω2 − η2

)n1 (
2b1 − 2 + ω2 − η2

)1−n1

× (ω − 1 − η)1−n2 (ω − 1 + η)n2

(for each n1, n2 ∈ N),
(14) 21−n1

(
ω2 − η2 + 2ω

) (
ω2 − η2

)n1
(
2b1 − 2 + ω2 − η2

)n1

× (ω − 1 − η)1−n2 (ω − 1 + η)n2

(for each n1, n2 ∈ N),
(15) b21 − η2 and
(16) 2b1 + ω2 − η2 − 1.

Remark. When we refer to a hypothesis by giving the associated number between
two parentheses, we mean the corresponding hypothesis in Assumptions 2.4.

Theorem 2.5. We use Notation 2.1. Then, under Assumptions 2.2, 2.3 and 2.4,
the polynomial P (x2, y2) is positive but is not a sum of three squares in R(x, y).

Proof. Denote by C the hyperelliptic curve defined over R(x) by the affine equation

z2 + P (x2, y2) = 0.

Proposition 3.1.4 asserts that P (x2, y2) is a sum of three squares in R(x, y) if and
only if Jac(C) has an antineutral point. From Corollary 4.3.6 we know that Jac(C)
has no antineutral torsion point. Theorem 2.5 follows from the finiteness of the
group Jac(C)(R(x)) (this finiteness is a consequence of Theorem 5.4.3; to check its
hypotheses we use Propositions 6.6, 6.7, 6.8 and 6.9).

Corollary 2.6. Consider the two polynomials

B(x) := x2 +
14063

22
x+

196743825
1936

and C(x) := 2x+
27835

22
.

Then the positive polynomial with coefficients in Q

P (x2, y2) :=
(
y2 + 1

) (
y2 + C

(
x2

)) (
y4 +

(
1 + C

(
x2

))
y2 +B

(
x2

))
is not a sum of three squares in R(x, y).

Proof. Apply Theorem 2.5 with η := 23, ω := 34 and ρ := 547.

Corollary 2.7. We use Notation 2.1. Under Assumptions 2.2, if η, ω, and ρ are
algebraically independent over Q, then the polynomial P (x2, y2) is positive but is
not a sum of three squares in R(x, y).

In [25], Pfister showed the product of two sums of 2n squares is a sum of 2n

squares. In general a product of two sums of three squares is not a sum of three
squares. Looking for antineutral torsion points we give examples of products of four
sums of three squares in R(x, y) that are sums of three squares in R(x, y).

Proposition 2.8. Let α, β, γ ∈ R(x)× be three nonzero rational fractions. Con-
sider the three rational fractions

a := 1 + α2(1 + β2)(1 + γ2),

b := 1 + α2(1 + β2)2(1 + γ2) and
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c := 1 + α2(1 + β2)(1 + γ2)2.

Then the polynomial P (x, y) := (y2 + 1)(y2 + a)(y2 + b)(y2 + c) is a sum of three
squares in R(x, y):

P (x, y) =
(

(a−1)y(y2+a)
α + αβγ((1 − βγ)y + β + γ)(y2 + 1)

)2

+
(

(a−1)(y2+a)
α + αβγ(1 − βγ − (β + γ)y)(y2 + 1)

)2

+
(
(y2 + 1)(y2 + a− βγ(a− 1))

)2
.

Heuristic. Denote by C the hyperelliptic curve defined over R(x) by the affine
equation z2 + P (x, y) = 0. Proposition 2.8 is obtained by choosing the coefficients
a, b, c such that Jac(C) has an antineutral point T of order 4:

• Proposition 4.2.1 and Proposition 4.2.2 give conditions on a, b, c for the exis-
tence of the point T ;

• Proposition 3.2.1 gives conditions on a, b, c for the antineutrality of T .

3. Sums of three squares and antineutral points

3.1. The results of Huisman and Mahé
Let Σ be the Galois group Gal(C(x)/R(x)) = Gal(C/R) and σ be its nontrivial

element. Let 2
R(x)

be the group of nonzero elements of R(x) which are a sum of
two squares in R(x).

Let D be a geometrically integral smooth projective curve over R(x) with odd
genus. Let D′ := D ×R(x) C(x) be its complexification and p : D′ −→ D be the
projection. The Galois group Σ acts naturally on D′. This action induces an action
of Σ on the Picard group Pic(D′).

The projection p induces a morphism p∗ from Pic(D) to Pic(D′). The image of
p∗ is contained in the subgroup Pic(D′)Σ of Σ-invariant elements of Pic(D′). To
characterize the image of p∗, we define a group homomorphism

δ : Pic(D′)Σ −→ H1(Σ,C(x)(D′)×/C(x)×).

Let cl(A) ∈ Pic(D′)Σ be the class of a divisor A. Because of the Σ-invariance
of cl(A), the divisor A − σ∗A is the principal divisor associated to a function
f ∈ C(x)(D′)×. The principal divisor of R(x)(D) associated to fσ(f) is 0. Thus
fσ(f) is an element of R(x)×. The element δ(cl(A)) is chosen as the class of f in
H1(Σ,C(x)(D′)×/C(x)×).

Lemma 3.1.1. The following is an exact sequence:

0 �� Pic(D)
p∗ �� Pic(D′)Σ δ �� H1(Σ,C(x)(D′)×/C(x)×) �� 0.

Remark. The map δ is a coboundary map; it can be defined by looking at the
long exact sequence associated to the short exact sequence:

0 �� C(x)(D′)×/C(x)× div �� Div(D′) cl �� Pic(D′) �� 0.

Notation 3.1.2. We use the notation above. The map

1 + σ : C(x)(D′)× −→ R(x)(D)×
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induces a monomorphism

η : H1(Σ,C(x)(D′)×/C(x)×) −→ R(x)×/ 2
R(x)

.

We denote by 
 : Pic0(D′)Σ −→ R(x)×/ 2
R(x)

the restriction of the map η ◦ δ to

Pic0(D′)Σ.

Definition 3.1.3. An element β ∈ Pic0(D′)Σ is said to be antineutral when 
(β) =
−1.

Proposition 3.1.4. Let P (y) ∈ R(x)[y] be a squarefree nonconstant monic totally
positive polynomial of degree divisible by 4. Let D be the hyperelliptic curve defined
over R(x) by the affine equation z2 + P (y) = 0. We use Notation 3.1.2 (relative
to D). Then P (y) is a sum of three squares in R(x, y) if and only if Pic0(D′)Σ has
an antineutral element.

Proof. See [15, Theorem 6.5].

3.2. An effective version
Let k be a subfield of R. Denote by k′ the field k(i). Let Σ be the Galois group

Gal(k′(x)/k(x)) = Gal(k′/k) and σ be its nontrivial element. Let Q ∈ k(x)[y] be a
monic polynomial such that (y2 + 1)Q(y2) is squarefree. Let C be the hyperelliptic
curve defined over k(x) by the affine equation

C : z2 + (y2 + 1)Q(y2) = 0

and let C′ := C ×k(x) k′(x) be its complexification.
Let g be the degree of the polynomial Q. Assume that g is odd and d :=

−Q(−1) ∈ k(x) is nonzero. Let C̃ be the k(x)-hyperelliptic curve given in coor-
dinates (s, t) by the affine equation

C̃ : t2 = − s
d
(s− d)2gQ

( − (
s+d
s−d

)2 )
and let C̃′ := C̃ ×k(x) k′(x) be its complexification. The two curves C′ and C̃′ have
a k′(x)-rational point. The map

γ : k′(x)(C′) −→ k′(x)(C̃′)
A(y, z) �−→ A

(
i s+ds−d ,

2idt
(s−d)g+1

)
is an isomorphism. Denote by ω the k′(x)-automorphism σ−1 ◦ γ ◦ σ ◦ γ−1

of k′(x)(C̃′). This automorphism sends s to d2

s and t to (−1)g d
g+1t
sg+1 . The k′(x)-

automorphism ω induces a k′(x)-automorphism ω̃ of C̃′ and a k′(x)-automorphism
Ω of Jac(C̃′).

Remark. The curve C′ has two k′(x)-rational Weierstrass points: (s, t) = (i, 0) and
(s, t) = (−i, 0). The map γ is obtained by considering a map from C′ to C̃′ that
sends (i, 0) to infinity and (−i, 0) to (0, 0).

Remark. The degree of the polynomial sd(s−d)2gQ
(−(

s+d
s−d

)2) is odd. In particular
the Mumford representation can be used to compute in the group Jac(C̃′)(k′(x))
(which can be identified with the group Pic0(C̃′)).
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Remark. We consider the case k = R. The group Σ acts on Jac(C̃′) in two different
ways:

• the natural action under base change of Σ on C̃ ×R(x) C(x) induces an action
σ�eC of σ on Jac(C̃′); we also denote by σ�eC the corresponding action of σ on
Div0(C̃′);

• looking at C̃ as a C(x)/R(x)-form of C, the natural action under base change
of Σ on C ×R(x) C(x) can be transported into an action σ�C of σ on
Jac(C̃′); this action is the action of Σ on Jac(C̃′) associated to the 1-cocycle
Σ −→ AutC(x)(Jac(C̃′)) whose value at σ is Ω (see [3]); we also denote by σ�C
the corresponding action of σ on Div0(C̃′).

The action of Σ on Jac(C̃′) involved in the definition of antineutral points is the
action σ�C .

Proposition 3.2.1. We use the notation above and Notation 3.1.2. We put τ :=
σ ◦ ω. Let β = <u, v> be a C(x)-point of Jac(C̃) such that u(0) �= 0. Denote by v̌
the unique polynomial of degree less than or equal to deg(u) such that v̌(0) = 0 and
v̌ ≡ v mod u.

1. The point β is invariant under σ�C if and only if one of the two following
conditions holds:
(a) either degs(u) is even and

sdegs(u)τ(u) = σ(u(0))u(s) and −
(s
d

)g+1

τ(v) ≡ v mod u,

(b) or the degree of u is g and(s
d

)g+1

τ(v̌) = v̌ and σ(u(0))(f − v̌2) = su(s)sgτ(u(s)).

2. If β is invariant under σ�C and the degree of u is strictly less than g, then

(β) is the identity element.

3. If β is invariant under σ�C and the degree of u is g, then β is antineutral if
and only if u(0) is a sum of squares in R(x). Moreover if β is antineutral,
then we have −dg−1 = u(0)hτ(h) where h denotes the function t+v̌

su(s) .

Proof. Let D be the semi-reduced divisor div(u, v). The point β is invariant under
σ�C if and only if the divisors D and σ�C(D) = σ�eC(ω̃(D)) are linearly equivalent.
To study the invariance of β under σ�C , we use Cantor’s algorithm (see [5]).

Let e and ε be respectively the quotient and the remainder of the Euclidean
division of degs(u)+1 by 2. Using the definition of the Mumford representation for
the two divisors D and ω̃(D) + div(se), and using the equalities

ω(u) = u

(
d2

s

)
and ω(t− v) = (−1)g

dg+1

sg+1
t− v

(
d2

s

)
,

we can check that the divisor ω̃(D) + div(se) is semi-reduced with Mumford repre-
sentation (

1
u(0)

s2eu

(
d2

s

)
, v̂

)
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where v̂ denotes the remainder of the Euclidean division of

−
(s
d

)g+1

v

(
d2

s

)
by s2eu

(
d2

s

)
.

Case 1: if the degree of u is strictly less than g. Then the divisor σ�eC(ω̃(D))+div(se)
is reduced. In particular it can be linearly equivalent to D only if it is equal to D.
In that case the degree of u is even (notice that the degree of s2eσ(u)(d

2

s ) is even).
If β is invariant under σ�C then D − σ�eC(ω̃(D)) = div(se) and thus 
(β) is the
identity element.

Case 2: if the degree of u is equal to g. We consider

1. w the remainder of the Euclidean division of −v̌ by f−v̌2
su(s) ;

2. ṽ the remainder of the Euclidean division of − (
s
d

)g+1
σ(v)(d

2

s ) by sdeg(u)σ(u).

The divisor σ�eC(ω̃(D)) −D is equal to

div
(

1
σ(u(0))s

deg(u)σ(u)
(
d2

s

)
, ṽ

)
− div(se−1) − div(su(s), v̌) =

div
(

1
σ(u(0))s

deg(u)σ(u)
(
d2

s

)
, ṽ

)
− div

(
f−v̌2
su(s) , w

)
+ div

(
t+v̌
seu(s)

)
.

Thus σ�eC(ω̃(D))−D is principal if and only if the two reduced divisors div
(
f−v̌2
su(s) , w

)
and div

(
1

σ(u(0))s
deg(u)σ(u)

(
d2

s

)
, ṽ

)
are equal. If σ(u(0))(f− v̌2) = su(s)sgτ(u(s)),

then applying τ we show that ṽ = w holds if and only if
(
s
d

)g+1
τ(v̌) = v̌ holds.

If β is invariant under σ�C then σ(u(0))−1 = f−v̌2
sg+1u(s)τ(u)(s) is σ-invariant (it is

a τ -invariant element of C(x)) and σ�C(D) −D = div
(

t+v̌
seu(s)

)
. In that case, since

σ(u(0))
(

t+v̌
seu(s)

)
τ

(
t+v̌
seu(s)

)
= −1, the image 
(β) is the class of −u(0).

4. Finding antineutral torsion points

4.1. The 2-primary torsion subgroup
The following Proposition helps us to restrict our study of the existence of an

antineutral torsion point to the search for an antineutral 2-primary torsion point.

Proposition 4.1.1. We use the notation of Proposition 3.1.4. Then Pic0(D′)Σ has
an antineutral torsion element if and only if Pic0(D′)Σ has an antineutral 2-primary
torsion element.

Proof. Assume the existence of an antineutral torsion element D of Pic0(D′)Σ. The
order of D is 2nm with m ∈ N odd and n ∈ N. The morphism η ◦ δ takes values in
the group R(x)×/ 2

R(x)
which has exponent 2. Thus the image of a double under

η ◦ δ is the identity element. The integer m being odd, D and mD have the same
image under η ◦ δ. As a consequence, the 2n-torsion point mD is an antineutral
point.
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4.2. The image of the multiplication-by-2 map
Let K be a characteristic 0 field and K be an algebraic closure of K. Let H be a

hyperelliptic curve defined over K by an affine equation H : y2 = f(x) where f(x)
is a monic separable polynomial of odd degree.

Let g be the genus of H. The polynomial f(x) has degree 2g+1. Let α1, . . . , α2g+1

be the roots of f in K. Denote by ∞ the point at infinity of the curve H and by
Pi the point (αi, 0). Let W := {P1, . . . , P2g+1,∞} be the set of Weierstrass points
of H. Denote by Div0

W (H) the set

{D ∈ Div(H) | deg(D) = 0 and SuppK(D) ∩W = ∅}.
Denote by L the algebra K[T ]/(f(T )) and by L the algebra K[T ]/(f(T )). The

class of a polynomial u ∈ K[T ] (respectively u ∈ K[T ]) in L×/L×2 (respectively in
L
×
/L

×2
) is denoted by [u].

We consider an element D of Div0
W (H ×K K) (which is defined in the same

way as Div0
W (H) except that we replace K by K). We write D =

∑
i∈I niQi with

Qi /∈W a point of H×KK. We define a map φH : Div0
W (H×KK) −→ L

×
/L

×2 by
sending D to the class

φH(D) :=

[∏
i∈I

(x(Qi) − T )ni

]
∈ L

×
/L

×2
.

Letting Gal(K/K) act trivially on the class [T ] ∈ L
×
/L

×2
we define a structure

of Gal(K/K)-module on L. We can think of L as the set of Gal(K/K)-invariant
elements of L. Doing this we deduce from φH a map φH : Div0

W (H) −→ L×/L×2.

Proposition 4.2.1. We use the notation above. Then the map φH induces a mor-
phism πH : Jac(H)(K) −→ L×/L×2 with kernel 2Jac(H)(K) and with image con-
tained in the kernel of the norm map NL/K : L×/L×2 −→ K×/K×2.

Proof. See [26, Theorems 1.1 and 1.2].

Remark. The morphism πH can be described in terms of the Mumford repre-
sentation. Assume D ∈ Div0(H) is a semi-reduced divisor i.e. D can be written
D =

∑
i∈I

ni(Qi −∞) with ni ∈ N and Qi a point of H defined over K such that:

• x(Qi) �= x(Qj) for all i �= j;
• ni ∈ {0, 1} when y(Qi) = 0.

The Mumford representation for D is the unique couple (u, v) of elements of k[T ]
such that:

• u(T ) =
∏
i∈I

(T − x(Qi))ni and v(x(Qi)) = y(Qi);

• the degree of v is strictly less than degT (u);
• the polynomial u(T ) divides v(T )2 − f(T ).

If the Mumford representation for D is (u, v) then πH sends the linear equivalence
class of D to the class

[
(−1)deg(u)u(T )

] ∈ L×/L×2.

To apply Proposition 4.2.1 we use the following characterization of the squares in
a quadratic extension.
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Proposition 4.2.2. Let k0 be a field of characteristic different from 2. Let δ be
an element of k0 which is not a square in k0. Denote by k the quadratic extension
k := k0[U ]/(U2 − δ).

1. Let α and β be two elements of k0. We assume that α is nonzero. Then αU+β
is a square in k if and only if there exist γ, η ∈ k0 such that

Nk/k0(αU + β) = γ2 and
β + γ

2
= η2.

2. Let β be an element of k0. Then β is a square in k if and only if β or δβ is a
square in k0.

4.3. A family of Jacobian varieties without antineutral torsion point

Notation 4.3.1. Let B and C be two elements of R(x). We consider the polynomial
P (x, y2) := (y2 + 1)(y2 + C)(y4 + (1 + C)y2 + B) which is assumed to be square-
free. Let C be the hyperelliptic curve defined over R(x) by the affine equation C :
z2 + P (x, y2) = 0.

We use the notation of Proposition 3.2.1 relative to the curve C. In particular
we introduce d := (1 − C)(B − C) and the three polynomials

g1(s) :=
−(s+ d)2 + (s− d)2

−4d
= s,

g2(s) :=
−(s+ d)2 + C(s− d)2

C − 1
and

g3(s) :=
(s+ d)4 − (1 + C)(s+ d)2(s− d)2 +B(s− d)4

B − C
.

We denote by σ be the complex conjugation. The curve C′ := C ×R(x) C(x) is
birationally equivalent to the curve C̃′ := C̃×R(x)C(x) with C̃ the hyperelliptic curve
defined over R(x) by the affine equation C̃ : t2 = g1(s)g2(s)g3(s). For every index
i = 1, 2, 3, we denote by ki the algebra C(x)[T ]/(gi(T )). Let

π
eC : Jac(C̃)(C(x)) −→ k×1 /k

×2
1 × k2/k

×2
2 × k3/k

×2
3

be the morphism obtained by applying Proposition 4.2.1 to the curve C̃. We denote
by π

eC,i : Jac(C̃)(C(x)) −→ ki/k
×2
i the ith coordinate of π

eC .

Proposition 4.3.2. We use Notation 4.3.1. We assume B, C and (1 + C)2 − 4B
are not squares in C(x). Then the 2-torsion subgroup of Jac(C̃) (C (x)) is generated
by the two points <g1, 0> and <g2, 0>.

Proof. The hypotheses imply that the three polynomials g1, g2 and g3 are irre-
ducible. This is sufficient since the 2-torsion points are the points <u, 0> with u
a divisor of g1g2g3 of degree less than or equal to the genus g of the curve C̃ (see
[23]).

Proposition 4.3.3. We use Notation 4.3.1. We assume B, C and (1 + C)2 − 4B
are not squares in C(x). If <g1, 0> is a double in Jac(C̃) (C (x)) , then either

(B − C) ∈ C(x)×2 or C(B − C) ∈ C(x)×2.
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Proof. The image of an element of 2Jac(C̃) (C (x)) under π
eC,2 is trivial. In particu-

lar, if <g1, 0> is a double in Jac(C̃) (C (x)), then the class of −T in k2 is a square.
The result is a reformulation of this condition obtained by using Proposition 4.2.2
together with the isomorphism

ϕ2 : C(x)[U ]/(U2 − 4C(B − C)2) −→ k2

U �−→ T + (1 + C)(B − C) .

Proposition 4.3.4. We use Notation 4.3.1 and the notation of Proposition 3.2.1.
Then

• the point <s− d, 8d3> is an 8-torsion element of Jac(C̃) (C (x));
• the double [2]<s− d, 8d3> is not σ�C-invariant but [4]<s− d, 8d3> is equal to
<g1g2, 0>.

Proof. Use Cantor’s algorithm (for the addition in Jac(C̃′)(C(x))) and Proposition
3.2.1.

Proposition 4.3.5. Let B and C be two elements of R(x). Let C be the hyperelliptic
curve defined over R(x) by the affine equation

z2 + (y2 + 1)(y2 + C)(y4 + (1 + C)y2 +B) = 0.

We assume that B, C, C(B − C), B − C, (B − C)(1 − C) and (1 + C)2 − 4B are
not squares in C(x). Then the 2-primary torsion subgroup of Jac(C)(C(x)) is finite.

Proof. Since C, 1 − C, B − C, B and (1 + C)2 − 4B are different from 0, the
polynomial P (x, y2) := (y2 + 1)(y2 + C)(y4 + (1 + C)y2 +B) is squarefree.

We use Notation 4.3.1. Following Propositions 4.3.2 and 4.3.4, the 2-torsion sub-
group Jac(C̃) (C (x)) [2] is generated by <g1, 0> and <g1g2, 0> = [4]<s−d, 8d3>. In
particular, since <g1, 0> is not a double, Jac(C̃) (C (x)) [8] is generated by <g1, 0>
and <s− d, 8d3>.

The image of n1<g1, 0>+n2<s− d, 8d3> under π
eC,1 is d6n1dn2 . Since d is not a

square in k1, a given 8-torsion point is a double if and only if it is a 4-torsion point.
As a consequence every 2-primary torsion element of Jac(C̃) (C (x)) has order 8. In
particular the 2-primary torsion subgroup of Jac(C̃) (C (x)) is finite.

Corollary 4.3.6. We use the notation and hypotheses of Proposition 4.3.5. Then
the group Jac(C)(R(x)) has no antineutral torsion point.

Proof. Using Proposition 3.2.1, we check that no 8-torsion point is antineutral (for
a computation of the 8-torsion subgroup, see the proof of Proposition 4.3.5).

5. Simplifying some Mordell–Weil rank computations

5.1. An application of the Lang–Néron theorem

Theorem 5.1.1 (Lang, Néron). Let k be a field. Let F be the function field of a
variety defined over k. Let A be an abelian variety defined over F. We assume that
no abelian subvariety B of A can be obtained by extension of scalar from an abelian
variety defined over k and of dimension at least 1. Then the group of rational points
A(F ) is finitely generated.
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Proof. See [17, Theorem 4.2].

Corollary 5.1.2. Let B and C be two elements of R(x). Let C be the hyperelliptic
curve defined over R(x) by the affine equation

z2 + (y2 + 1)(y2 + C(x2))(y4 + (1 + C(x2))y2 +B(x2)) = 0.

We assume the polynomials B(x2), C(x2), C(x2)(B(x2)− C(x2)), B(x2) −C(x2),
(B(x2) − C(x2))(1 − C(x2)) and (1 + C(x2))2 − 4B(x2) are not squares in C(x).
Then the abelian group Jac(C)(C(x)) is finitely generated.

Proof. No abelian subvariety A of Jac(C) of dimension at least 1 can be defined
by extension of scalar from an abelian variety defined over C. In fact, if such a
variety did exist, then the 2-primary torsion subgroup of A(C) would be a set of
infinite order (since C is algebraically closed) and we would have a contradiction
with Corollary 4.3.5. Thus the hypotheses of Theorem 5.1.1 are satisfied.

5.2. Involutions and Mordell–Weil rank
The group of rational points of a given Jacobian variety defined over a field k

can be computed using divisor class groups of function fields. For the convenience
of the reader we recall the definition of the divisor class group Pic(F/k) of a given
function field F/k.

Notation 5.2.1. We use notation and definitions from [28]. Let k be a character-
istic 0 field. Let F be a function field of full constant field k (i.e., a finite extension
of k(α) for some transcendental element α ∈ F such that k is algebraically closed
in F ). Denote by MF/k the set of places of F/k.

We denote by Div(F/k) the group of divisors of F/k, i.e. the free abelian group
generated by MF/k, and by Div0(F/k) (or Div0(F )) the subgroup of divisors of
degree 0 of F/k, i.e. the subgroup of divisors∑

P∈MF/k

nPP ∈ Div(F/k) such that
∑

P∈MF/k

nP = 0.

When F/k is a function field and f is an element of F , we denote by divF/k(f)
the principal divisor ∑

P∈MF/k

nPvP(f)

associated to f . We denote by Pr(F/k) the group of principal divisors of F/k, by
Pic(F/k) the quotient group Div(F/k)/Pr(F/k), and by Pic0(F/k) (or Pic0(F ))
the quotient group Div0(F/k)/Pr(F/k).

Lemma 5.2.2. We use the notation above. Then the order of the 4-torsion subgroup
of Pic0(F/k) is finite.

Proof. The field F is the function field of some geometrically integral smooth pro-
jective curve D defined over k. Since Pic0(F/k) can be injected in Jac(D)(k), Lemma
5.2.2 follows from the finiteness of the order of Jac(D)(k)[4].

Notation 5.2.3. Let F be a function field with full constant field k and let F2 be
a finite extension of F with full constant field k2. When p is a place of F/k, we
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denote by CnF2/F (p) the divisor
∑
P|p

e(P|p)P ∈ Div(F2/k2). By linearity we get a
homomorphism

CnF2/F : Div0(F/k) −→ Div0(F2/k2).

The homomorphism CnF2/F induces a group homomorphism CNF2/F from the
quotient Pic0(F/k) to the group Pic0(F2/k2).

When ρ is an automorphism of a field F , we denote by F ρ the subfield of
ρ-invariant elements of F .

Proposition 5.2.4. Let k be a characteristic 0 field. Let P (T ) ∈ k[T ] be a noncon-
stant polynomial and let H be the hyperelliptic curve defined over k by the affine
equation z2 + P (y) = 0. Denote by ι : k(H) −→ k(H) the hyperelliptic involution.
Let ρ : k(H) −→ k(H) be an involution distinct from the identity map and from
ι. We assume that the two involutions ι and ρ commute.

Then the homomorphism ϕ := +◦ (
CNk(H)/k(H)ι◦ρ × CNk(H)/k(H)ρ

)
has a finite

kernel and its image contains 2Pic0(k(H)/k).

Proof. We divide the proof into four steps.

Step 1. Let p be a place of k(H)ρ. Since k(H)/k(H)ρ is a degree 2 Galois extension
with Galois group {Id, ρ},

1. for every place P above p the ramification indexes e(P|p) and e(ρ(P)|p) are
equal (see [28, Corollary III.7.2]);

2. ρ induces a bijection from the set of places above p into itself.

In particular every element of the image of Cnk(H)/k(H)ρ is ρ-invariant.

Step 2. Let D be a divisor of k(H)ρ such that Cnk(H)/k(H)ρ (D) = divk(H)/k(f) for
some function f ∈ k(H). Following Step 1, the divisor Cnk(H)/k(H)ρ(2D) is equal
to

Cnk(H)/k(H)ρ (D) + ρ(Cnk(H)/k(H)ρ (D)) = divk(H)/k(fρ(f))
= Cnk(H)/k(H)ρ(divk(H)ρ/kρ(fρ(f)))

The injectivity of Cnk(H)/k(H)ρ gives 2D = divk(H)ρ/kρ(fρ(f)). This shows that the
kernel of CNk(H)/k(H)ρ is included in the 2-torsion subgroup of Pic0(k(H)ρ/kρ).

Step 3. Notice that Step 1 and Step 2 are still true when ρ is replaced by ι ◦ ρ. Let
(αρ, αι◦ρ) be an element of Ker(ϕ). Then CNk(H)/k(H)ι◦ρ(αι◦ρ)=−CNk(H)/k(H)ρ(αρ)
is ι-invariant (since it is both ρ-invariant and ι ◦ ρ-invariant; see Step 1). Thus its
order is at most 2. Applying Step 2 for 2αρ and 2αι◦ρ together with Lemma 5.2.2,
we show there are only finitely many choices for αρ and αι◦ρ.

Step 4. Let D be a degree 0 divisor of k(H)/k. Then D + ρ (D) is in the image of
Cnk(H)/k(H)ρ and D+ ι ◦ ρ (D) is in the image of Cnk(H)/k(H)ι◦ρ . In particular the
linear equivalence class of D + ρ (D) + D + ι ◦ ρ (D) is in the image of ϕ. Since
ρ (D) + ι ◦ ρ (D) is principal, the image of ϕ contains the linear equivalence class
of 2D.
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Lemma 5.2.5. Let D be a smooth projective geometrically integral curve defined
over R(x). Assume that D has a C(x)-point. Then the following inclusions hold:

2Jac(D)(R(x)) ⊂ Pic0(R(x)(D)) ⊂ Jac(D)(R(x)).

Proof. Let D′ := D ×R(x) C(x) be the complexified of D. Denote by Σ the
Galois group Gal(C(x)/R(x)) = Gal(C/R). Following Lemma 3.1.1 we have an
exact sequence

0 �� Pic(R(x)(D))
p∗ �� Pic(C(x)(D′))Σ δ �� H1(Σ,C(x)(D′)×/C(x)×).

Using p∗ we identify Pic(R(x)(D)) with a subgroup of Pic(C(x)(D′))Σ. The ex-
ponent of H1(Σ,C(x)(D′)×/C(x)×) is 2. Thus ker(δ) = Pic(R(x)(D)) contains
2Pic(C(x)(D′))Σ. To conclude we notice that Jac(D)(R(x)) = Pic0(C(x)(D′))Σ.

Proposition 5.2.6. Let P (T ) ∈ R(x)[T ] be a nonconstant polynomial and C be
the hyperelliptic curve defined over R(x) by the affine equation z2 + P (y2) = 0.
Assume that C has a C(x)-rational point and that Jac(C)(R(x)) is finitely generated.
Consider the two following R(x)-hyperelliptic curves

C+ : t2 + sP (s) = 0 and C− : β2 + P (α) = 0.

Then the Mordell–Weil rank of Jac(C)(R(x)) is the sum of the Mordell–Weil ranks
of the groups Jac(C+)(R(x)) and Jac(C−)(R(x)).

Proof. Apply Lemma 5.2.5 for C, C+ and C−, and Proposition 5.2.4 to the involution
ρ : R(x)(C) −→ R(x)(C), A(y, z) �−→ A(−y, z).
Proposition 5.2.7. Let k be a characteristic 0 field and f(x, y) ∈ k(x)[y] be a
polynomial of odd degree in y. Denote by C the hyperelliptic curve defined over
k(x) by the affine equation z2 = f(x2, y). For each δ ∈ k(x)× denote by Cδ the
k(x)-hyperelliptic curve given by the affine equation t2 = δdegy(f)f

(
x, sδ

)
. Then

the Mordell–Weil rank of Jac(C)(k(x)) is the sum of the Mordell–Weil ranks of
Jac(C1)(k(x)) and Jac(Cx)(k(x)).
Proof. Apply Proposition 5.2.4 to the the involution of k(x)(C) preserving k, y and
z, and sending x to −x.

5.3. A 2-descent

5.3.1. The application of a result of Christie

Proposition 5.3.1.1. Let k0 be a subfield of C. Let f ∈ k0(x)[y] be a squarefree
polynomial of odd degree and C be the hyperelliptic curve defined over k0(x) by
the affine equation z2 = f(y). We assume that the 2-primary torsion subgroup of
Jac(C)(C(x)) is finite. Then Jac(C)(C(x)) is equal to Jac(C)(K(x)) for some finite
extension K of k0.

Proof. For every C(x)-point P of Jac(C) denote by KP the smallest subfield of C

containing k0 and such that P is defined over KP (x). If KP is not a finite extension
of k0, then KP is a finite extension of k0(t1, . . . , tn) with t1, . . . , tn algebraically
independent over k0. In that case, by specializing t1, . . . , tn over C, the point P gives
uncountably many C-points of Jac(C). This is a contradiction because Jac(C)(C(x))
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is finitely generated (as in the proof of Corollary 5.1.2, apply Theorem 5.1.1). Thus
KP is a finite extension of k0.

The group Jac(C)(C(x)) is generated by a finite family (Pi)ri=1 (see Corollary
5.1.2). The smallest subfield K of C containing all the fields KPi is a finite ex-
tension of k0 and the group Jac(C)(K(x)) contains all the points Pi. In particular
Jac(C)(C(x)) and Jac(C)(K(x)) are equal.

For a better understanding of the field K defined by Proposition 5.3.1.1, we use
the following result of Christie.

Proposition 5.3.1.2 (Christie [9]). Let Γ be a finite group and A be a finitely
generated free abelian group on which Γ acts. Assume the triviality of the action
of Γ on A/2A. Then A has a basis (ai)ti=1 such that τ(ai) ∈ {−ai, ai} for every
τ ∈ Γ.

Proposition 5.3.1.3. Let k be a subfield of R. Let f ∈ k(x)[y] be a polynomial of
odd degree 2g + 1. Let C be the hyperelliptic curve defined over k(x) by the affine
equation z2 = f(y). Denote by J the Jacobian variety associated to C. Assume that

1. the 2-primary torsion of J(C(x)) is finite, and

2. the action of Gal(C/k) on J(C(x))/2J(C(x)) is trivial.

For each d ∈ k× denote by Cd the hyperelliptic curve defined over k(x) by the affine
equation z2 = d2g+1f(yd). Then the Mordell–Weil rank of J(R(x)) is 0 if and only
if for every positive element d ∈ k× the k(x)-Mordell–Weil rank of Jac(Cd) is 0.

Proof. Since the 2-primary torsion subgroup of J(C(x) is finite, Corollary 5.3.1.1
asserts the existence of a finite extension K of k such that J(C(x)) = J(K(x)). The
Galois group Γ := Gal(K/k) is finite. Following Theorem 5.1.1, the free abelian
group A := J(K(x))/J(K(x))tors is finitely generated.

Let σ be the complex conjugation. Since the group Γ := Gal(C/k) contains σ, the
actions of Γ and σ commute (use Proposition 5.3.1.2). Thus Γ acts on the subgroup
Aσ of σ-invariant elements of A. The action of Γ on A/2A is trivial. The quotient
A being a free abelian group, the intersection Aσ∩2A is equal to 2Aσ. This implies
the triviality of the action of Γ on Aσ/2Aσ.

Assume that the Mordell–Weil rank of J(R(x)) is different from 0. Applying
Proposition 5.3.1.2 to Aσ and Γ we obtain a basis (ai)ti=1 of Aσ such that
τ(ai) ∈ {−ai, ai} for every τ ∈ Γ. Let Pi ∈ J(K(x)) be an element in the class ai.
Let m be the exponent of J(K(x))tors. The point mPi is fixed by a subgroup Γi of
Γ of index at most 2. The field KΓi of elements in K invariant under the action of
Γi is an extension of k of degree at most 2, i.e. is equal to k(

√
di) for some di ∈ k×.

Since σ belongs to Γi, the field k(
√
di) is contained in R. In particular di is positive.

If Γi = Γ, then mPi is an element of J(k(x)) = Jac(C1)(k(x)) of infinite order.
Assume the existence of τi ∈ Γ such that τi(ai) = −ai. Then di is not a square in k.
The degree of f being odd, the curves C and Cdi have a k(x)-rational point above
the point at infinity of P1. Applying Proposition 5.2.4 for the involution τi we get
the existence of an element of infinite order in Jac(C1)(k(x)) × Jac(Cdi)(k(x)).

Conversely, when for some positive element d ∈ k× the group Jac(Cd)(k(x)) has
an infinite order element P1, a change of variable over k(

√
d) sends P1 to an infinite

order element of Jac(C)(k(
√
d)(x)) ⊂ Jac(C)(R(x)).
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5.3.2. A first study of the image of πC
Let k be a characteristic 0 field. For each monic polynomial P (y) ∈ k(x)[y] denote
by KP the algebra k(x)[y]/(P (y)) and by yP the class of y in KP .

Let f ∈ k[x][y] be a squarefree monic polynomial of odd degree and let C be
the hyperelliptic curve defined over k(x) by the affine equation z2 = f(y). Let
f(y) =

∏
l∈eI μl(y) be the decomposition of f(y) into monic prime elements of

k(x)[y]. For each l ∈ Ĩ we assume that μl belongs to k[x][y]. Let f ′(y) be the usual
derivative of f(y). For each index l ∈ Ĩ denote by Tl the class f ′(yμl

) of f ′(y) in
Kμl

= k(x)[y]/(μl(y)).

Proposition 5.3.2.1. We use the notation above. Let l be an element of Ĩ . We
consider a semi-reduced divisor div(u, v) ∈ Div0(k(x)(C)) such that u is coprime
to f .

Then the finite places of Kμl
at which u(yμl

) has odd valuation are in the support
SuppKμl

(Tl) of div(Tl).

Notation 5.3.2.2. We use the notation of Proposition 5.3.2.1. Let u =
∏
i∈I p

ni

i

be the decomposition of u into monic prime elements of Kμl
[y] (it exists since u is

monic). Consider an index i ∈ I. Denote by Kpi,μl
the field Kμl

[y]/(pi(y)) and by
ypi the class of y in Kpi,μl

.

Lemma 5.3.2.3. We use Notation 5.3.2.2. We consider a finite place p of Kμl
such

that vp(pi(yμl
)) �= 0. If P is a place of Kpi,μl

above p such that vP (Tl) = 0, then
the valuation vP(ypi − yμl

) is even.

Proof. Assume that vP(ypi − yμl
) is nonzero (if vP (ypi − yμl

) = 0 the result is
straightforward). From our hypotheses we know the coprimality of pi and f . Follow-
ing the definition of the Mumford representation we have f(y) ≡ v(y)2 mod pi(y).
In particular vP(f(ypi)) is even. Since μl(y) divides f(y), the element f(yμl

) is
equal to 0. Taylor’s formula gives

f(ypi) = (ypi − yμl
)
(
Tl + (ypi − yμl

)2g +
( 2g−1∑
j=1

fj(yi − yμl
)j

))
(1)

where fj ∈ Kμl
satisfies vp(fj) � 0 (because f ∈ k[x][y]). Lemma 5.3.2.3 is obtained

by applying the parity of vP(f(ypi)) and the parity of

vP
(
Tl + (ypi − yμl

)2g +
( 2g−1∑
j=1

fj(ypi − yμl
)j

))
(which is equal to either vP(Tl) or vP((ypi − yμl

)2g); use the triangle inequality) to
equation (1).

Proof of Proposition 5.3.2.1. We use Notation 5.3.2.2. Let p be a finite place of Kμl

at which pi(yμl
) has odd valuation. Assume that vp(Tl) is equal to 0. For each place

P of Kpi,μl
above p, the valuation vP(Tl) = e(P|p)vp(Tl) is equal to 0. Following

Lemma 5.3.2.3, for each place P above p, the valuation vP (ypi − yμl
) is even. A

classical computation shows that vp(NKpi,μl
/Kμl

(ypi − yμl
)) is equal to∑

P place of Kpi,μl
above p

f(P|p)vP(ypi − yμl
)
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(see [30] for the Dedekind rings case). Thus vp(pi(yμl
)) is even. This contradicts

our choice for the place p.

5.3.3. The action of the Galois group modulo the doubles
Let k ⊂ R be a field and C be a hyperelliptic curve over k(x) such that the
2-primary torsion of Jac(C)(R(x)) is finite. To compute the Mordell–Weil rank
of Jac(C)(R(x)), we want to do a 2-descent by applying Proposition 5.3.1.3. The
hypotheses of Proposition 5.3.1.3 are not satisfied in general. Proposition 5.3.3.1
gives conditions on C under which Proposition 5.3.1.3 can be applied.

Proposition 5.3.3.1. Let k be a subfield of R. Let f(y) ∈ k[x][y] be a squarefree
monic polynomial of odd degree 2g + 1. Denote by C the hyperelliptic curve defined
over k(x) by the affine equation z2 = f(y). We assume the existence of 2g elements
e1, . . . , e2g−1, H of k[x] and the existence of a polynomial μ(y) ∈ k[x][y] of degree 2
such that

f(y) = μ(y)
2g−1∏
i=1

(y −Hei).

We also assume:
• the discriminant Δ(f) of f(y) splits into linear factors over k,
• the discriminant Δ(μ) of μ is equal to H2Q2D with D ∈ k[x] a polynomial of

degree 1 and Q ∈ k[x],
• Δ(f) = Q2Q1 with Q1 ∈ k[x] coprime to Q, and
• D(α) is a square in k for every root α ∈ k of H.

Denote by L the algebra C(x)[t]/(f(t)). Let πC : Jac(C)(C(x)) −→ L×/L×2 be the
morphism defined by Proposition 4.2.1. Then the action of Gal(C/k) on the image
of πC is trivial.

Lemma 5.3.3.2. We keep the notation and hypotheses of Proposition 5.3.3.1. We
assume that μ is irreducible. We denote by Kμ,C the algebra C(x)[y]/(μ(y)) and by
yμ the class of y in Kμ,C. We denote by s the element μ′(yμ)

2HQ . Then the minimal
polynomial of s over C(x) is y2 − D(x). Thus C[x, s] is a unique factorization
domain and its fractions field is Kμ,C.

Lemma 5.3.3.3. We keep the notation and hypotheses of Lemma 5.3.3.2. Let α ∈ k
be a root of the resultant ResT (f ′(T ), μ(T )) such that Q(α) �= 0. Let β be a prime
element of C[x, s] such that NKμ,C/C(x)(β) = λ(x − α) for some constant λ ∈ C.
Then the valuation vβ is invariant under the action of Gal(C/k).

Proof. Since it belongs to C[x, s], the element β can be written as β = β1s + β0

with β0, β1 ∈ C[x]. The degree of D is 1 and λ(x−α) is equal to NC(x)(s)/C(x)(β) =
β2

0 − β2
1D. Thus β0 and β1 are in C and β2

0 = β2
1D(α). Lemma 5.3.3.3 is proven by

noticing that if D(α) is a square in k then λ̃β belongs to k[x, s] for some λ̃ ∈ C×.
The resultant ResT (f ′(T ), μ(T )) is equal to Δ(μ)

∏2g−1
i=1 μ(Hei) with Δ(μ) =

H2Q2D. Hence α is either a root of H or a root of D or a root of
∏2g−1
i=1 μ(Hei). If

α is a root of H or a root of D, then D(α) is a square in k. Assume H(α) �= 0 and
μ(Hei)(α) = 0 for some index i. Applying Taylor’s formula to μ(T ) at Hei we get

μ(T ) = (T −Hei)2 + (T −Hei)μ′(Hei) + μ(Hei).
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From this equality we deduce Δ(μ) : it is equal to (μ′(Hei))
2 − 4μ(Hei). In partic-

ular,

D(α) =
Δ(μ)(α)

(H(α)Q(α))2
=

(
μ′(Hei)(α)
H(α)Q(α)

)2

is a square in k.

Lemma 5.3.3.4. We keep the notation and hypotheses of Lemma 5.3.3.2. Let α ∈ k
be a root of Q and β be a prime element of C[x, s] such that NKμ,C/C(x)(β) = λ(x−α)
for some constant λ ∈ C×.

Let div(u, v) ∈ Div0(C(x)(C)) be a semi-reduced divisor with u coprime to f and
let σ be an element of Gal(C/k). Then the valuation vβ(u(yμ)σ(u(yμ))) is even.

Proof. The polynomial μ admits yμ as a root in Kμ,C and is totally split over Kμ,C.
Denote by ι the unique C(x)-automorphism of Kμ,C = C(x)(yμ) sending yμ to the
other root of μ. Since βι(β) = NC(x,s)/C(x)(β) = λ(x − α), the set of prime factors
of λ(x−α) is {β, ι(β)}. Thus, x−α being σ-invariant, the sets {σ−1(β), σ−1 ◦ ι(β)}
and {β, ι(β)} are equal. When vβ = vσ−1(β) the result is straightforward.

Assume that vσ−1(β) = vι(β) = vι−1(β). Since it divides Q1 the polynomial
f ′(Hei) is coprime to x − α. Following Proposition 5.3.2.1 this implies the par-
ity of the valuations vx−α(u(Hei)) and vβ(u(Hei)) = e(β|x− α)vx−α(u(Hei)).

Denote by Ku,μ,C the algebra Kμ,C[y]/(u(y)). By definition of the Mumford rep-
resentation,

f(y) = (y − yμ)(y − ι(yμ))
2g−1∏
i=1

(y −Hei)

is a square modulo u. In particular the valuation at β of

NKu,μ,C/Kμ,C
(f(y)) = u(yμ)u(ι(yμ))

2g−1∏
i=1

u(Hei)

is even. Since vβ(u(Hei)) is also even, we get the parity of vβ(u(yμ)u(ι(yμ)). This
is enough to conclude because vσ−1(β) = vι−1(β).

Proof of Proposition 5.3.3.1. For every prime factor p ∈ C[x][y] of f denote byKp,C

the field C(x)[y]/(p(y)) and by yp the class of y in Kp,C. Under the hypotheses of
Proposition 5.3.3.1 the field Kp,C is the fraction field of a unique factorization
domain Op,C (see Lemma 5.3.3.2).

Let div(u, v) ∈ Div0(C(x)(C)) be a semi-reduced divisor with u coprime to f , let
p be a prime factor of f and let σ be an element of Gal(C/k). We prove that the
class of u(yp)σ(u(yp)) in Kp,C is a square. Since every element of O×

p,C = C× is a
square and since Op,C is a unique factorization domain it is sufficient to show that
vβ(u(yp)σ(u(yp))) is even for every prime β ∈ Op,C.

Assume the existence of a prime element β ∈ Op,C such that vβ(u(yp)σ(u(yp))) =
vβ(u(yp))+ vσ−1(β)(u(yp)) is odd. Eventually replacing β by σ−1(β) we can assume
that vβ(u(yp)) is odd and that vσ−1(β)(u(yp)) is even. Following Proposition 5.3.2.1
the norm NKp,C/C(x)(β) is a divisor of NKp,C/C(x)(f ′(yp)) = resT (f ′(T ), p(T )). In
particular NKp,C/C(x)(β) divides Δ(f). Since Δ(f) splits into linear factors over k
the norm NKp,C/C(x)(β) is equal to λ(x − α) for some λ ∈ C× and some α ∈ k.

315https://doi.org/10.1112/S1461157000000619 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000619


Hilbert’s seventeenth problem and hyperelliptic curves

Case 1: if the degree of p is 1. Then β is equal to λ(x − α). In particular the
valuations vβ and vσ(β) are equal. This is in contradiction with the definition of β.

Case 2: if p = μ is an irreducible polynomial of degree 2. Then we apply Lemma
5.3.3.3 and Lemma 5.3.3.4.

Corollary 5.3.3.5. We use Notation 2.1. We assume that the elements η, ω, ρ,
ω2−η2, 2b1−2+ω2−η2,

(
ω2 − η2 − 2

)2−4η2,
(
ω2 − η2

)2−4ω2,
(
ω2 − η2 − 1

)2−4η2,
2b1 +ω2−η2−1, b21−η2 and (b1 − 1)2−ω2 are nonzero. For each δ ∈ k(x)× denote
respectively by C+

δ and C−
δ the two following k(x)-hyperelliptic curves:

C+
δ : z2 = y(y − δ)(y − δC(x))(y2 − δ[1 + C(x)]y + δ2B(x)) and

C−
δ : z2 = y(y2 − δ[(1 − C(x))2 − 2(B(x) − C(x))]y + δ2[B(x) − C(x)]2).

Then the R(x)-Mordell–Weil rank of Jac(C) is zero if and only if for every positive
element ζ ∈ k× the k(x)-Mordell–Weil ranks of Jac(C+

ζ ), Jac(C+
ζx), Jac(C−

ζ ) and
Jac(C−

ζx) are zero.

Proof. Following Proposition 5.2.6, the Mordell–Weil rank of Jac(C)(R(x)) is the
sum of the Mordell–Weil ranks of Jac(C+)(R(x)), Jac(C−)(R(x)) with

C+ : β2 = α(α− 1)(α− C(x2))
(
α2 − [1 + C(x2)]α +B(x2)

)
,

C− : β2 = α
(
α2 − [(1 − C(x2))2 − 2(B(x2) − C(x2))]α+ (B(x2) − C(x2))2

)
.

Applying Proposition 5.2.7 to C+ and then to C− we show that the R(x)-Mordell–
Weil rank of Jac(C) is zero if and only if the groups Jac(C+

1 )(R(x)), Jac(C+
x )(R(x)),

C−
1 (R(x)) and C−

x (R(x)) are finite. To prove Corollary 5.3.3.5 we apply Proposition
5.3.1.3 to C−

1 , C−
x , C+

1 and C+
x ; we check the hypotheses of Proposition 5.3.1.3 by

using Proposition 5.3.3.1 and Proposition 4.3.5 (to apply it, use the results from
subsection 5.2).

5.4. Richelot’s isogenies

Proposition 5.4.1. Let K be a characteristic 0 field. Let J and Ĵ be two abelian
varieties defined over K. We assume that J(K) is finitely generated. We assume
the existence of two isogenies ϕ : J −→ Ĵ and ϕ̂ : Ĵ −→ J such that ϕ ◦ ϕ̂ = [2]

bJ
and ϕ̂ ◦ ϕ = [2]J . Then the K-Mordell–Weil rank of J is zero if and only if

J(K)/ϕ̂(Ĵ(K)) = J(K)tors/ϕ̂(Ĵ(K)) and Ĵ(K)/ϕ(J(K)) = Ĵ(K)tors/ϕ(J(K)).

Notation 5.4.2. We consider the following data:
• a characteristic 0 field k;
• a monic squarefree polynomial f ∈ k[x][y] with odd degree;

• a decomposition f =
r∏
i=1

Pi(y) of f into prime elements of k(x)[y].

Let H be the hyperelliptic curve defined over k(x) by the affine equation z2 = f(y).
We denote

• by Ki the field k(x)[y]/(Pi(y)) and by yi the class of y in Ki;
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• by πH : Jac(H)(k(x)) −→ ∏r
i=1K

×
i /K

×2
i the morphism obtained by applying

Proposition 4.2.1 to H;

• by πH,i : Jac(H)(k(x)) −→ K×
i /K

×2
i the ith coordinate of πH.

The norm map NKi/k(x) associated to the field extension Ki/k(x) induces a
homomorphism NKi/k(x) : K×

i /K
×2
i −→ k(x)×/k(x)×2. We denote by ΞH,i the

composite map NKi/k(x) ◦ πH,i. We denote by

ΞH : Jac(H)(k(x)) −→
r∏
i=1

k(x)×/k(x)×2

the homomorphism with ith coordinate ΞH,i (for i ∈ {1, . . . , r}).
Theorem 5.4.3. We use Notation 2.1. We assume the hypotheses of Corollary
5.3.3.5 are satisfied. For each δ ∈ k(x)× we consider the hyperelliptic curves C+

δ ,

Ĉ+
δ , C−

δ , Ĉ−
δ defined over k(x) by the affine equations

C+
δ : z2 =

(
y + δ(1+C(x))

2

)(
y2 − ( δ(1−C(x))

2

)2)(
y2 − δ2[(1+C(x))2−4B(x)]

4

)
Ĉ+
δ : z2 = (y + δ(1 + C(x)))(y2 − 4δ2B(x))(y2 − 4δ2C(x))

C−
δ : z2 = y(y2 − δ[(1 − C(x))2 − 2(B(x) − C(x))]y + δ2(B(x) − C(x))2)

Ĉ−
δ : z2 = y

(
y + δ(1 − C(x))2

) (
y + δ[(1 − C(x))2 − 4(B(x) − C(x))]

)
.

We use Notation 5.4.2 for H ∈ {C−
δ , Ĉ−

δ , C+
δ , Ĉ+

δ } with:

• P1 = y when H = C−
δ or H = Ĉ−

δ ;

• P1 = y + δ(1+C(x))
2 , P2 = y − δ(1−C(x))

2 , P3 = y + δ(1−C(x))
2

and P4 = y2 − δ2[(1+C(x))2−4B(x)]
4 when H = C+

δ ;

• P1 = y + δ(1 + C(x)), P2 = y2 − 4δ2B(x), P3 = y2 − 4δ2C(x) when H = Ĉ+
δ .

If for every positive element ζ ∈ k× the images of the eight homomorphisms

ΞC−
ζ ,1

,ΞC−
ζx,1

,Ξ
bC−
ζ ,1

,Ξ
bC−
ζx,1

,Ξ
bC+
ζ
,Ξ

bC+
ζx
,

ΠC+
ζ

:=
(
ΞC+

ζ ,1
,ΞC+

ζ ,2
.ΞC+

ζ ,3
,ΞC+

ζ ,4

)
: Jac(C+

ζ ) −→
3∏
i=1

k(x)×/k(x)×2 and

ΠC+
ζx

:=
(
ΞC+

ζx,1
,ΞC+

ζx,2
.ΞC+

ζx,3
,ΞC+

ζx,4

)
: Jac(C+

ζx) −→
3∏
i=1

k(x)×/k(x)×2

are respectively the images of the k(x)-rational torsion subgroups of

C−
ζ , C−

ζx, Ĉ−
ζ , Ĉ−

ζx, Jac(Ĉ+
ζ ), Jac(Ĉ+

ζx), Jac(C+
ζ ) and Jac(C+

ζx),

then the R(x)-Mordell–Weil rank of Jac(C) is zero.

Proof. Following Corollary 5.3.3.5, Jac(C)(R(x)) is finite if and only if for every
positive element ζ ∈ k× the groups C−

ζ (k(x)), C−
ζx(k(x)), Jac(C+

ζ )(k(x)), and
Jac(C+

ζx)(k(x)) are finite (notice that even if the curve C+
δ is not given by the

same equation as in Corollary 5.3.3.5, both curves are isomorphic over k(x)).
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There is an isogeny ϕ+
δ : Jac(C+

δ ) −→ Jac(Ĉ+
δ ) of degree 2 (a Richelot isogeny)

such that ker(ΠC+
δ
) = ϕ̂+

δ (Jac(Ĉ+
δ )(k(x))) (with ϕ̂+

δ the dual isogeny of ϕ+
δ ) and

ker(Ξ
bC+
δ
) = ϕ+

δ (Jac(C+
δ )(k(x))) (see [8, chapters 9 and 10]). Applying Lemma 5.4.1

to ϕ+
δ we get that Jac(C+

δ )(k(x)) is finite if and only if the images of ΠC+
δ

and
Ξ

bC+
δ

are respectively the images of the torsion subgroups of Jac(C+
δ )(k(x)) and

Jac(Ĉ+
δ )(k(x)).

In the same way, applying Lemma 5.4.1 to a well-chosen 2-isogeny ϕ−
δ :

C−
δ −→ Ĉ−

δ (see [27, sections III.4 and III.5]), we show that C−
δ (k(x)) is finite if and

only if the images of ΞC−
δ

and Ξ
bC−
δ

are respectively the images of the torsion sub-
groups of C−

δ (k(x)) and Ĉ−
δ (k(x)).

6. Checking the triviality of the Mordell–Weil rank

In this section the class in k(x)×/k(x)×2 of a given rational fraction α ∈ k(x)×

is denoted by [α].

Proposition 6.1. We use Notation 5.4.2. For each couple i, j ∈ {1, . . . , r} of
integers such that j �= i, we denote by di,j the rational fraction

di,j := Gcd
(
NKi/k(x)

(
P ′
i (y)

∏
k �=i

Pk (y)
)
, NKj/k(x)

(
P ′
j (y)

∏
k �=j

Pk (y)
))
.

Then each element of the image of ΞH is a class([ ∏
j �=1

μ1,j

]
, . . . ,

[ ∏
j �=r

μr,j

])
for some family (μi,j)1�i�r, j �=i of squarefree elements of k[x] such that μi,j = μj,i
and such that the prime factors of μi,j are prime factors of di,j.

Proof. Let β be an element of Jac(H)(k(x)) and let div(u, v) be a semi-reduced
divisor on the curve H with linear equivalence class β. Following Proposition 5.3.2.1,
the norm NKi/k(x)((−1)deg(u)u(yi)) is equal to β2

i

∏
k∈Ii

pi,k where βi ∈ k(x)× and
pi,k ∈ k[x] are irreducible polynomials appearing in the decomposition of the norm

NKi/k(x)(f
′(yi)) = NKi/k(x)

(
P ′
i (yi)

∏
j �=i

Pj (yi)
)

into prime factors. Denote the product
∏
k∈Ii

pi,k by αi.
For μi,j we take Gcd (αi, αj); the leading coefficient of μi,j can be chosen such

that αi and
∏
j �=i μi,j have the same leading coefficient. Following Proposition 4.2.1

the product
∏r
i=1 ΞH,i(β) is the identity element of k(x)×/k(x)×2. In particular for

every prime p we have

vp

( r∏
j �=i

αj

)
≡ vp (αi) mod 2 and thus vp

( ∏
j �=i

μi,j

)
≡ vp (αi) mod 2

(notice that αi and αj are squarefree). This implies that
∏
j �=i μi,j = γ2αi for some

γ ∈ k(x)× (because αi and
∏
j �=i μi,j have the same leading coefficient). In other

words ΞH,i(β) is the class of
∏
j �=i μi,j .
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Notation 6.2. Let P be a place of k(x) and OP be the associated valuation ring.
Let α, β be elements of O×

P . The element α is equivalent to β modulo P and modulo
squares (and we write α ∼ β mod P) if there is γ ∈ O×

P such that α and βγ2 are
congruent modulo P .

Notation 6.3. Let k be a characteristic 0 field. Let A be an element of k(x).
Denote the algebra k(x)[T ]/(T 2 −A) by K and the class of T in K by t. Let P be
a place of k(x), OP be the associated valuation ring, vP be the valuation at P , and
p be a local parameter at P .
Proposition 6.4. We use Notation 6.2 and Notation 6.3. We denote by Ã the
element p−vP(A)A ∈ O×

P . Let u := u0(y2) + yu1(y2) ∈ k(x)[y] be a polynomial.
Denote by α the element p−vP(NK/k(x)(u(t)))NK/k(x)(u(t)) ∈ O×

P . Assume that vP(A)
is odd.

1. If vP(NK/k(x)(u(t))) is even, then α ∼ 1 mod P ;

2. if vP(NK/k(x)(u(t))) is odd, then α ∼ −Ã mod P and

vP(A) + 1
2

+ vP(u1(A)) � vP(u0(A)). (2)

Proposition 6.5. We use Notation 6.2 and Notation 6.3. We assume
• that the valuation vP(A) is even;
• that p−vP(A)A is not a square in the residual field OP/P.

Then, for every polynomial u ∈ k(x)[y], the valuation vP(NK/k(x)(u(t))) is even.

Proposition 6.6. We use the notation and assumptions of Theorem 2.5 and
the notation of Theorem 5.4.3. Let ζ > 0 be an element of k and δ be either ζ
or ζx. Then the image of ΞC−

δ ,1
= ΞC−

δ ,2
is trivial.

Proof. For a more detailed proof, see [22, Propositions 6.2.5 and 6.2.6].
Let (α, β) be a k(x)-point of the curve C−

δ . Following Proposition 6.1, the image
ΞC−

δ ,1
(α, β) is the class in k(x)×/k(x)×2 of a squarefree divisor μ of δ(B − C).

We apply Proposition 6.4 with P the infinite place of k(x),

A :=
δ2(1 − C)2((1 − C)2 − 4(B − C))

4

and u(y) = y − α+
δ((1 − C)2 − 2(B − C))

2
.

Since ζ and the leading coefficient of (1 − C)2 − 4(B − C) are positive, and since

− deg(A) + 1
2

> − deg
(
δ((1 − C)2 − 2(B − C))

2

)
,

Proposition 6.4 implies that μ is monic with even degree (use inequality (2) to study
α and notice that αNK/k(x)(−u(t)) is a square in k(x); here K and t are defined as
in Notation 6.3).

Let θ, ψ ∈ k[x] be two coprime polynomials such that α = μ θ
2

ψ2 . The equation of
C−
δ gives the existence of ν ∈ k[x] such that

μν2 = μ2θ4 − δ[(1 − C(x))2 − 2(B(x) − C(x))]μθ2ψ2 + δ2(B(x) − C(x))2ψ4.
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Reducing modulo 1 − C we get that either

μ ∼ 1 mod (1 − C) or μ ∼ −δ(B − C) mod (1 − C). (3)

When (δ, μ) = (ζ,B−C) the first relation contradicts hypothesis (1) and the second
relation contradicts the positivity of ζ. Thus, when δ = ζ, the polynomial μ is equal
to 1.

From now we assume that δ = ζx. A reduction at x similar to the reduction at
1 − C gives the relation x−vx(μ)μ ∼ ζvx(μ) mod x. When μ = B − C this relation
contradicts hypothesis (11) (with n1 = 1 and n2 = n3 = 0; see Assumption 2.4).
When μ /∈ {1, B − C},

• the relation μ ∼ 1 mod (1−C) contradicts either hypothesis (2) or hypothesis
(3);

• the equivalences μ ∼ −δ(B − C) mod (1 − C) and x−vx(μ)μ ∼ ζvx(μ) mod x
can be written as two equations with solutions in k (see Notation 6.2); tak-
ing the product of those two equations we get a contradiction with either
hypothesis (4) or hypothesis (5).

In particular, equivalences (3) show that the case μ /∈ {1, B−C} does not happen.

Proposition 6.7. We use the notation and assumptions of Theorem 2.5 and
the notation of Theorem 5.4.3. Let ζ > 0 be an element of k and δ be either ζ
or ζx. Then the image of Ξ

bC−
δ ,1

is the subgroup of k(x)×/k(x)×2 generated by
Ξ

bC−
δ ,1

(−δ(1 − C)2, 0) and Ξ
bC−
δ ,1

(0, 0).

Proof. For a more detailed proof, see [22, Propositions 6.3.5 and 6.3.6].
Let (α, β) be a k(x)-point of the curve Ĉ−

δ . Following Proposition 6.1, the image
Ξ

bC−
δ ,1

(α, β) is the class in k(x)×/k(x)×2 of a squarefree divisor μ of

δ(1 − C)[(1 − C)2 − 4(B − C)].

Since [−δ] = Ξ
bC−
δ ,1

(−δ(1−C)2, 0) and [(1−C)2 − 4(B −C)] = Ξ
bC−
δ ,1

(0, 0), we can
assume without loss of generality that μ divides 1 − C.

Write B − C = p1p2 with pi ∈ k[x] of degree 1. Using a specialization at pi
(analogous to the specialization at 1 − C in the proof of Proposition 6.6) we show
the existence of mi ∈ {0, 1} such that

μ ∼ (−δ)mi mod pi (4)

When μ is a constant. Equivalences (4) prove Proposition 6.7:
• when δ = ζ, we have either μ ∈ k×2 or −δμ ∈ k×2, that is,

μ ∈ Ξ
bC−
δ ,1

(−δ(1 − C)2, 0) ;

• when δ = ζx, hypothesis (11) implies that μ is a square in k (consider the
product of the two equations in k given by equivalences (4)).

When μ is divisible by 1 −C. Specializing at 1−C (as in the proof of Proposition
6.6), we show that −δ(B − C) ∼ 1 mod (1 − C). When δ = ζ, this equivalence
contradicts the positivity of ζ and (ω2 − η2)2 − 4ω2.
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We assume that δ = ζx. Taking the product of the two equations with solutions
in k given by equivalences (4) (see Notation 6.2) and using the value of ζ given by
the equivalence −δ(B−C) ∼ 1 mod (1−C), we get a contradiction with one of the
hypotheses (1), (6), (7) or (8)

Proposition 6.8. We use the notation and assumptions of Theorem 2.5 and the
notation of Theorem 5.4.3. Let ζ > 0 be an element of k and δ be either ζ or ζx.
Then the image of ΠC+

δ
is generated by the images of the 2-torsion elements of

Jac(C+
δ )(k(x)) under ΠC+

δ
.

Proof. For a more detailed proof, see [22, Propositions 6.4.7. and 6.4.8].
Let β be a k(x)-point of Jac(C+

ζ ). We consider the polynomials μi,j defined by
the application of Proposition 6.1 to C+

δ . Without loss of generality we can choose
the polynomials μi,j such that μ1,4 is coprime to δ and μ1,2 = μ2,4 = 1, i.e. such
that

ΞC+
δ
(β) = ([μ1,3μ1,4], [μ2,3], [μ1,3μ2,3μ3,4], [μ1,4μ3,4]).

Adding to β a 2-torsion point (if needed), we can assume without loss of generality
that

• μ1,3 ∈ k× is a constant,
• μ1,4 = ε1,4 (x+ b1 + η)n1 with ε1,4 ∈ k× and n1 ∈ {0, 1},
• μ2,3 ∈ k[x] is a squarefree divisor of δ(1 − C)(B − C), and

• μ3,4 = ε3,4x
n6vx(δ) (x+ b1 − 1 + ω)n2 (x+ b1 − 1 − ω)n4vx(δ) with ε3,4 ∈ k×

and n2, n4, n6 ∈ {0, 1}.
To prove Proposition 6.8, we specialize the maps ΞC+

δ ,i
at different places of k(x).

The idea is to choose places P of k(x) such that the reduction of the polynomial(
y +

δ(1 + C(x))
2

)(
y2 −

(δ(1 − C(x))
2

)2)(
y2 − δ2[(1 + C(x))2 − 4B(x)]

4

)
at P is divisible by the square of a nonconstant polynomial.

As an example we can use the fact that y2 − ( δ(1−C(x))
2

)2 is a square modulo
1 − C. Since ΞC+

δ ,2
(β).ΞC+

δ ,3
(β) is the class in k(x)×/k(x)×2 of the resultant

R := Resy
(
(−1)deg(u)u(y), y2 −

(δ(1 − C(x))
2

)2)
for some polynomial u ∈ k[x][y] of degree at most 2, we have either

μ1,3μ3,4 ∼ 1 mod (1 − C) or μ1,3μ3,4 ∼ δ(B − C) mod (1 − C) (5)

(the second equivalence may happen in the case when R is divisible by 1 − C and
is obtained by noticing that ΞC+

δ ,1
(β).ΞC+

δ ,4
(β) is also the class of μ1,3μ3,4).

In the same way, specializing the map

ΞC+
δ ,2
.ΞC+

δ ,3
.ΞC+

δ ,4
: Jac(C+

δ )(k(x)) −→ k(x)×/k(x)×2

at each prime factor of B−C, we prove the existence of two integers n3, n5 ∈ {0, 1}
such that

μ1,3μ1,4 ∼ δn2Cn3 mod (x+ b1 − 1 + ω) and

μ1,3μ1,4 ∼ δn4vx(δ)Cn5 mod (x+ b1 − 1 − ω)
(6)
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(notice that the polynomial(
y2 −

(δ(1 − C(x))
2

)2)(
y2 − δ2[(1 + C(x))2 − 4B(x)]

4

)
is a square modulo B − C).

Taking the product of the two equations with solutions in k given by equivalences
(6), and using a sign argument, we show that n1 ≡ (n2 + n4)vx(δ) mod 2.

Applying Proposition 6.4 we study the specialization of ΞC+
δ ,4

(β) at the infinite
place of k(x). We get

(η2 − ω2)n1+n6vx(δ)+n2+n4vx(δ)ε1,4ε3,4 ∈ k2. (7)

Case (1): μ1,4 and μ3,4 are constants. Then n1, n2 and n4vx(δ) are equal to 0.
Taking the product of the equations with solutions in k given by equivalences (6),
we deduce from hypothesis (11) that n3 = n5 = 0. In particular equivalences (6)
imply that μ1,3μ1,4 ∈ k×2. Relation (7) gives μ1,4μ3,4 ∈ k×2. Thus ΠC+

δ
(β) =

([μ1,3μ1,4], [μ1,3μ3,4], [μ1,4μ3,4]) is the identity element.

Case (2): δ = ζ and μ3,4 is not a constant. Since n1 ≡ (n2 + n4)vx(δ) mod 2, the
polynomial μ1,4 is constant. We have μ3,4 = ε3,4 (x+ b1 − 1 + ω). Taking products
of the equations with solutions in k given by equivalences (5), relation (7) and
equivalences (6) leads to a contradiction with either hypothesis (9) or hypothesis
(10).

Case (3): δ = ζx and μ1,4 ∈ k× but μ3,4 is not a constant. Considering the product
of the equations with solutions in k given by equivalences (6), we deduce from
hypothesis (11) that n1 = n2 = n3 = n4 = n5 = 0. Taking products of the equations
with solutions in k given by equivalences (5), relation (7) and equivalences (6) we
get a contradiction either to the positivity of ζ and (ω2 − η2)((ω2 − η2)2 − 4ω2) or
to hypothesis (12).

Case (4): μ1,4 is not a constant. Since n1 ≡ (n2 +n4)vx(δ) mod 2, we have δ = ζx,
and n2 and n4 have a different parity. Taking the product of the equations with
solutions in k given by equivalences (5), relation (7) and equivalences (6), and using
a sign argument, we contradict hypothesis (13) (when n2 is odd) and hypothesis
(14) (when n2 is even).

Proposition 6.9. We use the notation and assumptions of Theorem 2.5 and the
notation of Theorem 5.4.3. Let ζ > 0 be an element of k and δ be either ζ or
ζx. Then the image of Ξ

bC+
δ

is generated by the images of the 2-torsion elements of
Jac(Ĉ+

δ )(k(x)) under Ξ
bC+
δ
.

Proof. For a more detailed proof, see [22, Proposition 6.5.5].
Let β be a k(x)-point of Jac(Ĉ+

δ ). Proposition 6.1 applies and asserts the existence
of

• μ1,2 ∈ k[x] a squarefree divisor of δ((1 + C)2 − 4B),
• μ1,3 ∈ k[x] a squarefree divisor of δ(1 − C), and
• μ2,3 ∈ k[x] a squarefree divisor of δ(B − C)

322https://doi.org/10.1112/S1461157000000619 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000619


Hilbert’s seventeenth problem and hyperelliptic curves

such that Ξ
bC+
δ
(β) = ([μ1,2μ1,3], [μ1,2μ2,3], [μ1,3μ2,3]). Adding <y + δ(1 + C), 0> to

β (if needed), we can assume without loss of generality that μ1,2 is a divisor of δ.
For each prime factor p of B − C, we deduce the coprimality of μ1,3μ2,3 and p

from hypothesis (11) (apply Proposition 6.5, with P the place with local parameter
p, to the study of Ξ

bC+
δ ,3

). In particular μ2,3 is a divisor of δ.
Assume for now that δ is equal to ζx. Applying Proposition 6.5 with A :=

δ2B and P the place with local parameter x (use hypothesis (15)), we show that
vx(μ1,2μ2,3) is even. In the same way, applying Proposition 6.5 with A := δ2C and
P the place with local parameter x (use hypothesis (16)), we prove that vx(μ1,3μ2,3)
is even. In particular the valuations vx(μ1,2), vx(μ1,3) and vx(μ2,3) have the same
parity.

Now suppose we are in the general case (so δ may be different from ζx). Replacing
μi,j by x−1μi,j (if needed) we can assume without loss of generality that μ1,2 and
μ2,3 are constants and that μ1,3 = ε or μ1,3 = ε(1 − C) for some ε ∈ k×.

Applying Proposition 6.4 with P the infinite place of k(x) to the study of
Ξ

bC+
δ ,3

we show that εμ2,3 ∈ k×2. Moreover an application of Proposition 6.4 with
A := 4δ2B and P a place with local parameter one of the prime factors of B gives
μ1,2μ2,3 ∈ k×2. Thus μ1,2μ1,3 has the same class in k(x)×/k(x)×2 as either 1 or
1 − C.

Assume that μ1,2μ1,3(1 − C) ∈ k(x)×2. Let p be a prime factor of B − C. As in
the proof of Proposition 6.8, expressing the image Ξ

bC+
δ ,2

(β)Ξ
bC+
δ ,3

(β) as a resultant

Resy
(
(−1)deg(u)u(y),

(
y2 − 4δ2B

) (
y2 − 4δ2C

))
(where u(y) ∈ k[x][y] is a polynomial) and noticing that (y2−4δ2B)(y2−4δ2C) is a
square modulo p and that C is not a square modulo p, we show that the equivalence
μ1,2μ1,3 ∼ 1 mod p holds. In particular η2 − ω2 − 2ω and η2 − ω2 + 2ω are squares
in k (use the property μ1,2μ1,3(1 − C) ∈ k(x)×2). This contradicts hypothesis (1).
As a consequence Ξ

bC+
δ
(β) = ([μ1,2μ1,3], [μ1,2μ2,3], [μ1,3μ2,3]) is the identity.
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