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Equivariant Forms: Structure and Geometry
Abdelkrim Elbasraoui and Abdellah Sebbar

Abstract. In this paper we study the notion of equivariant forms introduced in the authors’ previous
works. In particular, we completely classify all the equivariant forms for a subgroup of SL2(Z) by
means of the cross-ratio, weight 2 modular forms, quasimodular forms, as well as differential forms of
a Riemann surface and sections of a canonical line bundle.

1 Introduction

The notion of equivariant forms was first introduced in [6] as functions on the upper
half of the complex plane H commuting with the modular group SL2(Z), that is,
satisfying

h(γ · z) = γ · h(z), z ∈ H, γ ∈ SL2(Z),

with a specific behavior at the cusps, and where γ·z denotes the usual action of SL2(Z)
on C by linear fractional transformations. In that paper, it was shown how to obtain
equivariant forms from modular forms as well as from integrals of elliptic functions,
and several connections with projective differential geometry and differential algebra
were established. In [2], this notion was generalized to an arbitrary subgroup Γ of
SL2(Z), and the main focus was on the so-called rational equivariant forms. More
precisely, an equivariant form h for Γ is called rational if there exists a generalized
modular form f for Γ of weight k and character µ such that

h(z) = z + k
f (z)

f ′(z)
.

It turns out that a necessary and sufficient condition for an equivariant form to be
rational, that is, to arise from a generalized modular form as above, is that all the
poles of (h(z) − z)−1 be simple with rational residues. This allows us to classify all
the rational equivariant forms. In particular, if Γ has genus 0, then the generalized
modular form f can be taken as a standard modular form (with trivial character). It
is also shown in [2] that the rational equivariant forms are only a small class among
the general equivariant forms.

In this paper, we undertake the task of classifying all the equivariant forms for an
arbitrary modular subgroup. This classification will be carried out in several ways.

The first classification is done using the cross-ratio, which is projectively invariant
and thus when applied to four equivariant forms for Γ, it will lead to a modular
function for Γ. In particular, if one fixes three equivariant forms, then the cross-ratio
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realizes a one-to-one correspondence between the equivariant forms and the field
of modular functions for Γ, in other words, with the function field of the Riemann
surface XΓ = Γ\H∗, where H∗ = H ∪ {cusps}. The Schwarz derivative, which
is the infinitesimal counterpart of the cross-ratio, is also projectively invariant and
interestingly, when it is applied to an equivariant form, it yields a modular form of
weight 4 for Γ.

The second classification is carried out using the theory of quasimodular forms
for Γ. In particular, we show that all the equivariant forms are identified with the
normalized quasimodular forms of weight 2 and depth 1. This will lead to a third
classification identifying the set of equivariant forms without the trivial one, h(z) =
z, with the space of weight 2 meromorphic modular forms for Γ. In particular, this
confers a structure of vector space to the set of equivariant forms. As an example, the
subset of equivariant forms without fixed points forms a finite dimensional subspace
that is isomorphic to the space of holomorphic weight 2 modular forms for Γ.

Finally, noting that the weight 2 modular forms correspond to differential 1-forms
on XΓ, we conclude that the equivariant forms can be looked upon as the meromor-
phic sections of the canonical line bundle of XΓ.

While most of the paper can be generalized to general Fuchsian groups, we have
restricted ourselves for the sake of simplicity to the subgroups of the modular group.
In particular, we relied on the classical treatment of modular forms and quasi-modu-
lar forms for the modular subgroups.

2 Generalities

Let SL2(R) be the group of 2x2 matrices with real entries and determinant 1. It acts
on the upper half of the complex plane H = {z ∈ C : Im(z) > 0} by linear fractional
transformations

α · z =
az + b

cz + d
, z ∈ H, α =

(
a b

c d

)
∈ SL2(R).

The Möbius group PSL2(R) = SL2(R)/{±I} is the full automorphism group of H.
For α as above, z ∈ H, set jα(z) = cz + d. The map j : SL2(R) × H → C∗ defines
what is called an automorphic factor and satisfies the cocycle relation

jαβ(z) = jα(β · z) jβ(z), α, β ∈ SL2(R).

We now introduce two different actions of SL2(R) on the space of meromorphic func-
tions on H. The classical slash operator is defined for a meromorphic function f on
H and a positive integer k by

f |k[α](z) = jα(z)−k f (α · z),

while the “double-slash” operator is defined for a meromorphic function f on H by

(2.1) f ‖[γ](z) = jγ(z)−2 f (γ · z)− r jγ(z)−1, γ =

(
p q

r s

)
∈ SL2(R),
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where again jγ(z) = rz + s. The slash operator is usually used to define modular
forms, and the double slash operator was introduced in [2] to define the notion of
equivariant forms. For the sake of completeness, we show that it defines an action of
SL2(R) on the space of meromorphic functions on H. Indeed, for elements β =

(a b
c d

)
and γ =

(p q
r s

)
in SL2(R), we have, on one hand,

f ‖[βγ](z) = jβγ(z)−2 f (βγ · z)− (cp + dr) jβγ(z)−1.

On the other hand, we have(
f ‖[β]

)
‖[γ](z) = jγ(z)−2 f ‖[β](γ · z)− r jγ(z)−1

= jγ(z)−2
(

jβ(γ · z)−2 f (βγ · z)− c jβ(γ · z)−1
)
− r jγ(z)−1

= jβγ(z)−2 f (βγ · z)− c jγ(z)−2 jβ(γ · z)−1 − r jγ(z)−1.

One easily checks that

c jγ(z)−2 jβ(γ · z)−1 + r jγ(z)−1 = (cp + dr) jβγ(z)−1,

which yields
f ‖[βγ](z) =

(
f ‖[β]

)
‖[γ](z).

Let Γ be a modular subgroup, that is , a finite index subgroup of the modular group
SL2(Z). Let s be a cusp of Γ, that is, s is in Q ∪ {∞}, and choose γ =

(p q
r s

)
∈ SL2(Z)

such that γ · s = ∞. Then the isotropy group of s, Γs = {α ∈ Γ| α · s = s}, is
conjugate by γ to the infinite cyclic group generated by T ls , with T =

(1 1
0 1

)
and ls is a

positive integer known as the cusp width of Γ at the cusp s.
Let k be a positive integer. A function f on H is called a meromorphic modular

form or simply a modular form of weight k for a modular subgroup Γ of SL2(Z) if

(1) f is meromorphic on H;
(2) for all α ∈ Γ and z ∈ H, we have f |k[α](z) = f (z);
(3) f is meromorphic at the cusps.

The last condition means the following: If s is a cusp and γ ∈ SL2(Z) is such that
γ · s =∞, then the function f |k[γ−1](z) is invariant under γΓsγ

−1 = 〈T ls〉. Hence,
it has a Fourier series expansion in the local parameter at infinity qs := e2πiz/ls if k is
even and qs = eπiz/ls if k is odd. The meromorphy condition means that we have the
Fourier series expansion

f |k[γ−1](z) =

∞∑
n=ns

as
nqn

s

with the integer ns being finite. If ns ≥ 0 for every cusp s and if f is holomorphic
on H, then f is called a holomorphic modular form. A holomorphic modular form
is called a cusp form if it vanishes at all cusps, in other words ns > 0 for every cusp
s. When k = 0, the modular form is called a modular function. If condition (2) is
replaced by

(2 ′) for all α ∈ SL2(Z) and z ∈ H, we have f |k[α](z) = µ(α) f (z),

where µ : Γ −→ C× is a character not necessarily unitary, then f is called a general-
ized modular form (see [5]).
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3 Equivariant Forms

In this section, we introduce the notion of equivariant forms as they were introduced
in [6] for the modular group and generalized to an arbitrary modular subgroup in
[2]. These are meromorphic functions h on H that commute with the action of a
modular subgroup Γ; that is, we have the equivariance property

h(γ · z) = γ · h(z) for all z ∈ H, γ ∈ Γ,

in addition to a behavior at the cusps that will be specified below. The rigorous
definition introduced in [2] involves the double-slash operator from the previous
section. Obviously, the identity map h(z) = z satisfies the equivariance property. If
h(z) 6= z is a meromorphic function on H, we associate with it an auxiliary function

ĥ(z) =
1

h(z)− z
.

Proposition 3.1 Let h be a meromorphic function on H and let Γ be a modular sub-
group. If γ ∈ Γ and z ∈ H, then

h(γ · z) = γ · h(z) if and only if ĥ‖[γ](z) = ĥ(z).

Proof For γ =
(p q

r s

)
∈ Γ we have

h(γ ·z) = γ ·h(z)⇔ ĥ(γ ·z) = jγ(z) jγ(h(z))ĥ(z)⇔ jγ(z)−2ĥ(γ ·z) =
jγ(h(z))

jγ(z)
ĥ(z).

Meanwhile, jγ(h(z)) = r(h(z)− z) + jγ(z), so that

jγ(h(z))

jγ(z)
ĥ(z) = ĥ(z) + r jγ(z)−1.

The proposition follows.

Let s ∈ Q∪{∞} be a cusp of Γ with cusp width ls. If h is a meromorphic function

on H that commutes with the action of Γ on H, then ĥ‖[γ−1](z) is invariant under
γΓsγ

−1 =
〈

T ls

〉
and hence it is ls-periodic. Therefore, it has a Fourier expansion in

the local parameter qs = exp(2πiz/ls) of the form

ĥ‖[γ−1](z) =
∑

m≥ms

amqm
s .

We say that h is meromorphic at s if ĥ‖[γ−1](z) is meromorphic at∞ in the sense
that the integer ms is finite. It is important to note that if this holds at a cusp s, then
it also holds at any cusp that is Γ-equivalent to s.

Definition 3.2 An equivariant form for Γ is a meromorphic function on H that
commutes with the action of Γ and is meromorphic at every cusp of Γ.
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Besides the trivial example h(z) = z, one can attach an equivariant form to each
modular form or generalized modular form. Indeed we have the following theorem.

Theorem 3.3 ([2]) Let Γ be a modular subgroup and let f be a generalized modular
form for Γ of weight k and character µ. Then the function

h f (z) = z + k
f (z)

f ′(z)

is an equivariant form for Γ.

The equivariance property of h f is straightforward, while the meromorphy at the
cusps of h f as an equivariant form is equivalent to the meromorphy of f as a modular
form. For the case of modular forms, this equivariance property with respect to the
action of a modular subgroup also appears in [7]. The equivariant forms arising from
this theorem are called rational. In [2], one of the main results states a necessary
and sufficient condition for an equivariant form h to be rational is that ĥ has only
simple poles on H∪{∞} with rational residues. Furthermore, we have the following
theorem.

Theorem 3.4 ([2]) Let Γ be a modular subgroup and let f and g be generalized mod-
ular forms of respective weights k and k + 2 and having the same character, then

h(z) = z + k
f (z)

f ′(z) + g(z)

is an equivariant form for Γ.

Using this theorem, one can construct infinitely many equivariant forms that are
not rational by using convenient f and g in such a way that the residue of ĥ at a simple
pole is no longer a rational number. Several simple examples are provided in [2].

4 Classification via the Cross-ratio

The cross-ratio plays an important role in projective differential geometry. It is de-
fined for four points z1, z2, z3, z4 of the projective line P1(C) by

(z1, z2; z3, z4) =
(z1 − z2)(z4 − z3)

(z4 − z2)(z1 − z3)
.

A well-known property of the cross-ratio is that it is invariant under Möbius trans-
formations. Hence, it can be looked upon as a geometric invariant of the projective
line.

In this section, we show that the cross-ratio plays an important role with regard
to the equivariant forms as well. We have the following theorem.

Theorem 4.1 Suppose we are given three equivariant forms h1, h2, and h3 for a mod-
ular subgroup Γ with h1 6= h3. The map

(4.1) h 7−→ (h1, h2; h3, h) =
(h1 − h2)(h− h3)

(h− h2)(h1 − h3)
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defines a bijection between the set of equivariant forms without h1 and the field of mod-
ular functions for Γ seen also as the function field of the compact Riemann surface
XΓ = Γ\H∗, where H∗ = H ∪ {cusps}.

Proof Since the hl’s, 1 ≤ l ≤ 3, are equivariant forms for Γ and the cross ratio is
invariant under any Möbius transformations, the function f is invariant under Γ.
The meromorphy property on H and at cusps follows from that of the equivariant
forms. Clearly, the map (4.1) defines a bijection.

The above proposition requires the knowledge of three different equivariant forms
and this can easily be achieved using the rational equivariant forms for Γ. It is
worth mentioning that in [1], Brady has noted that the cross-ratio of four equiv-
ariant forms is a modular function, but without the knowledge of the existence of
these equivariant forms beside one fundamental example. Indeed, motivated by the
work of Heins [3] on the theory of elliptic functions, Brady, in [1], considered a lat-
tice L = Zω1 + Zω2 with τ = ω2/ω1 ∈ H. The Weierstrass ζ-function, defined by
ζ ′ = −℘ , where ℘ is the Weierstrass elliptic ℘ -function, is a pseudo-periodic func-
tion. If η1 and η2 are the pseudo-periods of ζ , then h0 = ω1η2, as a function of τ ,
commutes with the action of the modular group.

Now, the symmetric group S4 acts on the cross-ratio f = (h1, h2; h3, h4) of four
equivariant forms by permuting h1, h2, h3, h4, and this produces the following sym-
metric relations:

(h1, h2; h3, h4) = f , (h1, h2; h4, h3) =
1

f
,

(h1, h3; h2, h4) = 1− f , (h1, h3; h4, h2) =
1

1− f
,

(h1, h4; h3, h2) =
f

f − 1
, (h1, h4; h2, h3) =

f − 1

f
.

The modular function f is invariant under the products of disjoint transpositions
(1,2)(3,4), (1,3)(2,4), (1,4)(2,3), which form the Klein four-group, and the action of
any other permutation will produce one of the above transformations of f . In fact,
one could only consider the action of the symmetric group S3 as shown above by fix-
ing one equivariant form and permuting the others. Notice that the transformations

z 7−→ z

z − 1
, z 7−→ 1− z, z 7−→ 1

z
, z 7−→ 1

1− z
, z 7−→ z − 1

z
,

together with the identity, form a group that is isomorphic to S3.
In what follows we will illustrate this phenomenon using classical modular func-

tions and forms. Let j(z) be the classical modular invariant, which is a Hauptmodul
for SL2(Z), and define the Jacobi theta functions by

ϑ2(z) =
∑
n∈Z

t (n−1/2)2

, ϑ3(z) =
∑
n∈Z

tn2

, ϑ4(z) =
∑
n∈Z

(−1)ntn2

,
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where t = eπiz. These theta functions satisfy the Jacobi identity

(4.2) ϑ4
2 + ϑ4

4 = ϑ4
3.

The Klein modular function

(4.3) λ =
ϑ4

2

ϑ4
3

is a Hauptmodul for the genus 0 principal congruence subgroup Γ(2), which is of
index 6 in SL2(Z). It transforms under representatives of conjugacy classes of the
quotient SL2(Z)/Γ(2) ∼= S3 as follows:

λ
(

z/(z + 1)
)

=
1

λ
, λ(−1/z) = 1− λ,

λ
(
−1/(z + 1)

)
=

1

1− λ
, λ(z + 1) =

λ

λ− 1
,

λ
(
−(z + 1)/z

)
=
λ− 1

λ
.

Although these relations are a consequence of the transformation rules of the theta
functions, we provide a proof of these relations which is a consequence of the above
action on the cross-ratio of equivariant forms.

We have the following equivariant forms attached to the theta functions

hϑ2 (z) = z +
ϑ2(z)

2ϑ ′2(z)
, hϑ3 (z) = z +

ϑ3(z)

2ϑ ′3(z)
, hϑ4 (z) = z +

ϑ4(z)

2ϑ ′4(z)
,

which are equivariant forms for Γ(2).

Proposition 4.2 We have (z, hϑ2 ; hϑ3 , hϑ4 ) = λ.

Proof One easily computes

(z, hϑ4 ; hϑ2 , hϑ3 ) =
ϑ2(ϑ ′3ϑ4 − ϑ3ϑ

′
4)

ϑ3(ϑ ′2ϑ4 − ϑ2ϑ ′4)
=

ϑ ′
3
ϑ3
− ϑ ′

4
ϑ4

ϑ ′
2
ϑ2
− ϑ ′

4
ϑ4

.

Taking the logarithmic of (4.3), we get

(4.4)
λ ′

λ
= 4

(
ϑ ′2
ϑ2
− ϑ ′3
ϑ3

)
.

As a consequence of the Jacobi identity (4.2), we have 1 − λ = ϑ4
4/ϑ

4
3, which yields,

after taking the logarithmic derivative,

(4.5)
λ ′

1− λ
= 4
( ϑ ′3
ϑ3
− ϑ ′4
ϑ4

)
.

Adding (4.4) and (4.5) we get

(4.6)
λ ′

λ(1− λ)
= 4
( ϑ ′2
ϑ2
− ϑ ′4
ϑ4

)
.

Now, the proposition follows by taking the ratio of (4.5) and (4.6).
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Remark 4.3 As a consequence, we obtain the above transformations of λ under the
action of SL2(Z)/Γ(2), which is is isomorphic to S3, and the corresponding action of
S3 on the cross-ratio.

We now introduce the classical Eisenstein series

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn, E6(z) = 1− 504
∞∑

n=1

σ5(n)qn,

where σk(n) is the sum of the k-th powers of the positive divisors of n. The Eisenstein
series E4 and E6 are modular forms for SL2(Z) of weight 4 and 6 respectively. We also
introduce the Eisenstein series E2 given by

E2(z) = 1− 24
∞∑

n=1

σ1(n)qn,

which is not a modular form but it is rather referred to as a quasimodular form (see
§5). Moreover, E2 satisfies

(4.7) E2(z) =
1

2πi

∆ ′(z)

∆(z)
,

where ∆ is the weight 12 cusp form for SL2(Z) (also called the modular discriminant)
and is given by

∆(z) = q
∏

n≥1
(1− qn)24,

and which satisfies

∆ =
1

1728
(E3

4 − E2
6).

The Eisenstein series satisfy the Ramanujan relations

6

πi
E ′2 = E2

2 − E4,
3

2πi
E ′4 = E4E2 − E6,

1

πi
E ′6 = E6E2 − E2

4.

The j-function is given by

j = 1728
E3

4

E3
4 − E2

6

=
E3

4

∆

which is a Hauptmodul for the modular group SL2(Z). As usual, we denote by h f the
rational equivariant form attached to the modular form f .

Proposition 4.4 We have (z, hE4 ; h∆, hE6 ) = 1
1728 j.

Proof One easily shows that

(z, hE4 ; h∆, hE6 ) =
2E4(πiE2E6 − E ′6)

3E ′4E6 − 2E4E ′6
,

and using the Ramanujan relations, we get

(z, hE4 ; h∆, hE6 ) =
E3

4

E3
4 − E2

6

=
1

1728
j.

https://doi.org/10.4153/CMB-2011-195-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-195-2


528 A. El basraoui and A. Sebbar

Another important tool that is projectively invariant is the Schwarz derivative de-
fined for a meromorphic function f on a domain by

{ f , z} = 2
( f ”

f ′

) ′
−
( f ”

f ′

) 2
.

It is the infinitesimal counterpart of the cross-ratio and is an essential tool in projec-
tive differential geometry as well as many other fields. One can check that it satisfies
the following:

• If
(a b

c d

)
∈ GL2(C), then

{ a f + b

c f + d
, z
}

= { f , z}.

• Chain rule: If w is a function of z, then

{ f , z} = (dw/dz)2{ f ,w} + {w, z}.

• If f is a linear fractional transform of z, then { f , z} = 0.
• Inversion formula: If w ′(z0) 6= 0 for some point z0, then in a neighborhood of z0,

{z,w} = −(dz/dw)2{w, z}.

• The Schwarz derivative { f , z} has a double pole at the critical points of f and is
holomorphic everywhere else where it is meromorphic.

With regards to the equivariant forms, the above rules immediately yield the fol-
lowing proposition.

Proposition 4.5 If f is an equivariant form for a modular subgroup Γ, then { f , z} is
a modular form of weight four.

As an example, we have

(4.8) {hE4 , z} = 4π2E4(z).

This follows from the fact that hE4 does not have critical points, as one can show that

h ′E4
(z) = −3840π2 ∆(z)

E ′4
2(z)

,

and ∆ does not vanish on H. Hence, {hE4 , z} is a holomorphic modular form of
weight 4 and hence is a multiple of E4. Checking the first few coefficients of its q-
expansion yields (4.8).
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5 Classification via Quasimodular Forms

Quasimodular forms are a generalization of modular forms introduced by M. Kaneko
and D. Zagier [4]. They turned out to be very useful tools in mathematics and math-
ematical physics.

A (meromorphic) quasimodular form of weight k and depth p on Γ is a mero-
morphic function f on H such that

(5.1) f (z)|k[α] = jα(z)−k f (γ · z) =

p∑
i=0

fi(z)
( c

jα(z)

) i
,

z ∈ H, γ =

(
a b

c d

)
∈ Γ

and where the fi are meromorphic functions on H with moderate growth at the
cusps. The space of quasimodular forms of weight k and depth p on Γ is denoted by

M̃(≤p)
k = M̃(≤p)

k (Γ). The prototype of a quasimodular form is the Eisenstein series
E2 that is of weight 2 and depth 1. As a consequence of (4.7), we have the following
proposition.

Proposition 5.1 For α =
(

a b
c d

)
∈ SL2(Z), we have

E2(α · z) = jα(z)2E2(z) +
6c

πi
jα(z).

The following result summarizes most of the properties of quasimodular forms.

Theorem 5.2 ([4]) Let Γ be a modular subgroup and let k and p be nonnegative
integers.

(i) The space of quasimodular forms on Γ is closed under differentiation:

D
(

M̃(≤p)
k

)
⊂ M̃(≤p+1)

k+2 .

(ii) Every quasimodular form on Γ is a polynomial in E2 with modular forms as coef-
ficients. More precisely, we have

M̃(≤p)
k (Γ) =

p⊕
r=0

Mk−2r(Γ) · E2
r

for all k, p ≥ 0, where M j(Γ) denote the space of weight j modular forms on Γ.
(iii) Every quasimodular form on Γ can be written uniquely as a linear combination of

derivatives of modular forms and of E2. More precisely, we have

M̃(≤p)
k (Γ) =

{⊕p
r=0 Dr(Mk−2r(Γ)) if p < k/2,⊕k/2−1
r=0 Dr(Mk−2r(Γ))⊕ C · Dk/2−1E2 if p ≥ k/2.

We will show that equivariant forms are closely related to quasimodular forms of
weight 2 and depth 1. More precisely, we have the following proposition.
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Proposition 5.3 Let Γ be a modular subgroup and let h be a nontrivial equivariant
form for Γ, then

ĥ(z) =
1

h(z)− z

is a quasimodular form of weight 2 and depth 1.

Proof Using Proposition 3.1, if h is equivariant, then ĥ‖[γ](z) = ĥ(z) and by (2.1),
we have

ĥ‖[γ](z) = ĥ|2[γ](z)− c jγ(z)−1, γ =

(
a b

c d

)
∈ Γ.

It follows that
ĥ|2[γ](z) = ĥ(z) +

c

cz + d
.

Therefore, ĥ(z) is a quasimodular form of weight 2 and depth 1.

We should notice that the quasimodular form thus obtained is of a special form.

Indeed, the coefficients f0 and f1 as in (5.1) are given by f0 = ĥ, f1 = 1. In fact, the
first identity is expected since it follows from (5.1) by putting c = 0. A quasimodu-
lar form f of weight 2 and depth 1 will be called normalized if its corresponding f1

from (5.1) is given by f1(z) = 1. An example of such normalized weight 2 depth 1
quasimodular form is given by

Ẽ2(z) =
πi

6
E2(z),

which follows from Proposition 5.1.
Conversely, we have the following proposition.

Proposition 5.4 Let f be a normalized weight 2 and depth 1 quasimodular form for
a modular subgroup Γ, then

(5.2) h(z) = z +
1

f (z)

is an equivariant form for Γ.

Proof If f is a normalized weight 2 and depth 1 quasimodular form and h is given

by (5.2), then ĥ‖[γ](z) = ĥ(z). Hence, by Proposition 3.1, we have

h(γ · z) = γ · h(z), z ∈ H, γ ∈ Γ.

The meromorphy of h at the cusps follows from that of E2 and the modular forms
that are involved from Theorem 5.2(ii). Therefore, h is an equivariant form for Γ.

Thus we have shown that the set of nontrivial equivariant forms for SL2(Z) are
in one-to-one correspondence with the set of normalized quasimodular forms of
weight 2 and depth 1. The latter is simply M̃(≤1)

2 \{0}/C∗, which can be seen as a
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projective space with the point at infinity corresponding to the trivial equivariant
form h(z) = z.

As an example, if g is a weight k modular form for a modular subgroup Γ, then
g ′ is a weight k + 2 and depth 1 quasimodular form, while g ′/g is a weight 2 depth
1 quasimodular form and f = g ′/kg becomes a normalized one. According to the
above, h(z) = z + 1/ f (z) is then an equivariant form. Thus we recover the rational
equivariant forms of Theorem 3.3.

6 Classification via Modular Forms

In this section, we explain how the equivariant forms for a modular subgroup Γ can
also be identified with the weight 2 modular forms for Γ.

Proposition 6.1 Let h and g be two equivariant forms for Γ, then f (z) = ĥ − ĝ is a
weight 2 modular form for Γ.

Proof Indeed since h and g are equivariant, we have for γ ∈ Γ:

f (z) = ĥ(z)− ĝ(z) = ĥ‖[γ](z)− ĝ‖[γ](z)

= ĥ|2[γ](z)− ĝ|2[γ](z) = f |2[γ](z).

Therefore, f is a weight 2 modular form for Γ, as the meromorphy of f at the cusps
of Γ follows from that of h and g.

Another way to look at this fact is by noting that if f1 and f2 are two normalized
quasimodular forms of weight 2 and depth 1, then f = f1 − f2 is a modular form of
weight 2, as the quasimodular term c/(cz+d) cancels out in the difference. Thus if one
fixes a normalized quasimodular form of weight 2 and depth 1, say Ẽ2, then for every
normalized quasimodular form f of weight 2 and depth 1, we have f − Ẽ2 ∈ M2(Γ),
and conversely, if g ∈ M2(Γ), then g + Ẽ2 is a normalized weight 2 and depth 1
quasimodular form for Γ. Therefore, we have the following proposition.

Proposition 6.2 A meromorphic function h 6= z on H is equivariant for Γ if and only
if there exists a weight 2 modular form f for Γ such that

(6.1) h(z) = z +
1

Ẽ2(z) + f (z)
.

This provides us with the above mentioned identification between nontrivial
equivariant forms and the modular forms of weight 2.

We now look at the particular case when the weight 2 modular forms are holo-
morphic modular forms. The following is straightforward.

Proposition 6.3 Let f be a weight 2 modular form and let h be the corresponding
equivariant form as in (6.1), then f is holomorphic if and only if h does not have a fixed
point.
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The space of weight 2 holomorphic modular forms for a modular subgroup Γ has
dimension g +r−1, where g is the genus of Γ, that is of the compact Riemann surface
XΓ, and r is the number of inequivalent cusps. In our case r is always positive, since
Γ has always a cusp at ∞. Hence, when g = 0 and r = 1, e.g., Γ = SL2(Z), then
this space is trivial. Therefore, the only equivariant form h(z) without fixed points
corresponds to f = 0 in (6.1), and thus h(z) = h∆(z) = z + 1/Ẽ2(z) which we will
denote by h0 and refer to as the fundamental equivariant form for the rest of this
paper.

In fact, Proposition 6.2 confers to the space E(Γ) of nontrivial equivariant forms
a vector space structure in which h0 plays the role of the zero element. Moreover,
the equivariant forms without fixed points form a finite dimensional subspace of
dimension g + r − 1, where g and r are as above. As for the vector space operations,
they are as follows. In E(Γ), the sum h1 ⊕ h2 is given by

ĥ1 ⊕ h2 = ĥ1 + ĥ2 − ĥ0 = ĥ1 + ĥ2 − Ẽ2.

Recall that ĥ(z) = (h(z)− z)−1. The opposite of h is given by 2ĥ0− ĥ = 2Ẽ2− ĥ, and
if c is a scalar, then c � h is given by

ĉ � h = cĥ + (1− c)ĥ0.

7 Differential Forms and Sections of a Canonical Line Bundle

The space M2(Γ) of weight 2 meromorphic modular forms for Γ is isomorphic to
the space of meromorphic differential 1-forms on the Riemann surface XΓ where
each modular form f (z) corresponds to the differential form f (z)dz on H which is
invariant under Γ. In this way, these modular forms are sections of the cotangent
bundle Ω1(XΓ), that is the canonical line bundle of XΓ, and by the previous section,
the nontrivial equivariant forms for Γ can be looked at in a similar manner.

Let us proceed in a different way to connect equivariant forms to differential
forms. Let h be a nontrivial equivariant form for a modular subgroup Γ with which
we associate the meromorphic degree 1 differential w = (ĥ(z))dz, where ĥ(z) denotes
as usual (h(z)− z)−1. Then, since h is an equivariant form and d

dz (α · z) = jα(z)−2,
we get a degree one differential satisfying

α∗w = w +
c

jα(z)
dz, α =

(
a b

c d

)
∈ Γ,

where α∗w = ĥ(α · z)d(α · z). In other words,

(7.1) α∗w − w =
c

jα(z)
dz for all α ∈ Γ.

Conversely, suppose we are given a degree 1 meromorphic differential w on H∗ sat-
isfying (7.1) for all α ∈ Γ. Write w = f (z)dz for some meromorphic function
f : H∗ → C. Then we have

α∗w − w = jα(z)−2 f (α · z)dz − f (z)dz = f (z)|2[α]dz − f (z)dz =
c

jα(z)
dz.
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Hence,

f (z)|2[α] = f (z) +
c

jα(z)
,

that is, f is a normalized weight 2 depth 1 quasimodular form. Therefore, h(z) = z +
1/ f (z) is an equivariant form by Proposition 5.4. This establishes the correspondence
between equivariant forms and degree 1 meromorphic differentials on H∗ satisfying
(7.1).

Now, if w0, w1 are two differential forms satisfying (7.1), then the degree 1 form
w = w1 − w0 is invariant under the action of Γ. Therefore, there is a weight 2 mero-
morphic modular form f on Γ such that w = f (z)dz. Hence, fixing w0 = ĥ0(z)dz,
we get a one-to-one correspondence between the space of degree 1 meromorphic dif-
ferentials on H invariant under the action of Γ, which we identified with the space
of degree 1 meromorphic differentials on XΓ, and the set of degree 1 meromorphic
differentials on H∗ satisfying (7.1). As a consequence, we have the following theorem.

Theorem 7.1 The nontrivial equivariant forms are identified with the meromorphic
(global) sections of the canonical line bundle of XΓ.

Again, in this identification, the zero section corresponds to the fundamental
equivariant form h0, and the holomorphic sections correspond to the equivariant
forms without fixed points.
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